

fll fl1 [il~ II.

19 [-1[111

~11 1111
~ mI)~

System 1I1 ~
Programming
for developers ~

Michael Tischer

A Data Becker Book

Published by

AbacuslliliiiiiUiil

Third Printing, April 1990
Printed in U.S.A.

Copyright © 1989, 1990 Abacus
5370 52nd Street, SE.
Grand Rapids, MI 49512

Copyright © 1988, 1989, 1990 DATA BECKER GmbH
Merowingerstrasse 30
4000 Duesseldorf, West Germany

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of Abacus or Data Becker,
GmbH.

Every effort has been made to ensure complete and accurate information concerning the
material presented in this book. However, Abacus can neither guarantee nor be held legally
responsible for any mistakes in printing or faulty instructions contained in this book. The
authors always appreciate receiving notice of any errors or misprints.

This book contains trade names and trademarks of many companies and products. Any
mention of these names or trademarks in this book are not intended to either convey
endorsement or other associations with this book.

PC-DOS, IBM PC, XT, AT, PS/2, OS/2 and PC-BASIC are trademarks or registered
trademarks of International Business Machines Corporation. Ventura Publisher is a
trademark or registered trademark of Xerox Corporation. GEM and CP/M are trademarks or
registered trademarks of Digital Research Corporation. Microsoft Works, Microsoft Quick
C, Microsoft Windows, MS-DOS, XENIX and GW-BASIC are trademarks or registered
trademarks of Microsoft Corporation. Lotus 1-2-3 is a trademark or registered trademark of
Lotus Development Corporation. dBASE is a registered trademark of Ashton-Tate, Inc.
Sidekick, Turbo C and Turbo Pascal are trademarks or registered trademarks of Borland
International. UNIX is a registered trademark of Bell Laboratories. Mickey Mouse is a
registered trademark of Walt Disney Corporation.

Library of congress Cataloging-in-publication Oata
Tischer, Michael, 1953
PC system programming for d'evelopers I Michael Tischer.
p. ClI.

"A Data Becker book ,'I
1. System programming (computer science) 2. Microcomputers-programming. I. Title
QA76.66.T57 1989 DDS.26S--dc20 85-183S0

ISBN 1-55755-036-0 (book and disk set)

i i

Table of Contents

1. Introduction .. 1

2. The PC's Brain .. 3

2.1 8088 Registers .. 6

2.2 Segment and Offset Addressing ... 8

2.3 The CPU Support Chips ..13

2.3.1 The DMA Controller ...13

2.3.2 The Interrupt Controller ...13

2.3.3 The Programmable Peripheral Interface ..13

2.3.4 The Clock ...14

2.3.5 The Timer ...14

2.3.6 The Screen Controller ..14

2.3.7 The Disk Controller ..14

2.3.8 The Math Coprocessors (8087/80287/80387) ...14

2.4 The CPU and Memory ...16

3. Introduction to Interrupts19

3.1 The Structure of the Interrupt Vector Table ..20

3.2 Interrupt Types .. .22

3.2.1 Software Interrupts ..22

3.2.2 Hardware Interrupts..22

3.3 Interrupts at a Glance ...24

4. Using Interrupts from High Level Languages ...27

4.1 Interrupt Calls from BASIC ..28

4.2 Interrupt Calls from Turbo Pascal36

4.3 Interrupt Calls from C ...40

5. Using Interrupts from Assembly Language47

5.1 Using Assembler Macro Functions .. .48

5.2 A Sample Macro.. .49

6. The Disk Operating System51

6.1 A Short History of OOS ..52

6.2 Internal Structure of OOS .. .56

6.3 Booting OOS .. .59

iii

Table of Contents PC System Programming

6.4 COM and EXE Programs ...60

6.4.1 COM Programs ..62

6.4.2 EXE Programs ...66

6.5 Character Input and Output from DOS ..70

6.5.1 Handle Functions ..70

6.5.2 Traditional DOS Functions ...74

6.6 File Management in DOS...84

6.6.1 Handle Functions ..84

6.6.2 FCB Functions...86

6.7 Accessing the DOS Directory ..92

6.7.1 Searching for Files using FCB Functions ..94

6.7.2 Searching for Files using Handle Functions ...95

6.8 The EXEC Function.. 110

6.9 Memory Allocation from DOS .. 119

6.10 DOS Filters ... 1 32

6.11 <Crtl><Break> and Critical Error Interrupts ... 142

6.12 DOS Device Drivers .. 148

6.12.1 Character Device Drivers .. 150

6.12.2 Block Device Drivers ... 151

6.12.3 Structure of a Device Driver .. 151

6.12.4 Device Driver Functions ... 155

6.12.5 Clock Driver .. 1 68

6.12.6 Device Driver Calls from DOS ... 169

6.12.7 Direct Device Driver Access .. 170

6.12.8 Tips on Developing Device Drivers .. 172

6.12.9 Driver Examples ... 172

6.12.10 CD-ROMs... 192

6.13 DOS Mass Storage.. 196

6.14 Tips on Compatibility between Computers ..206

6.15 Undocumented DOS Structures .. 208

6.16 DOS 4.0 ...213

7. The BIOS .. 219

7.1 Booting the System... 221

7.2 Determining BIOS Version ...223

7.3 Determining the PC Type ...224

7.4 BIOS Screen Output Functions ..226

7.4.1 The EGA and VGA BIOS ...254

7.5 Determining System Configuration using BIOS ...289

7.6 Determining Available RAM using the BIOS ...291

7.7 Accessing the Floppy Disk from the BIOS ..297

7.8 Accessing the Hard Disk from the BIOS .. 323

7.9 Accessing the Serial Port from the BIOS ...330

7.10 The Cassette Interrupt. ...336

7.11 Accessing the Keyboard from the BIOS ~358

7.12 Accessing the Printer from the BIOS ..384

iv

Abacus Table of Contents

7.13 Reading the Date and Time from the BIOS ... 395

7.14 BIOS Variables...398

8. Terminate and Stay Resident Programs407

9. Sound on the PC ..447

10. Accessing and Programming the Video Cards .. .457

10.1 Anatomy ofa Video Card ...460

10.2 The IBM Monochrome Card ..469

10.3 The Hercules Graphic Card ..482

10.4 The IBM Color Card,:..497

10.5 EGA and VGA Cards ...519

10.6 Determining the Type of Video Card ... 537

10.7 Accessing Video RAM from High Level Languages554

11. Accessing and Programming the AT Realtime Clock 563

12. Keyboard Programming ..575

13. Expanded Memory Specification ..597

14. Mouse Programming ...617

15. Determining Processor Types ..653

16. PC Hardware Interrupts .. 667

17. Hard Disk Partitioning ...687

18. The PC Ports ...699

19. Interaction between Keyboard, BIOS and OOS ..701

Appendices .. 709

A. Important Hardware Interrupts ..710

B. BIOS Interrupts and Functions ...713

C. DOS Interrupts and Functions ...766

D. EMM Functions ... 849

E. EGNVGA BIOS Functions ..856

F. Mouse Driver Intemlpts ... 882

G. Introduction to Number Systems ..900

H. Glossary of Terms...903

I. Scan Codes ..918

J. ASCII Character Set .. 919

Index ...921

v

Chapter 1

Introduction

A few years ago, my computer was a small home computer. When I became
interested in the IBM PC, I had to learn a lot of new things. I learned about MS
DOS and became familiar with 8088 assembly language. I soon reached a point
where I started developing commercial PC programs in partnership with my friend
Axel Sellemerten. All of this happened some time ago, but I still clearly
remember sitting at my desk, looking through dozens of PC books and technical
manuals, trying to find a critical piece of information.

These books and manuals were expensive and hard to find. Besides, none of them
covered all aspects of the PC. Some books tell you about PC hardware m: the
BIOS QI DOS. I could never find a book that dealt with the PC as a total system.
No single book was able to provide me with a complete system overview.

This book is the result of my experience with all of these references. The three
main areas of the PC (hardware, the BIOS and DOS) are combined in this book
from a software developer's point of view. This book was written to serve as an
instruction book as well as a reference manual. It is not, and was never intended to
be, a book for the beginner. The book assumes that you're familiar with MS-DOS
and are able to program in one of the four most popular PC programming
languages (machine language, BASIC, Pascal or C).

Organization

The book is divided into five parts. Part 1 (Chapters 1-5) gives an introduction to
the PC's internal components. Part 2 (Chapter 6) describes the Disk Operating
System (DOS) and Part 3 (Chapter 7) describes the Basic Input Output System
(BIOS). PC hardware that is not part of the central processor is discussed in Part 4
(Chapters 8-18). Part 5 (Chapter 19) describes the interaction between these
components and the keyboard. The book concludes with a large reference section
(Appendices) containing all functions of DOS and the BIOS, among other things.

To understand the content of this book, you must first know something about the
different number systems used in computers. Readers unfamiliar with the binary

1

1. Introduction PC System Programming

and hexadecimal number systems should read Appendix G (Introduction to Number
Systems) before continuing.

Chapters 2 through 5 contain descriptions of PC microprocessors and interrupts. If
you're an experienced assembly language programmer you can skip these chapters,
but you may learn something new by reading them anyway.

BASIC, Pascal and C programmers should read Chapters 2 and 3 and should work
through the subsections in Chapter 4 devoted to your preferred language. Chapter 5
is devoted exclusively to assembly language programming and may be skipped.

2

Chapter 2

The PC's Brain

While working with the PC, many users have wondered about its ability to solve
complex problems. Users often attribute these abilities to the software or operating
system. The fact is, hardware is as important as the software.

Microprocessor

The microprocessor is the brain of the PC. It understands a limited number of
machine language instructions and processes or executes programs in this machine
language. These instructions are very simple and can't be compared to commands
in high level languages such as BASIC, Pascal or C. Commands in these
languages must be translated into a large number of machine language instructions
that the PC's microprocessor can then execute. For example, displaying text with
the BASIC PRINT statement requires the equivalent of several hundred machine
language instructions.

Machine language instructions differ for each microprocessor used in different
computers. When you hear someone talk about Z-80, 6502 or 8088 machine
language, these terms refer to the microprocessor being programmed.

Intel's 80xx series

The PC has its own family of microprocessor chips, all designed by the Intel
Corporation. The figure on the next page describes the Intel 80xx family tree.
Your PC may contain an 8086, an 8088 (used in the PClXn, an 80186, an 80286
(used in the An or even an 80386 microprocessor. The first generation of this
group (the 8086) was developed in 1978. The successors of the 8086 were different
from the original chip. The 8088 is actually a step backward since it has the same
internal structure and instructions of the 8086, but is slower than the 8086. The
reason is that the 8086 transfers 16 bits (2 bytes) between memory and the
microprocessor at one time. The 8088 is slower since it transfers only 8 bits (1
byte) at one time.

3

2. The PC's Brain PC System Programming

Multiprocessing

The three other microprocessors of this family are improved versions of the 8086.
The 80186 offers auxiliary functions. The 80286 has additional registers and
extended addressing capabilities. The 80286's biggest advantages over its
predecessors are its multiprocessing and virtual memory capabilities.
Multiprocessing allows several programs to execute at the same time, such as
compiling a program while using a word processor. This capability, which is
based on the fast switching between the individual programs, can also be
implemented through software (e.g., Microsoft Windows®), but working directly
through the processor is more efficient.

Virtual memory

Virtual memory means that a program appears to use much more memory than is
available in the computer's RAM. Portions of the programs or data which don't fit
into memory are temporarily stored on the mass storage device (floppy or hard
disk). The computer loads these sections into RAM as needed. The CPU and the
operating system share the task of virtual memory management. Earlier versions
of MS-DOS don't support the multiprocessing or virtual memory capabilities of
the 80286, so most AT computers aren't working to their full potential.

80486

6 8~?A
8028~ •

t
Relative
power

I

74 75 76 77 78 79 80 81 8283 84 85 86 8788 89 90
Year

The Intel80xx processor family

4

Abacus 2. The PC's Brain

The 80386 represents current state of the art technology. It has a more extensive
instruction set than the 80286, and offers additional memory protection features.

These processors are all upwardly compatible with software. This means that
machine language programs developed for the 8086 can be executed on the other
processors of this series. On the other hand, a program written for the 80386 may
not run correctly on the 80286 or the 8088, because instructions available on the
80386 may not be available in the earlier processors.

Throughout this book the PC processor is designated as the 8088, even though
your PC may use a different processor.

5

2. The PC's Brain 	 PC System Programming

2.1 8088 Registers

Registers are memory locations within the processor itself, instead of in RAM.
These registers can be accessed much faster than RAM. In addition, registers are
specialized memory locations. The CPU perfonns arithmetic and logical operations
using its registers.

Common Registers Segment Registers
15 87 0

OS DATA SEGMENT AX ACCUMULATOR
AH I AL

EXTRA SEGMENT BX 	 ESBASE

BH I Bt
 CODE SEGMENT

Cif9~LC(COUNT 	
CS

SS STACK SEGMENT
DATADif~~LD(

01 DESTINATION INDEX
Program Counter

SI SOURCE INDEX
\ INSTRUCTION

IP POINTERSTACK POINTER \SP

BP BASER POINTER

Flag Register

_OIDIIITlslz~
15 11 10 9 8 7 6 4 2 0

8088 registers

All registers are 16 bits (2 bytes) in size. If all 16 bits of a register contain a I,
this is the largest number that can be represented within 16 bits. This number is
the decimal number 65535. Therefore, a register can contain any value from 0 to
65535.

Register groupings

As shown in the above figure, registers are divided into four groups: common
registers, segment registers, the program counter and the flag register. The different
register assignments are designed to duplicate the way in which a program
processes data-which is the basic task of a microprocessor.

The disk operating system and the routines stored in ROM use the common
registers a great deal, especially the AX, BX, ex and DX registers. The contents
of these registers tell DOS what tasks it should perfonn and which data to use for
execution.

6

Abacus 2.1 8088 Registers

These registers are affected mainly by mathematical (addition, subtraction, etc.) and
input/output instructions. They are assigned a special position within the registers
of the 8088 because they can be separated into two 8-bit (I-byte) registers. Each
common register may be thought to consist of three registers: a single 16-bit
register, or two smaller 8-bit registers.

bit 15 bit 8 bit 7 bit 0

AL

bit 15 bit 0

AX register

The registers have designators of H (high) and L (low). Thus the 16-bit AX
register may be divided into an 8-bit AH and an 8-bit AL register. The H and the L
register designators occur in such a way that the L register contains the lower 8
bits (bit 0 through 7) of the X register, and the H register the higher 8 bits (bits 8
through 15) of the X register. The AH register consists of bits 8-15 and the AL
register of bits 0-7 of the AX register. However, the three registers cannot be
considered independent of each other. For example, if bit 3 of the AH register is
changed, then the value of bit 11 of the AX register also changes automatically.
The values change in both the AH and the AX registers. The value of the AL
register remains constant since it is made of bits 0-7 of the AX register (bit 11 of
the AX register does not belong to it). This connection between the AX, the AH
and the AL register is also valid for all other common registers and can be
expressed mathematically.

You can determine the value of the X register from the values of the H and the L
registers, and vice versa. To calculate the value of the X register, multiply the
value of the H register by 256 and add the value of the L register.

Example: The value of the CH register is 10, the value of the CL register is
118. The value of the CX register results from CH*256+CL, which
is 10*256+ 118 = 2678.

Specifying register CH or CL, you can read or write an 8-bit data item from or to
any memory location. Specifying register CX, you can read or write a 16-bit data
item from or to a memory location.

7

2. The PC's Brain PC System Programming

2.2 Segment and Offset Addressing

One of the design goals of the 8088 was to provide an instruction set that was
superior to the earlier 8-bit microprocessors (6502, Z80, etc.). A second goal was
to provide easy access to more than 64 kilobytes of memory. This goal was of
special importance since increasing processor capabilities allow programmers to
write more complex applications, which in tum require more memory. The
designers of the 8088 increased the memory capacity or address space of the
microprocessor by more than 16 times to one megabyte.

Address register

The number of memory locations which a processor can access depends on the
width of the address register. Since every memory location is accessed by
specifying a unique number or address, the maximum value contained in the
address register determines the address space. Earlier microprocessors used a 16-bit
address register enabling access to addresses from 0 to 65535. This corresponds to
the 64K memory capacity of these processors.

To address one megabyte of memory the address register must be at least 20 bits
wide. At the time the 8088 was developed, it was impossible to use a 20-bit
address register, so the designers used an alternate way to achieve the 20-bit width:
the contents of two different 16-bit numbers are used to form the 20-bit address.

Segment register

One of the numbers is contained in a segment register. The 8088 has four segment
registers. The second number is contained in another register or in a memory
location. To form a 2O-bit number, the contents of the segment register are shifted
left by 4 bits (thereby multiplying the value by 16) and the second number is added
to the first

Segment and offset addresses

These addresses are the segment address and the offset address. The segment address
is formed by a segment register and indicates the start of a segment of memory.
During the address formulation, the offset address is added to the segment address.
The offset address indicates the number of the memory location within the segment
whose beginning was defmed by the segment register. Since the offset address can
never be larger than 16 bits"a segment can be no larger than 65,535 bytes (64K).

Segmented address

The segmented address results from the combined segment and offset addresses.
This segmented address specifies the exact number of the memory location which
should be accessed. Unlike the segmented address, the segment and the offset
addresses are relative addresses or relative offsets.

8

Abacus 22 Segment and Offset Addressing

Logical
address

1514 13 ... •..(16 bits 210 0ff

I I I I I I I I I I I I I I I I I add~:~s
BIT-

Physical 191817 •.. - . .. 2 1 0

(2~dr:I~:) I
BIT

Memory structure using segment and offset addresses

A segment cannot start at everyone of the million or so memory locations.
Multiplying the segment register by 16 always produces a segment address that is
divisible by 16. For example, it's not possible for a segment to begin at memory
location 22.

Combining the segment and offset addresses requires special notation to indicate a
memory location's address. This notation consists of the segment address in four
digit hexadecimal format, followed by a colon, and the offset address in four-digit
hexadecimal format. For example, a memory location with a segment address of
2000H and an offset address of AF3H would appear in this notation as 2000:0AF3.
Because of this notation, you can omit the H suffIx from hexadecimal numbers.

9

2. The PC's Brajn PC System Programming

::J
n...
CI)

3
CI)
::J-

= 1104H
CI)

Q.

Segment

Offset

3
CI)

3
o...
'<

Segment
address = 1600H

II)
Q.
Q....
CI)
til
til
CI)
til

Segment and offset address

The 8088 has four segment registers, which have special roles in the execution of
an assembly language program. There are four registers to accommodate the basic
structure of any program. A program consists of a set of instructions (code). There
are also variables and data items that are processed by the program. A structured
program keeps the code and data separate from each other while they reside in
memory. Assigning code and data their own segments conveniently separates
them.

Each needs a segment address and a segment register. The CS (Code Segment)
register uses the IP (Instruction Pointer) register as the offset address. The CS then
determines the address at which the next assembly language instruction is located.
The IP is also called the Program Counter. When the processor executes the
current instruction, the IP register is automatically incremented to point to the
next assembly language instruction. This ensures the execution of instructions in
the correct order.

Like the CS register, the DS (Data Segment) register contains the segment address
of the data which the program accesses (writing or reading data to or from

10

Abacus 22 Segment and Offset Addressing

memory). The offset address is added to the content of the DS register and may be
contained in another register or may be contained as part of the current instruction.

The SS (Stack Segment) register specifies the starting address of the stack. The
stack acts as temporary storage space by some assembly language programs. It
allows fast storage and retrieval of data for various instructions. For example,
when the CALL instruction is executed, the processor places the return address on
the stack. The SS register and either the SP or BP registers form the address that is
pushed onto the stack.

The last segment register is the ES (Extra Segment) register. It is used by some
assembly language instructions to address more than 64K of data or to transfer data
between two different segments of memory.

ES:FFFF ES: FFFF
CS:FFFF

ES:OOOO ES:OOOO
CS: FFFF CS:OOOO

CS:OOOO

SS:FFFF

SS:FFFF

SS:OOOO DS:FFFF

DS:FFFF SS:oooo

DS:OOOO

DS:OOOO

Non-overlapplng Overlapping
segments segments

Overlapping and non-overlapping segments

As the figure above shows, two segment registers can specify areas of memory
which overlap, or are completely different from one another. In many cases, a
program doesn't require a full 64K segment for storing code or data. You can
conserve memory by overlapping the segments. For example, you can store data
immediately following the program code by setting the DS and CS registers
accordingly.

11

2. The PC's Brain PC System Programming

The flag register is of special importance. Various bits in this register indicate or
signal the special conditions which may occur during execution of an assembly
language instruction. For example, if an arithmetic operation results in a negative
number, the processor sets the S (sign) flag to 1 to indicate this change.

The C (carry) flag is set to 1 if the sum of two 8-bit numbers cannot be
represented as an 8-bit number.

As the figure above shows, the processor doesn't use all 16 bits of this register.
The unused bits normally contain the value O.

This ends our short trip into the PC's brain. If you didn't quite follow some of
these concepts, the sample application programs in the sections on the BIOS and
DOS functions should help you understand.

12

Abacus 2.3 The CPU Support Chips

2.3 The CPU Support Chips

The microprocessor is the computer's brain, and is probably the most intelligent
component in a computer system. However, it cannot supervise all the computer's
functions on its own. For this reason, other components called support chips
perform many other tasks, leaving the processor to concentrate on its primary task
of executing assembly language programs.

These support chips communicate with and control external peripherals such as a
disk drive or the screen display.

Some of these support chips can be programmed using the assembly language
instructions IN and OUT. Since the programming of most support chips is very
complex, we recommend that you leave this up to DOS, unless you have a
complete understanding of the structure and operation of these chips.

The following sections define the most important support chips in the PC.

2.3.1 The DMA Controller

This chip gets its name from the acronym DMA which stands for Direct Memory
Access. This chip can directly write data to or read data from RAM. The DMA
controller performs disk input/output operations, moving data from RAM to disk
or from disk to RAM. This relieves the processor of this task and accelerates
program execution.

2.3.2 The I nterrupt Controller

Interrupts are signals from individual components of the system to get the CPU's
attention and to initiate certain tasks. Several interrupts or requests for services
from different system components can be outstanding at one time. These requests
are initially handled by the interrupt controller, which passes them on to the CPU.
It assigns priority to every interrupt request according to its source and passes the
request with the highest priority to the CPU. The interrupt controller in the
PC/XT can process up to 8 interrupt requests at the same time. ATs require more
power, so they use two interconnected interrupt controllers which can process up
to 15 interrupt requests simultaneously.

2.3.3 The Programmable Peripheral Interface

This chip provides a link between the CPU and the peripherals such as the
keyboard or an audio speaker. However, it only operates as a mediator, addressed by
the CPU for unit access and transmission of certain signals. You cannot bypass
the PPI for direct communication between the CPU and peripherals.

13

2. The PC's Brain PC System Programming

2 .3 . 4 The Clock

If the microprocessor is the brain of the computer, then the clock could be
considered the heart of the computer. This heart beats several million times a
second (about 14.3 megaHertz) and paces the microprocessor and the other chips in
the system. Since almost none of the chips operate at such high frequencies, each
support chip modifies the clock frequency to its own requirements.

2.3.5 The Timer

The timer chip can be used as a counter and timekeeper. This chip transmits
constant electrical pulses from one of its output pins. The frequency of these
pulses can be programmed as needed, and each output pin can have its own
frequency. Each output pin leads to another component. One line goes to the audio
speaker and another to the interrupt controller. The line to the interrupt controller
triggers interrupt 8 at every pulse, which advances the timer count.

2 .3 . 6 The Screen Controller

Unlike the chips discussed up until now, the CRT (Cathode Ray Tube) controller
is separate from the main circuit board of the PC. You'll find this chip on the
video board which is mounted in one of the computer's expansion slots. Even
though there are many boards that differ widely in their capabilities (monochrome
display, color display, etc.), all video boards are based on the 6845 CRT controller.
It produces a display on the monitor connected to the computer. The controller has
several internal registers which control the output of the display.

2 .3.7 The Disk Controller

This chip is also usually located on an expansion board. It is addressed by the
operating system and controls the functions of the disk drive. It moves the
read/write head of the disk drive over the disk, reads data from the disk and writes
data to the disk.

2.3.8 The Math Coprocessors (8087/80287/80387)

The 8088, 80286 and the 80386 are not capable of performing floating point
arithmetic operations directly. There is a socket on the main circuit board of the
PC for adding a special math coprocessor. The PC/XT uses the 8087, the AT the
80287 and the new 80386 uses the 80387 coprocessor.

While floating point arithmetic can be performed using software routines, a math
coprocessor is up to 100 times faster. The 8087 and the 80287 can perform basic

14

Abacus 23 The CPU Support Chips

math functions such as addition, subtraction, multiplication and division,as well
as the trigonometric functions sine, cosine, etc. They can also compute square
roots of numbers.

In general, only a few application software packages support the math
coprocessors.

15

2. The PC's Brain PC System Programming

r
2.4 The CPU and Memory

While the chips described up until now are intelligent system components,
memory is a passive element. Data can be stored and later retrieved from memory.
Each memory location is used to store one byte (8 bits) of data. Memory locations
are identified by a unique address, starting from zero.

The support chips communicate with memory using a bus or path over which the
electronic signals travel.

Address bus

The address bus carries the number of the memory location to be accessed. The
signals on the bus represent a binary number whose value indicates the memory
location for access. Since only those memory locations represented on the address
bus can be accessed, the number which make up the bus lines determine the
number of addressable memory locations .

. The PC/XT has a 20-bit address bus and can address a maximum of 2'}J) (about 1
million) different memory locations. The AT has a 24-bit address bus and can
address more than 16 million memory locations.

Data bus

Once the bus knows the address of the memory location to be accessed, data can be
transferred between the individual chips and the memory location over the data bus.
The number of lines in this circuit determine how many bits are transferred to or
from memory simultaneously.

The PC/XT has 8 lines so it can transfer one byte at a time. However, since the
8088 is a 16-bit processor, 16-bit data must often be transferred. There aren't
enough lines to transfer 16-bit data, so the system divides a 16-bit data item into
two 8-bit numbers. These two 8-bit data bytes are transferred one after the other
along the bus.

The 8086 and 80286 processors can transfer 16 bits simultaneously over their 16
bit-wide data buses. This is one reason why the AT executes programs faster than
the 8088 processor. The 80386 processor can transfer 32 bits at a time.

Word storage

All members of the Intel 80xx processor family share the same method of storing
words (16-bit data) in memory. The lower numbered memory location contains
bits 0-7 (the low byte) and the higher numbered memory location contains bits 8
15 (the high byte). For example, if you store the word 3F87H starting at address
0000:0400, memory location 0000:0400 accepts the low byte 87H and memory
location 0000:0401 accepts the high byte 3FH.

16

Abacus 	 2,4 The CPU and Memory

Two details were left out of the discussion of memory so far:

1.) 	 The processor doesn't care if a memory address is located in a RAM chip
or a ROM chip. The main difference between RAM and ROM lies in the
fact that you can't write or store new data into ROM (hence its name:
Read Only Memory).

2.) 	 The addressable space of the microprocessor (1 megabyte) is allocated into
16 storage segments of 64K each. This is an almost universal division
used on IBM PC/XTs and most compatible machines.

IBlock 	" 1n...."T'iotion

FOOII: IBIOS ROM

J- RC ca.:r LC:tq~
RC cartr Ldoe
ac Lt~ona H JS RUM

I,; .eo RAM
1 : : itio:lal ieo RAM

uo :0
1-: uo :0

UO 0,-'
110 :0

,-! 	 UO 'n,-I UO :0
,-: uo :0

,-; 110 :0

un :0

) 1000 :00 '-U ':

Memory allocation

The first 10 memory segments are reserved for the main RAM memory, limiting
maximum RAM to 640K. A computer's memory size may differ from one PC
manufacturer to another but has at least 64K installed in segment O. If you install
additional RAM, its first memory address must immediately follow the last
existing memory address, since no gaps may exist between individual RAM
memory segments. Memory segment 0 has a special role since it contains
important data and operating system routines.

Memory segment A follows the RAM memory. In this case, an EGA (Extended
Graphics Adapter) is installed. This board uses the memory for the screen display
in different graphic modes.

Memory segment B is reserved for a monochrome or color graphics board. They
share the segment as screen memory. The monochrome board uses the lower 32K
and the color board uses the upper 32K. Each board uses only as much memory as
it needs for the screen display. The monochrome board uses 4K; the color board
uses 16K because of the additional color capabilities.

17

2. The PC's Brain PC System Programming

The next memory segment contains ROM beginning at segment C. Some
computers store the BIOS routines which aren't part of the original BIOS kernel at
this location. For example, the XT uses these routines for hard disk support. Since
this area isn't fully utilized, it is possible that BIOS routines supporting future
hardware enhancements will also be placed in this memory range.

ROM cartridges

Segments D and E are reserved for ROM cartridges. These cartridges extend the
computer with certain ROM routines. The PC has rarely used them and the area
usually remains unused.

Segment F contains the actual BIOS routines, the system loader and the ROM
BASIC available on many computers.

18

Chapter 3

Introduction to Interrupts

This chapter presents a view of interrupts, which are vitally important to the
operation of the 8088 processor. An interrupt is a signal from a peripheral device
or a request from a program to perform a specific service. When an interrupt
occurs, the currently executing program is temporarily suspended and an interrupt
routine begins execution to handle the condition that caused the interrupt

Program Interrupt routine

"tJ Save register contents o
c.c....
D)

3
CD

~
()
c: Restore register contents !:!:
o
:l

IRET

Program interrupt

When a program is suspended, the processor saves the contents of the CS and IP
registers on the stack, and begins the interrupt routine. After the interrupt routine
has completed its task, it issues the IRET (Interrupt RETurn) instruction which
restores the contents of the CS and IP registers from the stack, thus resuming the
program.

The interrupt routine saves and restores contents of the other registers before
returning to the interrupted program.

19

3. Introduction to Interrupts PC System Programing

3.1 The Structure of the Interrupt Vector Table

So far we've talked about a single interrupt and a single interrupt routine. In fact,
the 8088 has 256 possible interrupts numbered from 0 to 255, not just one.

Each interrupt has an associated interrupt routine to handle the particular condition.
To organize the 256 interrupts, the starting address of the corresponding interrupt
routines are arranged in the interrupt vector table.

When an interrupt occurs, the processor automatically retrieves the starting address
of the interrupt routine from the interrupt vector table.

The starting address of each interrupt routine is specified in the table in terms of
the offset address and segment address. Both addresses are 16 bits (2 bytes) wide.
Therefore each table entry occupies 4 bytes. The tota1length of the table is 256*4
or 1024 bytes (IK).

Interrupt Purpose
number:,...---...

0000:003FE cs Free255
0000:003FC IP

~
OOOO:OOOE CS

3 BreakpointOOOO:OOOC IP
OOOO:OOOA CS

2 NMI0000:0008 IP

0000:0006 CS

1 Single-step
0000:0004 IP
0000:0002 CS o Division by 0
0000:0000 IP

15 o

Interrupt vector table

The table itself is located in memory from OH to 3FFH. Since the interrupt's
number is the same as the table entry for the corresponding interrupt routine, the
interrupt routine address for interrupt 0 is the zero table entry in locations OH-3H.

20

Abacus 3.1 The Structure of the Interrupt Vector Table

Memory locations 4H-7H contain the address for the interrupt routine for
interrupt I, etc. The last interrupt, interrupt 255, occupies the end of the table at
locations 3FCH-3FFH.

To calculate the starting address of an interrupt, simply multiply the interrupt
number by four.

Advantages

An advantage of using the interrupt vector table is that it's easy to change an entry
in the table to the starting address of a user-written interrupt routine. This makes a
new interrupt routine available to any program which can invoke the routine
simply by executing the corresponding interrupt instruction.

The next section explains the different types of interrupts and how they are used in
the system.

21

3. Introduction to Interrupts PC System Programming

3.2 Interrupt Types

Until now. we haven't talked about different types of interrupts. There are two
major types of interru~hardware interrupts and software interrupts.

The figure below shows the different interrupt types.

Interrupt types

3.2.1 Software Interrupts

A software interrupt is an interrupt called by the !NT instruction in a machine
language program. The INT instruction includes the number of the interrupt to be
signalled. For example, the instruction to call interrupt 5, which sends a hardcopy
of the current screen to the printer, appears as !NT 5. The INT instruction allows
you to call anyone of the 256 interrupts.

Software interrupts make it possible to use many of the basic operating system
services from either the assembler (or machine language) level or from many of the
higher level languages which support interrupt processing.

3.2.2 Hardware Interrupts

A hardware device such as a disk drive or keyboard can trigger a hardware interrupt.
This is a simple and efficient mechanism for handling events which require
attention.

One example is the keyboard. When you press or release a key, interrupt 9 (the
keyboard interrupt) is signalled. The standard DOS interrupt routine responds by
placing the character value corresponding to the key that was pressed into the

22

Abacus 3.2 Interrupt Types

keyboard buffer following any value which may have been previously there. If the
keyboard buffer is full, the routine generates a short beep. As in any other
interrupt, the original program continues after the completion of the interrupt
routine.

Maskable interrupts

This interrupt is designated as an external hardware interrupt, because it was
triggered by an external device. For these interrupts, a distinction is also made
between maskable and non-maskable interrupts. The keyboard interrupt just
described belongs in the maskable interrupt category. You can mask (disable) this
interrupt by using the assembler instruction STI (SeT Interrupt flag). If you mask
interrupt 9H, the keyboard ignores any characters you type. To reverse this
condition, use the CLI instruction (CLear Interrupt flag) to re-enable the interrupt.

Non-maskable interrupts

In contrast, a non-maskable interrupt cannot be disabled by the STI instruction.
One example is interrupt 2. This interrupt indicates an error in the PC's memory.
It displays a message on the screen that one or more of the RAM chips is defective
and should be replaced.

The last interrupt type to be described is the internal hardware interrupt. The
processors on the main circuit board of the PC trigger this interrupt. One example
is interrupt 8 which is designated as a timer interrupt. The timer triggers this
interrupt at a rate of 12.8 times per second. It also disables the disk drive motor if
no disk access is in progress.

23

3. Introduction to Interrupts 	 PC System Programming

3.3 Interrupts at a Glance

The tables here show the significance which these interrupts occupy in the control
and use of the PC. The next few chapters explain these interrupts in more detail.

, 	Nr.
00
01
02
03
04
05
06
07
08
09
OA
OB
OC
00
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
3F
40
41
42
45
46
47
49

Vector
000 - 003
004 007
008 OOB
OOC OOF
010 - 013
014 -017
018 - 01B
OlD - 01F
020 - 023
024 - 027
028 - 02B
02C - 02F
030 - 033
034 - 037
038 - 03B
03C - 03F
040 - 043
044 - 047
048 - 04B
04C - 04F
050 - 053
054 - 057
058 - 05B
05C - 05F
060 - 063
064 - 067
068 - 06B
06C - 06F
070 - 073
074 - 077
078 - 07B
07C - 07F
080 - 083
084 - 087
088 - 08B
08C - 08F
090 - 093
094 - 097
098 - 09B
09C - 09F
OAO

- OFF
100 - 103
104 - 107
108

- 117
118 - 11B
11C

- 127

Purpose
CPU: Division by zero
CPU: Single step
CPU: NMI (Error in RAM chip)
CPU: Breakpoint
CPU: Numeric overflow
Hardcopy
Unknown instruction (80286 only)
reserved
IRQO: Timer (Call 18.2 per/sec.)
IRQ1: Keyboard
IRQ2: Second 8259 (AT only)
IRQ3: Serial interface 2
IRQ4: Serial interface 1
IRQ5: Hard disk
IRQ6: Diskette
IRQ7: Printer
BIOS: Video functions
BIOS: Determine configuration
BIOS: Determine RAM storage size
BIOS: Diskette/hard disk functions
BIOS: Access to serial interface
BIOS: Cassette/enhanced functions
BIOS: Keyboard sensing
BIOS: Access to parallel printer
Call of ROM-BASIC
BIOS: System boot (ALT+CTRL+DEL)
BIOS: Read time/date
Break key not activated (not CTRL-C)
called after every INT 08
Address of the video parameter table
Address of the disk parameter table
Address of the character bit pattern
DOS: Terminate program
DOS: Call DOS function
Address of DOS end of program routine
Address of DOS CTRL-BREAK routine
Address of DOS error routine
DOS: Read diskette/hard disk
DOS: Write diskette/hard disk
DOS: End Prg., remain resident
Reserved for various, non-
documented DOS functions
BIOS: diskette functions
Address of hard disk table 1
Reserved

Address of hard disk table 2
can be used by application programs
for any purpose

24

Abacus 3.3 Interrupts at a Glance

Nr. Vector P~ose

4A 128 - l2B Alarm time reached (AT only)
4B- l2C - Can be used by application programs
67 - 19F for any purpose
68- lAO - Unused
6F - lBF
70 1CO - 1c3 IRQ08: Realtime clock (AT only)
71 1c4 - lC7 IRQ09: (AT only)
72 lC8 - 1CB IRQ10: (AT only)
73 1CC - 1CF IRQll: (AT only)
74 100 - 103 IRQ12: (AT only)
75 104 - 107 IRQ13: 80287 NMI (AT only)
76 108 - lOB IRQ14: Hard disk (AT only)
77 10C - 10F IRQ15: (AT only)
78- lEO - Unused
7F - lFF
80- 200 - Used by the BASIC
FO - 3C3 interpreter
Fl- 3C4 - Unused
FF - 3CF

General overview--interrupts

25

Chapter 4

Using Interrupts from High
Level Languages

The assembly language programmer can invoke an interrupt by loading the
parameters required by the interrupt routine into designated registers and executing
the INT instruction. Although these capabilities aren't available in all higher level
languages, some languages such as Turbo Pascal®, Turbo C® and Microsoft C®
have built-in functions, procedures or subroutines to call the interrupt.

A BASIC programmer can call an interrupt using a short assembly language pro
gram. You'll find an example of this in Section 4.1.

This chapter provides information on calling interrupts from Pascal, BASIC and
C. Each describes how interrupts can be called in the particular language and the
rules the programmer must observe. Each section concludes with a short
demonstration program.

Read through the section devoted to the language with which you feel most
comfortable. A comparison of the three sample programs could be interesting for
those of you who wish to compare the similarities and differences in the three
languages.

The programs are only examples. Experiment as much as you want-you won't
damage your computer if you change them a little.

27

4. Using Interrupts from High Level Languages PC System Programming

4.1 Interrupt Calls from BASIC

The two most commonly used BASIC interpreters are BASICA (from IBM) and
GW-BASIC (from Microsoft). This book refers to GW-BASIC, since it can be
used on IBM PCs as well as any compatible PC. The command sets of both are
nearly identical.

GW-BASIC does not have a function for calling interrupts. However, the CALL
command can be used to execute a machine language program. You can also use
the CALL command to pass certain parameters to the called program. The called
machine language program must be located in the 64K used by GW-BASIC for
program statements and variable storage. Because of this, the interpreter must be
told to reserve part of program memory for the machine language routine.
Otherwise the program or variables may overwrite the machine language routine,
causing a system crash. You can reserve memory directly when you call BASIC
from the operating system. Enter the name GWBASIC followed by the 1M:
parameter. After the colon, enter the highest memory location you want used by
BASIC. For example, since the sample program starts at memory location 60000,
start the GW-BASIC interpreter as follows:

gwbasic /m:60000

This reserves the required memory space. Now you can place the machine language
routine into memory by making it part of the current BASIC program and loading
it into memory using a suitable subroutine. The current BASIC program must
contain the following commands:

60000 .***************.****************** ••*******.******.*.**********1
60010 •• initialize the routine for the interrupt call .'

,* __----_____*160020
60030 '. Input: none
60040 '. Output: IA is the Start address of the Interrupt routine * ,
60050 1.********************************.*.*.******.****.*************'

60060 '
60070 IA=60000! 'Start address of the routine in the BASIC segment
60080 DEF SEG 'set BASIC segment
60090 RESTORE 60130
60100 FOR 1% = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT 'poke Routine
60110 RETURN 'back to caller
60120 '
60130 DATA B5, 139, 236, 30, 6,139, llB, 30,139, 4,232,140, 0,139, llB
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255

The DATA statements contain the machine language routine which performs the
interrupt call. The routine is READ and then POKEd into memory. To start this
routine at another memory location, change the value in line 60070. Remember

28

Abacus 4.1 Inlerrupt Calls from BASIC

that the parameters used to start GW-BASIC must also be changed so that the
routine cannot be overwritten by the variables of the program.

To use the machine language routine to call an interrupt, this subroutine must of
course be called frrst. The frrst line of the user program should therefore be:

100 GOSUB 60000

The actual program which calls the interrupt function during its execution can be
stored between line numbers 100 and 60000. The following program line
demonstrates how this can be done:

200 CALL IA(INTNRt,AHt,ALt,BHt,BLt,CH',CL\,DH\,DLt,Dlt,SI\,ES\,FLAGSt)

The variables within parentheses are the variables passed to the assembly language
program. All variables must pass true integer variables and not constants. The
variable names mentioned above may be changed but their order must remain
unchanged. Within your program they can have other names.

The frrst variable in this example, called INTNR%, is the number of the interrupt
you want to call. Be careful to specify the exact interrupt number. Also, avoid
passing a variable which has not been initialized. Otherwise, you may call the
wrong interrupt, which could lead to a system crash. The variables following
INTNR % are copied into the processor registers of the same names. Ifa register is
not used by an interrupt routine, you can pass any integer variable in the
corresponding register variable. The value of the ES register is treated differently. If
the value of ES% is -1, the contents of the DS register is copied to the ES
register.

Following the completion of the interrupt call, the values are returned in the
designated register variables.

This technique works only with half registers (AH, AL, BH ...). It may be
necessary to transform these half registers into a whole register. This can be done
as follows:

300 AX' - AH' * 256 + AL\

On the other hand, a whole register can be split into two half registers with the
following commands:

410 AHt - INT (AXt / 256)
420 AL\ - AX' AND 255

After calling interrupt functions, the carry flag in the flag register indicates if the
called functions were executed correctly. In a BASIC program, it may be necessary
to test the carry or zero flags. Since the content of the flag register is in the
variable FLAGS% after the interrupt call, the status of individual flags can be
inspected through this variable. This is possible with the following program
statements:

29

4. Using Interrupts from High Level Languages 	 PC System Programming

200 IF FLAGS% AND 1=0 THEN PRINT "CARRY-FLAG OFF" ELSE

PRINT "CARRY-FLAG SET"

210 IF FLAGS' AND 64.=0 THEN PRINT "ZERO-FLAG OFF" ELSE

PRINT "ZERO-FLAG SET"

Another problem with interrupt calling is passing variable addresses (e.g., character
string output). BASIC stores this set of characters as a string. To determine the
offset address of such a string (the segment address of all variables is constant), use
the V ARPTR function. The LO and ill byte of the offset address can be determined
with the following two program lines:

300 LO=PEEK (VARPTR (STRING NAME) +1) 'LQ-Byte of the Offset address
310 HI=PEEK(VARPTR(STRING=NAME) +2) 'HI-Byte of the Offset address

Garbage collection

These addresses should be determined at the beginning of a BASIC program as well
as immediately before each interrupt call, since BASIC frequently performs garbage
collection (removing unused variables and junk data). Garbage collection frees up
variable memory, rearranges remaining data in memory and changes addresses. Ifa
string address is determined at the beginning of a program, it may change several
times before the interrupt call is made.

Remember to include an end marker ("$" or a CHR$(O» at the end of the string
(BIOS and DOS functions expect one of these).

Note: 	 Before copying this subroutine and trying it, we have a small
suggestion. During your first attempts something will probably go
wrong. This is perfectly normal, and you can even expect the
computer to crash a couple of times. Save programs
frequently...especially ~ running the program. This way, you
won't have to type in the program again from the beginning.

Here is a short sample program which uses the subroutine described above to
display text on the screen with function 9 of interrupt 21H.

100 ,****•••**********.***,

110 '. I N T DOS B
120 '*---*,
130 '. Assignment outputs as an example of an Interrupt
140 '. a String through a DOS function on
150 the display screen
160 Author MICHAEL TISCHER
170 '. developed 07/30/87 .,
180 last 	Update 04/08/89
190 ••************'

200 '
210 CLS : KEY OFF
220 PRINT"NOTE: This program can only be started if the GWBASIC was "
230 PRINT"started from the DOS level with the command"
235 PRINT"<GWBASIC /m:60000>."
240 PRINT: PRINT"If this is not the case, please input <s> for Stop."
250 PRINT"otherwise press any key ... ";
260 A$ - INKEY$: IF A$ = "s" THEN END
270 IF A$ = "" THEN 260
280 PRINT
290 GOSUB 60000 	 'install function for interrupt call

30

Abacus 4.1 In.terrupt Calls from BASIC

300 TS = CHRS(13) + CHRS(10) + "this text was output through"
305 TS = TS + "Function 9 of Interrupt 21H ... S"
310 INR% = &H21 'Number of interrupt to be called
320 FKT% = 9 'Number of functions to be called
330 OFSLo\ = PEEK(VARPTR(TS)+l) 'LO-Byte Offset address to the String
340 OFSHI% = PEEK(VARPTR(TS)+2) 'HI-Byte Offset address to the String
350 CALL IA(INR%,FKT%,Z%,Z%,Z%,Z%,Z%,OFSHI%,OFSLO%,Z%,Z%,Z%,Z%)
360 PRINT : PRINT : PRINT 'output three blank lines
370 END
380 '
60000 •• *********.*********************•••••**** ••••••****************,
60010 '* initialize the routine for the interrupt call
60020 ,*---*'
60030 ,* Input: none
60040 ,* Output: IA is the Start address of the Interrupt routine
60050 ••**********'

60060 '
60070 IA=60000! 'Start address of the routine in the BASIC segment
60080 DEF SEG 'set BASIC segment
60090 RESTORE 60130
60100 FOR 1% = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT 'poke Routine
60110 RETURN 'back to caller
60120 '
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136,52,139,118,14,136,20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255

How it works

The program is composed of separate parts. Lines 210-290 call the subroutine to
initialize the machine language function for the interrupt call. Then the individual
variables for the interrupt call are loaded. T$ accepts the string to be output.
CHR$(13) and CHR$(lO) print a blank line before the output of the actual text
This text ends with the "$" character because the 005 function which outputs the
string expects this character as an end marker (it will not display this character).
INR% and FKT% contain the interrupt number and the function number to be
called. Besides these two variables, the variables OFSLO% and OFSHI% contain
the offset address of1'$.

The CALL command (line 350) calls the interrupt. The first variable passed is
INR% with the number of the interrupt to be called. Then follows FKT%, which
transfers to the AH register before the interrupt call and informs interrupt 21H of
the function number to be called. Several Z% variables follow. These act as
dummy variables for all registers which have no special significance to the
function which is called. The content of Z% is unimportant. The content of the
register into which it is copied is irrelevant for the called function. After the Z%
variables, which determine the contents of the AL, BH, BL, CH and CL registers,
follow the variables OFSHI% and OFSLO%, which set the offset address of the
string in the DX register. The remaining register contents are unimportant for the
function call and are fIlled with Z%.

31

4. Using Interrupts from High Level Languages 	 PC System Programming

To permit the DOS function which is called to output the text, its offset and
segment address must be known. This address is expected in the DS register and
wHI be set automatically by GW-BASIC.

To conclude this section, here is the listing of the assembler program that we just
used to call an interrupt.

:***
;* BASINT.ASM: This routine offers the capability of
;* calling any interrupt from BASICA or
;* GWBASIC
;*
;**---**
:* Call: *
;* CALL ADR(INTNR%,AH%,AL%,BH%, BL%,CH%,CLl,OH%,OL%,OI%, SI%,ES%,FLAGS%) *
:**---**
;* On passing control to the machine language program BASIC
;* deposits the variables on the following positions of the stack
;* INTNR% SP+30 AH% SP+28 ALl SP+26 BH% SP+24
;* BLl SP+22 CH% SP+20 CLl - SP+l8 OH% SP+l6
;* OLl SP+l4 OH SP+l2 SH SP+lO ES% SP+8
;* FLAGS% SP+6
i**---**
;* for ES the value -1 is passed, then ES is set to OS
i*** *************** •• !

code 	 segment

assume cs:code,ds:code,es:code,ss:code

;-- the Routine for Interrupt call ----------------------------------

basint 	 proc far ;GW expected during CALL far procedure

push bp ;GW base pointer saved

mav bp,sp ;Send SP to BP

push ds ;GW dta segment stored

push es iGW-extra segment saved

mov si, [bp+30] ;Get address of variable INTNR
mov ax, lsi] ;Move content of this variable to AX
call set intnr ;Store interrupt number

ad 1 	 label near ;Address for SET INTNR

mov si, [bp+l2] ;Get address of 01% variables
mov d1, lsi] ;Move content of variables to 01
mov si, [bp+B] ;Get address of variable ES%
mov aX,[si] ;Move content of variable to AX
crop ax,-l ;was -1 passed?
jne setes ;No --> set ES

mav ax,ds ;Set AX to OS and thereby ES os

setes: 	 mov es,ax ;transfer AX to ES
mov si, [bp+2B] ;Get address of variable AH%
mov ah, lsi] ;Move content of variable to AH
mov si, [bp+26] ;Get address of variable AL%
mov al, lsi] ;Move content of variable to AL
mov si, [bp+24] ;Get address of variable BH%
mov bh, lsi] ;Move content of variable to BH
mov si, [bp+22] ;Get address of variable BL%
mov bl, lsi] ;Move content of variable to BL
mov s1, [bp+20] ;Get address of variable CH%
mov ch,[si] ;Move content of variable to CH
mov si,[bp+18] ;Get address of variable CLl
mov cl, lsi] ;Move content of variable to CL

32

Abacus 	 4.1 Interrupt Calls from BASIC

mov si, [bp+16J ;Get address of variable DH'
mov dh, [siJ ;Move content of variable to DH
mov si, [bP+14 I ;Get address of variable DL\
mov dl, [siJ ;Move content of variable to DL

mov si, [bp+l0J ;Get address of variable SIt
mov si, [siJ ;Move content of variable to SI
push bp ;Store base pointer

ad_2 	 label near ;Address for SET_INTNR

int 21h ;Call interrupt

pop bp ;Replace base pointer

push si ;Store SI

pushf ;Store flag register

mov si, [bp+12J ;Get address of variable DI'
mov [siJ ,di ;Move content of variable to D1
mov si, [bp+28J ;Get address of variable AHt
mov [siJ,ah ;Store AH in this variable
mov si, [bp+26J ;Get address of variable ALt
mov [siJ ,al ;Store AL in this variable
mov si, [bp+24J ;Get address of variable BH\
mov [siJ ,bh ; Store BH in this variable
mov si, [bP+22J ;Get address of variable BL%
mov [siJ ,bl ;Store BL in this variable
mov si, [bP+20J ;Get address of variable CH%
mov [siJ, ch ;store CH in this variable
mov si, [bp+18J ;Get address of variable CLt
mov [siJ, cl ;Store CL in this variable
mov si, [bp+16J ;Get address of variable DHt
mov [sil, dh ;Store DH in this variable
mov si, [bp+l4J ;Get address of variable DLt
mov [sil,dl ;Store DL in this variable
mov si, [bp+8J ;Get address of variable ESt
mov ax,es ;transfer ES to AX
mov [siJ,ax ;Store ES (AX) in this variable
pop ax ;Move flag register from stack to AX
mov si, [bp+6J ;Get address of variable FLAGS%
mov [siJ ,ax ; Store FLAGs in this variable
pop ax ;Move D1 register from stack to AX
mov si, [bp+l01 ;Get address of variable SIt
mov [siJ,ax ;Store S1 (AX) in this variable

pop es ;Get GW extra segment back

pop ds ;Get GW data segment back

pop bp ;Return GW base pointer

ret 26 ;Addresses of variables on the stack
iare no longer needed

basint 	 endp

i---

set intnr proc near ;stores the interrupt number

pop bx

mov cs:[bx+ad 2-ad l+lJ,al

jmp ad 1 -

set intnr endp

;---
code 	 ends

end

33

4. Using Interrupts from High Level Languages PC System Programmi.ng

Some brief notes on this program follow for those not familiar with the calling
and linking of assembly language programs in GW-BASIC: The program ftrst
pushes the base pointer on the stack since it will be reset by the next instruction.
During re-entry into GW-BASIC, the base pointer must have the value it had
during the call of the routine. Then the base pointer is set to the value of the stack
pointer for access to data on the stack. This is necessary for GW-BASIC to pass
the BASIC variables named in the CALL command to the stack. In the next step,
the DS and the ES registers are stored on the stack, because their content may
change during execution of the routine and must be preserved for return to GW
BASIC.

Now the routine can read in the variables and set the various processor registers. It
is important to note that the stack does not contain variable contents, but their
addresses relative to the DS register. Because of this, the address of the variable
must be loaded fIrst and then the relative value of this address.

Which addresses contain the addresses of the individual variables stored on the stack
can be determined from the header of the assembly language routine. First you
must determine the number of the interrupt to be called. This value must be treated
in a different manner than the other variables on the stack because it isn't passed in
one of the processor registers, but is a part of the INT instruction which calls the
interrupt. It is indicated as a byte following the code of the !NT instruction (CDH).

To set the interrupt number, the number to be passed must be stored following the
CDH code of the !NT instruction. This creates a small problem since this routine
can be POKEd by the BASIC program into any memory location. Because of this,
the address of the INT instruction depends on the current starting address of the
routine instead of remaining constant. The routine doesn't know where the !NT
instruction is located.

A small trick can be used to help here. The routine does not know where it is
stored, but the processor knows the location of the !NT instruction (it has to
know, otherwise it couldn't execute the routine). The subroutine SET_INTR is
called after the interrupt number is loaded into the AX. register. The processor, as
in any CALL instruction, stores the address where the program execution is to
continue on the stack, before calling any subroutine. This is the instruction which
precedes the label AD_I.

Subroutine SET_INTR gets the address of AD_I from the stack. While the address
of the INT instruction is still not known, the distance between AD_I and the !NT
instruction remain constant, the address of the INT instruction can be calculated
and the interrupt number can be stored following the instruction. The task ends and
the routine returns to the main program (to the label AD_I).

The rest of the routine consists of repeating instructions which determine the
contents of the different variables and pass them to the corresponding processor

34

http:Programmi.ng

Abacus 4.1 1111errupt Calls from BASIC

registers. The value for the ES register is given a special test: if it is equal to -I,
the value of the DS register is copied to the ES register.

After all registers are loaded, the interrupt is called and the contents of the
processor registers are transferred back to the corresponding BASIC variables. The
last step is to restore the contents of all registers which had been saved on the
stack. Finally control returns to GW-BASIC.

3S

4. Using Interrupts from High Level Languages 	 PC System Programming

4.2 Interrupt Calls from Turbo Pascal

Calling interrupts from Turbo Pascal is very easy. Throughout this book we'll be
using Turbo Pascal Version 4.0.

INTR

Turbo Pascal uses the INTR procedure. Since this parameter can accept any value
between 0 and 255, all available interrupts can be called.

MSDOS

A special form of this INTR procedure is the MSDOS procedure. It is called in a
manner similar to INTR:

MsDos(Regs:Registers);

The InterruptNumber parameter needed by Turbo Pascal Version 3.0 isn't required
in this procedure since it always calls interrupt 21H, through which almost all
operating system functions can be called.

In both procedures, the parameter register is a record type which holds the contents
of the registers to be passed. These are copied into the registers before the interrupt
call.

The DOS unit contains the parameters for the type called Registers:

type 	Registers = record

case integer of

o : (AX, BX, CX, DX, BP, sr, D1, DS, ES, Flags: word);
1 : (AL, All, BL, BH, CL, CH, DL, DH : byte);

end;

Once the DOS unit has been included in a Turbo Pascal source code, the var
statement can be used to define the register variables under the name Regs:

var Regs : Registers;

Now Turbo Pascal can easily communicate with the following processor registers:

Regs.ax,

Regs.bx,

Regs .ex,

Regs.ah, etc.

You then pass the values to the registers through standard assignments. For
example:

Register.ax := 254;

The same method is used with all other registers.

36

http:Register.ax

Abacus 4.2 Interrupt Calls from Turbo Pascal

Unfortunately, the contents of the half registers AH, AL, BL, etc. can't be defined
this way. In this case, a trick can be used by defining the half registers as normal
integer or byte variables and then merging them together into a whole register.

In the case of the AX register, this could be done as follows:

var aI,
ah : integer;

Register.ax :- ah shl 8 + ali

In this statement, the AX register is assigned value composed of the sum of the
AH register multiplied by 256 (shifting a variable left by 8 places is equivalent to
multiplying it by 256) and the AL register.

If you must do this repeatedly in a program, it would be useful to defme a small
function for this:

function WholeRegister(1o, Hi : integer) : integer;

begin
WholeRegister :- 10 + Hi shl 8;

end;

Instead of the above, the following could be written:

Register.ax := WholeRegister(al, ah);

Before calling the interrupt, you must first specify the interrupt value in the
register. The contents of all other registers are unimportant here. If the called
interrupt returns values to the calling program through registers, they can be
examined by looking at the individual components of the variable register.

Sometimes individual flags pass information from the interrupt to the calling
program. In most cases, the Carry flag serves this purpose. If an error occurs
during the execution of an interrupt, the flag is set.

To test for a set flag, the following Pascal statements are used. They return lRUE
or FALSE as a result depending on whether the corresponding flag was set or not.

carry flag: (register. flags and 1)
zero flag: (register. flags and 64)
sign flag: (register. flags and 128)

Often the address of a variable (usually a text buffer) must be passed to an
interrupt. In this case the Turbo functions Ofs and Seg are used to obtain the offset
or segment addresses of a variable. The name of the variable whose address should
be determined is passed to both functions as the argument:

ofs(variablename)
seg(variablenarne)

Turbo Pascal uses a different format than DOS and BIOS for string storage,
especially for text buffers (mostly variables of type string).

37

http:Register.ax
http:Register.ax

4. Using Interrupts from High Level Languages PC Systtfm Programming

These formats are illustrated below.

TURBO PASCAL

2 I"p "I "c" IC-No end of string marker

+....------String length

DOS & BIOS

NULL BIOS (and often in DOS)I"p "I "C" t----f
"$"1 DOS

tL...__ End of string marker

~------- No string length parameter

String storage - TUrbo Pascal and BIOS-DOS

To convert a Turbo Pascal string into DOS or BIOS format, an end character
(ASCII code 0) or the dollar sign "$" (ASCII code 36) is appended. Which of these
two characters you should use for indicating the end of the string is described
during the discussions of individual interrupts. Regardless of which format you
use, the characters appear as in either of the following commands:

string := string+iO;
string := string+i36;

The address returned by the Ofs function ~1 must be passed to the interrupt,
otherwise the byte which indicates the length of the string is accepted by the
interrupt as its ftrst character.

Here is the sample program. Just like the example in Section 4.1, it displays text
on the screen using function 9 of interrupt 21H:

{******.**********************.**}
{* INTDOS *1
{*-----------------------------~--------------------------------------*1

{* Task : as an e~pmple this interrupt call outputs *1

{* a string'through a function of DOS on *1

{* the displ ..y *1

{*----------------------------------,----------------------------------* 1

{* Author : MICHAEL TISCHER * 1

{* developed : 07/30/87 * 1

{* last update : 05/04/89 *1

{* •• ************************.****••• *******.************x •••••••••••••• }

program INTDOSP;

38

Abacus 	 42 Interrupt Calls from Turbo Pascal

Uses Dos;

var 	Regs : Registers; { Register variables for interrupt call}
Text : string[12B]; { accepts the output text }

{******************************** ••• *.***** ••****.*.*.*****************}
{* 	 MAIN PROGRAM * I
{*************************************** •• *****************************1

begin

Text := .13.10·this text was output with Function 9 of DOS-'+
'Interrupt 21H ..• ·.13.10+·$·;

Regs.ah := $09; { Function number 9 in the AH-Register
Regs.dx := Ofs(Text)+l; (Offset address of the text
Regs.ds :- Seg(Text); (Segment address of the text
MsDos(Regs); (Call DOS-Interrupt 21(h)

end.

The variable TEXT contains the text to be displayed. The sequence "#13#10"
places the ASCII code 13, followed by ASCII code 10, at the beginning and the
end of the text, creating a blank line before and after the text. The last character is
the "$" character which indicates the last character of text to DOS.

The number of the function being called (9) is copied to the AH register. Since
Turbo Pascal doesn't allow access to the AH register alone, the entire AX register
must be addressed. The value 0 is loaded into the AL register, but any other value
could be entered into this register since its content has no significance to the called
function. As a last step, before calling interrupt 21H using the MSDOS procedure,
the segment address of the string is placed in the DS register and the offset address
in the DX register.

39

4. Using Interrupts from High Level LangUQges PC System Programming

4.3 Interrupt Calls from C

The C language is the language of choice for most developers. Since it was
originally designed for operating system development, C has provisions to include
machine language routines, which is a benefit within the scope of this book.

The standard libraries of both the Microsoft C and Borland Turbo C compilers have
a number of functions for calling interrupts.

The following functions are of interest to us in this book:

int86

int86x

intdos

intdosx

seqread

All functions and applicable data structures are declared in the OOS.R library me.
A program which wants to access one of these functions must therefore link the
me to the current program using the #include preprocessor command

The three structures WOROREGS, BYTEREGS and SEGREGS pass register
values. WOROREGS contains the whole registers AX, BX, CX, OX, SI, DI and
the Carry flag. On the other hand, BYTEREGS contains the half registers AH,
AL, BR, BL, CH, CL, OH and OL, while SEGREGS represents the segment
registers OS, CS, SS and ES.

The BYTEREGS and the WOROREGS structures are joined in the union REGS
which lets the programmer work selectively with either half or whole registers.

Using a variable of the type REGS (called register here for simplicity's sake) gives
us the following:

union REGS register;

This allows access to individual registers:

AX: register.x.ax

BX: reqister.x.bx etc.

AH: register.h.ah

AL: register.h.al

BH: register.h.bh etc.

The carry flag is represented by the variable register.x.cflag. If this variable is equal
to 0, the carry flag remains unset. Any other value sets the carry flag.

In the case of the segment register a representative variable can be defined as
follows:

struct SREGS SegRegister;

40

http:register.h.bh
http:register.h.al
http:register.h.ah
http:reqister.x.bx
http:register.x.ax

Abacus

int86

int86x

43 Interrupt Calls from C

The individual components of the variables SegRegister.ds, SegRegister.es, etc.,
correspond to the equivalent processor registers.

The functions starting with the characters int all serve to call interrupts. The
SEGREAD function reads the current contents of the segment register.

The functions that call interrupts use different register variables for input to the
interrupt routine, and output from the interrupt routine. There is an advantage to
this method over returning information to the same register variable in that the
input information is not overwritten.

Since the individual functions pass only the address of the variable representing the
register and not the variable itself, it is possible to combine the input and output
registers into a single variable. In this case, the address of one variable is provided
for the variable representing the input and the output registers (this method is used
in the sample program at the end of this section).

Before calling the interrupt, the contents of the input variable are copied to the
corresponding processor registers. Following the interrupt call their contents
become the output variables.

All interrupt functions return the content of the AX register as a result code after
the interrupt call.

Here are the details of the functions and their calls:

The int86 function is called as follows:

int86 (IntNumber, InRegister, OutRegister);

IntNumber is a variable or constant indicating the number of the interrupt to be
called. InRegister and OutRegister contain the address of two (or one) variables of
the REGS type. As the variable name suggests, InRegister contains the register
contents before the interrupt call, and OutRegister contains the register contents
after the interrupt call.

The int86x function differs from the int86 function in that it requires an additional
argument of the SREGS type. Its contents are copied into the segment register
before calling the interrupt, but are not copied back following the call to the
interrupt routine.

The call of the function is as follows:

int86x(IntNumber, InRegister, OUtRegister, SegRegister);

41

http:SegRegister.es
http:SegRegister.ds

4. Using Interrupts from High Level Languages 	 PC System Programming

The intdos and the intdosx functions differ from the two functions described above,
in that the number of the interrupt to the call is not passed. As the names suggest,
they call DOS interrupt 21H through which most DOS functions can be accessed.

intdos

Only the addresses of the input and the output variables representing the processor
registers are passed to the intdos function:

intdos(InRegister, OutRegister);

intdosx

The intdosx function, like the int86x function, has an additional parameter for the
segment register. The function call is as follows:

intdosx(InRegister, OutRegister, SegRegister);

So far you've seen how to call an interrupt from C and how to set the registers.
You also have to determine the address of a variable.

In C, you can easily determine the address of a variable. To do this, use the address
operator &, which returns the offset address of any desired variable. Use the
SEGREAD function mentioned above to determine the segment address of a
variable. The address of a variable of the SREG type is passed to the function
(using the address operator &) into which the content of the segment register can
be copied.

If, for example, the address of the variable SegRegister is passed to the function
and the variable was previously defined by the command:

union SREG SegRegister;

Then the variable SegRegister.ds contains the segment address of the variable
SegRegister, after calling the SEGREAD function.

While C supports interrupt calls with numerous functions, the library of the
Microsoft C compiler library does not have a function to return the contents of a
memory location. Since such a function could be very valuable in some programs,
the assembler program below contains the PEEKB and POKEB functions for
inclusion in programs created with the Microsoft C compiler. PEEK returns the
contents of a memory location (one byte), while the POKE function writes a one
byte value into a memory location.

Note: 	 If you use the Borland Turbo C compiler, you won't need to use this
program since the Turbo C library already contains the PEEK,
PEEKB, POKE and POKEB functions. Because of this, linking the
assembler program into the C example programs of this book is

42

http:SegRegister.ds

Abacus 43 Interrupt Calis from C

unnecessary. Additional infonnation is presented in the header of each
program.

If you are using the Microsoft C compiler, enter the following program with a text
editor and save it under the name PEPO.ASM. It can then be assembled with:

masm pepo;

Here's the program:

:***i
:. PEPO *:
:*---*:
;. Task : Makes the PEEKB and POKEB function available for ';
;. inclusion in a C program *;
:*---*;
;* Author MICHAEL TISCHER * ;
;. developed : 08/13/87 *;
;. last Update : 04/08/89 *;

;*---*;
, assemble : MASM PEPO: * i
:**••**•••• ***•••••••*********•••••• ********••••************••• *******;

IGROUP group _text ;Grouping of program segments
DGROUP group const,_bss, _data ;Grouping of data segments

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

public PeekB :Functions become accessible to
public PokeB :other programs

CONST segment word public 'CONST' ;this segment accepts a 11 constant s
CONST ends ;which are readable

BSS segment word public 'sss' ;this segment accepts all non
BSS ends ;initialized static variables

_DATA segment word public 'DATA' ;all initialized global and
DATA ends ;static variables are stored in this

; segment

TEXT segment byte public 'CODE' ;the Program segment

;-- PEEKS: read a byte from memory ----------------------------
;-- call of C: int - PeekB(int Segment, int Offset)

PeekB proc near

push bp ;store BP on the stack
mov bp,sp ;transmit SP to BP
push ds ;store data segment register
mov ax, [bpj +4 ;get first argument (Segment)
mov ds,ax ;set as data segment
mov bx, [bpj+6 ;get second argument (Offset)
mov ai, [bxJ ; read memory locat ion
xor ah,ah ;HI-byte of INT to 0
jmp short fctend ;terminate function

PeekB endp

POKEB: write a byte into memory -------------------------
Call C: PokeB(int Segment, int Offset, short int Wert)

_PokeB proc near

push bp ; store BP on the stack
mov bp,sp ;transmit SP to BP

43

4. Using Interrllpts from High Level LanglUlges 	 PC System Programming

push ds ;store data segment register
mov ax, [bp] +4 ;Get first argument (Segment)
mov ds,ax ;Set as data segment
mov bx, [bp]+6 ;Get second argument (Offset)
mov aI, [bp] +8 ;Get third argument (Value)
mov [bx],al ;write into memory location

fctend: 	 pop ds ;Return data segment register
mov sp,bp ;Restore stack pointer
pop bp ;Get BP from stack
ret ;Return to calling C program

_PokeB 	 endp

i---

text 	 ends ;End of the program segment

end ;End of the assembler source

The example program below uses the two functions described above. This next
program examines the model identification number or code of the PC and displays
PC type on the screen using a ooS function:

/*******.*****•••*****.************************.***********************/
1* 	 I N T DOS *I
1*--*/
1* Task an example of an interrupt call, outputs *1
1*
1*

a string through a
the display screen

DOS function on * I
*I

1*--*1
1* Author MICHAEL TISCHER *I
1* developed : 08/30/87 *1
1* last update : 04/08/89 */

/*--*/
1* (MICROSOFT C) */
1* Creation MSC INTDOSC *1
/* LINK INTDOSC PEPO; *1
1* Call INTDOSC *1
1*--*1
1* (BCRIJ\ND TURBC C v2.0) *1
1* Creation through the RUN cO!lVTland in the menu •..or... *1
1* tcc -K intdosc *1
1* Call intdosc *1
/.**** ••******************** ••• ******************* •••************.*****/

'include <dos.h> 1* include header file *1
1* Microsoft C user must uncomment the following line *1
1* extern short int peekb(); 1* PEEKS must be linked to *1
1* Microsoft C object code *1
,******.*** •• **** •••••********•• ***.********.*••••••**** •••***••••*****/
1** 	 MAIN PROGRAM **1
,.**********•••• **.**********•• ** •••***********************************/

void main()

static char AT[] = "\r\nthis computer is an AT\r\nS";
static char XT[J "\r\nthis computer is an XT\r\nS";
static char PC[] "\r\nthis computer is an PC\r\nS";

union REGS Register; 1* Register variable for interrupt call *1

Register .h.ah - 9; 1* Function number for output of string *1
switch (peekb(OxFOOO, OxFFFE» 1* detect model of PC *1

{
case OxFE : Register.x.dx - (int) XT; 1* Address of XT text *1

break;

44

http:Register.x.dx

Abacus 43 Interrupt Calls from C

case OxFC : Register.x.dx - (int) AT; /* Address of AT text */
break;

case OxFF :

default : Register.x.dx - (int) PC; /* Address of PC text */

I
intdos(&Register, &Register); /* Call DOS interrupt 21H */

I

The main function defines three CHAR pointers which point to the text for each
PC type. Each of them starts and ends with an "'n" character. This creates a blank
line before and after the text itself.

In the first instruction of the main program the AH register is loaded with the
DOS function number for string output on the screen. Then the model
identification byte is read from memory location FOOO:FFFE using the PEEKB
function. Depending on the value read, the offset address of the accompanying text
is transferred to the OX register where it is expected by the interrupt 21H function.

In addition to this offset address, the function also requires the segment address of
the text in the OS register. Since the compiler automatically sets this register, you
don't have to be concerned with the segment address. The last instruction of the
program calls the INTDOS function which in turn calls interrupt 21H with the
registers which were dermed earlier.

The file header states how it can be executed: If you are using the Microsoft C
computer, then it is important that you link the file with the previously assembled
PEPO program so that the new program contains the PEEKB and POKEB
functions. These can then be called from the C program.

The integrated environment of the Turbo C compiler requires a different procedure.
Compiler options must be set to default values except for under "code generation."
You must set "default char type" to "unsigned", then select Run from the menu.
The options file appears on the disk under the ftlename INTBSPC.TC.

A small comment about using Borland Turbo C compiler. Several programs in
this book include assembly language routines within the programs. Since Turbo C
differentiates between upper and lowercase characters in function names, you may
have problems compiling programs as entered from this book. To avoid this,
select the OPTION command, then the LINKER command in the command line of
Turbo C before creating a program. The lowest line in the window displays the
option "Case sensitive link", Select OFF here to avoid difficulties with upper and
lowercase letters.

45

http:INTBSPC.TC
http:Register.x.dx
http:Register.x.dx

Chapter 5

Using Interrupts from
Assembly Language

Unlike programmers using any of the higher level languages, the assembly
language programmer doesn't have to rely on complicated functions or procedures
to call an interrupt. The MOV instruction loads the input parameters into the
registers provided, and the !NT instruction calls the interrupt.

Certain interrupts, or the functions hidden behind these interrupts, are called
frequently in many programs. An example of this is interrupt 21H function 9,
which displays text on the screen. You call it by placing function number 9 in the
AH register and the offset address of the text you want displayed in the DX
register. This process looks like this in assembly language:

mov ah,9 ;load function number 9
mov dx,offset Text ;load offset address of text
int 21h ;call DOS interrupt 21h

Even if you call the function very frequently, it doesn't pay to write a subroutine
for it since the address of the text to be displayed must be passed. All that remains
is to load the value 9 into the AH register and to call the interrupt. You'll fmd the
three program lines described above included for every function call in a program in
this chapter.

47

5. Using Interrupts from Assembly Language PC System Programming

5.1 Using Assembler Macro Functions

An alternative to this method are macros which most assemblers support.

Macros

A macro is a "shorthand" way to write a series of assembly language instructions.
It has a name and may have one or more parameters. During assembly, if the
macro name is encountered, the series of instructions and parameters replace the
macro.

Below is an example of defining and calling a macro using the Microsoft
Assembler (MASM). See your assembler's reference manual for information on
macro handling (and whether your assembler supports macros). Since this macro
displays text, we've named the macro PRINT:

print macro string ;Macro header with Name and Parameter

mov ah,9 ;load function 9
mov dx,offset string ;load offset address of the text
int 21h ;call DOS interrupt 21h

endm ;the endm command terminates a macro

The first line declares the macro name (PRINT). In this case, the macro also has
one parameter (string). The assembly language instructions follow in successive
lines until the ENDM instruction terminates the macro.

Now you can use the macro to display text:

print Message

In this example, Message is the name of a variable containing the text to be
displayed. In the macro declaration, string is a parameter. During assembly, string
is replaced by Message and creates the following program lines:

mov ah,9
mov dx,offset Message

int 21h

48

Abacus 5.2 A Sample Mocro

5.2 A Sample Macro

The following program demonstrates the macro just described.

,.******••********************************.*******************.******.*.,
;* MACRO *;

;*---*;
;* Task : in this Program a Macro is used for output *;
;* of a String with Function 9 of Interrupt 21H *;

;*---*i
;* Author MICHAEL TISCHER *;

; * developed : 08/30/87 * ;
;* last Update : 04/08/89 * ;
i*---*;
;* assembly : MASM MACRO; *;
;* : LINK MACRO; *;

:*---*;
; * Call: : MACRO *;
i******·***************************·**********************************i

;== Macro =--=-=====--=-------====~----=--=====--~-----======-------==

Print macro String ;this is the macro

mov ah,9 ;load function number

mov dx,offset String ; load offset address of text

int 21h ;call DOS interrupt

endm ;End of macro

;== Constants ========-=================================-==============

CR equ 13 ;ASCII-Code of carriage return
LF equ 10 ;ASCII-Code of linefeed
TEND equ "$" ;End of a character string

;== Data ==

Data segment

Text db CR, LF, "This is how MACROS are used", CR, LF, TEND

Data ends

;-- stack ==-===~==========-=====================~-=--================

stack segment STACK

dw 64 dup (7)

stack ends

;== Code ===-=----=====-=--==-==========--====================---======

Program segment

assume CS:Program, DS: Data, SS:stack

Start proc far ;program starts here

rnov ax, Data ;set data segment register

rnov ds,ax

Print Text ;Macro inserted here

mov ax,4COOh ;Program terminated with call of a
int 21h ;DOS function with return of error-code a

49

5. Using Inlerrupts from Assembly Language PC System Programming

Start endp ;End of procedure

Program ends
end Start ;beqin with START

After you enter the source program, it can be assembled, linked and executed as
indicated in the header.

Most of the lines in this listing have nothing to do with the actual program but
are definitions and declarations for the assembler.

The macro and constants are defmed in the fIrst part of the program, which helps to
make the listing more understandable to the reader. The definition of the data
segment follows, where the string to be displayed is stored as a character string. It
is preceded and followed by a carriage return and a linefeed to display a blank line
before and after the actual text. The text ends with the character "$" (the DOS
function used for text display always looks for this as the last character in a
string).

Following the data segment is the stack segment, which controls the stack during
program execution. Since the program is not very large, the stack can be fairly
small. The last segment is the code segment which contains the program
instructions. It consists of only fIve commands: The first two instructions
initialize the program. They load the segment address of the data segment into the
DS register to provide access to the text in this segment Then the macro PRINT
is called, and the text is passed to it.

The following instructions terminate the program by calling a DOS function.

Note: You may fmd it useful to group together certain macros into a me or
library. When one of these macros will be used in a program, the
library may be linked or included with the assembly language code.

50

Chapter 6

The Disk Operating System

The following chapter discusses the PC's operating system, which the PC loads
from floppy diskette or hard disk. It is commonly referred to as PC-DOS, MS
DOS or just DOS.

What is DOS?

Most users only know the user interface of DOS, with which you run programs,
format disks, etc. In the following sections, however, you'll view DOS from an
angle you may not have known existed.

Beneath the surface of DOS many processes takes place. DOS uses a large number
of different routines (called/unctions) to accomplish its tasks. These functions are
available to the user as well as to DOS. The main focus is on how these functions
can be used in practical applications.

This chapter includes a historical sketch of the development of DOS, highlighting
its origins in the CP/M operating system. You'llieam the differences between
transient and resident commands, COM and EXE mes, and DOS me access.

The data structures which act as the connecting link between the different DOS
functions will also be examined in this chapter. These data structures make mass
storage devices such as floppy disks and a hard disk possible.

Finally, this chapter discusses each DOS function in detail, and includes a brief
look at DOS Version 4.0.

51

6. The Disk Operating System PC System Programming

6.1 A Short History of DOS

DOS appeared in 1980, at a time when 8-bit systems and CP/M 80 operating
systems made up the majority of microcomputers. A few years before, Intel had
designed the 8086 microprocessor, the first generation of l6-bit microprocessors.

In April 1980 the CP/M-86 operating system announced by Digital Research for
use on the 8086 processor was unavailable. A programmer named Tim Paterson
began developing a new operating system. This system is the ancestor of the
current MS-DOS.

At this time a lot of software was available for CP/M-80 systems. The
development of new software for an 8086 operating system would have required
enormous expenses and effort. Paterson's goal was to allow easy conversion of
existing software from CP/M-80 to the new operating system. He tried to include
the functions and the most important data structures of the CP/M-80 operating
system, while removing the weak points of CP/M-80. The fmished product was an
operating system that required only 6K of memory. Programs developed for CP/M
80 could also be converted with little effort to the 8086. The new system was
named 86-DOS.

Meanwhile IBM was developing a l6-bit microcomputer. Microsoft offered to
develop an operating system for it. Microsoft obtained a prototype of the new
computer from IBM, bought the rights to Paterson's operating system, and made
some enhancements to the software. Even though Paterson was participating in the
project, the strict security provisions of IBM prevented him from seeing the
machine for which he had developed an operating system. Despite this, the
development work was concluded in August of 1981. The new operating system
was released for the IBM PC under the name MS-DOS.

Many changes have been made to DOS since 1981. Because these changes are of
great significance to the DOS programmer, this chapter contains a segment for
each major version of DOS. Each segment lists changes from preceding versions
with explanations. Many components of DOS are explained here, which will give
you some idea of the complexity of an operating system.

Version 1.0

This version represented a compromise for Microsoft They had relied heavily on
CP/M-80 and needed to transfer existing programs quickly and easily. This can be
seen in the fact that the file names (eight-character filename, three-character
extension) was identical with CP/M-80. Also, the designation of the disk drives
and the internal structure had many similarities to the successful 8-bit operating
system.

52

Abacus 6.1 A Short History ofDOS

During this time many improvements and enhancements of the hardware occurred,
such as more RAM and faster disk drives. Microsoft decided to make DOS more
hardware independent by removing the association between physical file length and
logical file length.

In CP/M-80 every disk was divided into 128-byte units which could only be
accessed as a whole. This is why you couldn't access individual bytes on the disk
(this created a programming problem that shouldn't have existed in the frrst place).
DOS solved this problem by making the logical and physical data length
independent of one another. In addition, functions were implemented to permit
reading or writing of more than one data set of a file on a disk. Treating the input
and output devices like files achieved hardware independence. These input and
output devices were assigned their own names:

CON (Keyboard and Display)
PRN (Printer)
AUX (serial Interface)

If you used one of these three names instead of a filename to access a file with a
DOS routine, then the computer addressed the corresponding device and not the
disk drive. This also permitted redirecting input and output from the keyboard or
screen to a file or other device.

Before this time, DOS only supported program files which loaded and executed
from a fixed location in memory. This proved to be impractical, and so Version
1.0 introduced a new program file type. This new file type had a file extension of
.EXE instead of .COM. An .EXE file could be stored and executed from almost
any memory location.

Two changes were made to the command processor, the part of the operating
system which accepts commands from the user and controls the execution of these
commands. The first change was to store the command processor in a separate file
named COMMAND.COM. This allowed programmers to develop a customized
command processor and link it to the system.

The second change was to divide the command processor into a resident and a
transient portion. This approach was taken because early PC systems contained
only a small amount of memory. The resident portion was written to be as small
as possible. Many DOS commands were stored on disk and loaded and run only
when required, hence the name transient. Examples of transient commands are
DISKCOPY and FORMAT.

A major innovation that took MS-DOS Version 1.0 beyond CP/M-80 was the
introduction of the FAT (file allocation table) on disk. Every entry in this table
corresponds to a data area of 512 bytes (called a sector) on the disk. The FAT
indicates whether the sector is allocated to a file or is still available.

S3

http:COMMAND.COM

6. The Disk Operating System PC System Programming

The FAT has special significance in connection with the directory entry which
exists for every file type. Besides the filename and other information, it also
indicates the number of an entry in the FAT which corresponds with the fIrst
sector of a file on the disk. This FAT entry points to another FAT entry which
indicates the next sector which was allocated to the file. The other FAT entries on
a disk perform the same task.

In conclusion two additional developments should be mentioned which make work
with the PC easier for the user:

The introduction of batch processing offers the user the option of placing several
DOS commands into one file. When you "run" this file (which has a fIle extension
of .BA1'), DOS executes the individual commands from this fIle as if you had
entered the commands from the keyboard, thus saving the user time in entering
frequently used groups of commands repeatedly.

The current date and time follows every filename. DOS includes this data to help
the user determine the last time a file was modified.

When IBM introduced a new PC in 1982 which used both sides of a disk for data
storage, Microsoft released DOS Version 1.1.

Version 2.0

IBM announced a new personal computer in March of 1983, called the PC XT,
which in addition to the floppy disk drive also had a hard disk (also called afued
disk). The enormous capacity of this hard disk (10 megabytes) allowed the user to
store several hundred files on one unit, but created some problems for the operating
system. The largest problem was that DOS could only handle one directory for
each storage unit. It would be nearly impossible for the hard disk user to maintain
hundreds of fIles in a single directory. Microsoft had two options to solve this
problem: They could either borrow an idea from the CP/M-SO operating system, or
from the UNIX operating system.

CP/M views a hard disk as several individual disk drives which share the total
storage on the hard disk, each with only one directory.

UNIX uses a hierarchical file system, in which every storage unit has a root
directory which can contain subdirectories as well as files. Every one of these
subdirectories can have subdirectories within them. This creates a directory tree
whose trunk is the root directory and whose branches are represented by the
individual subdirectories.

Microsoft chose the hierarchical file system, which has since become a popular
component of DOS. This· was another step away from CP/M-80 toward an
efficient 16-bit operating system. With the introduction of an hierarchical fIle
system some major changes had to be made in the area of fIle control by DOS.
Before this time, fIle access was conducted through afile control block or FCB.

54

Abacus 6.1 A Short History ofDOS

This file control block had been introduced for compatibility with CP/M-80. The
FCB contained important information about the name, size and location of a file
on disk. This CP/M would not allow access to a file in another directory.

The DOS developers standardized file access through DOS functions. The access to
a file occurs exclusively through the file handles. A handle is a numerical value
passed to the program as soon as it opens a file through a DOS function. The
FCBs were not eliminated, but the programmer no longer came in contact with
them since DOS took over the control block manipulation.

An important innovation was the introduction of installable device drivers. They
offer the programmer the capability of easily including different devices in DOS,
such as an exotic hard disk, a mouse or a tape drive. Version 2.0 introduced the
display device driver ANSI.SYS which gave the programmer flexibility in cursor
positioning and color selection through DOS functions.

Version 2.0 added the option of formatting the individual tracks of a disk with nine
sectors instead of eight. This increased the storage capacity of a single-sided disk
from 160K to 180K, and the capacity of a double-sided disk from 320K to 360K.

Version 3.0

Version 3.0, like Version 2.0, was developed for a new PC, the IBM PC AT. It
was released in August of 1984 and supported the 20 megabyte hard disk of the
A Ts as well as the high capacity 1.2 megabyte floppy disk drive. Many changes
occurred in DOS's internal routines. They contributed to faster execution of certain
operations, but are transparent to the programmer.

Version 4.0

DOS 4.0 appeared on the market in August 1988. Before this, Microsoft released a
new multiprocessing operating system called OS/2. Before OS/2, multiprocessing
was unknown to MS-DOS.

The user can easily seethe changes to DOS 4.0 over earlier versions of DOS. In
place of the line-Oriented command line interpreter used by DOS versions 3.3 and
earlier, DOS 4.0 has a Shell allowing user-defined menus, easy selection of
applications, files and directories from both mouse and keyboard.

Most important are the unseen changes made to DOS, particularly in adapting the
operating system to the new hardware standards on the market. As the operating
system has grown in power, it has also grown in complexity and memory use. For
example, earlier versions of DOS were limited to "only" 640K of RAM and a 32
megabyte hard disk. However, DOS 4.0 handles the Expanded Memory System
(EMS) following the LIM standard, normal RAM capacity of up to 8 megabytes,
and hard disks up to 2 gigabytes (2048 megabytes) capacity.

55

6. The Disk Operating System PC System Programming

6.2 Internal Structure of DOS

Several major components comprise DOS, each with a certain task within the
system. The three most important components are the DOS-BIOS, the DOS kernel
and the command processor. Each appear in a separate file.

DOS-BIOS

DOS-BIOS is stored in a system file which appears under various names
(IBMBIO.COM, IBMIO.SYS or IO.SYS). This file has the fIle attributes Hidden
and Sys, which means this system file doesn't appear when the DIR command is
entered. The DOS-BIOS contains the device drivers for the following units:

CON (Keyboard and Display)
PRN (Printer)
AUX (Serial Interface)
CLOCK (Clock)
Disk drives and/or hard disks which have the unit
designations A, Band C

If DOS wants to communicate with one of these, it accesses a device driver
contained in this module, which in tum uses the routines of ROM-BIOS. The
DOS-BIOS (i.e., the connection between individual device drivers and other
hardware dependent routines) are the most hardware dependent components of the
operating system, and vary from one computer to another.

Do not confuse the device drivers in this module with the installable device drivers.
The DOS-BIOS device drivers cannot be changed by the user.

DOS kernel

The DOS kernel in the IBMDOS.COM or MSDOS.SYS fIle is normally invisible
to the user. It contains file access routine handles, character input and output, and
more. The routines operate independent of the hardware and use the device drivers
of DOS-BIOS for keyboard, screen and disk access. The module can be used by
different PCs without being limited to one machine. User programs can access
these functions in the same manner as the ROM-BIOS functions: every function
can be called with a software interrupt. The processor registers pass the function
number and the parameters.

Command processor

Unlike the two modules described above, the command processor is contained in
the file named COMMAND. COM. It displays the "A">" or "C>" prompt on the
screen, accepts user input and controls input execution. Many users wrongly think
that the command processor is actually the operating system. In reality it is only a
special program which executes under DOS control.

S6

http:IBMDOS.COM
http:IBMBIO.COM

Abacus 6.2 Internal Structure ofDOS

The command processor, also called a shell in programmer's terminology, actually
consists of three modules: A resident portion, a transient portion and the
initialization routine.

The resident portion (the part that always stays in the computer's memory)
contains various routines called critical error handlers. These allow the computer to
react to different events, such as pressing the <Ctrl><C> or <Ctrl><Break> keys
or errors during communication with external devices (e.g., disk drives and
printers). The latter cause the message:

Abort, Retry, Ignore
or
Abort, Retry, Fail

The transient portion contains code for displaying the (A» prompt, reading user
input from the keyboard and executing the input. The name of this module is
derived from the fact that the RAM memory where it is located is unprotected, and
can be overwritten under certain circumstances. When a program ends, control
returns to the resident portion of the command processor. It executes a checksum
program to determine whether the transient portion was overwritten by the applica
tion program. If so, the resident portion reloads the transient portion.

The initialization portion loads during the booting process and initializes DOS.
This part of the command processor will be examined in detail in the next chapter.
When its job ends, it is no longer needed and the RAM memory it occupies can be
overwritten by another program. The commands accepted by the transient portion
of the command processor can be divided into three groups: internal commands,
external commands and batch files.

Internal commands lie in the resident portion of the command processor. COPY,
RENAME and DIR are internal commands.

External commands must be loaded into memory from diskette or hard disk as
needed. FORMAT and CHKDSK are external commands.

After execution the command processor releases the memory used by these
programs. This memory can then be used for other purposes.

Batch files

A batch file is a text file containing a series of DOS commands. When a batch file
is started, a special interpreter in the transient portion of the command processor
executes the batch file commands. Execution of batch file commands is the same
as if the user entered them from the keyboard. An important batch file is the
AUTOEXEC.BAT file which executes immediately after DOS is flfSt loaded.

Like all commands of a batch file, these commands are checked for internal
commands, external commands or calls to other batch files. If the ftrst is true, the

57

6. The Disk Operating System PC System Programming

command executes immediately, since the code is already in memory (in the
transient part of the command processor). If it is an external command or another
batch file, the system searches the current directory for the command. If such a file
doesn't exist in this directory, all directories specified in the PATII command are
searched in sequence. During the search, only files with the .COM •.EXE or .BAT
extensions are examined.

Since the command processor cannot search for all three extensions at the same
time, it first searches for files with .COM extensions, then for .EXE files and
finally for .BAT files. If the search is unsuccessful, the screen displays an error
message and the system waits for new input.

58

Abacus 63 Booting DOS

6.3 Booting DOS

When a PC is turned on, the program contained in ROM begins executing. This
ROM program is sometimes called the ROM-BIOS, POST (power-on self test),
resident diagnostics or bootstrap ROM. It performs several tests on the hardware
and memory and then starts to load the DOS.

First the PC checks for a disk in the floppy disk drive. If a disk exists in the
floppy disk drive, the PC checks the disk for the boot sector. If a disk is not in the
drive, the PC searches for a hard disk from which to boot DOS. If no hard disk
exists, the PC displays an error message asking the user to insert a system disk.

The ftrst sector on a bootable floppy disk or hard disk is called the boot sector. The
program in the boot sector is read into memory and executes. First it checks for
the presence of two files: IBMBIO.COM (sometimes called IO.SYS) and
IBMDOS.COM (sometimes called MSooS.SYS). A bootable floppy disk or hard
disk must contain these two files or an error message is displayed. Next these
program fIles are loaded into memory.

The program file IBMBIO.COM consists of two modules. The ftrst contains the
basic device drivers-keyboard, display and disk. The second contains the
initialization sequence for DOS. When the IBMBIO.COM program executes it
continues to initialize the system by moving the DOS kemal (loaded in the
IBMooS.COM program fIle) to the last available memory location.

The DOS kemal builds several important tables and data areas, and performs
initialization procedures for individual device drivers which were loaded with the
IBMBIO.COM program fIle.

Next, DOS searches the boot disk for a file named CONFIG.SYS. If found, the
commands contained in the me are executed. These commands add device drivers to
DOS, allocate disk buffers and file control blocks for DOS and initialize the
standard input and output devices.

Lastly the command processor COMMAND.COM (or other shell specifted in the
CONFIG.SYS fIle) is loaded and control is passed to it. The booting process ends
and the initialization routines remain as "garbage" data in memory until
overwritten by another program.

S9

http:COMMAND.COM
http:IBMBIO.COM
http:IBMooS.COM
http:IBMBIO.COM
http:IBMBIO.COM
http:IBMDOS.COM
http:IBMBIO.COM

6. The Disk Operating System PC System Programming

6.4 COM and EXE Programs

DOS recognizes three types of "program" files: those with file extensions of BAT,
COMandEXE.

This section describes the structure and functions of these last two program types.

One difference between COM and EXE program files is in the size limitation for
each type of program. A COM program cannot exceed 64K in size. An EXE
program can be as large as the memory capacity available to DOS.

In a COM program, the program code, data and stack are stored in one 64K
partition. All of the segment registers are set at the start of the program and remain
fixed for the duration of the program execution. They point to the start of the 64K
memory segment. The contents of the ES register may be changed however, since
it has no direct effect on program execution.

In an EXE program, the code, data and stack may be stored in different segments,
and depending on program size, may be distributed over severnl segments.

While a COM program file is stored on disk as an image copy of RAM memory,
an EXE program file is stored in a special format that will be described shortly.

EXEC

Both program types can be loaded and started using the DOS EXEC function. Any
user can access this, but the command processor uses it for executing external
commands. Before the EXEC function loads the program into memory, it reserves
the RAM memory to hold the program. At the beginning of this memory the
EXEC function stores a PSP (program segment prefIX) data structure. The program
is then loaded immediately following the PSP. The segment registers and the stack
are initialized and the program is given control. Later, when the program ends, the
memory is released based on the contents of the PSP.

60

Abacus 	 6.4 COM and EXE Programs

+ OOH 	 Interrupt 20H call (2 bytes)
+ 	02H Segment address of meIlOry (1 word)

allocated for a program
+ 04H 	 Reserved (1 byte)
+ OSH 	 Interrupt 21H call (5 bytes) RAM
+ OAR 	 Copy of interrupt (2 words) 0000:0000

vector 22H

+OEH Copy of interrupt (2 words)

vector 23H
 1+ 12H 	 Copy of interrupt (2 words)

vector 24H

+ 16H 	 reserved (22 bytes)
+ 	2CH Segment address of (1 word)

environment block

+ 2EH reserved (46 bytes)

+SCH FCB 1 (16 bytes)

+ 6CH 	 FCB 2 (16 bytes)
+ 	SOH Number of characters (1 byte)

in command line

+ SlH 	 Command line (ended by CR) (127 bytes)

Structure of the PSP

The PSP itself is always 256 bytes long and contains information important for
DOS and the program to be executed.

Memory location OOH of the PSP contains a DOS function call to terminate a
program. This function releases program memory and returns control to the
command processor or the calling program. Memory location OSH of the PSP
contains a DOS function call to interrupt 21H. Neither of these are used by DOS,
but are leftovers from the CP/M system.

Memory location 02H of the PSP contains the segment address to the end of the
program. Memory location OAH contains the previous contents of the program
termination interrupt vector. Memory location OEH contains the previous contents
of the <Ctrl><C> or <Ctrl><Break> interrupt vector. Memory location 12H
contains the previous contents of the critical error interrupt vector. For each of
these memory locations, the program changes one of the corresponding vectors
during execution; DOS can use the original vector in the event that it detects an
error.

Location 2CH contains the segment address of the environment block. The
environment block contains information such as the current search path and the
directory in which the COMMAND.COM command processor is located on disk.

61

http:COMMAND.COM

6. The Disk Operating System PC System Programming

Memory locations 5CH through 6CH contain a file control block. This FCB is
not often used by DOS since it does not support hierarchical files (paths) and is
also left over from CP/M.

The string of parameters that are entered on the command line following the
program name is called the command tail. The command tail is copied to the
parameter buffer in the PSP beginning at memory location 81H and its length is
stored at memory location 80H. Any redirection parameters are eliminated from the
command tail as it is copied to the parameter buffer. The program can examine the
parameters in the parameter buffer to direct its execution.

The parameter buffer is also used by DOS as a disk transfer area (DTA) for
transmitting data between the disk drive and memory. Most OOS programs do not
use the DTA contained in the PSP because it is another leftover from CP/M.

SS:OOOO
DS:OOOO ES:OOOO

ES:OOOO
cs:oooo PSP (256 BYTES)

DS:OOOO
PSP (256 BYTES)

CS:IP
Code

Code, data
and
one

stack in
64K segment

(Address defined
by the END

CS:IP command in an
assembler

SS:SP - Stack adjusts
to the direction

program)

SS:FFFF of data and code DS:OOOO
CS:FFFF Data
DS:FFFF SS:OOOO
ES:FFFF

Stack

SS:SP

A comparison ofCOM and EXE programs in memory

6.4.1 COM Programs

COM program files are stored on disk as an image copy of memory. Because of
this, no further processing is required during loading. Therefore COM programs
load faster and start execution faster than EXE programs.

A COM program loads immediately following the PSP. Execution then begins at
the ftrst memory location following the PSP at offset lOOH. For this reason, a
COM program must begin with an executable instruction, even it if is only a
jump instruction to the actual start of the program.

62

Abacus 6.4 COM and EXE Programs

COM program memory limits

As described in the previous section, a COM program is limited to 64K (65,536
bytes) in length. The PSP (256 bytes) and at least 1 word (2 bytes) for the stack
must be reserved from this total. Even though the length of the COM program can
never exceed 64K, DOS reserves the entire available RAM for a program.
Therefore DOS can allocate no further memory, and the COM program cannot call
another program using the EXEC function. This limitation can be overcome by
releasing the unused memory for other uses with a DOS function.

When control is turned over to the COM program, all segment registers point to
the beginning of the PSP. Because of this, the beginning of the COM program
(relative to the beginning of the PSP) is always at address lOOH. The stack pointer
points to the end of the 64K memory segment containing the COM program
(usually FFFEH). During every subroutine call within the COM program, the
stack is adjusted by 2 bytes in the direction towards the end of the program. The
programmer is responsible for preventing the stack from growing and overwriting
the program, which would cause it to crash.

There are several ways to end a COM program and return control to DOS or the
calling program:

If the program runs under DOS Version 1.0, it can be terminated by calling
interrupt 2lH function 0, or by calling interrupt 20H. It can also be terminated by
using the RET (RETurn) assembler instruction. When this instruction executes,
the program continues at the address which is at the top of the stack. Since the
EXEC function stored the value 0 at this location before turning control over to
the COM program, program execution continues at location CS:O (the start of the
PSP). Recall that this location contains the call for interrupt 20H which
terminates the program.

Programs that run on versions later than DOS Version 1.0, are terminated using
interrupt 2lH function 4CH. The terminating program can pass a numeric return
code to the calling program. For example, a value of 0 may indicate that the
program executed successfully, while a non-zero value indicates an error during
execution.

Next we'll talk about a few of the details that the assembly language programmer
will have to take care of in developing a COM program. Note that the high level
language programmer is usually insulated from these details by the compiler or
interpreter, so you may want to skip ahead.

A COM program is limited to a 64K size. The code and data for the program must
be contained within a single segment and addressed through NEAR procedures.
Therefore an assembly language program that is to become a COM program may
not contain any FAR procedures.

63

6. The Disk Operating System 	 PC System Programming

Before calling a COM program, DOS reserves all available memory for the
program even though it normally uses only one 64K segment and indicates this by
setting memory location 2 in the PSP. Usually the program terminates and the
memory is made available to DOS again.

In some circumstances you may want to write a program which is to remain
resident after execution. But DOS thinks that there isn't any memory available.
This prevents other programs from loading and executing.

In other circumstances you may want to execute another program from this COM
program using the EXEC function. Again, since DOS thinks that memory is
unavailable, it won't allow the new program to run.

Both of these problems can be circumvented by freeing up the unused memory.

There are two approaches in doing this: release only the memory outside of the
64K COM segment or release memory outside of the 64K COM segment plus any
unused memory within the 64K COM segment. This creates more memory for
other programs, but relocates the stack outside the protected COM segment
memory, leaving it open to be overwritten by other programs. Because of this, the
stack must be relocated to the end of the code segment before releasing the
memory. The stack must have a certain limit in size (in most cases 512 bytes will
be more than enough).

The following sample program can serve as an example for developing a COM
program. A small (init) routine relocates the stack to the end of the code segment
after the start of the program and releases all remaining memory. Even when this
program loads another program, itremains resident. This routine can be useful to
applications, and can be part of any COM program.

itestcorn.asrn
code segment para 'CODE' ;Definition of CODE-segments

org IOOh ;starts at Address IOOH
;directly behind the PSP

assume cs:code, ds:code, es:code, ss:code

;all segments point
; segment

to the CODE

start: jmp init ;Call of the Initialization Routine

;~= Data ========_============a========_===_=====================-====

;-- Data, Buffers and ---------
;-- Variables can be stored here

;== Program ===

prog proc near 	 ;this Procedure is the actual
;Main program and is executed after
;the Initialization

mov aX,4COOh ;Terminate Program through calling a

64

Abacus 	 6.4 COM and EXE Programs

int 21h ;DOS function on error code 0

prog 	 endp ;End of the PROG procedure

;-- Initialization ---

init: 	 mov ah,4Ah ;Change Function number for memory size
mov bx,offset endp ;Calculate number of paragraphs (16 byte
mov cl , 4 leach) available to the program
shr bx, cl
inc bx
int 21h ;Call function through DOS-Interrupt
mov sp,offset endp ;Set new stack-Pointer
jmp prog

init end label near

;-= stack 	============---========--=================================--

dw (256-«init_end-init) shr 1» dup (?)

;the stack has 256 Words, but includes
;the code of the INIT-Routine which
;after its execution is no longer needed

endp equ this byte 	 ;End of memory used by this
; program

;== End ====================================-==========================

code ends ;End of the CODE-segment
end start ;End of the Assembler-Program. For

;execution use START command

First you must assemble the source program using the assembler. In the following
example, we are using the Microsoft assembler. Following assembly, you then
link the object code using the LINK program. When you execute the LINK
program, the following message appears:

Warning: no stack segment

You can disregard this message. If the program contains no errors, the LINK
program creates an EXE file. Since you want a COM program and not an EXE
program developed, you must run the EXE2BIN program as the last step. This
converts EXE programs into COM programs. Here are the steps for preparing an
assembly language program using the Microsoft assembler. The program to
assemble is named TESTCOM.ASM.

masrn testcom:

link testcom;

exe2bin testcom.exe testcom.com

If all steps were carried out correctly, the program TESTCOM.COM can be
executed from DOS by simply typing TESTCOM.

6S

http:TESTCOM.COM
http:testcom.com

6. The Disk Operating System PC System Programming

6.4.2 EXE Programs

EXE programs have an advantage over COM programs because they are not
limited to a maximum length of 64K for code, data and stack. The disadvantage of
this is the greater complexity of these files. This means that in addition to the
program itself, other information must be stored in an EXE file.

EXE vs. COM

EXE programs contain separate segments for code, data and stack which can be
organized in any sequence. Unlike a COM program, an EXE program loads into
memory from disk and undergoes processing by the EXEC function and then
finally begins execution. This is necessary because of the limitations already
described for COM programs.

EXE programs aren't limited to loading at a fixed memory location, but to any
desired location in memory that's a multiple of 16. Since an EXE program can
have several segments, this requires the use of FAR machine language
instructions. For example, a main program can be in one segment and call a
subroutine in another segment. The segment address must be provided for this
FAR instruction in addition to the offset for the routine to be called. The problem
is that the segment address may be different for every execution of the program.

COM files avoid this problem since the program size is limited to 64K, which
makes the use of FAR commands unnecessary. EXE programs solve this problem
in a more complex way: the LINK program places a data structure at the beginning
of every EXE file which contains the addresses of all segments, among other
things. It contains the addresses of all memory locations in which the segment
address of a certain segment is stored during program execution.

If the EXEC function loads the EXE program, it knows the addresses where the
various segments should be loaded. It can therefore enter these values into the
memory locations at the beginning of the EXE file. Because of this, more time
elapses between the initial program call and when the program actually begins
execution than for a COM program. The EXE program also occupies more
memory than a COM program. The following illustration shows the structure of
the header for an EXE file.

66

Abacus 6.4 COM and EXE Programs

EXE file header structure
Address Contents Tvpe
+OOH EXE program identifier (5A4Dh) 1 WORD
+02H file length MOD 512 1 WORD
+04H file length DIV 512 1 WORD
+06H Number of segment addresses for passing 1 WORD
+OBH Head size in paragraphs 1 WORD
+OAH Minimum no. of extra paragraphs needed 1 WORD
+OEH Maximum no. of extra paragraphs needed 1 WORD
+10H SP reglster contents on program start 11 WORD
+12H Checksum based on EXE file header 1 WORD
+14H IP reqister contents on program start 1 WORD
+16H Start of code segment in EXE file 1 WORD
+l8H Relocation table address in EXE file 1 WORD
+lAH OVerlay number 1 WORD
+lCH Buffer memory 1 WORD
+??H Address of passing segment addresses 1 WORD

(relocation table)
+??H Program code, data and stack segment 1 WORD

EXE file header construction

After the segment references within the EXE program have been resolved to the
current addresses, the EXEC function sets the DS and the ES segment register to
the beginning of the PSP which also precedes all EXE programs in memory.
Because of this, the EXE program can access the information contained in the
PSP, such as the address of the environment block and the parameters contained in
the command line (command tail). The stack address and the contents of the stack
pointer are stored in the EXE file header and accessed from there. This also applies
to the code segment address containing the first instructions of the program, and
the program counter. After the values have been assigned, the program execution
starts.

To ensure compatibility with future DOS versions, an EXE program should
terminate by calling interrupt 21H function 4CH.

Of course, memory must be available for the EXE program. The EXE loader
determines the total program size based on the size of the individual segments of
the EXE program. Then it can allocate this amount of memory and some
additional memory immediately following the EXE program. The first two fields
of the EXE program file header contain the minimum and maximum size of
memory required in paragraphs (1-6 bytes).

First, the EXE loader tries to reserve the maximum number of paragraphs. If this
is not possible the loader tries to reserve the remaining memory which may be no
smaller than the minimum number of paragraphs. These fields are determined by
the compiler or assembler, llil1 the linker. The minimum is 0 and the maximum

67

6. The Disk Operating System 	 PC System Programming

allowed is FFFFH. This last number is unrealistic in most cases (it adds up to 1
megabyte) but reserves the entire memory for the EXE program.

This brings us back to the same problem as in COM programs. EXE files make
poor resident programs, but an EXE program may need to call another program
during execution. This is possible only by fIrst releasing the additional reserved
memory. The following program below contains a routine which reduces the
reserved memory to a minimum.

The program uses separate code, data and stack segments. It can serve as a model
for other EXE programs that you can write.

; testexe.asm
i== stack ==_ac============-

stacie segment para stacie 	 ;Definition of the stacie-segment

dw 256 dup (1) ;the stacie has 256 Words

stacie ends 	 ;End of the stack-segment

;== Data ==========--================================----============-=

data segment para 'DATA' 	 ;Definition of the Data-segment

;all data, buffers and variables can be stored here

data ends 	 ;End of the Data segment

i== Code ==========-==

code segment para 'CODE' 	 ;Definition of the CODE-segment

assume cs:code, ds:data, ss:stacK

;CS defines the Code, DS
;the Data and SS the stacie
; segment

prog proc far 	 ;this procedure is the actual
;Main program and is executed after
;the program start

mov ax,ctata ;Load segment address of the Data segment into
mov ds,ax ;the DS-Register
call set free ;release memory not needed

;store application program here ---------------------

mov aX,4COOh ;terrninate with call of DOS function
int 21h ;on return of error code a

iterrninate

prog endp 	 ;End of PROG Procedure

i-- SETFREE release memory storage not occupied ---------------
i-- Inputt ES - Address of PSP
i-- Output none
, Register 	 AX, BX, CL and FLAGS are changed
i-- Info 	 Since the stacie-segment is always the last segment in an

EXE file, ES:OOOO points to the beginning and SS:SP
to the end of the program in storage. Because of this the
length of the program can be calculated.

68

Abacus 6.4 COM and EKE Programs

setfree proc near

mov bx,ss ;subtract the two segment addresses
mov ax,es ;from each other. The result is the
sub bx,ax ;number of paragraphs from PSP to

;the beginning of the stack
mov ax,sp ;since the stackpointer is a the end
mov cl,4 ;of the stack segment, its content
shr ax/el ;gives the length of the stacks
add bx,ax ;add to the present length
inc bx ;one more paragraph as a precaution
mov ah,4ah ;pass new size to DOS
int 2Ih

ret ;back to calling program

setfree endp

code ends ;End of the CODE-segment
end prog ;End of the Assembler program.

;Start execution with the PROG procedure

To develop an EXE program, it must be assembled like a normal program with an
assembler. Then it is linked with the LINK program. If the program contains no
errors, the LINK program creates an EXE flle.

Here are the individual steps for preparing an EXE program from the assembly
language source named 1ES1EXE.ASM.

masm testexe;
link testexe;

If all these steps were executed correctly, the program TESTEXE.EXE can be
started from the DOS level by typing TESTEXE.

69

6. The Disk Operating System PC System Programming

6.5 Character Input and Output from DOS

When flIst learning a programming language, many beginners learn the basic input
and output instructions of the language. In much the same way, programmers get
their experience writing DOS accessible programming by using the functions for
character input and output. For this reason, this book starts with these input and
output functions instead of more complex functions. These input and output
functions can address the keyboard, screen, printer and serial interface.

The functions can be divided into two types: those carried over from the CP/M
operating system and those borrowed from the UNIX operating system. While the
two types of functions can be intermixed, we recommend that you use one type of
function throughout a program for the sake of consistency.

The UNIX type functions use a handle as an identifier to a device. Because of
recent DOS trends to move closer to UNIX, you may want to give the handle
functions precedence.

6.5.1 Handle Functions

The handle functions perform file access as well as character input to or output
from a device. DOS recognizes the difference by examining the name assigned by
the handle. If the handle is a device name, it addresses the device; otherwise it
assumes that file access should occur. The device names are as follows:

CON Keyboard and display
AUX Serial Interface
PRN Printer
NUL Imaginary device (nothing happens on access)

Output and input go to and from the AUX, PRN and NUL devices. For the device
CON, output is sent to the screen and input is read from the keyboard.

When DOS passes control to a program, five handles are available for access to
individual devices. These handles have values from 0 to 4 and represent the
following devices:

0 Standard input (CON)
1 Standard output (CON)
2 Standard output for error messages (CON)
3 Standard serial interface (AUX)
4 Standardprinter (PRN)

Here is a short example to help demonstrate the use of this table:

70

Abacus 65 Character Input and Output from DOS

Display error message

If a program wants to accept input from the user, the handle function 0 indicates
this during the call since the standard input device is addressed. Handle 0 normally
represents the keyboard, permitting user input from the user to the program. Since
the user can redirect standard input, you can redirect input to originate from a file
instead of the keyboard This redirection remains hidden from the program.

Before discussing these devices, here are some functions used to access any device.

Function 40H of interrupt 21H sends data to a device. The function number (40H)
is passed in the AH register and the handle is passed in the BX register. For
example, to display an error message, the value 2 indicates the handle for
displaying the error message (this device cannot be redirected, so handle 2 always
addresses the console). The number of characters to be in the error message is
passed in the ex register. The characters making up the message are stored
sequentially in memory whose segment address is stored in the DS register and
offset address in the DX register.

Following the call to the function, the carry flag signals any error. If there was no
error, the carry flag is reset and the AX register contains the number of characters
that were displayed. If the AX register contains the value 0, then there was no
more space available on the storage medium for the message. If the carry flag is
set, the error message was not sent and an error code is indicated in the AX
register. An error code of 5 indicates that the device was not available. An error
code of 6 indicates that the handle was not opened.

Function 3FH of interrupt 21H reads character data from a device and has many
similarities to the previous function. Both functions have identical register usage.
The function number is passed in the AX register and the handle in the BX
register. The number of characters read is passed in the ex register and the
memory address of the characters transferred are passed in the DS:DX register pair.

Following the call to the function, the carry flag also signals any error. Again, any
error code is passed in the AX register. Error codes 5 and 6 have the same meaning
as when using function 40H. If the carry flag is reset, then the function executed
successfully. The AX register then contains the number of characters read into the
buffer. A value of 0 in the AX register means that the data to be read should have
come from a file, but that this file contains no more data.

As we already mentioned, it's possible to redirect the input or output when
accessing DOS. For example, a program that normally expects input from the
keyboard can be made to accept the input from a file. So, to avoid having input or
output redirected, you can open a new handle to a specific device which insures that
the transfer of data to or from the desired device takes place instead of to or from a
redirected device.

Use function 3DH of interrupt 21H to open such a device.

71

6. The Disk Operating System PC System Programming

The function number 3DH is passed in the AH registel'. The AL register contains 0
to enable reading from the device, 1 to enable writing to the device and 2 for both
reading and writing to the device. The name of the device is placed in memory
whose address is passed in the DS:DX register pair. So that the DOS can properly
identify the device name, the names must be specified in uppercase characters. The
last character of the string must be an end character (ASCII value 0).

Following the function calls the status is indicated by the carry flag. A reset flag
means that the device was opened successfully and the handle number is passed
back in the AX register. A set flag indicates an error and the AX register contains
any error code.

The handle is closed using function 3EH of interrupt 21H. The function number is
passed in the AH register and the handle number is passed in the BX register. The
carry flag again indicates the status of the function call. A set carry flag indicates
an error.

You can also close the predefined handles 0 through 4 using this function. But if
you close handle 0 (the standard input device) you'll no longer be able to accept
input from the keyboard

Let's examine the special characteristics of each device.

Keyboard

The keyboard can perform only read operations. The results of the read operations
depend on the mode in which the device was addressed. Here DOS differentiates
between raw and cooked. In the cooked mode OOS checks every character sent to a
device or received from a device to see if it is a special control character. If DOS
finds a special control character, it performs a certain action in response to the
character. In raw mode the individual characters are passed through unchecked and
unmanipulated. DOS normally operates the device in cooked mode for character
input and output. However, you can switch to raw mode within a program (see
below).

The difference between cooked and raw mode can be best explained by an example
of reading the keyboard. Assume that 30 characters are read from the keyboard in
cooked mode. As you enter the characters DOS allows you to edit the input using
several of the control keys. For example <Ctrl><C> and <Ctrl><Break> abort the
input. <Ctrl><S> temporarily halts the program until another key is pressed.
<Ctrl><P> directs subsequent data from the screen to the printer (until <Ctrl><P>
is pressed again). <Backspace> removes the last character from the DOS buffer. If
the <Enter> key is pressed, the first 30 characters (or all characters input up to
now if there are less than 30) are copied from the DOS buffer into the input buffer
of the program without the control characters.

In raw mode all characters entered (including control characters) are passed to the
calling program without requiring the user to press the <Enter> key. Mter exactly

72

Abacus 6.5 Character Input and Output from DOS

30 characters, control passes to the calling program, even if you pressed the
<Enter> key as the second character of the input.

Screen

To display characters on the screen, handle 1 is usually addressed as the standard
output device. Since this device can be redirected, output through this handle can
pass to devices other than the screen. On the other hand, you cannot redirect the
standard error output device (handle 2), so error messages that pass through this
handle always appears on the screen. This handle is recommended for character
display on the screen ~.

The screen is normally addressed in cooked mode-every character displayed on the
screen is tested for the <Ctrl><C> or the <Ctrl><Break> control characters. This
test slows down the screen output, so sometimes changing to raw mode decreases
program execution time.

Printer

Unlike the keyboard and screen, printer output cannot be redirected-at least not
from the user level. An exception to this rule is redirecting output from a parallel
printer to a serial printer. Characters ready to print can be sent to a buffer before
they are sent to the printer. Handle 4 is used to address the standard printer. There
are three standard printer devices LPTl, LPT2 and LPT3. Device PRN is
synonymous with LPTI. When this handle is opened the device name is specified
as one of the three: LPTl, LPT2 or LPTI.

Serial interface

Much of the information that applies to the printer also applies to the serial
interface. For example, serial input and output cannot be redirected to another
device (e.g., from a serial printer to a parallel printer). The programmer can use the
predefined handle 3 for serial access, through which you can address the standard
serial interface (AUX).

Handle 3 is used to address the standard serial device. The two are names COMl
and COM2. A PC can have multiple serial interfaces. Only the first two (COMl
and COM2) are supported by DOS. Since the system doesn't know exactly which
interface to access during AUX device access, you should open a new handle for
access to the specific device.

Errors during read operations in DOS mode are returned to the serial interface in
cooked mode. The number returned to the AX register will not match the number
of characters actually read. We recommend that you operate the serial interface in
the raw mode, even if this mode ignores control characters such as <Ctrl><C> and
EOF (end-of-fIle).

73

6. The Disk OperaJing System PC System Programming

6.5.2 Traditional DOS Functions

The DOS functions for input and output aren't based on the handle oriented
functions. If you use these functions you won't need to specify a handle, since
each function pertains to a specific device.

Below are the various input and output devices and the way in which these
functions work with them.

Keyboard

There are seven DOS functions for addressing the keyboard but they differ in many
ways. For example, they respond differently to the <Ctrl> <Break> key. Some
functions echo the characters on the screen; others don't.

You can use DOS functions OIH, 06H, 07H and OSH to read a single keyboard
character. The function number is passed in the AH register. Following the call,
the character is returned in the AL register.

For DOS function OIH, DOS waits for a keypress if the keyboard buffer is empty.
When this happens, the character is echoed on the screen. If the keyboard buffer is
not empty, a new character is fetched and returned to the calling program. DOS
function 06H can be used for both character input and output. To input a character
a value of FFH is loaded into the DL register. This function doesn't wait for a
character to be input but returns immediately to the calling program. If the zero
flag is set, a character was not read. If the zero flag is reset, a character was read and
returned in the AL register. The character is not echoed on the screen.

DOS functions 07H and 08H are used to read the keyboard similar to function 1.
Both either fetch a character from the keyboard buffer or wait for a character to be
entered at the keyboard. Neither echo the character to the screen. They differ in that
function OSH responds to <Ctrl><C> and function 07H does not.

By using function OBH, a program can determine whether one or more characters
are in the keyboard buffer before calling any functions that read characters. After
calling this function, the AL register contains 0 if the keyboard buffer is empty,
and FFH if the keyboard buffer is not empty.

DOS function OCH is used to clear the keyboard buffer. After it is cleared, the
function whose number was passed to function OCH in the AL registered is
automatically called.

DOS function OAH is used to read a string of characters. Again this function
number is passed in the AH register. In addition, the memory address of a buffer
for the character string is passed in the DS:DX register pair. This buffer is used to
hold the character string. The first byte of the buffer indicates the maximum
number of characters that may be contained in the buffer.

74

Abacus 65 Chmacter Inplll tmd Outplll from DOS

When this function is called, OOS reads up to the maximum number of characters
and stores them in the buffer starting at the third byte. It reads until either the
maximum number of characters is entered or the <Enter> key is pressed. The
actual number of characters is stored in the second byte of the buffer. Extended key
codes which occupy two bytes each in the buffer may be entered. The fIrst byte of
the pair (ASCII value 0) signifies that an extended key code follows. This means,
for example, that for a maximum buffer size of 10 bytes, only five extended
characters may be entered.

The following table illustrates how the various functions respond to <CtrlxC>
or <Ctrb<Break>, and provides a quick overview of the individual functions for
character input

Pet. Task <Ctrl><C> Echo
01H Character input yes Iyes
06H direct character input ro ro
07H Character in~ut ro ro
OBH Character input yes ro
OAll Character string input Yf!s ro
OBH Read input-status yes no
OCH Reset input-buffer then input varies varies

Screen output

There are three OOS functions for character output

DOS function 02H outputs a single character to the screen or standard output
device. The character is passed to the DL register.

OOS function 06H which is multi-purpose is also used to output a single
character. The character is passed in the DL register. You can see that the character
whose value is 255 cannot be output since this indicates that the function is to
perform an input operation. Output using this function is faster than using
function 02H since it doesn't test for the <Ctrb<C> or <Ctrl><Break> keys.

DOS function 09H is used for string output. Again, the function number is passed
in the AH register. The address of the string is passed in the DS:DX register pair.
The last character of the string is a dollar sign. In addition, the following control
codes are recognized.

Code Operation
7 "Bell", rinqs the bell on the PC
B "Backspace", erases the preceding character and moves the cursor

back by one character
10 ULine Feed 11 , (LF) moves the cursor one line down
13 "Carriage Return", (CR) moves the cursor to the beginning of the

current line

As with function 02H, this function also checks for <Ctrl><C> or
<Ctrb<Break> .

75

6. The Disk Operating System PC System Programming

Printer

DOS function 05H is used to output a single character to the printer. If the printer
is busy, this function waits until it is ready before returning control to the calling
program. During this time, it will respond to the <Ctrl><C> and <Ctrl><Break>
keys.

The function number is passed in the AH register. The character to output is
passed in the DL register. The status of the printer is not returned. Most
programmers will elect to use the BIOS function instead of the DOS function for
printer output since you can specify the exact printer device and determine the
printer status using the BIOS version. See Section 7.12 for more detailed
information.

Serial interface

There are two DOS functions for communicating using serial interface-one for
input and one for output. Both functions respond to <Ctrl><C> and
<Ctrl><Break>, but they don't return the status of the serial interface, nor do they
recognize transmission errors.

DOS function 03H is used to input data from the serial interface. The character is
returned in the AL register. Since the data is not buffered, the data can overrun the
interface if the interface receives data faster than this function can handle it

DOS function 04H is used to output data over the serial interface. The character to
output is passed in the DL register. If the serial interface is not ready to accept the
data, this function waits until it is free.

Again, most programmers prefer to use the BIOS equivalent functions (see Section
7.9) to perform serial data transmission because of their more complete data
handling capabilities.

Demonstration programs

Earlier we mentioned that it was possible to switch a device from cooked mode to
raw mode and back. The BASIC, Pascal and C programs that follow show you
how to do this. They use the IOCTL functions which permit access to the DOS
device drivers (see Section 6.11.7 for details on this routine). These are routines
which serve as interfaces between the DOS input/output functions and the
hardware. The IOCTL functions in these programs tell the CON device driver
(responsible for the keyboard and the display) whether it should operate in the
cooked mode or in the raw mode.

To demonstrate how differently characters respond in the two modes, the programs
switch the CON driver into raw mode fIrst. Then this driver displays a sample
string several times. Unlike cooked mode, pressing <Ctrl><C> or <Ctrl><S> in
raw mode has no effect on stopping program execution or text display.

76

Abacus 65 Character Input and Output from DOS

After the program finishes displaying the sample string, the driver switches to the
cooked mode. The sample string is displayed again several times. When you press
<Ctrl><C> the program stops (Turbo Pascal version). For the BASIC and C
versions, you can press <Ctrl><C> to stop the program, or press <Ctrl><S> to
pause or continue the display.

Switching between the raw and the cooked mode does not take place directly
through a function. First the device attribute of the driver is determined. This
attribute contains certain information which identifies the driver and describes its
method of operation. One bit in this word indicates if the driver operates in raw or
cooked mode. The programs set or reset this bit, depending on the mode you want
running the driver.

BASIC listing: RAWCOOK.BAS

100 '.***••*••••••••****••••••••• ***.****•••*******•••••****.****••••• ,..110 RAWCOOK
120 '*---*'
130 •• Task make two subroutines available
140 •• to switch the character driver into RAW- or
150 '. COOKED mode *'
160 '. Author MICHAEL TISCHER .'
170 developed 07/23/87 ••

180 last Update 04/08/89

190 ,.**********.*******************************••••****.*.***********,

200 '

210 CLS : KEY OFF

220 PRINT"WARNING: This program can only be started if the GWBASIC was"

230 PRINT"started from DOS with the command <GWBASIC Im:60000>."

240 PRINT : PRINT"If this is not the case, please input <s> for Stop.·

250 PRINT"Otherwise press any key ... ";

260 A$ = INKEY$: IF A$ = "s' THEN END

270 IF ·A$ = THEN 260

280 GOSUB 60000 'Install function for interrupt call

290 CLS 'erase display

300 HANDLE, = 0 'handle is connected with console driver

310 PRINT"RAWCOOK (c) 1987 by Michael Tischer" : PRINT

320 PRINT"The Console driver (Keyboard and Display) is now in RAW-"

330 PRINT"Mode so that during input and output no control characters ..

335 PRINT"are recognized."

340 PRINT"Because of this not even <CTRL> + <S> can stop the "

345 PRINT"following output."

350 PRINT"Try it •••• : PRINT

360 PRINT "Press any key to start output

365 GOSUB 25000 'Clear keyboard buffer

370 A$ - INKEY$: IF A$ = THEN 370 'wait for a key

380 GOSUB 52000 'Switch console driver into RAW mode

390 GOSUB 50000 'Output Test-String

400 CLS

410 PRINT"The Console driver (Keyboard and Display) is now in •

420 PRINT"COOKED mode. Control characters will be recognized during ..

425 PRINT"input/output."

430 PRINT"The following output can be stopped with <CTRL> + <S>."

440 PRINT"Try it : PRINT

77

6. The Disk Operating System PC System Programming

450 PRINT "Press any key to start the output
455 GOSUB 25000 'Clear the keyboard buffer
460 A$ = INKEY$: IF A$ - THEN 460 'wait for a key
470 GOSUB 51000 'change console driver to the COOKED mode
480 GOSUB 50000 'output Test-String
490 CLS
500 END
510 '
25000 A$ - INKEY$: IF A$ = THEN RETURN 'Clear the keyboard bufferNN

25010 goto 25000
50000 ,*.*.*.************.*****.*.*.*.*******************••• **.*******,
50010 ,* outputs a Test-String on the Standard output device *'
50020 '*---*'
50030 ,* Input : none *,
50040 ,* Output: none .'
50050 1**************.****•••*************.***********.***********.***,
50060 '
50070 T$ = ..Test.... • 'Output Test-String
50080 FOR I-I TO 250 '250 times
50090 FCT% = &H40 : FeT1% = 0 'Write function number for handle
50100 INR% = &H21 'Call DOS-Interrupt 21H
50110 ADRLO% = 9 : ADRHI% = 0 'output 9 characters at a time
50120 OFSLO% - PEEK (VARPTR (T$) +1) 'La-byte of offset address of string
50130 OFSHI% = PEEK (VARPTR(T$) +2) 'HI-byte of offset address string
50140 HANDLO% = 1: HANDHI% - 0 'address the standard output device
50150 CALL IA(INR%,FCT%,FCT1%,HANDHI%,HANDLO%,ADRHI%,ADRLO%,OFSHI%,

OFSLO%,Z%,Z%,Z%,Z%1
50160 NEXT 'next run
50170 PRINT
50180 RETURN 'back to caller
50190 '
51000 ,*********************.**************** ••*********** •• ******.***,
51010 '* change device driver to COOKED mode *'
51020 '*---*,
51030 ,* Input: HANDLE% - handle connected with the driver .'*,51040 '. Output: none
51050 ,************.*** ••
51060 '
51070 GOSUB 53000 'Get device attribute of driver
51080 ATTRIB% = ATTRIB% AND 223 'Find COOKED-Bit
51090 GOSUB 54000 'Set device attribute of driver
51100 RETURN 'back to caller
51110 '
52000 .*******••****************** •• *****••••*****.*.*******.****.***.
52010 ,* change device driver to RAW mode
52020 ,*---.'
52030 ,* Input: HANDLE% ~ handle connected to the driver

52040 '* Output: none *,

52050 1.***.******.*****.******.*.***********.**.********••• **.******.1
52060
52070 GOSUB 53000 'Get device attribute of driver
52080 ATTRIB% = ATTRIB\ OR 32 'Set RAW-Bit
52090 GOSUB 54000 'Set device attribute of driver
52100 RETURN 'back to caller
52110 '
53000 ,*************.***.*******.*******.*.***.*.**************.******'
53010 '. Get device attribute of a driver .'53020 '*_____---_____*'
53030 Input : HANDLE\ = handle connected with a driver *'
53040 ,* Output: ATTRIB% = Attribute of driver .'53050 ,* Info Z\ used as Dummy-Variable *,

78

Abacus 6.5 Character Input and Output from DOS

53060 only Bits 0 to 7 of the device attribute

53070 '.
 determined
53080 ,******••******.***************** ••****.******.****.*.**********,
53090 '
53100 FCT%-&H44 'Function number for IOCTL
53110 FCTl%-O 'Read Function number for IOCTL: Read device attribute
53120 INR%=&H21 'Call DOS-Interrupt 21H
53130 HANDHH = INT(HANDLE%/256) 'HI-byte of the handle
53140 HANDLO% - HANDLE% AND 255 'LO-byte of the handle
53150 CALL IA(INR%,FCT%,FCT1%,HANDHI%,HANDLO%,Z%,Z%,Z%,ATTRIB%,Z%,Z%,Z%,Z%)
53160 RETURN 'back to caller
53170 '
54000 1*********.***,
54010 '. Set device attribute of a driver1*___*'
54020
54030 '. Input : HANDLE% - handle connected to a driver *,
54040 ,* ATTRIB% - the attribute of the driver .'
54050 Output: none .54060 Info Z% used as Dummy-Variable ,
54070 1**.*.*.********,
54080
54090 FCT%=&H44 'Function number for IOCTL
54100 FCT1%-1 'Set function number for IOCTL: device attribute
54110 INR%-&H21 'Call DOS-Interrupt 21(h)
54120 HANDHI% - INT(HANDLE%/256) 'HI-byte of the handle
54130 HANDLO% - HANDLE% AND 255 'LO-byte of the handle
54140 ATHH - INT (ATTRIB%/256) 'HI-byte of the Attribute
54150 ATLO% - ATTRIB% AND 255 'LO-byte of the Attribute
54160 CALL IA(INR%,FCT%,FCTl%,HANDHI%,HANDLO%,Z%,Z%,ATHI%,ATLO%,Z%,Z%,Z%,Z%)
54170 RETURN 'back to caller
54180
60000 ,*******************************.*******************************,
60010 '. Initialize the Routine for Interrupt call *,.*__----_____ *160020
60030 '* Input : none
60040 '* Output: IA is the Start address of the Interrupt-Routine .'.'60050 1******** •• *******************••* ••••*****.*****.*••••**********'
60060
60070 IA-60000! 'Start address of the routine in the BASIC-Segment
60080 DEF SEG 'Set BASIC-Segment
60090 RESTORE 60130
60100 FOR 1% - 0 TO 160 READ X% POKE IA+I%,X% NEXT 'Poke Routine
60110 RETURN 'back to caller
60120 '
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255

79

6. The Disk Operating System 	 PC System Programming

Pascal listing: RAWCOOK.PAS

{**** •• ***********************************••***** ••***•••••• *****.**.*}
(* 	 RAWCOOK *J
(*---*J
(* Task provide two functions to switch *)
(* 	 a character sevice driver to the RAW- *J
(* or the COOKED mode 	 *1
(*---*)
(* Author MICHAEL TISCHER *)
(* developed : 08/16/87 *1
(* last Update : 05/11/89 *)
{* ••*************.*.* ••••******************************.***********.**}

program RAWCooKP;

Uses Crt, Dos; 	 (CRT and DOS units

const 	STANDARDIN = 0; (handle 0 is connected with Standard input
STANDARDOUT ~ 1; (handle 1 is connected with Standard output

var Keys : char; 	 (only needed for Demo program

{****** ••************* ••• **********************••••••••***************}
(* GETMODE: read attribute of device driver in *)
(* Input : the handle passed must be connected to device addressed *1
(* Output: the device attribute *1{*_._-_._._._._-_._._._-_....-. __ ._.-._-_._.-.-._. __ .-***••***********}

function GetMode(Handle integer) : integer;

var Regs : Registers; (register-Variable for Interrupt call)

begin
Regs .ah : ~ $44; (Function number for IOCTL: Get Mode
Regs.bx := Handle;
MsDos (Regs); Call DOS-Interrupt 21H
GetMode Regs.dx (Pass device attribute

end;

{* •• __ ._.-----_._._._----_._._------------_._-_•• _._--************ •• **}
(* SETRAW Change a character driver into RAW-Mode *1
(* Input the handle passed must be connected with *1
(* addressed device * 1
(* Output none *1
{** ••***************************** ••• *********************************}

procedure SetRaw(Handle integer) ;

var Regs : Registers; (register-Variable for Interrupt call I

begin
Regs.ax $4401; (Function number for IOCTL: Set Mode
Regs.bx Handle;
Regs.dx GetMode(Handle) and 255 or 32; (new device attribute
MsDos (Regs); Call DOS-Interrupt 21H

end;

(***}
(* SETCOOKED Change a character driver into the COOKED-Mode *)
(* Input the handle passed must be connected with the *J
{* device addressed *1
(* Output none *)
{***}

procedure SetCooked(Handle integer) ;

var Regs : Registers; { register-Variable for Interrupt call I

80

Abacus 	 65 Character Input and Output from DOS

begin
Regs.ax .= $4401; 1 Function number for IOCTL: Set Mode
Regs.bx := Handle;
Regs.dx .= GetModelHandle) and 223; new device attribute
MsDosl Regs); Call DOS-Interrupt 21H

end;

{* •••••**•• *** •• ******** ••••••• ***** •• ** ••******.*********************}
1* TESTOUTPUT Output a Test-String 1000 times on the Standard *}
1* output device *)
1* Input none *}
1* Output none * }
{***}

procedure TestOutput;

var 	Regs : Registers; register-Variable for Interrupt call
LoopCnt integer; 1 Loop variable
Test : string[9]; 1 The Test-String for output

begin
Test := ·Test ':
Regs.bx .- STANDARDOUT; { output on the Standard output device

Regs.cx .= 9; { Number of characters

Regs.ds := Seg(Test); { Segment address of the text

Regs.dx := Ofs(Test)+l; { Offset address of the text

for LoopCnt :- 1 to 1000 do

begin

Regs.ah :- $40; 1 Write function number for handle

MsDos (Regs); { Call DOS-Interrupt 21H

end:
writeln;

end:

{*************************************••******************************}
{ * 	 MAIN PROGRAM * }
{************************************.*************.*.********* ••*****}

begin
ClrScr; { Clear screen }
writeln('RAWCOOK (c) 1987 by Michael Tischer"13flO);
writeln('The Console driver is now in RAW-Mode. Control keys such as <Ctrl><C>');
writeln('are not recognized during output. Press a key to display a text on

'113110) ;
writeln{'the screen, and try stopping the display by pressing <Ctrl><C>');
Keys : = ReadKey; (wait for key)
SetRaw(STANDARDIN); { Console driver in RAW mode }
TestOutput; Output Test-String 1000 times }
ClrScr; (Clear Screen)
while KeyPressed do

Keys := ReadKey; (Empty keyboard buffer

writeln{'The Console driver is now in COOKED mode. Control keys such as');

writeln('<CTRL><C> are recognized during output');

writeln('Press a key to start, then press <Ctrl><C> to stop the display');

Keys := ReadKey; (Wait for key

SetCooked(STANDARDIN);

TestOutput; { Output Test-String 1000 times

end.

81

6. The Disk Operating System PC System Programming

C listing: RAWCOOK.C

/***************************.**********************.*.******** ••••••**/
1* RAW COO K *1
1*---*1
1* Task provides two functions for *1
1* switching a character device driver into the RAW *1
1* or into the COOKED mode *1
1*---*1
1* Author MICHAEL TISCHER *1
1* developed on : 08/16/87 *1
1* last Update : 04/08/89 *I
1*---*1
1* (MICROSOFT C) *1
1* Creation MSC RAWCOOKC; *1
1* LINK RAWCOOKC; *1
1* Call RAWCOOKC *1
1*---*1
1* (BORLAND TURBO C) *1
1* Creation : through command RUN in the menu *1'*._----------_._._---._._--_._._---_._.... _-._._.-._-****************/

'include <dos.h> 1* include Header files *1

'include <stdio.h>

'include <conio.h>

'define STANDARDIN 0 1* handle 0 is the Standard input device *1

'define STANDARDOUT 1 1* handle 1 is the Standard output device *1

/***********•••**************************** •• *****.*******************/
1* GETMODE: read the attribute of an device driver *1
1* Input : the handle must be connected with the addressed device *1
1* Output : the device attribute *1
/*************************** ••***** •••*******.******************** •• **/

int GetMode(Hand1e)

int Handle; 1* points to the character driver *1

union REGS Register; 1* register-Variable for Interrupt call *1

Register.x.ax - Ox4400; 1* Function number for IOCTL: Get Mode *1
Register.x.bx - Handle;
intdos(&Register, &Register); 1* Call DOS-Interrupt 21H *1
return(Register.x.dx); 1* Pass device attribute *1

}

1*·------------·-··· __ ·_·_·_--_·_·_------_·-·_·····_-- ****************/
1* SETRAW Change a character driver into RAW mode *1
1* Input the handle passed must be connected with the addressed *1
1* device *1
1* Output none *1
/****************** ••******* ••****************************.***********/

int SetRaw(Handle)

lnt Handle; 1* points to the character driver *1

union REGS Register; 1* register-Variable for Interrupt call *1

Register.x.ax Ox4401; /* Function number for IOCTL: Set Mode *1
Register.x.bx Handle;
Register.x.dx GetMode (Handle) & 255 I 32; 1* new device attribute *1
intdos(&Register, &Register); 1* Call DOS-Interrupt 21H *1

}

82

http:Register.x.dx
http:Register.x.bx
http:Register.x.ax
http:return(Register.x.dx
http:Register.x.bx
http:Register.x.ax

Abacus 65 Character Input and Olllput from DOS

/**••••*.*************.*••••*.*******.*.*.*****************.*.******.*/

/* SETCooKED: Changes a character driver into the COOKED mode */
/* Input the handle passed must be connected with the device */
/* addressed * /
/ * Output none * /
/ ••••**************.****.*.*.***********.*.*******.*.*******••********/

int SetCooked(Handle)

int Handle; /* points to the character driver */

union REGS Register; /* register-Variable for Interrupt call */

Register.x.ax - Ox4401; /* Function number for IOCTL: Set Mode */

Register.x.bx - Handle;

Register.x.dx GetMode(Handle) , 223; /* new device attribute */

intdos('Register, 'Register); /* Call DOS-Interrupt 21H */

I

/**********************.*** •••*****.*****••********.*.**********.*****/
/* TESTOUTPUT: outputs a Test-String 1000 times on the Standard */
/* output device * /
/* Input none */
/* Output none */
/******** •••*************************************•••**.*.* ••• *** •••***/

void TestOutput()

int i; /* Loop Variable */
static char Test [] = "Test '1; /* the text for output */

printf ("\n");
for (i - 0; i < 1000; i++) /* output 1000 times */
fputs(Test, stdout); /* Output String on the Standard output. */

printf ("\n");
I

/*******************.*.*.*.*******************.**********.************/
/** MAIN PROGRAM **/
/********••••*.***************••**** ••• ********* •••*******************/

void main ()

(
printf("\nRAWCOOK (c) 1987 by Michael Tischer\n\n");

printf ("The Console Driver (Keyboard, Display) is now in ");

printf ("RAW Mode. \nDuring the following output control characters, \n");

printf ("such as <CTRL-S> will not be recognized. \n");

printf("Try it.\n\n");

printf ("Please press a key to start. .• ");

getch () ; /* wait for key */

SetRaw(STANDARDIN); /* Console driver into RAW mode */

TestOutput () ;

while (kbhit(» /* in the meantime remove key codes from */

getch(); /* keyboard buffer */

printf("\nThe console driver is now in COOKED mode. ");
printf ("Control ke:rs such as\n<CTRL-S> are recognized during ");
printf("output and answered accordingly!\n");
printf("Please press a key to start ..• ");
getchO; /* wait for key */
SetCooked(STANDARDIN); /* Console driver in the COOKED mode */
TestOutput () ;

83

http:Register.x.dx
http:Register.x.bx
http:Register.x.ax

I

6. The Disk Operating System PC System Programming

6.6 File Management in DOS

The DOS file management functions are among the most basic available to the
programmer. These functions are used to:

Create and delete files

Open and close flles

Read from and write to files

Operating systems such as DOS provide the programmer with functions for file
management. For example, DOS provides functions which return special file
information or functions to rename a file. One peculiarity of DOS is that these
functions exist in two forms because of the combined CP/M & UNIX
compatibility. For every UNIX compatible file function, there is also a CP/M
compatible file function.

FeB functions

The CP/M compatible functions are designated as FCB functions since they are
based on a data structure called the FCB (File Control Block). OOS uses this data
structure for information storage during file manipulation. The user must reserve
space for the FCB within this program. The FCB permits access to the FCB
functions which open, close, read from and write to files.

Since the FCB functions were developed for compatibility with CP/M's functions,
and since CP/M has no hierarchical file system, FCB functions do not support
paths. As a result, FCB functions can only access files which are in the current
directory.

UNIX handle functions

The UNIX compatible handle functions don't have this problem. With these
functions, a handle is used to identify the file to be accessed. The OOS stores
information about each open file in an area that is separate from the program.

6.6.1 Handle Functions

It is easier for the programmer to access a file using the handle functions than to
access a file using the FCB functions. The handle functions do not require a
programmer to use a data structure for file access like the FCB functions do. In a
manner similar to the functions of the UNIX operating system, file access is
performed using a filename. The filename is passed as an ASCII string when the
file is opened or fIrst created. This must be performed before the fIrst write or read
operation to the file. In addition to the filename, it may contain a device
designator, a pathname and a file extension. The ASCII string ends with the end

84

Abacus 6.6 File Management in DOS

character (ASCII code 0). After the file is opened, a numeric value called the handle
is returned. Any further operations to this file are performed using this 16-bit
handle. For a subsequent read or write operation, the handle and not the filename is
passed to the appropriate function.

For each open file, DOS saves certain information pertaining to that file. If the
FCB functions are used, DOS saves the information in the FCB table within the
program's memory block. When the handle functions are used, the information is
stored in an area outside of the program's memory block in a table that is
maintained by the DOS. The number of open files is therefore limited by the
amount of available table space. The amount of table space set aside by DOS is
specified by the FILES parameter of the CONFIG.SYS file:

FILES = x

In DOS Version 3.0, this maximum is 255. If you change the maximum number
of files in the CONFIG.SYS file, the change will not go into effect until the next
time that DOS is booted.

FILES

While the FILES parameter specifies the maximum number of open files for the
entire operating system, DOS limits the number of open files to 20 per program.
Since five handles are assigned to standard devices such as the keyboard, monitor
and line printer, only 15 handles are available for the program. For example, if a
program opens three files, DOS assigns three available handles and reduces the
number of additional handles available by three. If this program calls another
program, the three files opened by the original program remain open. If the new
program opens additional files, the remaining number of handles available is
reduced even further.

In addition to the standard read and write functions, there is also a file positioning
function. This lets you specify an exact location within the file for the next data
access. Knowing both a record number and the length of each data record allows
you to specify the position to access a particular data record:

position = record number * length of record

This function is not used during sequential file access since DOS sets the file
pointer during opening or creation of a file to the first byte within the file. Each
subsequent read or write operation moves the file pointer by the number of bytes
read towards the end of the me so that the next me access starts where the previous
onecnded.

The following table summarizes the handle functions. For a more detailed
description of these functions, see Appendix C.

85

6. The Disk Operating System PC System Programming

Function No. Operation
3CH create file
3DH Open file
3EH Close file
42H Move file pointer/determine file size
43H Read/Write file attribute
56H Rename file
57H Read/Write modifications & date/time of file

Here are a few general rules to follow when using these functionsl

Functions which expect a filename or the address of a filename as an argument
(e.g., Create File and Open File) expect the segment address of the name in the DS
register and the offset address in the DX register. If the function successfully
returns a handle, it is returned in the AX register.

Functions which expect a handle as an argument expect it in the DX register. After
the call, the carry flag indicates if an error occurred during execution. If an error
occurs, the carry flags is set and the error code is returned in the AX register.

Function 59H of DOS interrupt 21H returns very detailed infonnation concerning
errors which occur during disk operations. This function is available only in DOS
Versions 3.0 and higher.

6.6.2 FeB Functions

As discussed earlier, DOS uses an FeB data structure for managing a file. The
programmer can use this data structure to obtain information about a fIle or change
infonnation about a file. For this reason we shall examine the structure of an FeB
before discussing the individual FeB functions.

The FeB is a 37-byte data structure which can be subdivided into different data
fields. The following figure illustrates these fields.

86

Abacus 	 6.6 File MQNJgement in DOS

RAM
+ OOH 	 Device name (1 byte)
+ 01H 	 Filename (S bvtesl 1\ 0000(00
+ 09H 	 File mode (3 bytes)

+ OCH 	 Current block number (1 word)

+ OEH 	 Data record size (1 word)
+ 10H 	 File size (2 words)
+ 14H 	 Modification date (1 word)
+ 16H 	 Modification time (1 word)

+ ISH 	 Reserved (8 bytes)
+ 20H 	 Current data record number(l byte)
+ 	 21H Data record number for (2 words)

random access

Structure ofan FeB

~otice that the name of the file is found beginning at offsets om through OBH of
the FCB. The byte at offset 0 is the device indicator, 0 is the current drive, I drive
A, 2 drive B, etc.

The filename which begins at offset I is an ASCII string. It may not contain a
pathname since it's limited to 8 characters. For this reason, the FCB functions can
access only files in the current directory. Filenames shorter than eight characters
are padded with spaces (ASCII code 32). The file extension, if any, occupies the
next three bytes of the FCB.

At offset OCH of the FCB is the current number of the block for sequential file
access. The two bytes at offset OEH are the record size. The four bytes at offset
lOH are the length of the file.

The date and time of the last modifications to the file are stored beginning at offset
14H of the FCB in encoded form.

87

6. The Disk Operating System 	 PC System Programming

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bit

I~~1~1~1~1~1~1~1~1~1~lrrl~ITI~I~1~I
~'____~Ir-_____A'______~I______-,A'____~I______'

Hour Minute 	 Seconds in
2-second
Increments (e.g.,
13 means 26)

obit15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

I I I I I I I I I I I I I I I I I
\. 	 A .A. J

I 	 I I
Year (relative to 1980) Month Day of month

Format of time and date stamps in the FeB

An eight· byte data area follows and is reserved for DOS (no user modifications
allowed). The use of this area varies from one version of DOS to another.

Following this reserved data area is the current record number which is used in
connection with the current block number to simulate CP/M operations.

Random files

The last data field of the FCB is used for a type of access in which the data within
the file may be retrieved or written in a non-sequential order. This field is four
bytes long. If a record is equal to or larger than 64 bytes, only the first three bytes
are used for indicating the current record number. All four bytes of this field are
used for records smaller than 64 bytes.

Extended FCB

Besides a standard FCB, DOS also supports the extended FCB. Unlike normal
FCBs, extended FCBs access files with special attributes, such as hidden files or
system files. Furthermore, they permit access to volume names and subdirectories
(this doesn't mean that you can access files in other directories besides the current
directory).

An extended FCB is similar to a standard FCB, but it's seven bytes larger. These
seven bytes are located at the beginning of the data structure. All subsequent fields
are therefore displaced by seven bytes.

88

Abacus 6.6 File Management in DOS

RAM
+ OOH FF (1 byte)
+ 01H Reserved(O) (5 bytes)

1\ OOT OO
+ 06H File attribute n byte)

+ 07H Device name (1 byte)
+ 08H Filename (8 bytes)
+ 10H File extension (3 bytes)
+ 13H Current block number (1 word)
+ ISH File record size (1 word)
+ 17H File size (2 words)
+ 1BH Modifications-date (1 word)
+ 1DH Modifications-time (1 word)
+ 1FH Reserved (8 bytes)
+ 27H Current data record number (1 byte)
+ 28H Data record number (2 words)

Structure ofan extended FeB

The ftrst byte of an extended FCB always contains the value 255 and identifies this
as an extended FCB. Since this address contains the device number in a normal
FCB and can therefore not contain the value 255, OOS can tell the difference
between a normal and an extended FCB. The next five bytes are reserved
exclusively for the use by OOS. They should not be changed. The seventh byte is
a fIle attribute byte. See Section 6.1.2 for the details of the file attribute byte.

Now that you're familiar with the FCB structures, the next section focuses on
using FCBs for accessing fIles.

FCB and file access

Before accessing a fIle, an FCB must be built in the program's memory area. The
area can be reserved within the data segment of the program or by allocating
additional memory using another DOS function (see Section 6.9).

Although it is possible to write the data directly into the FCB, it is better to use
one of the appropriate OOS functions to do this.

For example, to set the filename in the FCB you can use OOS function 29H. The
function number is passed in the AH register. The address of the FCB is passed in
the ES:DI register pair. The address of the fIlename is passed in the DS:SI register
pair. The fIlename is an ASCII string terminated by the end character (ASCII code
0). The AL register contains flags for converting the fIlename and are discussed in
more detail in Appendix C.

Open FCB

After the FCB is properly formatted the fIle can be opened or created using a OOS
function. When this happens DOS stores information about that fIle in the PCB

89

6. The Disk Operating System PC System Programming

such as the file size, date and time of file creation, etc. At this point the FCB is
considered opened.

By default, the record length is set to 128 bytes when the FCB is opened. To
override this record length, store the desired record length at offset OEH of the FCB
after it is opened. Otherwise the default length will be used.

DTA

For record lengths greater than 128 bytes, the record buffer also known as the
DTA, or Disk Transfer Area must be moved to accommodate the longer record
size. Normally, DOS builds the DTA in the PSP (Program Segment Prefix).
Accessing the file using the default DT A for a record length greater than 128 bytes
would overwrite some of the other fields in the PSP.

The most convenient way to select a new DT A is to reserve the space in the
program's data segment. To change the address of the DT A use DOS function
lAH. The address of the new DTA is passed in the DS:DX register pair. DOS
assumes that you have set aside an area large enough to accommodate your largest
record length so you don't have to specify the new length.

File access

For sequential file access, processing begins at the first record in the file. DOS
maintains a record pointer in the FCB to keep track of the current record within the
file. Each time the file is accessed, DOS advances the pointer so that the second,
third, fourth, etc record is processed in order.

For random file access, the records can be processed in any order. The position of
each record relative to the beginning of the file determines its record number. This
record number is then passed to DOS to access a specific record. The last field of
the FCB is used to specify the record number to DOS.

It's also possible to change from sequential access mode to random access mode
and vice versa since processing depends on a specific DOS function to access the
file. In effect. there are two sets of independent functions. one for sequential access
and one for random functions.

Following is a list of all of the FCB functions of DOS interrupt 21H. A more
detailed description of the functions is found in Appendix C.

Function No. Task
OFH Open file
lOH Close file
l3H Delete file
14H Sequential read
ISH Sequential write
I6H Create file
I7H Rename file

90

Abacus 6.6 File ManlJgemenl in DOS

Function No. Task
lAH Set DTA address
21H Random Read (of record)
22H Random Write (of record)
23H Determine file size
24H Set record number for random access
27H Random read (one or more records)
28H Random write (one or more records)
29H Enter filename into FeB

Some basic rules about these functions should be mentioned here:

Using the FCB functions, you can access several files, each with their own unique
FCB. To tell OOS which file is to be accessed, pass the address of the file's FCB
in the DS:DX register pair.

Most of the functions return an error code in the AL register or the value zero if
the function was successfully completed. For functions which open, close, create
or delete a file, a code of 255 is returned if an error occurs. The other functions
return specific error codes. More detailed information about these errors can be
determined by calling OOS function 59H but is available only in versions of DOS
V3.0 or later.

Handles vs. FCBs

After the two groups of functions made available by OOS have been presented, the
advantages and disadvantages of the individual functions should be discussed
briefly. For those who want to convert a program from the CP/M or UNIX
operating systems into DOS, the choice will be easy, but for those who want to
develop a new program under OOS, this discussion can help in your deciding on
which set of functions to use.

Handles

There are two main advantages to using handle functions. The first is the
capability to access a file in any subdirectory of the disk. The second is that the
handle functions are not limited to the number of FCBs which can be stored in a
program's memory space.

There are a number of additional considerations. You can access the name of a disk
drive only by using an FCB. When the FCB is opened, you can easily determine
its file size and the date of the last modification. The handle functions
automatically provide an area large enough to accommodate the records in the file.

As you can see there are arguments for and against using either the FCB functions
or the handle functions. For future versions of DOS, the handle functions will play
a more important role and the importance of the FCB functions will diminish.
This is reason enough to use the handle functions for your new program
development

91

6. The Disk Operating System PC System Programming

6.7 Accessing the DOS Directory

There are two groups of DOS functions for working with directories. The first
group is used to manipulate the subdirectories and the second to search for mes on
the mass storage devices.

With DOS Version 2.0 came the introduction of subdirectories. A mass storage
device could be logically divided into smaller subdirectories which could in turn be
further subdivided. In effect this organization created a directory tree.

Main directory

START.BAT

= Directory, subdirectory

=File

Directory tree

In this directory tree, the names and numbers of subdirectories are not static.
Therefore there must be a way to add, change and delete entries on the tree. Other
functions must be available to set the current directory so that a complete
pathname is not required for all me accesses.

At the user level the MD, RD and CD commands can be used to make a directory,
remove a directory and change a current directory. Internally, these commands are
performed with functions 39H, 3AH and 3BH of DOS interrupt 21H.

All three functions use identical calling conventions.

The function number is passed in the AH register. The address of the path is passed
in the DS:DX register pair. The path is a string and may be a complete path
designation including a preceding drive letter followed by a colon (a device name)
and terminated by ASCII code O. If the device name is omitted, the current device
is the default.

92

Abacus 6.7 Accessing the DOS Directory

Following execution, the carry flag indicates the return code. If the carry flag is
reset (0), then execution was successful. If the carry flag is set, then an error
occurred and the error code is passed back in the AX register.

Function 39H creates or makes a new directory (Make Directory). The name for the
new directory is specified as the last element in the path. An error will be returned
by the functions if one or more of the directories specified in the path do not exist,
if the new directory name already exists or if the maximum number of ftles in the
root directory is exceeded.

Function 3AH deletes or removes a directory (Remove Directory). An error will be
returned by the function if the target directory is not empty or the specified
directory does not exist in the current path.

Function 3BH changes the current directory (Change Directory). An error is
returned if the directories named in the path do not really exist.

Function OEH sets the default disk drive. Besides the function number in the AH
register, only the device code of the new current device must be passed in the DL
register. Code 0 stands for the device A, 1 for B, 2 for C, etc.

Directory specification

Before specifying the current directory using function 3BH, it is sometimes
necessary to find the current directory. DOS makes function 47H available to the
programmer for this purpose. Since it can return the path of the current directory
for any device, the device number must be passed to the function. If this is the
current device, the value 0 must be passed in the DL register. For all other devices,
the value 1 must be passed for drive A, 2 for B, 3 for C, etc.

Besides the device code, the function must also have the address of a 64-byte buffer
within the user program. The DS register contains the segment and the SI register
holds the offset address of this buffer. After the function call this buffer contains
the path designation of the current directory, terminated with the end character
(ASCII code 0). The path designation cannot be preceded by the device name or the
\ character. If the current directory is the root directory, the buffer contains only the
end character. If a device code unknown to DOS was passed during the function
call, the carry flag is set and the AX register contains the error code OFH.

Let's consider the functions for searching for one or more files in the current
directory on the current device. Again the parallel between handle and FCB
functions appears. Two function groups exist to search for files. The group of
FCB functions has the disadvantage that they limit the search to ftles in the current
directory of a certain device, while handle functions allow searching for files in any
directories of any devices. The term "handle" functions doesn't really fit these
functions since they are not addressed with a handle. This designation originated
with the introduction of subdirectories (and therefore the handle functions) in DOS
Version 2.0. Version 1.0 offered only the FCB functions.

93

6. The Disk Operating System PC System Programming

6.7.1 Searching for Flies using FeB Functions

This method of file search uses functions llH and 12H. Using them you can
search for files with a fixed name or flIes with a mename extension. Function IlH
finds the first flIe in the current directory. Function 12H finds all other additional
files. The FCBs play a significant role since they mediate between the calling
program and the two functions. Let's see how we can search for mes in a directory:

First the program must reserve space for two FCBs. This is done either by
reserving memory in the data area of the program, or by requesting memory from
DOS using function 48H. The programmer can use either normal or extended
FCBs. Extended FCBs offer the advantage of being able to search for mes with
special attributes (system or hidden), volume names and subdirectories. The
flIename for which the search will be made is specified in one of the FCBs. DOS
places the name of the flIe(s) that it finds in the other FCB. To differentiate
between the two FCBs, they are designated with the names Search FCB and Found
FCB.

The address of the Found FCB must be passed to DOS using function lAH. The
Found FCB becomes the new data transmission area (DTA) when this function call
occurs. This area is important for these two functions as well as all other functions
which transfer data between computer and disks. For this reason function 2FH
should determine the address of the current DTA before activating the new DTA.
When the file search ends, the DTA can be restored to its original state using
function lAH.

After the DTA is set to the Found FCB, the next step is to place the name of the
file you are looking for into the'Search FCB. For a more general search, the
wildcards * and ? may be used. You can transfer the flIename directly or transfer it
using function 29H. If you want to search through all mes, use the filename *.* .
If an extended FCB is used, you may insert an additional value into the attribute
field of the Search FCB to limit the search to mes with certain attributes only (see
Section 6.12 for more information on the various attributes).

This concludes the preliminary work. The file search can begin with the current
directory. For this purpose, function IlH is called with the function number in the
AH register, the segment address of the Search FCB in DS and the offset address in
the DX register. If the system finds a flIe with the indicated name, the AL register
contains the value 0 after the function call. If the flIename wasn't found, the AL
register contains a value of 255. The found flIename and its attributes (if extended
FCBs are used) can be read from the Found FCB. For additional searches, function
12H (not function I1H) is called. Function 12H's register contents during call and
return are similar to function IlH. If it returns the value 255 in the AL register
during one of the calls, the Search has ended.

94

Abacus 6.7 Accessing the DOS Directory

6.7.2 Searching for Flies using Handle Functions

Working with handle functions is easier than working with the FCB functions.
There are functions for searching for the first file (the 4EH function) and
subsequent files (the 4FH function). Both functions return the information to the
DTA. For this reason the DT A should be moved into an area accessible to the
current program before calling either of these functions. This area must have at
least 43 bytes available. As mentioned in connection with the FCB functions, the
DT A should be restored to its original address after the search ends.

During the call of the 4EH function, the function number is passed in the AH
register, the attribute in the CX register and the address of the file to be found in
the DS:DX register pair. The filename is a series of ASCII characters, terminated
with an end character (ASCII code 0). In addition to a device name, you may add a
complete path designation and the wildcard characters * and ? If a path is not
specified, DOS assumes that the search should be made in the current directory of
the indicated device. Ifa device is not specified, the search proceeds on the current
device. Mter the function call, the carry flag indicates whether a file was found. If
the file couldn't be found, the carry flag is set, and the AX register contains an
error code. An error code of 2H is returned if the indicated path does not exist Ifno
file could be found, an error code of 12H is returned. If the carry flag is reset, the
DTA contains the information about the file found. It has the following structure:

Address Contents Type

+OOH reserved for DOS 21 bytes
+15H Attribute of file found 1 byte
+16H Time of last modification 1 word
+18H Date of last modification 1 word
+1AH low word of file size 1 word
+lEH high word of file size 12 bytes

Function 4FH executes any further searches. The function number is passed in the
AH register, and no other parameters are required. The carry flag indicates if there
are additional fIles in the current directory to which the search may be applicable.

95

6. The Disk Operaling System PC System Programming

Demonstration programs

The three programs below read directory entries and display them on the screen
using one of the handle functions. You'll find the display more user friendly than
the DOS DIR command: the files appear in a window, and the filename display
stops as soon as the window is fIlled with filenames. This permits easy reading of
filenames. By pressing any key, the program displays any additional pages of
fIlenames.

All three programs are designed on the same basic principle: first the main
program determines the search path. It contains the names of the directories in
which the search should be made for the files, the names of the files and the device
where the directory is located. This name can contain wildcards (* and 7) to search
for several files at the same time. If the user does not indicate a search path, the
program defaults to the search path n*.*n. This displays all fIles in the current
directory of the current device, as well as the hidden attribute fIles.

After the program determines the search path, a routine coordinates the loading and
display of individual directory entries. First a routine creates the display window on
the screen for individual entry output. Then a search proceeds for the first entry
using DOS function 4EH. If an entry is found, the screen displays the entry.
Function 4FH searches for all subsequent entries and displays them in the window.

The bottom line of the display window moves up one line with each new line
displayed. Once the entire window fills with data. any further display of entries
stops until the user presses a key. After all entries in the selected directory have
been displayed, the number of fIles is displayed and the program ends.

BASIC listing: DlRB.BAS

100 ,***********************************.*****.*.*********.********.**,
110 D I R B *,

f* ___*'
120

130 Task : display all files in a directory

140 '* in a window on the display

160 '* Author : MICHAEL TISCHER

170 '* developed : 07/23/87

180 '* last Update : 04/08/89

190 ,*********•••*.*.***.**********************************.**********,

200 '

210 CLS : KEY OFF

220 PRINT"WARNING: This program can be run only if GWBASIC was started"

225 PRINT" from the " '

230 PRINT"DOS level with the <GWBASIC /m:60000> command." : PRINT

240 PRINT"If this is not the case, please enter <s> for Stop."

250 PRINT: PRINT"otherwise press any key ••• ·;

260 AS = INKEYS : IF AS = "s" THEN END

270 IF AS - "" THEN 260

280 GOSUB 60000 'Install function for calling interrupt

290 CLS

300 PRINT "DIR (c) 1987 by Michael Tischer"

310 PRINT

320 PRINT·Please input the search path for the file."

330 PRINT"Example: If all files with the extension .BAT in the Root"

340 PRINT" directory of the disk in drive A should be displayed,"

350 PRINT" then please input A:*.BAT."

360 PRINT·With a blank input, all files in the current directory •

96

Abacus 6.7 Accessing the DOS Directory

370 PRINT"are displayed." ; PRINT
380 INPUT "Search Path: ",DIR$ 'Input Search Path
390 IF DIR$ - "" THEN DIR$ - " •.•• 'search in current directory
400 ENTRY' - 14 '14 Display entries in window
410 GOSUB 50000 'Input Directory and output
420 END
430 '
50000 1***.******••****.**.*•• **.**** ••••*.*.*****•••*.*.**••••••••••• _
50010 ,. Input one Directory and display
50020 ,*---*'
50030 '. Input: DIR$ = the search path
50040 ,. ENTRY\ = Number of entries in the window .'.'
50050 '. Output: none
50050 .•** •• *****••••••*** •••••••••• **** •• ******** ••*** •••••********.*.
50070 '
50080 DIM MONTH$[ll] 'accepts names of months
50090 RESTORE 50600
50100 FOR 1\ - 0 TO 11 READ MONTH$[I\] NEXT
50110 INR\ = &H21 'Call DOS-Interrupt 21H
50120 FCT\ - &H2F 'Get function number for DTA
50130 CALL IA(INR\,FCT\,Z%,OFSHI%,OFSLO%,Z%,Z%,Z\,Z\,Z%,Z\,DTASEG\,Z\)
50140 DTAOFS% - OFSLO\ + OFSHI% • 256
50150 CLS
50160 OFFSET% INT«20 - ENTRY%) / 2) + 1 , Start line of window
50170 LOCATE OFFSET%,14
50180 PRINT TAB (14) 'f-----'1'----Tr-----''1 T ,"
50190 PRINT TAB(14)", Filename ,Size , Date , Time ,RHSVD,"
50200 PRINT TAB (14) " ,-----+---+------+----+--- '"50210 FOR 1% - 1 TO ENTRY% 'output a line for every entry
50220 PRINT TAB (14) '" " , ""
50230 NEXT 'output next line
50240 PRINT TAB (14) "L.-----cl---cl,-------.cl----cl--Joo
50250 NUMWIND% = -1 'Number of entries in window
50260 NUMFND% - 0 'Number of entries found up to now
50270 ATTRIBUTE% = 255 'search for files with any Attribute
50280 GOSUB 51000 'search for first entry
50290 IF NOT (FOUNDIT%) THEN 50500 'no entry found --> finished
50300 NUMFND% = NUMFND% + 1 'Increase number of entries found
50310 NUMWIND% = NUMWIND\ + 'Increase number of entries in window
50320 IF NUMWIND% <> ENTRY% THEN 50410 'window full?
50330 LOCATE OFFSET\+ENTRY%+4,14 'Set Cursor to line under window
50340 COLOR 0,7 'switch on inverse character display
50350 PRINT" Please press any key ":
50360 A$ = INKEY$ IF A$.= THEN 50360 'wait for a key
50370 LOCATE ,14 'Cursor in line under window
50380 COLOR 7,0 'switch on normal character color
50390 PRINT STRING$(51," "):
50400 NUMWIND% = -1 'the next entry is the first in the window
50410 NUMBER% - 1 : COLOUR% - 7
50420 ULR% = OFFSET% + 2 : LRR\ = OFFSET%+ENTRY% + 1
50430 ULe% = 14 : LRC% = 62
50440 GOSUB 54000 'scroll window up
50450 LOCATE OFFSET%+ENTRY%+2,15 'Set Cursor to last window line
50460 PRINT " , ,
50470 GOSUB 53000 'Output entry
50480 GOSUB 52000 'Get next entry
50490 IF FOUNDIT% THEN 50300 'continue if no entry is available
50500 LOCATE OFFSET%+ENTRY%+4,14 'Cursor in line under the window
50510 COLOR 0,7 'switch on inverse character display
50520 PRINT STRING$(51," H);
50530 LOCATE ,14 'Cursor in line under window
50540 IF NUMFND% - 0 THEN PRINT" no file found"; : GOTO 50570
50550 IF NUMFND% = 1 THEN PRINT· found one file": : GOTO 50570
50560 PRINT NUMFND%; "files found";
50570 COLOR 7,0 'switch on normal character color
50580 RETURN
50590 '
50600 DATA "JAN·,"FEB", "MAR", "APR", "MAY·, "JUN·, "JUL", IIAUG" , "SEp·
50610 DATA "OCT", "NOV", "DEC"

97

6. The Disk Operating System PC System Programming

50620 '
51000 ,****.***************************************•••••**************'
51010 ,* Search for first entry in a Directory *,
51020 ,*---*,
51030 '* Input: DIR$ - Search path

51040 ,* ATTRlBUTE\ - Attribute of file

51050 '* Output: FOUND IT\ - -1 if entry found, otherwise 0

51060 Info the Directory entry is entered into Variable DTA\ *,

51070 '* *'

51080 Z\ is a Dummy-Variable *,

51090 ,*******•••***.***.**************.***********************••••• **,
51100 '
51110DIR$ DIR$ + CHR$(O) 'Put End character on search path
51120 FCT\ &H4E 'Search function number for first entry
51130 INR\ - &H21 'Call DOS-Interrupt 21H
51140 ATLO\ - ATTRlBUTE\ AND 255 'LD-Byte of Attribute
51150 ATHH - INT(ATTRIBUTE\ / 256) 'HI-Byte of Attribute
51160 OFSLo\ - PEEK(VARPTR(DIR$)+1) 'LO-Byte of Offset address
51170 OFSHI\ - PEEK(VARPTR(DIR$)+2) 'HI-Byte of Offset address
51180 CALL IA(INR\,FCT\,Zt,Z\,Z\,ATHlt,ATLO%,OFSHI%,OFSLO\,Z%,Zt,Z%,FLAGS%)
51190 FOUNDIT\ - «FLAGS\ AND 1) = 0) 'Test Carry-Flag
51200 RETURN 'return to calling program
51210 '
52000 1******.* ••******.*********.*.***********************.****.*.***,
52010 '* find next entry in Directory *,
52020 '*---*'
52030 Input: DIR$ = Search path *,

52040 ATTRIBUTE\ = Attribute of file *,

52050 ,* Output: FOUNDIT\ = -1 if file found, otherwise 0 *,

52060 ,* Info the Directory entry is read into Variable DTA\

52070 ,*

52080 ,* Z% is a Dummy-Variable *'

52090 ,**.****************'
52100 '
52110 FCT\ = &H4F 'Find function number for next entry
52120 INR\ = &H21 'Call DOS-Interrupt 21H
52130 CALL IA(INR\,FCT\,Z\,Z\,Z\,Z\,Z\,Z\,Z\,Z\,Z\,Z\,FLAGS\)
52140 FOUNDIT' = «FLAGS\ AND 1) - 0) 'test Carry-Flag
52150 RETURN 'back to calling program
52160 '
53000 ,*******•••***1
53010 ,* Output a Directory entry from the DTA to the display
53020 '*__---------*1

53030 Input: OFFSET% first line of the Directory window *,
53040 ENTRY \ Number of entries in the Directory window
53050 DTAOFS\ Offset address of the DTA
53060 MONTH$ = contains the names of months
53070 Output: none *'
53080 ,***1

53090 '
53100 DEF FNDTA(X) = PEEK(DTAOFS% + X)
53110 DEF SEG = DTASEG\ 'Set Segment address of the DTA
53120 LOCATE OFFSET'+ENTRY%+2,15 'Output in the last line of the window
53130 H = 30 'Offset address in DTA for file names
53140 WHILE FNDTA(I\) <> 0 'the END character terminates the name
53150 PRINT CHR$(FNDTA(I\)); 'output a character of the file name
53160 I\ = 1\ + 1 'next character
53170 WEND 'End of Loop
53180 LOCATE OFFSET'+ENTRY\+2,28 'Set Cursor to column 28
53190 PRINT USING ".If ..U"; FNDTA(26) + FNDTA(27) * 256! + FNDTA(28) *

4096! + FNDTA(29) * 65536!;
53200 DATE = FNDTA(24) + FNDTA(25) * 256 'Get Date
53210 LOCATE OFFSET%+ENTRY\+2,36 'Set Cursor to Column 36
53220 PRINT MONTH$[(INT(DATE / 32) AND 15) - 1]; 'Output name of month
53230 PRINT"/";:PRINT USING • .. ·;DATE AND 31; 'Output day of month
53240 PRINT USING "/ffU";INT(DATE / 512) + 1980; 'OUtput year
53250 LOCATE OFFSET'+ENTRY%+2,49 'Set Cursor to column 49
53260 FTIME = FNDTA(22) + FNDTA(23) * 256 'Get time
53270 PRINT USING "ff";INT(FTIME / 2048); 'Output hour
53280 PRINT ",

98

AbaclU 6.7 Accessing the DOS Directory

53290 PRINT USING • •• ·;INT(FTIME I 32) AND 63; 'Output Minute
53300 LOCATE OFFSETt+ENTRYt+2,59 'Set Cursor to column 59
53310 FOR It - 0 TO 4 'test Bits 0 to 4 of file attribute
53320 IF (FNDTA(21) AND (2 A lt» <> o THEN PRINT·X·; ELSE PRINT· -;
53330 NEXT n 'test next Bit
53340 DEF SEG : RETURN 'back to calling program
53350 '
54000 1***'
54010 '* Scroll current display page up or erase
54020 ,*---*,
54030
54040
54050

,* Input:
,*
'.

NUMBER' - how many lines scrolled
ULe' - column upper left
ULRt - line upper left

*,
*,

54060 '. LRC' - column lower right
54070 '. LRRt - line lower right *'
54080 COLOR' - color of erased line
54090
54100
54110
54120

Output:
'* Info

,*

none
If 0 is given for NUMBERt, the
indicated is erased
the Variable zt is a Dummy

screen area
.'
*'
*,
.'

'*_._._-_._._._------------_._------_._._-------_._._.**********'54130
54140 '

54150 FCTt=6 'Function number for scrolling up

54160 INR'·&H10 'Call BIOS-Video-Interrupt 16H

54170 CALL IA(INR\,FCT\,NUMBERt,COLOUR%,Z',ULRt,ULC%,LRR%,LRC%,Z%,Z%,Z',Z')

54180 RETURN 'back to calling program

54190 '

60000 '*****.*.*****.***~*.***.**.***********.***********.** **********'
60010 '* Initialize Routine for Interrupt call
60020 ,*---*'
60030 '* Input : none *'
60040 ,* Output: IA is the Start address of the Interrupt-Routine *,
60050 1* ______ •••• _._------_._._--------------_._._---------**********
60060 '
60070 IA=60000! 'Start address of the Routine in the BASIC-Segment
60080 DEF SEG 'Set BASIC-Segment
60090 RESTORE 60130
60100 FOR I% = 0 TO 160 READ Xt POKE IA+lt,X% : NEXT 'Poke Routine
60110 RETURN 'back to calling program
60120 '
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255

One problem in the BASIC version of the directory listing occurs during the
directory output. Functions 4EH and 4FH read the entry into the DTA. It would
make more sense to move the DT A to a variable within the program (an integer
array would be best) to make it easier for the routine which outputs the entry to
access the data. BASIC's garbage collection feature makes this difficult. The
integer array containing the DTA moves periodically in storage and the address of
the DTA, stored internally in DOS, no longer cOrresponds with the address of this
integer array.

For this reason, the DOS function 2FH determines the DTA address. As the entries
are displayed, this address accesses the DTA to determine the me information.

99

6. The Disk Operating System 	 PC System Programming

Pascal listing: DIRP.PAS

{***}

{* DIRP 	 *}
{*---*/
{* Task Display all files of any Directory, *}
(* including Subdirectories and *)
(* Volume Names *)
(*---*)
{* Author MICHAEL TISCHER *}
(* developed on : 7.8.87 *I
(* last Update : 9.21. 87 *)
{***}

program DIRP;

Uses (Turbo 4.0 Units)
Crt,
Dos;

const ENTRY 14; 	 { Number of entries visible }

type RegTyp = record

ax, bx, ex, dx, bp,

dl, si, ds, eSt flags : integer;

(! Turbo 4.0 owners should use the Registers type from the DOS unit.)
end;

{** this is the format of a Directory entry *****J
(** as returned by the functions 4EH and 4FH)
DirBufTyp - record

Reservebuf array [1 •• 21) of char;

Attribut byte;

Ztime integer;

Zdate integer;

Datgrlo integer;

Datgrhi integer;

DatName array [1 •. 13) of char

end;

Path string [65) ;

var 	DirBuf DirBufTyp; accepts a Directory entry
DatName Path; { Files to be found

{***}
{* GETFIRST: read in the first Directory entry *1
{* Input none * J
{* Output true or false, depending if an entry was found */
(* *)

{* Info the entry is stored in Variable DIRBUF *1
{***}

function GetFirst{DateiName Path; { files to be found
Attribute integer) : boolean; {search Attribute

var 	Register regtyp; Register-Variable for call of Interrupt

begin
DateiName := DateiName + fO; { terminate filename with NUL
Register.ax := $4E shl 8; Function number for search of first
Register.cx := Attribute; (Attribute, for which search is performed
Register.ds seg{DateiName); (Segment address of filename
Register.dx := succ{ofs(DateiName»; (Offset address of filename
msdos (Dos. Registers (Register»; { Call DOS Interrupt 21H {Turbo 4.0/1

{NOTE:Turbo 3.0 users should change previous line to read msdos{Register);1
(defined in DOS unit.)

if (Register. flags and 11 = 0 { Test Carry-Flag 1

100

http:Register.dx
http:Register.ds
http:Register.cx
http:Register.ax

Abacus 	 6.7 Accessi"g the DOS Directory

then GetFirst '. true { Equal to 0 : file found
else GetFirst := false; { no file found

end;

{••****** ••**.*}

{* GETNEXT read in the following Directory entry *}
{* Input none *}
(* Output true or false, depending if another entry was found *)
{* *}
{* Info this function can only be called after a successful *}
{* call of the function GETFIRST *}
(* the entry is stored in the Variable DIRBUF *)
{**)

function Get Next : boolean;

var Register : regtyp; { Register-Variable for interrupt call }

begin
Register.ax :- S4F shl B; Function number for next search }
msdos{Dos.Registers{Register}}; { Call DOS Interrupt 21H V 4.0}

{NOTE: Turbo 3.0 users should change the previous}
{line to read msdos(Register};}

if (Register. flags and 1) - 0 (Test Carry-Flag)
then Get Next '. true Equal to 0 : File found }
else GetNext :- false; otherwise no file found }

end;

(*** •• ***************.*.*******.************************************)
(* PRINTDATA: Output information on an entry *)
{* Input none * }
(* Output none *)
(* Info the information about the entry are taken by this *)
{* procedures from Variable DIRBUF *}
{*************** •• ******************************.*.***.******* •••***)

procedure PrintData;

var 	Counter : byte;
DataLenght1, { both Variables are used
DataLenght2 : real; { to calculate file length

begin
writeln; { the window is scrolled up by one line
Counter := 1; (begins with the first character of the name
while (DirBuf.DatName[Counter)<>tO) do (repeat up to NUL
begin
write(DirBuf.DatName[Counter); output characters of name
Counter := succ(Counter) { process next character

end;
gotoxy(13, ENTRY};

DataLenght1 := DirBuf.Datgrhi; { determine file length

if DataLenghtl < 0 then DataLenght1 65536.0 + DataLenght1;

DataLenght2 := DirBuf.Datgrlo;

if DataLenght2 < 0 then DataLenght2 '. 65536.0 + DataLenght2;

write(' }', DataLenght1 * 65536.0 + DataLenght2:7:0);

gotoxy(21, ENTRY};

write (') ,);

case (DirBuf.Zdate shr 5 and 15) of (determine month)

1 write ('Jan');
2 write ('Feb');
3 write ('Marl) ;
4 write ('Apr') ;
5 write ('May') ;
6 write ('Jun') ;
7 write ('Jul');
8 write ('Aug') ;
9 write ('Sep') ;

10 write ('Oct') ;
11 write ('Nov') ;
12 write ('Dec')

101

http:Register.ax

6. The Disk Operating System PC System Programming

end:
write('/',DirBuf.Zdate and 31:2, 'j'); { determine day
write(DirBuf.Zdate shr 9 + 1980:4); (determine year
gotoxy(34, ENTRY);
write('I', DirBuf.Ztime shr 11:2, ':'); determine hour
write(DirBuf.Ztime shr 5 and 63:3); determine minutes
gotoxy(44, ENTRY); evaluate file attribute
write (' I ') ; separator to preceding field
if (DirBuf.Attribut and 1)<>0 then write('X') (Read-only?

else write(' ');
if (DirBuf .Attribut and 2)<>0 then write('X') hidden?

else write(' ');
if (DirBuf.Attribut and 4)<>0 then write('X') system?

else write (' ');
if (DirBuf.Attribut and 8) <>0 then write('X') Volume-Label?

else write (' ');
if (DirBuf.Attribut and 16)<>0 then write ('X') { Directory?

else write(' 'I;
write (' I'); (right border of window frame)

end;

{**.****************}

1* SETDTA set Address of DTA *'
1* Input : see above *'
{* Output : none *}
(***********************••********************************•• **********)

procedure SetDTA(Segment, (new Segment address of the DTA
Offset integer); (new Offset address of the DTA

var Register regtyp; 1 Register-Variable for call of the Interrupt

begin
Register.ax := $lA shl 8; { Set Function number for DTA
Register.ds := Segment; { Segment address into DS register
Register.dx := Offset; (Offset address into DX register
msdos(Dos.Registers(Register»; (Call DOS-Interrupt 21H)

INOTE: Turbo 3.0 users should change the previous}
Iline to read msdosIRegister);)

end:

{***}
{* BUILDSCREENDISPLAY: prepares the display for output of the *}
(* Directory *}
{* Input : none *}
(* Output : none *}
{****••***}

procedure BuildScreenDisplay;

var Counter : integer;

begin
clrscr: 1 clear display
window (14, (20-ENTRY) shr 1+1,64, (20-ENTRY) shr 1 +5+ENTRY);
gotoxy(l,l); Cursor to left upper corner of window
write ('r T T TTl');
writel'l Filename I Size I Date Time IRHSVDI');
write('I------------lf------~-------------~-------+-----I');

for Counter .= 1 to ENTRY do

write (' I I I I I I ') ;

wri te ('L.------l.----l.------l.----.l--Jo) ;

window (15, (20-ENTRY) shr 1+4,66, (20-ENTRY) shr 1 +3+ENTRY);

gotoxy(l, ENTRY); (Cursor to upper left corner of window)

end:

{***}
{* DIR: controls the input and output of Directories *1
{* Input : none *)

102

http:Register.dx
http:Register.ds
http:Register.ax

Abacus 	 6.7 Accessing the DOS Directory

(* output : none 	 *)
{*********.*******•••••***.*** •••****.**********••***.****************}

procedure Dir;

var 	NumEntries, Total number of entries found
Numwind integer; { Number of entries in window
KeyPress char; (wait for key activation

begin
SetDTA{Seg(DirBuf), Ofs(DirBuf»; { DirBuf is the new DTA
clrscr: (clear display
writeln('DIR (c) 1987 by Michael Tischer'113110);
writeln('Please indicate search path for files ');
writeln('Example: if all files with the extension .BAT in the root ');
writeln('directory of the disk drive should be displayed please input ');
writeln(' A:*.BAT.');
writeln(' If no search path is indicated, all files in the current');
writeln(' directory are displayed. '113110);

write('Which files are to be displayed: ,) ;

readln(DatName); { read in filenames

if DatName = ,. then DatName := 1*.-': search for all files

BuildScreenDisplay; Construct display for output

Numwind := -1; { no entry in window yet

NumEntries : = 0; { no entry found

if GetFirst{DatName, 255) then search for first entry

Attribute does not matter
repeat

NurnEntries := succ(NumEntries); { found another entry

Nurnwind : succ(Numwind); { one more entry into window

if Numwind = ENTRY then { window full ?

begin (Yes

window (14, (20-ENTRY) shr 1 +5+ENTRY,66, (20-ENTRY) shr 1 +6+ENTRY);

gotoxy(l, 1); { Cursor to last line of window }

textbackground(7); (white background)

text color (0) ; { black characters}

write (' Please press a key .) ;

repeat until keypressed; wait for key press

(read (kbd, KeyPress);} { read key code

{ otherwise it remains in the buffer

gotoxy(l, 1); Cursor to the upper left corner of the window

textbackground(O); black background

textcolor(15) ; { white characters

write (' I):

window(15, (20-ENTRY) shr 1+4,65, (20-ENTRY) shr 1 +3+ENTRY);

gotoxy(l, ENTRY); (return Cursor to old position

Numwind := 0; start count with 0 again

end:
PrintData; (output data of entry

until not(GetNext); { does another entry exist ?

window(14, (20-ENTRY) shr 1 +5+ENTRY,65, (20-ENTRY) shr 1 +6+ENTRY);

gotoxy(1, 1); { Cursor to the upper left corner of window

textbackground(7); { white background

textcolor (0); (black characters

write (' I) ;

gotoxy (2, 1);

case NurnEntries of

o : write('no file found ');
1 : write('found a file ');

else write(NurnEntries,' files found ')

end:
window (1, 1, 80, 25); 	 set whole display as window I

end;

{**•••***********.**************}
(** 	 MAIN PROGRAMM **)
(*********.***.

begin
Dir; { Load Directory and display }

103

6. The Disk Operating System PC System Programming

end.

In the above Pascal program and in the following C program, accessing the DTA
is much easier than in the BASIC version of the same program. RECORD or
STRUCT defines the structure of the directory entry into the DTA, and the
programs implement a variable of this type. OOS function lAH then transfers the
DTA to this variable. All the information in a directory entry can be easily
accessed. With Turbo Pascal, the display design is particularly easy. Turbo Pascal
also has a procedure to define any display area as a window. However, the C
language program uses the scroll function of the BIOS interrupt lOH to scroll the
directory window one line upward.

C listing: DIRC.C

/*** ****************j
1* D I R C *1
1*---*1
1* Task : Displays all files in any Directory, *1
1* including Sub-Directories and volume names *1
1* on the screen. *1
1*---*1
1* Author MICHAEL TISCHER *1
1* developed on : 08/15/87 *1
1* last Update : 04/08/89 *I
1*----------------_·_---* I
1* (MICROSOFT C) *1
1* Creation : MSC DIRC; *1
1* LINK DIRC; *1
1* Call : DIRC *I
1*---*1
1* (BORLAND TURBO C) *1
1* Creation With the RUN command in the command line *1
1* Info Arguments can be passed to the program with *1
1* the OPTION/ARGS command in the command line *1
1* of TURBO C *1
1* or *1
1* *1
1* Creation : TCC DIRC *1
1* Call : DIRC *1
/***/

.include <dos.h> 1* include Header files *1

finclude <io.h>

'include <string.h>

'define FALSE 0 1* Constants make reading of *1

'define TRUE 1 1* Program text easier *1

tdefine byte unsigned char

tdefine ENTRY 14 1* this many directory entries fit on the screen *1

'define EZ (20-ENTRY » 1) 1* first line of Directory window *1

'define NRM Ox07 1* white characters on black background *1

'define INV Ox70 1* black characters on white background (inverted) *1

1*-- this is the format of a Directory entry returned by --------*1
1*-- the functions 4EH and 4FH *1
struct DirStruct {

byte Reservebuf [21] ;
byte Attribute;
unsigned int Ftime;
unsigned int Fdate;
unsigned long Fsize;
char Fname[13];

} ;

104

Abacus 6.7 Accessing the DOS Directory

/*** ••••• ****** •••*************************.**********.***************/

1* GETPAGE gets the current display page *1
1* Input : none *I
1* Output : see above *I
/****•• ************************************* ••********.***************/

byte GETPAGEO

union REGS Register; 1* Register-Variable for Interrupt call *1

Register.h.ah - 15; 1* Function number *1
intB6(OxlO, &Register, &Register); 1* Call Interrupt lOH *1
return(Register.h.bh); 1* Number of current display *1

)

/****************** •• ***/
1* SCROLLUP: moves a displa¥ area one or more lines *1
1* upward or erases it *1
1* Input see above *1
1* Output none *1
1* Info if 0 is passed as number, the display area *1
1* is filled with blanks *1
/***.***************/

void ScrollUp(Number, Color, ColurnnUL, LineUL, ColumnLR, LineLR)
int Number; 1* Number of lines to be scrolled *1
int Color; 1* Color or attribute for blanks *1
int ColumnUL; 1* Column in the upper left corner of display area *1
int LineUL; 1* Line in the upper left corner of the display *1
int ColumnLR;I* Column in the lower right corner of the display area *1
int LineLR; 1* Line in the lower right corner of the display area *1

union REGS Register; 1* Register-Variable for Interrupt call *1

Register.h.ah - 6; 1* Function number *1
Register.h.al "" Number: 1* Number of lines *1
Register. h.bh "" Color; 1* Color of blank line (s) *1
Register.h.ch LineUL; 1* Coordinates of the scroll *1
Register.h.cl ColumnUL; 1* end or erase *1
Register.h.dh LineLR; 1* Set display window *1
Register.h.dl .. ColumnLRi
int86 (OxlO, &Register, &Register) ; 1* Call Interrupt lOH *1

I

/****.*********.*.***** ••*********••• *******•••******.********* •• *****/
1* SETPOS sets the position of the cursor in current display page *1
1* Input see above * I
1* Output none *I
1* Info the position of the blinking display cursor is changed *1
1* by the call of this function only when the *1
1* display page indicated is the current display page *1
1* *1
/***** ••• *.**************•• ****************•••****************.*.*****/

void SetPos(Colurnn, Line)
1nt Column; 1* new Cursor column ·1
int Line; 1* new Cursor line *1

union REGS Register; 1* Register-Variable for Interrupt call *1

Register.h.ah 2; 1* Function number *1
Register.h.bh GETPAGE(); 1* Display page *1
Register.h.dh Line; 1* Display line *1
Register.h.dl - Column; 1* Display column *1
intB6(OxlO, &Register, &Register); 1* Call Interrupt lOH *1

I

105

http:Register.h.dl
http:Register.h.dh
http:Register.h.bh
http:Register.h.ah
http:Register.h.dl
http:Register.h.dh
http:Register.h.cl
http:Register.h.ch
http:Register.h.al
http:Register.h.ah
http:return(Register.h.bh
http:Register.h.ah

6. The Disk Operating System PC System Programming

/**********••**.****/
1* GETPOS Get the position of the Cursor in current display page *1
1* Input : none */
1* Output : see below *I
/*******************+.**************************** •• ** ****************1

void GetPos(Column, Line)

int *Column; /* Column where the Cursor is located */

int *Line; 1* Line where the Cursor is located *1

union REGS Register; /* Register-Variable for Interrupt call */

Register.h.ah - 3; /* Function number */
Register.h.bh * GETPAGE(); /* Display page */
int86(OxlO, &Register, &Register); /* Call Interrupt 10H */
Column = Register.h.dl; / Read result of the Function */
Line = Register.h.dh; / from the Registers */

)

/***********************************.*********************************/
/* WRITECHAR: writes a character with an attribute to the current */
/* cursor position on the current display page */
/* Input see below * /
/* Output none * /
j** •• ******* ****************/

void WriteChar(Character, Color)

char Character; /* Character for output */

int Color; /* its Attribute or color */

union REGS Register; 1* Register-Variable for Interrupt call */

Register.h.ah 9; /* Function number */
Register.h.al Character; /* character for output */
Register.h.bh - GETPAGE(); /* Display page *1
Register.h.bl Color; /* Color of character for output */
Register.x.cx 1; /* output character only once *1
int86 (Oxl0, &Register, &Register); 1* Call Interrupt lOH *1

)

/***/
/* WT writes a character string with constant color starting */
1* at a specified position on the current display page. */
/* Input see below */
/* Output none * /
/* Info Text is a Pointer to a character Vector, which contains */
/* the text to be output and is terminated with a '\0' *1
/* character. *1
/***/

void WT(Column, Line, Text, Color)

int Column; 1* Display column for output */

int Line; 1* Display line for output */

char *Text; 1* Text for output *1

int Color; 1* Color/Attribute of the Text *1

union REGS Register; 1* Register-Variable for Interrupt call *1

SetPos(Column, Line); 1* Set Cursor */
while (*Text) 1* Output Text up to '\0' character */

{

WriteChar (' ,Color) ; /* Indicate color *1
Register.h.ah 14; 1* Function number */
Register.h.bh ~ GETPAGE(); 1* Display page */
Register.h.al ~ *Text++; 1* of character to be output */
int86(OxlO, &Register, &Register); 1* Call Interrupt */

)

106

http:Register.h.al
http:Register.h.bh
http:Register.h.ah
http:Register.x.cx
http:Register.h.bl
http:Register.h.bh
http:Register.h.al
http:Register.h.ah
http:Register.h.dh
http:Register.h.dl
http:Register.h.bh
http:Register.h.ah

Abacus 6.7 Accessing the DOS Directory

/*************************** •••• ******••*******••• ******* ••*** •••*****/
1* CLS Clear current display and set Cursor into upper left *1
1* corner *1
1* Input none *1
1* Output none *1
/ •••• *** ••••••**** ••••••••••••***.*** •••••••• ** ••••••• ** •••••• **•••••• /

void CIs ()

ScrollUp(O, NRM, 0, 0, 79, 24); 1* Clear Screen *1

SetPos(O, 0); 1* Set Cursor *1

l

/** ••• ****** ••••••******.*.*.*•• ****.*•••••• ** •••*********••****•• **.*,
1* BUILDSCREENDISPLAY: prepares the display for the output of the *1
1* Directory. *1
1* Input none *I
1* Output none *1
/ •• **.*** •••• ***** •••• ****** •••••••••••••***•• **** •••• *** ••• *** •••••*./

void BuildScreenDisplay()

{
byte i; 1* Loop Counter *1
Cls(); 1* Clear Screen *1
WT (14, EZ, 'f-------rr---"'lTr------"1Tr-----4'"--10, NOF) ;

WT(14,EZ+l,"1 Filename I Size I Date I Time IRHSVD I ",NOF);

WT(14,EZ+2,"I I I +---1 ",NOF);

for (i - EZ+3; i < EZ+3+ENTRY; i++)

WT(14,i,"1 I I I I",NOF)·

WT (14, EZ+ENTRY+3, "L.-----.L---.L-----..L-----.L--J·,
NOF);

/.*** ••• *****.* •••• **••******** •• ***.* •••**************** •• ***********/
1* PRINTDATA: Output information about an entry *1
1* Input : see below *I
1* Output : none *I
,*.******************************.*********.**************************/

void PrintData(DirEntry, Line)
struct DirStruct *DirEntIY; 1* a Directory entry *I
byte Line; 1* Display line of entry *1

{

byte i; 1* Loop Counter *1

static char *Month[J 1* Vector with Pointer to name of month *1

"JAN II , "FEB'~, "MAR", "APR", "MAY", IlJUN",
"JUL", "AUG", "SEP", "OCT", "NOV", "DEC"

l ;

SetPos(15, Line); 1* Set Cursor position for file name *1

for (i=O; (*DirEntry).Fname[il && i<15; printf("\c", (*DirEntry}.Fname[i++J»

SetPos(28, Line); 1* Set Cursor position for file size *1

printf("\71u", (*DirEntry) .Fsize); 1* Output file size *1

SetPos (36, Line); 1* Set Cursor position for Date *1

printf("\s-\2d-\4d", Month [«*DirEntry) . Fdate » 5 & 15} - IJ,

(*DirEntry) •Fdate & 31, «*DirEntry) .Fdate » 9) + 1980);

SetPos(49, Line); 1* Set Cursor position for Time *1

printf ("'2d:\2d", (*DirEntry) • Ftirne » 11, (*DirEntry) .Ftime » 5 & 63);

SetPos(59, Line); 1* Set Cursor position for Attribute *1

for (i - 1; i <- 16; i «- 1)

if «*DirEntry) .Attribute & i) printf ("X");

else printf(" H);

107

6. The Disk Operating System PC System Programming

/****************••**********************************••_-_._ ••_-------/

j-_.-. __ ._-_._---_._------_._._/

f* GETNEXT read the following Directory entry *f
1* Input none *f
1* Output TRUE, when an entry was found, otherwise FALSE *1
1* Info the entry is read into DTA rem *1 __ ._--_.__ ._.__ ._-----------_.._----_..

byte Get Next ()

union REGS Register; 1* Register-Variable for Interrupt call *1

Register.h.ah = Ox4F; /* Function number for Search of next entry *1
intdos(&Register, &Register); 1* Call DOS-Intr. 21H *f
return (!Register.x.cflag); /* Carry-Flag = 0: file found */

)

1-··_·---_··_··------------------_·_--_·_·_·_·_-_·_---.-.-._.-.---_._./
1* GETFIRST read the first Directory entry */
/* Input none * /
f* Output TRUE, if entry was found, otherwise FALSE */
/* Info Entry is read into the DTA */

1-*------_·_·····_---------------_·_------*------------*_. __ .-._._._--/
byte GetFirst (Sname, Attribute)

char * Sname; /* file to be found */

unsigned int Attribute; /* the Search Attribute */

union REGS Register; /* Register-Variable for Interrupt call */
struct SREGS Segmente; f* accepts Segment register */

segread(&Segmente); f* Read in content of Segment register */
Register.h.ah = Ox4E; /* Function number for search of first */
Register.x.ex = Attribute; f* Attribute, for which search is made */
Register.x.dx = (unsigned int) Sname; /* Offset address search path*/
intdosx(&Register, &Register, &Segmente); f* Call DOS-Intr. 21H */
return(!Register.x.cflag); /* Carry-Flag = 0: file found */

)

j._--------*-----------------------_._------_._-_._._-----------_._._-/
/* SETDTA sets the DTA to a Variable in the Data Segment *f
/* Input : see below *f
/* Output : none * /
1---·--·_--_·_-_·_------·_-_·_·_·· __ ·_·_---_····-·-·_· w.www.wwWWWWW_K_/

void SetDTA(Offset)

unsigned int Offset; f* new Offset address of the DTA *f

union REGS Register; f* Register-Variable for Interrupt call *f
struct SREGS Segment; /* accepts the Segment register *f

segread(&Segment); 1* Read in content of Segment register *f
Register.h.ah = OxlA; f* Set Function number for DTA *f
Register.x.dx = Offset; /* Offset address into DX-Register *f
intdosx(&Register, &Register, &Segment); f* Call DOS-Intr. 21H *f

)

/***/
f* DIR controls the input and output of Directories *f
f* Input : see below *f
/* Output : none *f
/** ••**.*.************/

void Dir(Sname, Attribute)

char *Sname; f* Pointer to Character Vector, containing search path */

int Attribute; f* Attribute of file to be found *f

108

http:Register.x.dx
http:Register.h.ah
http:Register.x.dx
http:Register.x.ex
http:Register.h.ah
http:Register.h.ah

Abacus 6.7 Accessing the DOS Directory

(
int NumEntries, /* Total number of entries found */

Numwind; /* Number of entries 1n display */
struct DirStruct DirEntry; /* a Directory entry */

SetDTA(&DirEntry); /* DIRENTRY is the new DTA */
BuildScreenDisplay{); /* Construct display for new Directory output */

Nurnwind = NumEntries - 0; /* no entry displayed in the window */

/* no entry found */

if (GetFirst(Sname, Attribute» /* search for first entry */

{

do

(

PrintData(&DirEntry, EZ+ENTRY+2); /* output entry */
if (++Numwind == ENTRY) /* Window full 2 */

(
Nurnwind - 0; /* fill a window */
WT(14, EZ+4+ENTRY,

Please press a key H, INV);
qetch (); /* wait for key */
WT(14, EZ+4+ENTRY,

"

",NRM) ;

ScrollUp(l, NRM, IS, EZ+3, 63, EZ+2+ENTRY);
WT(lS, EZ+2+ENTRY,

I ",NOF) ;
++NumEntries;

)
while (GetNext(»;

)
SetPos (14, EZ+4+ENTRY);,

switch (NurnEntries)

(

case 0 printf("no files found tt, ;
break:

case printf("one file found If) ;

break;

default printf ("ltd files found ", NurnEntries) ;

)

/ •• **.*********••• ****.** •••••• ***.***.**•••************************.*,
/** MAIN PROGRAM **/
/**.**********.****** ••** •••••**/

void main (Number, Arqurnent) I/'
int Number; /* Number of Arqurnents + 1 passed */
char *Arqurnent[]; /* Vector with pointer to Arqurnents */
{
switch (Number) "'. /* react accordinq to * /

(/* Arquments passed */
case Dir("*.*tI,0); /* Display all files in current */

break: /* Directory */
case 2 Dir (Arqurnent [1] , -0); /* Display all files in indicated */

break; /* Directory * /
default : printf ("Invalid number of Parameters\nn);

)

109

6. Tlu! Disk Operating System PC System Programming

6.8 The EXEC Function

The EXEC function has been mentioned briefly several times before in relation to
the command processor. We'll examine the EXEC function more fully here and
describe its operation.

Parent/child

The EXEC function is one of the many DOS functions which can be called with
interrupt 21H (function 4BH). Generally speaking, this function lets a parent
program (main program) call a child program (secondary program). The child
program is loaded from a mass storage device into memory and then executes. If
this child program doesn't become resident, the memory occupied by the child is
released following program execution. The child program can also call another
program which works with the parent program. This creates a type of program
chaining limited only by the amount of available RAM.

One example of the EXEC function is the command processor. Using the EXEC
function, the command processor executes user-specified programs and becomes the
parent program. Some programs (such as Microsoft Word®) permit the user to
execute DOS commands from the main program using this function.

The parent program can pass parameters to the child program in the command line
and can also pass parameters using the environment block. It can also transfer
information to the child program within the PSP. Since the child program, like all
executable programs, has a PSP preceding it, information can be entered into the
two FCBs within this PSP and made accessible to the child program.

Child program

After transferring control to the child program, it can access all files and devices
previously opened by the parent program (or one of the parent programs) with a
handle function. This allows the child program to read information from a file or
write information to a file whose handle is known (the child program doesn't need
to know the filename). This is only possible if the handle was passed by the parent
program in one of the three methods described, or if the child program refers to one
of the five handles which are always open. These file accesses affect the file
pointer. Since values are not reset, these file accesses become "visible" to the
parent program when control returns to the parent program.

After execution of the child program, control returns to the parent program and
execution continues. To pass information (e.g., an error that occurred during the
execution of the child program), the child program can pass a numeric value at the
end of its execution. This can be done using DOS function 4CH, which terminates
a program and returns a code to the parent program.

The communication between parent and child program functions only if both
programs agree on this return value. After control returns to the parent program, it

110

Abacus 6.8 Th£ EXEC Function

can detemline the code using function 4DH of interrupt 21H. To use function 4DH
only the function number is passed in the AH register. The code passed by the
child program is returned to the calling (parent) program in the AL register.

Ending the child program

In addition, the contents of the AH register indicate how the child program
temlinated. The value 0 indicates a nOmlal temlination, while 1 shows that the
child program terminated when the user pressed <Control><C> or
<Control><Break>. If an error during access to a mass storage device forced the
child program to temlinate, a code of 2 is passed in the AH register. Finally the
value 3 indicates that the child program temlinated from a call to function 31H, or
interrupt 27H; the child program then becomes resident in memory.

As mentioned previously, the EXEC function can only load the child program if
enough memory is available. While DOS can estimate the memory needed for
EXE programs fairly accurately, it cannot do the same for COM programs. For
COM programs DOS reserves all unused memory. Because of this, a COM
program cannot call another program with the EXEC function, since DOS reserves
no extra memory. The same is true for many EXE programs. If a call to a child
program is necessary, the required memory space must be released from the calling
program before calling the EXEC function (see Sections 6.4.1 and 6.4.2 for
explanations on how this is done).

EXEC

If the EXEC function is called, the various parameters are loaded into the registers
before calling interrupt 21H. Function number 4BH is passed in the AH register.
A value of 0 or 3 is passed in the AI.. register. A value of 0 indicates that the
EXEC function is to load and execute the program while a value of 3 indicates that
the program is loaded as an overlay (without executing it). The address of the name
of the program to be loaded or executed is passed in the DS:DX register pair. And
the address of the parameter block is passed in the ES:BX register pair.

The program name is specified as an ASCII string and ended with a null character
(ASCII code 0). The program name can include the device name and a complete
path description. Its last element is the program name which, besides the name
itself, must have the extension .COM or .EXE. If the device name or path
designation are omitted, the system searches for the program in the current
directory of the current device. Since the EXEC function cannot execute a batch
fIle directly, the program name passed cannot contain the extension .BAT.

Batch child

If a batch fIle is to be executed, the COMMAND.COM (command processor) file
must be invoked first. To indicate that a batch file should be executed, the
parameter Ic followed by the name of the batch fIle to be executed is included on
the command line. Besides the ability to execute a batch fIle, calling the command

111

http:COMMAND.COM

6. The Disk Operating System PC System Programming

processor with the Ic parameter offers the option of calling any other program, and
even internal DOS commands such as DIR.

Besides calling a program directly, it's possible to specify program names without
file extensions during a command processor call. The command processor searches
for an EXE file; then a COM file; and finally a BAT file. If none of these files
exist in the current directory, it searches all directories specified in the PATH
command. This chain of events is not followed during a direct program call
without the addition of the command processor.

The directory which contains the command processor should be specified. If not
specified, it will be loaded from the path indicated by the COMSPEC environment
string of the SET command.

Parameter blocks

Parameters can be passed to the command processor in the parameter block
following the program name. These parameters are identical to the parameters
entered from the keyboard when the program is called. How these parameters affect
the EXEC function will be seen shortly, but fmt take a look at the parameter
block's structure when the AL register contains the value O. This block's address is
passed to the EXEC function in the register pair ES:BX.

1 0-1 Seqment address of the environment block
2 2-3 Offset address of the command parameter
3 4-5 Segment address of the command parameter
4 6-7 Offset address of the first FCB
5 8-9 Segment address of the first FeB
6 10-11 Offset address of the second FeB
7 12-13 Seqrnent address of the second FeB

Field 1 indicates the segment address of the child program's environment block.
This block doesn't require an offset address since it always starts at a location
divisible by 16, and therefore its offset address is always to O.

Environment block

The command processor and other programs obtain information from the
environment block. The environment block is a series of ASCII character strings.
This infonnation can include paths for file searches. Each string has the following
syntax, tenninated by a null character (ASCII code 0):

Name - Parameter

The individual strings follow each other sequentially (i.e., the null character of one
string is immediately followed by the beginning character of the next string). The
environment block ends with a null character. Any environment block has a
maximum length of 32K.

112

Abacus 6.8 The EXEC FlU'lCtion

The environment block can be changed or modified by the user using the DOS
SET and PATH commands. Programs which remain resident after execution are
unaffected by any changes made to the environment block through these two DOS
commands once made resident

If the parent program wants to pass infonnation to the child program using the
environment block, it can either construct a new environment block or supplement
its own environment block with this infonnation. In the first case, the segment
address of the new environment block is specified in the fllSt field of the parameter
block. If the child program should have access to the environment block of the
parent program, specify a value of 0 in this field. Before blming over control to
the child program, the EXEC function stores the segment address of the
environment block in the memory location at address 2CH of the child program's
PSP.

If the child program is to use a new environment block, it should contain at least 3
strings which are normally part of the environment block of the parent program,
and are important to the command processor:

COMSPEC = Parameter
PATH - Parameter
PROMPT = Parameter

If a child program modifies its environment block, the parent program's
environment block remains unchanged after the child program completes its
execution.

Fields 2 and 3 indicate the command parameters' address which is passed to the
PSP of the program starting at address 80H. They must have the same strucwre in
memory as expected by DOS in the PSP. The first byte indicates the number of
command characters minus 1, then follows the command characters as nonnal
ASCII codes. The command parameters terminate with a carriage return (ASCII
code 13) which is not included in the character count. The fllSt character in the
string should be a space for compatibility with COMMAND.COM.

To call a batch program (called DO.BAT) using the command processor, the
following command parameters must be specified as a string in memory:

DB 10," Ie OO.BAT",13

The EXEC function copies the command parameters in a controlled fashion into
the PSP of the program to be executed. It removes all parameters which would
redirect the input or output, since a redirection of the standard input/output can
only be performed by the parent program. The child program can still use
input/output redirection if the standard input/output handles have been redirected by
the parent program (see Section 6.10 for more detailed information and an example
of this process).

113

http:COMMAND.COM

6. The Disk Operating System PC System Programming

Fields 6, 7, 10 and 11 indicate two FCBs installed in the PSP at address 5CH or
6CH. If this is not required, specify -1 (FFFFH) in these two fields. If program
execution requires it, enter the first two command parameters in the two FCBs
with DOS function 29H. Before passing control to the child program, the EXEC
function copies these two FCBs into the PSP of the child program.

Even though all registers and the parameter block now have the required values, the
EXEC function cannot be called yet. Since it destroys the contents of all registers
up to the CS and IP registers during execution,the contents of all registers must
be placed on the stack before it is invoked. Then the contents of the SS and SP
registers must be stored within the code segment. Only then can interrupt 21H
function 4BH be called to activate the EXEC function. After the EXEC function
ends, the carry flag signals if the function executed normally. Before program
execution can continue, the value of the SS and SP registers must be restored,
from the code segment. Then the contents of the other register can be restored
again from the stack.

The EXEC function serves a different purpose when a value of 3 appears in the AL
register. In this case, it loads a COM program or an EXE program into memory
without executing. After the target program is loaded, control immediately returns
to the calling program. In contrast with sub-function 0, the program loads to a
memory address indicated by the calling program instead of loading to any non
specific location. Since no parameters are passed to the loaded program, the
parameter block has a different structure during the call of sub-function 3 than
during the call of sub-function 0:

Field Byte Purpose
1 0-1 Segment address where overlay is loaded
2 2-3 Relocation factor

Before the function is called, the segment address to which the program should be
loaded is specified in the frrst field of the parameter block. If the calling program
doesn't have enough memory available for loading the external program, it should
request additional memory with one of the DOS memory management functions.
The loaded program loads directly to the segment address indicated with the offset
address 0 since no PSP precedes the program.

Relocation

The relocation factor adjusts the segment address of the called program. Since this
factor applies only to EXE programs (COM programs cannot have specific
segment assignments), the relocation factor for COM programs should always be
equal to O. The relocation factor for EXE programs should indicate the segment
address where the program will be loaded to confmn to the program's segment
assignments.

After the program is loaded, its routines are ready to be accessed. The routines of
the loaded program should always be treated as subroutines; and therefore, called

114

Abacus 6.8 TM EXEC FlUlCtion

with the machine language CALL instruction. It must always be a FAR type
instruction even though the loaded program may be located immediately following
the calling program, but can never have the same segment address. The offset
address for CALL is always l00H for a COM program, since execution always
starts immediately following the PSP at address l00H. This creates a problem.
Sub-function 3 prevents the PSP from loading. Therefore the code segment of the
COM program starts at address 0, not at the offset address l00H (relative to the
load segment). Since all jump instructions and accesses to data within the COM
program are relative to address l00H and not address 0, you cannot execute a FAR
CALL instruction with the address of the load segment as the segment address, and
address 0 as the offset address. The segment address for the FAR CALL must
indicate the address of the load segment minus 10H and the address l00H as the
offset address.

If the COM program specifically acts as an overlay for another program, entry
addresses other than address l00H are possible. In such a case, only the offset
address for the FAR CALL instruction changes. The segment address must remain
10H smaller than the address of the load segment.

EXEC and memory

The problem is different for EXE programs. If they are loaded for execution using
sub-function 0, the EXEC function sets the code segment and the instruction
pointer to the instruction which was declared as the first instruction in the
assembler source. This address, however, is unknown to the program which loaded
the EXE program as an overlay. This can easily be remedied by placing the frrst
executable instruction in the EXE program at the beginning of the EXE program.
This makes its offset address O. The EXE program source must not be in the
normal sequence with the stack frrst. In this case, the code segment must be the
frrst segment in the source to ensure that it begins the EXE program.

The FAR CALL uses the address of the load segment as the segment address, and
address 0 as the offset ad,dress.

While BASIC, Pascal and C have commands or procedures to call a program from
another program, assembly language routines must use DOS function 4BH. To
help you further understand this function, here is an example program.

The framework of the EXE program listed in Section 6.4.2 acts as the basis for
this program. The EXEPRG procedure performs the actual dirty work in this
program. It calls the new program using function 4BH. Two strings which contain
the name of the program to' be called and the necessary parameters are passed to it.
Both strings end with the null character (ASCII code 0). All variables required by
EXEPRG for execution can be found in the code segment. This offers the
advantage that the lines from the code segment only must be copied into one of the
application programs to use this routine. After calling EXEPRG, the carry flag
signals if an error occurred If true (carry flag=I), the AX register contains the error

115

6. The Disk Operating System PC System Programming

code as returned by the EXEC function of DOS. If the called program executed
correctly, the carry flag is reset (0) and the tennination code of the called progmm,
as returned by DOS function 4DH, is returned by the AX register.

Within this program, EXEPRG displays the current directory using the command
processor. The command processor defaults to the current directory of the current
device.

; •• ** •••**.** ••••••******.***•••• ** ••••• ** ••••••••••••··········**····i
;* EXEC *;
i*---*;
; *
;*
;*

Task Calls a program with the help of the
EXEC function of DOS. In this example
program the content of the current

*;
*;
*;

;* Directory of the current device is displayed. *;
;*---*;

;* Author MICHAEL TISCHER *;
;* developed on 08/01/87 *;
;* last Update 04/08/89 * ;
;*---*:
;* assembly : MASH EXEC; *;
;* IJNK EXEC; *;
:*---*;
,Call : EXEC *;

i*···············_············_-_·····················;

;== data ===----============--=====---=============--~===-=======--====

data segment para 'DATA' ;Definition of the data-segment

prgname db "\command.com",O ;Name of the program to be called
prgpara db "/c dir",O ;Parameters passed to program

data ends ;end of data-segment

;== code ---====--==========-=------==---=======-====----==-=========-

code segment para 'CODE' ;Definition of the CODE-segment

assume cs:code, ds:data, ss:stack

exec proc far

mov ax, data ;Load segment address of the data segment
mov ds,ax ;into the OS-register

call set free irelease unused memory

mov dX,offset prgname ;offset address of program name
mov si,offset prgpara ;offset address of command line
call exeprg ; Call program

mov aX,4COOh ;end program with call of a DOS function
int 21h ;on return of error-code 0

exec endp

;-- SETFREE: Release memory not used ---------------
i-- Input ES ~ address of PSP
i-- OUtput none
;-- Register AX, BX, CL and FLAGS are changed
;-- Info Since the stack-segment is always the last segment in an

EXE-file, ES:OOOO points to the beginning and SS:SP
to the end of the program in memory. Through this the
length of the program can be calculated

set free proc near

116

Abacus 	 6.8 The EXEC Fu.nction

mav bx,ss ;first subtract the two segment addresses
mav ax,es ;from each other. The result is
sub bx,ax ;number of paragraphs from PSP

Ito the beginning of the stack
mov ax,sp ;since the stackpointer is at the end of
mov cl,4 ;the stack segment, its content indicates
shr aX,cl ;the length of the stack
add bx,ax ;add to current length
inc bx las precaution add another paragraph

mav ah,4ah ;pass new length to DOS
int 21h

ret 	 ;back to caller

set free 	 endp

;-- EXEPRG: call another program -----------------------------
;-- Input DS:DX = address of the Program Name
;-- DS:SI = address of the Command Line

OUtput carry flag - 1 : Error (AX = Error-code)
Register only AX and FLAGS are changed

;-- Info Program name and Command Line must be ASCII-String
;-- and terminated with ASCII-code 0

exeprg 	 proc near

;Transmit Command Line into own buffer

land count characters

push bx ;Store all registers which are
push cx ;destroyed by the call to the
push dx ;005 EXEC function
push di
push s1
push bp
push ds
push es

mov di,offset comline+l ;address of chars in Command Line.
push cs ;CS to stack
pop es ;back as ES
xor bl,bl ;Set character count to 0

copypara: 	 lodsb ;read a character
or al,al lis it a NUL-code (end)
je copyend ;Yes --> copied enough
stosb ;store in new buffer
inc bl ;increment character count
cmp bl,126 ;Maximum reached?
jne copypara ;No --> continue

copyend: 	 mav cs:comline,bl ;store number of characters
rnov byte ptr es:[di],13 ;finish command line

mov cs:merkss,ss ISS and SP must be stored in
mov cs:merksp,sp ;variables 1n code segment

mov bX,offset parblock ;ES:BX points to parameter block
mav aX,4BOOh ;function number for EXEC function
int 21h ;Call DOS-function

cli ;Set interrupts for a moment from
mov ss,cs:merkss ;stack segment and stackpointer to
mov sp,cs:merksp ;their old values
sti ;Switch interrupt on again

pop es ;Get all Registers from stack again
pop ds
pop bp

117

6. The Disk Operating System 	 PC System Programming

pop si

pop di

pop dx

pop cx

pop bx

jc exeend ;Errors? YES --> end
mov ah,4dh ;no errors, sense end-code of the
int 21h ;program which was executed

exeend: 	 ret ;back to caller

;-- Variables of this routine only addressable through CS

merkss dw (?) ;accepts SS during program call
merksp dw (?) ;accepts SP during program call
parblock equ this word ;Parameter block for EXEC function

dw 0 ;environrnent block
dw offset comline ;offset and segment address of
dw seg code ;modified Command Line
dd 0 ;no data in PSP t1
dd 0 ;no data in PSP t2

comline 	 db 128 dup (?) ;accepts modified Command Line

exeprg 	 endp

;-- stack ------=---=============-==-===---------==-=---==-==-======

stack 	 segment para stack ;Definition of the stack-segment

dw 256 dup (?) ;the stack has 256 Words

stack 	 ends ;End of the stack-segment

;-= End ======-----==~===-===

code 	 ends ;End of the CODE-segment
end exec ;for execution start with EXEC

118

Abacus 6.9 Memory Allocation from DOS

6.9 Memory Allocation from DOS

DOS subdivides the maximum 640K of memory into roughly two areas. The ftrst
area is designated as the operating system area. It begins at memory location
0000:0000 and contains the interrupt vector table, some internal tables, buffers,
variable memory and the operating system code. This code retains the resident
portion of the command processor and the resident and installable device drivers.
The size of this area varies with the version of DOS in use, the sizes of the device
drivers installed, and other factors such as the number of disk buffers available.

The second area is designated as the TPA (Transient Program Area). It contains
programs and their environment blocks for execution. The TPA starts after the end
of the operating system area. Depending on the memory requirements of the
individual programs, DOS assigns them different amounts of memory administered
through a special data block preceding every memory range and connected with the
data block of the next memory range. This also applies to memory not assigned to
a program.

This data block, called a memory control block (or MCB) is a 16-byte block
containing a variety of information. An MCB begins at one of the addresses
divisible by 16, and controls memory allocation. DOS looks for the segment
address of the allocated memory range, and is helped in this task through the MCB.
The following table shows the structure of an MCB in memory:

Address Contents Type

+OOH ID ("Z"-last MCB, "M"-another MCB follows) 1 byte
+OlH Segment address of correspondinq PSP 1 word
+03H Number of paragraphs in allocated range 1 word
+05H unused 11 bytes
+lOH Allocated memory ranqe x paragraphs

As the table above illustrates, the MCB contains three ftelds. The ftrst fteld
indicates whether any MCBs follow the current MCB under analysis. The letters
"M" (more MCBs to follow) and "Z" (last MCB) are the initials of one of the
creators of MS-DOS, Mark Zbikowski.

The second fteld speciftes the segment address of the corresponding program's PSP.
This only applies when memory allocation becomes a part of the environment of
the program being handled. in which case the PSP is indicated by the contents of
this field. In most cases, this fteld simply points to the memory range needed by
the program.

The third fteld of the MCB speciftes the size of the corresponding memory range in
paragraphs. Next follows the memory range itself. then any further MCBs after
that (provided that the frrst fteld contains an "M" ID letter). MCBs can be linked
together to create a group, as shown in the ftgure below:

119

6. The Dis/c Operating System PC System Programming

Stan of memory
:"

(0000:0000) :"

Stan ofTPA Memo~ Control Block 1

Controlled by Memory Control Block :8,Memory Control Block 2
Controlled by Memory Control Block
Memory Control Block 3

Controlled by Memory Control Block 3

Memory Control Block 4 (last MCB)
Controlled by Memory Control Block 4

End of TPA
F :~

End of memory

Memory allocation

If the DOS EXEC loader loads and executes a program, this function immediately
requests two data areas through another DOS function. The fU'St of these two areas
stores the environment block, while the second accepts the current program and the
program's PSP. The size of the area made available to a program is difficult to
estimate from the EXEC loader. This is even more difficult for COM programs
than for EXE programs since COM programs are copies of memory contents and
have no information preceding them. DOS therefore defaults to the maximum and
reserves the total available memory for a COM program.

This method worked well in the early days of DOS, but has created other
problems. While only one program could exist in memory at a time in the early
days of DOS, now it's common for one program to load and run a second program,
or even make one of the programs pennanently resident in memory. This can't be
done if no memory exists, as would be the case after loading a COM program.
This is why a COM program should always release the memory it no longer needs
after it starts (see Section 6.4.1 for details on how this happens).

A COM program can only load when a memory range large enough to
accommodate the COM program exists (Plus 256 bytes for the PSP and at least 2
bytes for the stack). The COM program ensures that enough memory is available.
Under the minimum conditions presented above, the program probably won't run
without errors, since few programs can operate with only a 2-byte stack.

EXE program fil~s have a set of information created by the linker. The EXEC
loader can determine the amount of memory required for code segment, data and
stack from this infonnation. The start of the EXE program itself contains
additional information about the amount of memory needed for the program. This
amount defines an upper and lower limit of the additional memory, rather than a
specific number of bytes. The EXEC loader tries to reserve the upper limit of

l20

Abacus 6.9 Memory Allocation from DOS

memory if it can. If this is not possible, the EXEC loader uses the lower limit or
reserves the remainder of memory. If the lower limit of memory cannot be
allocated, the loading process aborts and control returns to the program which
called the EXEC loader (in most cases, the command processor).

The same occurs after program execution when the EXEC loader releases the
reserved memory space for further use, unless prevented by function 31H of
interrupt 21H, called from the program.

Now that you know some of the theoretical aspects of DOS memory management,
here are descriptions of the most important of these DOS functions. Functions
48H, 49H and 4AH are all called through interrupt 21H. The function number is
passed in the AH register.

Function 48H allocates memory. The function number is passed in the AH register
and the number of paragraphs to be reserved (16 bytes per paragraph) is passed in
the BX register. If the requested number of paragraphs can be reserved, the function
returns with the carry flag clear. The AX register indicates the segment address of
the reserved memory. Therefore, it starts at address AX:OOOO. If the program
required more memory than was available, the carry flag is set following the call to
the function and the AX register contains an error code. The BX register contains
the maximum memory available in paragraphs.

Function 49H performs the reverse of function 48H. This function releases
memory previously reserved through function 48H. The segment address of the
memory area to be released is passed in the ES register. This segment address was
originally passed in the AX register when function 48H was called. Normally
function 49H should execute without errors and the carry flag should be reset after
the function call. If this is not the case, it could be caused by either a destroyed
data block (placed ahead of a memory area by DOS), or a segment address passed in
the ES register which doesn't match a reserved memory area.

A third function changes the size of memory area which had been previously
reserved. The memory area can be either enlarged or reduced by using function
4AH. The segment address of the area to be modified is passed in the ES register.
The BX register reserves the number of paragraphs (16-byte units) which the
memory area should contain. The register contents following the call to the
function are identical to those of function 48H.

Since calling DOS functions is relatively easy as far as memory management is
concerned and no special tricks are required, the following program is dedicated to a
different topic, which also relates to DOS memory management. We're talking
about a program that pokes around the system and checks all allocated memory as
well as its contents. The program is intelligent enough to differentiate between
storage areas that contain the environment of a program, a PSP, or other
information.

121

6. TM Disk Operaling System 	 PC System Programming

The assignment of this program is to go through the memory from MCB to MCB
and examine the allocated storage areas. In order to move to the next MCB each
time, it uses the third field within an MCB, which helps it point to the next
MCB. This sets up a loop which will run until the last MCB is discovered, which
will have the letter "z.. in its ID field.

But in order to move through the chain of MCBs, the address of the first link, that
is the first MCB, must be known. DOS lists this within an internal structure
called DIB (DOS Information Block), which is not normally accessible to
application programs, i.e. this represents an undocumented DOS feature (see also
Section 6.15). However, we can find out the address of this structure with the help
of function 52H, which will output the address to the ES:BX register pair when
called.

Curiously, this address points to the second field in the MCB rather than the fU'St
But since it's the first field that contains the address of the first MCB, the
information we're looking for is behind the pointer. Since the pointer on the first
MCB consists of an offset address and a segment address, it is four bytes long and
can therefore be found at the address ES:(BX-4). But be careful with the address
statement, because it makes it seem as though all you have to do is subtract 4
from the contents of the BX register in order to get the effective address of the
desired information in the ES:BX register pair. This will only be successful if the
offset address in the BX register is greater than or equal to 4. But if it is less than
4, the consequences are disastrous, because this leaves a negative number. There is
no such thing as a negative memory address. Let's use an example to make this
clear:

If the value 0 is returned to the BX register as the offset address of the DIB, the
subtraction would give the value OFFFCH. With arithmetic operations, this is
interpreted quite correctly as -4. However, during memory access, this will not
point to the address -4, but rather right to OFFFCH, and therefore to the end rather
than the beginning of the accompanying segment Of course, you won't fmd what
you're looking for there.

The program will help you here, first of all by decrementing the delivered segment
address by 1. This reduces the effective address, which you get by appending the
segment address and the offset address, by 16. Finally, by adding 12 to the offset
address, the effective address is reduced by only 4 and points to the desired memory
location. The address of the first MCB can then be taken from this memory
location without any problems.

The loop which runs through all MeBs and analyzes them begins with this
address. First, some status information on the MCB and the memory it controls is
given. This includes:

• 	 the MCB number
its address in memory

122

Abacus 6.9 Memory AllocaJ.ionfrom DOS

the address of the memory it controls
the contents of the ID field ("M" or HZ")
the address of the accompanying PSP (independent of whether it
even exists)
the size of the accompanying storage area in paragraphs and bytes

Next, the contents of the storage area that belongs to it are examined. We get its
address by incrementing the segment address of the MCB by 1. The first thing
we11 determine is whether we're df'.aling with an environment block in this storage
area. We'll know for sure if we find the string COMSPEC= at the beginning of the
area. This string starts every environment block. If this string is found, the
program proceeds as though this were indeed an environment block, and it lists the
individual environment strings. In front of these, it lists the name of the program
the environment block belongs to, which is located at the end of the environment
block for DOS version 3.0 and higher.

If the storage area cannot be identified as an environment block, we could possibly
be dealing with a PSP, and therefore a transient or resident program. The program
will start from here if it finds the machine language command !NT 20H (code
OCDH, 020H) in the first two positions of the memory range. This command
starts every PSP.

If the program also does not run into this, it can't tell if the memory range
contains program code, data, or whatever. In this case, the program will send the
first 80 bytes of the storage area to the screen as a hex and ASCII dump, in order
to give you a chance to figure it out for yourself.

After this, the user is prompted to strike any key. When the keystroke is received,
the next MCB is examined, and the program will finally end when the last MCB
has been handled.

The following programs in Pascal and C produce the MCB dump. A BASIC
version could not be implemented here because this program works its way
through the entire memory, and BASIC offers only the DEF, SEG and PEEK
commands for this purpose. The use of these commands is too awkward in this
case and would detract from the real task of the program.

Since both programs are very similar in terms of the logic, function calls, and
variables used, they are described together in the following section.

Both access memory with FAR pointers, since the storage areas to be addressed are
outside of their data segments. While Turbo Pascal automatically uses FAR
pointers, C requires selection of the appropriate memory configuration through
Compact, Huge, Large or with the help of Cast operations, each of which
explicitly defines the task with a FAR pointer. This program goes the latter way,
so that it may also be compiled in a memory configuration that works with NEAR
pointers by default (Tiny, Small, Medium).

123

6. TIu! Disk Operating System 	 PC System Programming

Converting separately retrieved offset and segment addresses to one FAR pointer
presents a problem in both languages. This can be done in C with a macro, which
is already defined in the Include file DOS.H in Turbo C, but is missing in
Microsoft C. For this reason, the macro is defined within the C program, in case it
hasn't been previously defined. In Pascal, the address conversions happen with the
help of a small inline procedure, that enters both addresses directly into the
memory locations that form the pointer.

Beyond these brief remarks, the listings should be able to speak for themselves,
since they are fully documented.

Pascal listing: MEMP.PAS

1*********************************·******·**********··**••*************}
{* MEMP 	 *}
{*--*}
{* Description : displays the memory blocks allocated by DOS. *}

{*--*}
{* Author MICHAEL TISCHER *}
{* developed on : 08/22/1988 *}
{* last update : 08/22/1988 *}
1************·****_·*****************************···*·**********•••*.*.}

program MEMP;

uses DOS, CRT; 	 { bind in the DOS and CRT units

type 	BytePtr "'" byte; pointer to a byte }
Range = array[0 •. 1000] of byte; an area, anywhere in RAM }
RngPtr "'" Rangei { pointer to an area }

MCB - record a memory control block }
IdCode char; { I'M" = a block follows, "Z" "" end }

PSP word; segment address of the PSP }

Distance word; { number of paragraphs - 1 }

end;
MCBPtr = AMeB; pointer to an MCB
MCBPtr2 = AMCBPtr; { pointer to an MCBPtr
HexStr string [41'; { stores a four-digit hex string

var 	 CvHStr HexStr; { stores the converted hex string

1******************************·******·****··********·*****************}
{* GetDosVer: determines the DOS version *}
{* Input : none * }
{* Output: the DOS version number (30 for DOS 3.0, 33 for 3.3 etc.) *}
{*.**.*** •••**••••••••••••••••••••*••*******•••*.**** ••••********* •• ***}

function GetDosVer : byte;

var Regs : Registers; (stores the processor registers)

begin
Regs.ah :~ $30; (function no. for "Get Dos Version"
MsDos(Regs); { call DOS interrupt $21
GetDosVer := Regs.al * 10 + Regs.ah; { get version number

end;

{*•••***••••*••*•••••*•••*•••*.*.**••** ••••••*.*****.***••••*.***.**••• }
(* MK_FP: creates a byte pointer out of the segment and offset *)
{* addresses passed. *}

{* Input - Seq - segment to which the point should point *}
{* - Ofs = offset address to which the pointer should point *}
{* Output the pointer *}

124

Abacus 	 6.9 Memory Allocationfrom DOS

{* Info : The pointer returned can be cast to any type pointer *)
{***•••••••••••••••••••••••••** •••••••••••••••••••••** •••••••* ••••••••*}

{$F+) 	 This routine is intended for the FAR model and is
also suited for binding into a unit.

function MK_FP(Seg, Ofs : word) : BytePtr;

begin
inline 	 $8B / $46 / $08 / mov ax, [bp+8) (get segment address)

$89 / $46 / $FE / mov [bp-2),ax (and put in pointer)

$8B / $46 / $06 / mov ax, [bp+6) (get offset address)

$89/ $46/ SFC); mov [bp-4),ax (and put in pointer)

end;

(SF-) 	 { NEAR routines possible again)

•••**•••••••••••••••••••••••••••••••• ** •••••• ** ••• ** •••• **•••****.*•••• }
{* HexString: creates a 4-digit hex string out of the number passed *)
{* Input : - HexVal • the number to be converted *)
(* Output : the hex str"ing *)
{*•••***•• ** ••***••••••••••••• **.*****••••••••••••• ** •••• ***** ••••*****}

function HexString(HexVal : word) : HexStr;

var 	counter, (loop counter
Nibble byte; { the lowest nibble of the word

begin
CvHStr :- 'xxxx'; { initialize the string
for Counter:-4 downto 1 do (run through the 4 digits of the string

begin

Nibble := HexVal and SOOOf; (leave just the lower 4 bits

if (Nibble > 9) then (convert to a letter?

CvHStr[Counter) •• chr(Nibble - 10 + ord('A·)) (yes

else (convert to a number

CvHStr[Counter •• chr(Nibble + ord('O'));

HexVal := HexVal shr 4; shift HexVal 4 bits to the right

end;
HexString := CvHStr; 	 (return the created string

end;

•••• ** •••••••*** ••••••••••••••••••••••** ••••••••••••••••••••••••••••••*}

(* FirstMCB: Returns a pointer to the first MCB. *)
(. Input : none *)
(* Output : pointer to the firs MCB *)
(* ••••••** •••••••••••••** ••••• *** •••••••••••••••••*** ••••••••••••••• **.}

function FirstMCB : MCBPtr;

var Regs 	 : Registers; (stores the processor registers)

begin
Regs.ah := S52; { ftn. no.: get address of the DOS info block
MsDos (Regs); (call DOS interrupt $21

(*-- ES: (BX-4) points to the first MCB, create pointer -------------*)

FirstMCB :- MCBPtr2(MK_FP(Regs.ES-1, Regs.BX+12))A;
end;

(* •••••••**** •••••••***********************•••••••••••**************.**)
(* Dump: outputs hex and ASCII dump of a memory block. *)
(* Input - DPtr - pointer to the memory block to be dumped *)
(* - Num - number of lines to dump (16 bYtes each) *1
{* Output none *)
{.**********************••• *••••** •• * ••••• * •••**.*.***.****************}

procedure Dump(DPtr : RngPtr; Num(Numl : byte);

125

6. The Disk Operating System 	 PC System Programming

type HBStr - string[2]; 	 stores 2-digit hex numbers

var 	 Offset, offset in the memory block
Z integer; (loop Counter
HexStr HBStr; stores a hex number for hex dump

procedure HexByte(HByte byte) ;

begin
HexStr[l] := chr((HByte shr 4) + ord('O')); first digit
if HexStr[l] > '9' then convert to letters?

HexStr[l] := chr(ord(HexStr[l]) + 7); (yes
HexStr[2] :- chr((HByte and 15) + ord('O')); (second digit
if HexStr[2] > 'g' then convert to letters?

HexStr[2] .- chr(ord(HexStr[2]) + 7); (yes
end;

begin
HexStr :== IZ Z'; (initialize the hex string
writeln;
write('DUMP I 01234567B9ABCDEF 00 01 02 03 04 05 06 07 OB');
writeln(' Og OA DB OC OD DE OF');
write ('-----+--');
writeln('--------------------------');
Offset :- 0; (start with the first byte in the block
while Num>O do (run through the loop ANZ times

begin

write (HexString(Offset) , ' I ');

for z:-o to 15 do (process 15 bytes

if (DptrA[Offset+Z] >- 32) then valid ASCII character?
write(chr(Dpt~A[Offset+Z])) (yes, output character

else (no
write(' '); output space instead of character

write (' '); { set cursor to the hex portion
for Z:=O to 15 do (process 15 bytes

begin
HexByte(DPtrA[Offset+Z]); convert byte to hex
write (HexStr, , '); (output hex string

end;
writeln;
Offset := Offset + 16; (set offset in the next line
Dec(Num); decrement number of remaining lines

end;
writeln;

end;

(***********.*******************************•••••**********************)
(* TraceMCB: runs through the list of MCB's. *)
{* Input : none *}
(* Output : none *)
{***********.********•••*.*******************.*.****••*******.*********}

procedure TraceMCB;

const ComSpec : array[0 •• 7} of char 'COMSPEC=';

var 	 CurMCB{CurMCB} : MCBPtr;
Done boolean;
Key char;
NrMCB, { number of current MCB
Z integer; { loop counter
MemPtr Rngptr;
DosVer byte; (DOS version number

begin
DosVer := GetDosVer; get DOS version
Done :- false;
NrMCB :- 1; { the first MCB is number 1
CurMCB '- FirstMCB; get pointer to the first MCB
repeat { follow the MCB chain

126

Abacus 6.9 Memory Allocation from DOS

if CurMCBA.IdCode = 'Z' then { last MCB reached?
Done : = true; { yes

writeln('MCB number NrMCB) ;
writeln('MCB address HexStri ng (seg (CurMCBA)), ':',

HexString(ofs(CurMCBA»);
writeln('Memory addr. HexString (succ (seg (CurMCBA))), ':',

HexString(ofs(CurMCBA»);
writeln('ID CurMCBA.IdCode);
writeln('PSP address " HexString(CurMCBA.PSP), ':0000');
writeln('Size = " CurMCBA.Distance, ' paragraphs "

'(" longint(CurMCBA.Distance) shl 4, , bytes I');
write ('Contents - ');

{*-- is it an environment? ---------------------------------------*)
Z := 0; { start the comparison at the first byte
MemPtr := RngPtr(MK FP(succ(Seg(CurMCBA», 0»; {pointer in RAM
while ((Z<-7) and (ord(ComSpec[Z]) - MemPtrA[Z])) do
Inc(Z); { set Z to the nest character
if Z>7 then { was the string found?

begin yes, this is an environment
writeln('environment');
MemPtr :- RngPtr(MK FP(succ(Seg(CurMCBA», 0»;
if DosVer>- 30 then- { DOS Version 3.0 or higher?

begin { yes, get program name
write('Program name = ');
Z :- 0; { start with the first byte
while not ((MemPtrA[Z] =0) and (MemPtrA[Z+l]~O)) do

Inc (Z); { search for empty string
z : = Z + 4; set Z to the start of the prog name
if MemPtrA[Z]<>O then { is there a prog. name here?

begin
repeat { run through the program name

write(chr(MemPtrA[Z])); { output characters
Inc (Z); { process the next character

until MemPtrA[Z]=O; { to the end of the string
writeln;

end
else { program name not found)
writeln (' unknown') ;

end;

{*-- output the environment strings --------------------------*)
writeln(f13,'10, 'Environment strings');
Z := 0; { start with the first byte in the allocated block
while MemPtrA[Z]<>O do { repeat until empty string

begin
write ('
repeat { output a string

write (chr {MemPtrA[Z])); print a character
Inc (Z); process the next character

until MemPtrA[Z]=O; { to the end of the string
Inc (Z); { set to the start of the next string
writeln; { end line

end
end

else { no envrionment)
begin

{*-- is it a PSP? --*)
{*-- (starts with command INT 20 (code-$CD $20» -------------*)

MemPtr :- RngPtr(MK FP(succ(seg(CurMCBA», 0»; {set pcinter
if ((MemPtrA[O]=$CD) and (MemPtrA[1]=$20) then

begin { it's a PSP
writeln('PSP (with program following)');

end
else { the command INT 20 was not found)

127

6. The Disk Operating System PC System Programming

begin
writeln('unidentifiable (program or data) ');
Dump (MemPtr, 5); { dump the first 5x16 bytes)

end;

end;

write('----------==----==-~==--_=_______==~__= __ ');

writeln('------==--===== Press a key ---'I;
if (not Done) then
begin { set pointer to the next MCB)

CurMCB :- MCBPtr(MK FP(seg{CurMCB') + CurMCB'.Distance + 1, 0));
Inc(NrMeB); - { increment the number of the MCB ,
Key := ReadKey;

end;
until { Done) { repeat until the last MCB is processed ,

end;

{**.*****.***}
(** MAIN PROGRAM **'
{*******************•••****•••*.***********************•••• ********•• **}

begin
ClrScr; clear the screen
TraceMCB; run through the MeBs

end.

C listing: MEMC.C

/************* •••***************.*****************••**********.********/
1* M E M C *1
1*--*1
1* Description : Displays the memory blocks allocated by DOS *1
1*--*1
1* Author MICHAEL TISCHER *1
1* developed on : 08/23/1988 *I
1* last update : 05/1211989 *1
1*--*1
1* (MICROSOFT C, * I
1* creation : CL lAS IZp memc.c *1
1* call : MEMC *I
1*--*1
1* (BORLAND TURBO CJ *1
1* creation : via the Compile-Make command *1
1* (no project file) *I
,********* •• ****************** •••**************************************1

finclude <dos.h>

'include <stdlib.h>

typedef unsigned char byte; 1* build ourselves a byte *1
typedef unsigned segadr; 1* a segment address *1
typedef byte boolean;
typedef byte far *FB; 1* FAR pointer to a byte *1

/*=- Constants =========-===========================-======-==-==----=*'

'define TRUE 1* needed for working with boolean *1
'define FALSE 0

1*=- Structures and unions ====~~~~=~-============---~===~==-======-=-*I

struct MCB { 1* describes an MCB in memory *1
byte '* 'M' = a block follows, 'Z' = end */
segadr psp; 1* segment address of the PSP *1
unsigned distance; 1* number of paragraphs reserved *1

128

•••••

Abacus 6.9 Memory Allocation from DOS

} ;

typedef struct MCB far *MCBPtr; '* FAR pointer to an MCB *'

'*-- Macros ----=-==---=======-=======--====---===---------=====----==*'

.ifndef MK_FP '* was MK FP defined already? *'

.define MK_FP(seg, ofs} «void far *) «unsigned long) (seg)«161 (ofs»)

.endif

/.***••••••••••***.** ••• ***.****.*****••••••••••••••••••••• **•••***

Function :FIRST M C B *
**------------------------------=-------------------------------------*.

Description Returns a pointer to the first MCB.

Input parameters : none

Return value : Pointer to the first MCB

*******************•••***********.*.*.*************************.***
****/

MCBPtr first_mcb()
{
union REGS regs; '* stores the processor registers *'
struct SREGS sreqs; '* stores the seqrnent registers *'

regs.h.ah = Ox52; '* ftn. no.: get address of the DOS info block *'
intdosx('regs, ®s, &sregs); '* call DOS interrupt Ox21 *'

'*-- ES:(BX-4) points to the firs MCB, create pointer ---------------*'

return(*«MCBPtr far *) MK_FP(sregs.es-l, regs.x.bx+12 »);
}

j************.*********•••***** ••••******************* *.*******•••******
Function : DUM P *

--
Description Outputs hex and ASCII dump of a memory range.
Input parameters - bptr pointer to a memory area

- num : number of dump lines (each 16 bytes)
Return value none

*********************.***.********.************************************/

void dump (FB bptr, byte num)
(

FB lptr; '* running pointer for printing a dump line *'
unsigned offset; '* offset address relative to BPTR *'
byte i; '* loop counter *'

printf ("\nDUMP I 01234567S9ABCDEF 00 01 02 03 04 as 06 07 OS");
printf(" 09 OA OB OC aD OE OF\n");
printf("-----+--"};
printf ("-----------------\n");

for (offset-a; num-- ; offset +- 16, bptr +- 16)
{ '* run through the loop NOM times *'
printf ("\04x I ", offset);
for (lptr~bptr, i=16; i-- ; ++lptr) j* print character as ASCII *'
printf ("\cM , (*lptr<32) ? •• *lptr);

printf(" ");
for (lptr~bptr, i-16; i-- ; '* output character as hex *'
printf ("\02X ., *lptr++);

printf ("\n"); '* move to the next line *'
}

/***
* Function : T R ACE M C B
------------------------------=-------------------------------------

129

http:regs.h.ah

6. The Disk Operating System PC System Programming

Description Traces the chain of MCB's. *
Input parameters none *
Ret urn va1 ue none

****************.* ••**.*************.*****.********•••**************.**,

void trace mcb ()
{
static char fenv[] - (1* first environment string *1

'C', '0', 'M', '5', 'P', IE', 'C', '_I
I;

MCBPtr cur mcb; 1* pointer to the current MeB *1
boolean done; 1* TRUE if the last MCB was found *1
byte nr_mcb, 1* number of the current MeB *1

i; 1* loop variable *1
FB lptr; 1* running pointer in the environment *1

done = FALSE; 1* now we get going *1
nr mcb = 1; 1* the first MeB is number 1 *1
cur mcb - first_mcb{); 1* get pointer to the first MeB *1
do - 1* process.the individual MCB's *1

{
if (cur mcb->id code -= 'Z') 1* last MeB reached? *1
done - TRUE; - 1* yes *1

printf("MCB number = td\n", nr mcb++);
printf("MCB address 'Fp\n", cur_mcb);
printf("Mernoryaddr. = tNp:OOOO\n", FP SEG(cur mcb)+l);
printf("ID tc\n", cur mcb->id code);
printf("PSP address tFp\n°O, (FB) MK_FP(cur_mcb->psp, 0));
printf("Size \u paragraphs (tlu bytes)\n",

cur mcb->distance, (unsigned long) cur mcb->distance « 4);
printf("Contents = H);

1*-- is it an environment? ---*1

for (i-O, lptr=(FB) cur mcb+16;1* compare first ENV string with FENV *1
(i<sizeof fenv)-" (* (lptr++) -- fenv[i++J) ;)

,
if -- sizeof fenv) 1* was a string found? *1

(1* yes, it's an environment *1
printf (OOenvironment\nU);
if (osrnajor >= 3) 1* DOS version 3.0 or higher? *1

(1* yes, get program name *1
print! ("Program name == ");
for (; ! (* (lptr++) --0 " *lptr~~O)

1* find last ENV string *1
if (* (lptr +- 3) 1* is there a program name here? *f

(1* yes *f
for (; *lptr ; /* run through the program name *f
printf ("tc·, * (lptr++)); 1* output a character *1

else 1* no program name was found *1
printf(Uunknown");

printf ("\n"); f* move to the next line *1
I

1*-- output the environment strings ------------------------------*1

printf("Environment strings\nU);

for (lptr=(FB) cur mcb +16; *lptr ++lptr)

(1* output a string *f
printf (" 00);

for (; *lptr ;) 1* run through the string to a NUL character *1
printf ("tc", * (lptr++)); 1* output a character *1

printf ("\n") ; f* move to the next line *f
I

else 1* no envrionrnent *1
{

130

Abacus 6.9 Memory Allocation from DOS

/*- is it a PSP? ---*/
/*-- (introduced with the command INT 20 (Code-oxCO Ox20» -------*/

if (*«unsiqned far *) MK FP(cur mcb->psp, 0 » - Ox20cd)
printf("PSP (with subsequent proqram)\n"); /* yes */

else /* the command INT Ox20 was not found */
{
printf("unidentifiable (proqram or data)\n");
dump ((FB) cur_mcb + 16, 5); /* dump the first 5x16 bytes */

)

printf("==-=-------===--=-----=======---==--==--");

printf("==-=====----- Please press a key ~=\n");

if (!done) /* another MeB? */

(/* yes, set pointer to the next MCB */
cur_mcb - (MCBPtr)

MK_FP(FP_SEG(cur_mcb) + cur mcb->distance + 1, 0);
qetch(); - /* wait for a key */

)

)

while (! done); /* repeat until the last MeB has been processed *j
)

/********************.***********************************.*.*.***** •• **/
/** MAIN PROGRAM **/
/***.******************.*/

void main ()

(
printf ("\nMEMC (c) 1988 by Michael Tischer\n\n");

trace_mcb () ; /* trace the chain of MCB's */

}

131

6. The Disk Operating System PC System Programming

6.10 DOS Filters

Filters are programs, routines or utilities which accept input and modify the data
for output. Filters do the same on the opemting system level: characters are passed
to these filters as input, the filters modify the characters then send the modified
characters as output. This manipulation takes many forms. Filters can sort data,
replace certain data with other data, encode data or decode data.

DOS has three basic filters available:

FIND searches input for a specified set of characters

SORT armnges text or data in order

MORE formats text display

These filters perform simple redirection of standard input/output. They read
characters from the standard input device, manipUlate the characters as needed, then
display them on the standard output device. The standard input device under OOS is
the keyboard, and the standard output device is the monitor. DOS versions of 2.0
and higher allow the user to redirect the standard input/output to files. Therefore, a
filter can read characters from the keyboard or from a file, depending on the standard
input device selected. This is possible by using a filter in conjunction with one of
the OOS handle functions for reading and writing. DOS offers five handles:

0 Standard input CON (Keyboard)
1 Standard output CON (Screen)
2 Standard error output CON (Screen)
3 Standard serial interface AUX
4 Standard printer PRN

If the user calls a program from the OOS level, the < character redirects input and
the> character redirects output. In the following example, the input comes from
the file IN.TXT instead of the keyboard. The output is written to the file
OUT.TXT instead of the screen:

sort <in.txt >out.txt

SORT

After the user enters the above command, DOS recognizes that a program named
SORT should be called. Then it encounters the expression <IN.TXT which
redirects the standard input. This occurs by assigning the handle 0 (standard input,
which formerly pointed to the keyboard) to the file IN.TXT. The expression
>OUT.TXT resets handle 1 to the OUT.TXT file instead of the screen. The affected
handle is first closed, and then the redirected file is opened.

132

Abacus 6.10 DOS Filters

Once the command processor finishes with the command line it calls the SORT
program using the EXEC function (DOS function 4BH). Since the program called
with the EXEC function has all the handles of the calling program available, the
SORT program can input/output characters to handles 0 and 1. Where the
characters originate is unimportant to the program.

After the SORT program completes its work, it returns control to the command
processor. The command processor resets the redirection and waits for further input
from the user.

Pipes

The filter principle as supported by DOS becomes especially powerful through
pipes. This expression comes from the idea of a pipeline used for transporting oil
or gas. DOS pipes have a similar function: they carry characters from one program
to another and permit the connection of various programs with each other.

When this happens, characters output from one program to the standard output
device can be read by another program from the standard input device. As in the
redirection of the standard input/output, the two programs do not notice the
pipelines. The difference between the two procedures is that under redirection of the
standard input/output devices, data can be redirected only to one device or file,
while the use of pipes allows data transfer to another program.

Combined filters

Pipes allow the user to connect multiple filters. The pipe character I is inserted
between the programs to be connected. An example should make this more
understandable: A text file named DEMO.TXT is sorted and then displayed on the
screen in page format. Even though this task appears to be very complicated at
first, it can be performed easily using two DOS filters: SORT and MORE. SORT
sorts the file and MORE displays the file on the screen in page format.

The question is, how can you tell the command processor to do these things? First
SORT is used. This filter is told to sort the file DEMO. TXT. The redirection of
standard input can be used as illustrated at the beginning of the chapter:

SORT <DEMO. TXT

After the user enters this command, SORT sorts the file DEMO.TXT then
displays the file on the screen. This display would be much easier to read in page
format. Formatted output can be implemented by redirecting the output from
SORT to a file (for example TEMP.TXT) and displaying this fIle using the
MORE command. The following sequence of commands do this:

SORT <DEMO. TXT >TEMP.TXT

MORE <TEMP. TXT

133

6. TIu! Disk Operating System 	 PC System Programming

You can use a pipe to connect the SORT filter and the MORE filter, saving the
user typing time. The following command line sends the output from SORT
directly to MORE and immediately displays the sorted file in page format:

SORT <DEMO. TXT I MORE

Any number of filters can be connected using pipes. DOS always executes these
pipelined filters from left to right. It sends the output from the first program as
input to the second program, the second program's output as input to the third
program, etc. The last program can again force the redirection of the output with
the > character so that the final result of the whole program or filter chain travels
to a file or other device instead of the screen.

Note: 	 DOS cannot send data from one filter directly to another because it
would have to execute both filters simultaneously, and the current
version of DOS doesn't have multiprocessing capabilities. Instead,
the following method is used. The input calls the first filter and
redirects its output to a pipe file. After the first filter ends its
processing, it calls the second filter but redirects its input to the pipe
file to read in the output from the first filter. This principle applies
to all filters. The pipe file is stored in the current working directory.

The word "dump" is a computer buzzword for a way to display the contents of a
file in ASCII characters and/or hexadecimal numbers. The DUMP programs below
performs this task as a filter. As the contents are displayed in ASCII format,
DUMP differentiates between normal ASCII characters (letters, numbers, etc.) and
control characters such as carriage return, linefeed, etc. These control characters are
displayed in mnemonic form (e.g., <CR> for carriage return and <LF> for
linefeed). This DUMP filter is fairly simple in structure, yet it can be very useful
to quickly examine a file's contents.

The structure of the DUMP program is typical for a filter. Since DUMP displays a
maximum of nine ASCII characters and/or hexadecimal codes per line, it asks for
nine characters by using the read function from the standard input device. If not
enough characters are available, it reads what characters are available. DUMP
places these characters in a buffer, then converts the characters into ASCII
characters and hex codes. This buffer will accept a comple.te line of 78 characters.
When the buffer processing finishes, the filter uses the handle to write to the
standard output device. This process is repeated until no more characters can be read
from the standard input device.

The following programs are written in Pascal, C and assembly language. Note that
there isn't a BASIC version. The reason is that BASIC, as an interpreted language,
is unsuitable for developing a filter which can be called from the DOS level. A
BASIC compiler would be required for this task.

134

http:comple.te

Abacus 	 6.10 DOS Filters

Pascal listing: DUMPP.PAS

{******** •• ************ •• ******************************.*************}
(* 	 DUM P P *J
(*--*J
{* Task a Filter, which reads in characters from the *}
(* Standard input device and outputs them *J
(* as Hex and ASCII dump on *J
(* the Standard output device *J

{*--*}
{* Author MICHAEL TISCHER *}
{* developed on : 08/08/87 *}
(* last Update : 05/04/89 *)

(*--*)
{* Info This program can only be called from the *}
(* DOS level after compiling to an EXE file *)
(* with TURBO *)
{*.-.-._.___----_._._-----_._._-----_._._-_._.-***************}

program DUMP;

Uses Dos; 	 (Add DOS unit

($V-) 	 suppress length test on strings

const 	NUL 0; ASCII-Code NUL-character

BEL = 7; ASCII-Code Bell character

BS 8; ASCII-Code Backspace

TAB - 9; ASCII -Code Tab

LF = 10; ASCII-Code Linefeed

CR = 13; ASCII-Code Carriage Return

EOF 26; ASCII-Code End of File

ESC - 27; ASCII-Code Escape

type 	SZText - string[3]; { passes the name of a special character
DumpBf array[1 .• 80] of char; (accepts the output Dump

(*-*--------------._._-_._.__....------_._.-----------****.**********)
(* SZ writes the name of a control character into a Buffer *)
(* Input see below *)
(* OUtput none *J
(* Info after the call of this procedure the pointer *)
(* which was passed, points behind the last character of *)
{* the control character name in the Dump-Buffer *}
{**}

procedure SZ(var Buffer DumpBf; { Text entered here
Text SZText; { Text to be entered

var Pointer integer) ; addr. of text in buffer

var Counter : integer;

begin
Buffer [Pointer] :- '<'; (leads control character
for Counter := 1 to length(Text) do (transfer Text to Buffer
Buffer[Pointer + counter] := Text[Counter];

Buffer[Pointer + Counter + 1] := '>'; (terminates control char
Pointer := Pointer + Counter + 2; { Pointer to next character

end;

{*-_._._--*---_.... _----_..._-----_._.--_._._.... _-*--***** •• ********}

(* DODUMP reads characters in and outputs them as Dump *)
(* Input : none *)
(* Output : none *)
{* •••••_._--------*--*.**}

procedure DoDump;

135

6. The Disk Operating System PC System Programming

Endc :- false; (not the End
repeat

Regs. ah :- $3F; (Function number for reading handle

Regs.bx .= 0; the Standard input device is handle 0

Regs.ex .= 9; (read in 9 characters

Regs.ds '= seg(NewByte); (Segment address of the buffer

Regs.dx '= ofs(NewByte); (Offset address of the buffer

MsDos (Regs); (Call DOS-Interrupt 21H

if (Regs.ax - 0) then Endc '= true; (no character read?

if not(Endc) then

begin (NO
for Counter :- 1 to 30 (Fill buffer with blanks
do DumpBuf [Counter) := , ';

DumpBuf[31) '= '219; Place Separator between Hex and ASCII
NextA :- 32; ASCII-characters follow separator
for Counter 1 to Regs.ax do (start processing characters
begin (read in

HexChr :- ord(NewByte[Counter) shr 4 + 48; (Hex top 4 bits
if (HexChr > 57) then HexChr :- HexChr + 7; (convert char
DumpBuf[Counter * 3 - 2) := chr(HexChr); (store in buffer
HexChr :- ord(NewByte[Counter) and 15 + 48; (Hex bot. 4 bits
if (HexChr > 57) then HexChr := HexChr + 7; (convert number
DumpBuf[Counter * 3 - 1J := chr(HexChr); (store in buffer
case ord(NewByte[Counter) of (test ASCII-Code

NUL SZ(DumpBuf, 'NUL', NextA); (NUL-character
BEL SZ(DumpBuf, 'BEL', NextA); (Bell character
BS SZ(DurnpBuf, 'BS' , NextA); (Backspace
TAB SZ(DumpBuf, 'TAB', NextA); (Tab
LF SZ(DurnpBuf, 'LF' , NextA); (Linefeed
CR SZ(DurnpBuf, 'CR' , NextA); Carriage Return
EOF SZ (DurnpBuf, ' EOF', NextA); (End of File
ESC SZ(DurnpBuf, 'ESC', NextA); (Escape
else
begin (normal character

DumpBuf[NextA] := NewByte[Counter); (Store ASCII-character
NextA '= succ(NextA) (Set pointer to next character

end
end;

end;
DurnpBuf[NextA] :- '219; (Set End character
DumpBuf[NextA+1) :- chr(CR); Carriage-Return followed by Line
DumpBuf[NextA+2] :- chr(LF); (feed to buffer end
Regs.ah '= $40; (Function number for writing handle
Regs.bx :- 1; (Standard output device is handle 1
Regs.cx '= NextA+2; (Number of characters
Regs.ds := seg(DumpBuf); { Segment address of the buffer
Regs.dx '= ofs(DurnpBuf); (Offset address of the buffer
MsDos (Regs); { Call DOS-Interrupt 21H

end;
until Endc; { repeat until no more characters are available

end;

t**···*****··***.********** ••• *}
(* MAIN PROGRAM •)
{**********•• ***** ••*********•• ***** ••• *.********••*********.********j

begin
DoDump; (Output Dump)

end.

136

Abacus 6.10 DOS Filters

C listing: DUMPC.C

/********.*••******.*****.*************.****.***~***** ***************/
1* DUMPC *1
1*--*1
1* Task a Filter which reads in characters from the *1
1* Standard input and outputs them as *1
1* Hex and ASCII-Dump on *1
1* the Standard output device *1
1*--*1
1* Author MICHAEL TISCHER *1
1* developed on : 08/14/87 *1
1* last Update : 04/08/89 *1
1*--*1
1* (MICROSOFT C) * 1
1* Creation MSC DUMPC; *1
1* LINK DUMPC; *1
1* Call DUMPC [<Input] [>Output] *1
1*--*1
1* (BORLAND TURBO C) *1
1* Creation : tcc dumpc *1
1* Call : DUMPC [<Input] [>Output] *1
/*** ***************j

tinclude <stdio.h> 1* include Header-files *1
tinclude <dos.h>

fdefine byte unsigned char

fdefine NUL a 1* Code of NUL-character *1
'define BEL 7 1* Code of Bell *1
'define BS 8 1* Code of Backspace-key *1
'define TAB 9 1* Code of Tab-key *1
fdefine LF 10 1* Code of Linefeed *1
'define CR 13 1* Code of Return-key *1
fdefine ESC 27 1* Code of Escape-key *1

fdefine tohex(c) («c)<10) ? «c) I 48) : «c) + 'A' - 10))

j*** ***************/
1* GETSTDIN: reads a certain number of characters from the Standard *1
1* input device into a Buffer *1
1* Input see below *1
1* Output Number of characters read *1
1*** ***************/

unsigned int GetStdIn(Buffer, MaxChar)
char *Buffer; 1* Pointer in Character-Vector, which accepts data *1
unsigned int MaxChar; 1* maximum of characters to be read in *1

union REGS Register; 1* Register-Variable for Interrupt-Call *1
struct SREGS Segment; 1* accepts the Segment register *1

segread(&Segment); 1* read content of Segment register *1
Register.h.ah - Ox3F; 1* Function number for *1
Register.x.bx = 0; 1* the Standard input device is handle 0 *1
Register.x.cx = MaxChar; 1* Number of Bytes to be read *1
Register.x.dx = (unsigned int) Buffer; 1* Offset address of Buffer *1
intdosx(&Register, &Register, &Segment); 1* Call Interrupt 21H *1
return(Register.x.ax); 1* Number of Bytes read to caller *1

I

1**/
1* STRAP Attach character to string *1
1 * Input : see below *1
1* Output : Pointer behind the last added character *1
/****************************** •••**.***~*.*****.***** ***************/

137

http:return(Register.x.ax
http:Register.x.dx
http:Register.x.cx
http:Register.x.bx
http:Register.h.ah

60 The Disk Operating System 	 PC System Programming

char *Strap(Strinq, Textpointer)
char 	*String, 1* the source string *1

*Textpointer; /, Pointer to the text to be attached */

while (*Textpointer) /* repeat until '\0' detected */
*String++ = *Textpointer++; /* transmit character */

return (String) ; /* Pass Pointer to calling function */
)

j**.**.****.**** •••**** •• *******.*** •••*** •••• *** ••••• ******** •••****/
/* DODUMP reads the characters in and outputs them as Dump */
1* Input : none *1
1* Output : none *I
,.****•••************.*****•••********* •••• *** •••• **** •• ***********•• /

void DoDurnp ()

char 	NewByte[9] , I*Accepts the characters read */
DurnpBuf[80] , 1* accepts a line of DUMP */
NextAscii; / points to next ASCII-character in the buffer */

byte 	i, 1* Loop counter */
Readbytes; /* Number of bytes read in */

DurnpBuf[30] = 219; /* Set separator between Hex and ASCII *1
while«Readbytes = GetStdIn(NewByte, 9» i= 0)

/-,It as long as characters are available *1

for (i = 0; i < 30; DurnpBuf[1++1 = ' 0);
/* Fill buffer with spaces */

NextAscii = &DurnpBuf[3ll; /* ASCII-characters start here */
for (i = 0; i < Readbytes; i++)

/* process all characters read in *1
{

DumpBuf [i * 31 tohex ((byte) NewByte [i 1 » 4);

1* convert Code in Hex */

DumpBuf[i*3+11 = tohex «byte) NewByte[i 1 & 15) ;
switch (NewByte [i 1) 1* evaluate ASCII-Code *1

{
case NUL NextAscii = Strap(NextAscii, "<NUL>") ;

break;
case BEL NextAscii Strap (NextAscii, u<BEL>") ;

break:
case BS NextAscii Strap (NextAscii, "<BS>");

break;
case TAB NextAscii = Strap(NextAscii, "<TAB>II);

break:
case LF NextAscii Strap (NextAscii, "<LF>") ;

break:
case CR NextAscii Strap (NextAscii, "<CR>"):

break:
case ESC NextAscii Strap (NextAscii, u<ESC>"):

break.;
case EOF NextAscii Strap (NextAscii, "<EOF>") ;

break.;
default *NextAscii++ = NewByte[il;

)

*NextAscii = 219; /' End character for ASCII representation */
, (NextAscii + 1) = . \r'; 1* Carriage-Return to End of buffer */

~ * (NextAscii +2) '\0' ; 1* NUL converted to LF on output */
puts (DurnpBuf) ; /' Write String on Standard output device */

I

/********.*.* •••••••*.*.*******.**** ••***** ••• ********* ••• ***••• *****,
/** MAIN PROGRAM 	 **1
,.****.********.*** •••• ** ••***** •••• *** ••••• *****.**** ••• *** •• *****•• j

138

Abacus 6.10 DOS Filters

void main ()

DoDump() ; /* Character input/output */
l

Assembler listing: DUMP.ASM

i*··*************···***************········*****···*** ******.******•• ;
;* DUMP *;
:*---*;
;* Task: A Filter which reads characters from the Standard input *;
;* and outputs them as Hex- and ASCII-Dump on *;
;* the Standard output device *;
:*---*:
; * Author MICHAEL TISCHER *;
;* developed on : 08/01/87 *;
;* last Update : 04/08/89 *.
:*---*;
; * assemble MASH DUMPA: *.
; * LINK DUMPAi *;
:* (important)... EXE2BIN DUMPA DUMP.COM *:
:*---*:
;* Call : DUMP [<Input] [>Output] *;

i·····*****·****·····**····***····****···*****········ .*****.*********;

;-- Constants ====---=============---==-=~--===============-==========

NUL equ 0 ;ASCII-Code NUL-Character
BEL equ 7 ;ASCII-Code Bell
BS equ 8 ;ASCII-Code Backspace
TAB equ 9 ;ASCII-Code Tabulator
LF equ 10 ;ASCII-Code Linefeed
CR equ 13 ;ASCII-Code Carriage Return
EOF equ 26 ;ASCII-Code End of File
ESC equ 27 ;ASCII-Code Escape

;== Program starts here ============-================

code segment para 'CODE' ;Definition of CODE-Segments

org 100h

assume cs:code, ds:code, es:code, ss:code

;-- Start routine --

dump label near

;-- Read in 9 Bytes from Standard input device -------------

xor bX,bx ; Standard input has the handle 0
mov cx,9 ;read in 9 characters
mov dx,offset newbyte ;Address of the buffer
mov ah,3Fh ; Function code for handle reading
int 21h ;Call DOS-Function
or ax,ax ;characters read in?
jne dodump ;YES --> process line
jmp dumpend ;NO --> DUMPEND

dodump: mov dx,ax ;record number of characters read

;-- Fill output buffer with Spaces -------------------------

mov ex,lS ;15 Words (30 Bytesl
mov aX,2020h ;ASCII-Code of .. " to AH and AL
mov di,offset dumpbuf ;the Address of the output buffer
cld ;increment on String commands
rep stosw ;Fill buffer with Spaces

139

http:DUMP.COM

6. The Disk Operating System PC System Programming

;-- Construct Output Buffer -------------------------------

bytein:

sotest:

noso:

hex:

nobal:

hexout:

mov cx,dx
mov di,oifset
mov bX,offset
mov si,offset

mov ah, [bxj
push si
mov si, offset
mov dx,offset
add dx,6
lodsb
cmp al,255
je noso
cmp ah,al
jne sotest

Code was a

push ex
mov si,dx
lodsb
mov el,al
rep movsb
pop cx
pop si
mov al,ah
jmp short hex

pop si
mov al,ah
stosb

mov al,ah
and ah,11110
shr al,I
shr al,l
shr al,l
shr al,l
or aX,3030h
cmp a1,"9"
jbe nobal

;Get number of characters read in
dumpbuf+31 ;Position Ascii-Codes in the buffer
newbyte ;Pointer to input buffer
dumpbuf ;Position for Hex-Codes in Buffer

;Read in Byte
;store SI on the Stack

sotab ;Address of special character table
sotext-6 ;Address of special character text

;next entry in special text
;Load code from special char table
;Reached end of table?
;YES --> no special character
ida codes agree?
;NO --> test next table element

special character --------------------------

add aI, "Au_ltlu_9
crnp ah, "9"
jbe hexout
add ah,"A"-"1"-9
mov [sij,ax
add si,3

inc bx
loop bytein

mov al,219
stosb

mov aX,LF shl 8 + CR
stosw

; Store Counter
;copy DX to SI
tread number of char control codes
;transfer number of characters to CL
;copy designation into buffer
; get counter
; ret urn 51 from Stack
;copy character to AL
;calculate Hex-Code

;return 51 from Stack
;copy character to AL
; store in buffer

;Code of character to AL
;mask upper 4 Bit in AM
;shift AL right 4 Bits

;convert AH and AL into ASCII-Codes
lis AL a letter?
;NO --> no correction
;correct AL
lis AM a letter?
;NO --> no correction
;correct AH
;store Hex-Code in buffer
;point to next Position

;set pointer to next Byte
; process next Byt e

; set separator

;CR and LF terminate buffer
;write in buffer

Send Dump to the Standard output device

mov bx,l
mov cx,di
sub cx,offset durnpbuf
mov dx,offset dumpbuf
mov ah,40h
int 21h
jmp dump

;Standard output 1s handle 1
;determine number of characters to be
; transmitted
;Address of buffer
; Function code for handle
;call DOS-function
;read in next 9 Bytes

140

Abacus

dumpend

;== Data

newbyte
dumpbuf

sotab

sotext

code

6.10 DOS Filters

label near

rnov aX,4COOh ;Function number for ending program

int 21h ;end program with End code

=~~=======================--=---====-==============--=-=======

db 9 dup (?)
db 30 dup (?), 219
db 49 dup (?)

db NUL,BEL,BS,TAB
db LF,CR,EOF,ESC
db 255

equ this byte
db 5,"<NUL>"
db 5, "<BEL>"
db 4,'"<85> II

db 5, "<TAB>"
db 4,"<LF> "
db 4,"<CR> H

db 5, "<EOF>1t
db 5,"<ESC>"

ends
end dump

;the 9 Bytes read in
;the output buffer

;Table of control characters

; Text of special characters
; NUL
; Bell
; Backspace
;Tabulator
; Linefeed
;Carriage-Return
; End of File
; Escape

;End of CODE-Segment

141

6. The Disk Operating System PC System Programming

6.11 <Ctrl><Break> and Critical Error Interrupts

DOS offers two ways of stopping a program during execution. These situations
occur when the user hits <Ctrl><Break> (<Ctrl><C», or when a critical error
occurs during access to an external device (Le., printer, hard disk, disk drive, etc.).
Although the key combination varies with the PC configuration, we'll use
<Ctrl><Break> consistently in this section.

<Ctrl><Break>

Pressing <Ctrl><Break> to stop a program during execution can have some
serious consequences. After the user presses this key combination, DOS abruptly
takes control from the program without allowing the program to perform any
"housekeeping" that may be needed. Files are not closed properly, diverted interrupt
vectors are not reset, and allocated memory is not released. The final result can
range from a loss of data to a system crash.

In order to prevent this, DOS calls interrupt 23H. This interrupt is also known as
the <Ctrl><Break> interrupt. When a program is started, this interrupt points to a
routine which brings about the end of the program. But a program is free to select
a routine of its own, thus maintaining control of what occurs when the user
presses <Ctrl><Break>.

However, the interrupt routine doesn't execute immediately. The break flag
controls when the interrupt routine occurs. This flag can be set at the DOS prompt
using the BREAK (ON/OFF) command from DOS, or with the help of DOS
function 33H, sub-function 1. If the break flag is on, every time a function of
DOS interrupt 21H is called, the keyboard buffer will be checked to see if either
<Ctrl><Break> or <Ctrl><C> has been pressed. If the break flag is off, this check
will be made only when calling the DOS functions that access the standard input
and output devices.

If this test fmds the appropriate key combination, the processor registers are loaded
with the values contained in the DOS function to be executed. Only after this is
interrupt 23H called.

If a program directs this interrupt to a routine of its own, there are several ways to
react. For example, the program could open a window on the screen which asks if
the user would like to end the program. It can also decide for itself whether or not
the program should end.

Maintenance

If the program chooses to halt execution, some form of clean-up routine should
follow. A routine of this type closes all open files, resets any changed interrupt
pointers, and releases any allocated memory. After this, function 4CH can end the
program without returning control to the interrupt 23H caller.

142

Abacus 6.11 <Ctrl><.Break> and Critical EmJr Interrupts

H <Ctrl><Break> is to be ignored, then the IRET assembly language instruction
must return control to DOS. The program must then ensure that all processor
registers contain the same values they had when interrupt 23H was invoked.
Otherwise, the DOS function that was originally called cannot be completed
without error.

Both ways of handling this situation will be demonstrated in an example at the end
of this section.

Critical error interrupt

Unlike the <Ctrl><Break> interrupt, the critical error interrupt call is rarely a
reaction to something the user does intentionally. It is usually a reaction to an
error that occurs when accessing an external device, such as a printer, disk drive, or
hard disk. While the user can correct the error in many cases (e.g., printer not
turned on), other errors can be caused by hardware failures that require repairs (e.g.,
read error while accessing hard disk).

To make allowances for the various kinds of errors, the critical error interrupt
(interrupt 24H) normally points to a DOS routine that displays the following or a
similar message on the screen and waits for input from the user:

(A)bort (R)etry (I)gnore (F)ail

This clears the screen of the program currently under execution. In addition, this
interrupt doesn't provide a "clean" program end. Like <Ctrl><Break>, the program
is in a situation where files are not properly closed, allocated memory is not
released, etc.

Installing an interrupt handler in a program to replace the DOS handler can help
here, too. DOS enlists the help of a processor register to pass this handler various
information when it is called. This helps the interrupt handler locate the source of
the error. Bit 7 in the AH register indicates either a floppy or hard disk access error
(bit 7 ofO, or some other error (bit 7 on). In addition, the BP:SI register pair
points to the head of the device driver that was being called when the error
appeared. A detailed error code is contained in the lower 8 bits of the DI register,
and the contents of the upper 8 bits are undefined. This returns the following error
codes:

143

6. The Disk Operating System 	 PC System Programming

Error Codes Passed to the Critical Error Handler

Code Meaning
OOh Disk is write protected
Olh Access 	to an unknown device
02h Drive not ready
03h Unknown command
04h CRC error
OSh Wrong data length
OGh Seek error
OTh Unknown device type
OSh Sector not found
09h Printer out of paper
OAb Write error
OBh Read error
OCh General error

When called, the; critical error handler can respond by opening a window on the
screen that asks the user to decide to ignore the error, retry the access, or abort the
program. The latter option can only instruct the interrupt to call DOS functions
OlH to OCH. This means that the program ends abruptly, similar to pressing
<Ctrl><Break>. While it is true that calling other DOS functions within the
handler causes no errors in itself, the return to DOS causes a system crash. Such
handlers are also not allowed to end a program through the use of DOS function
4CH. Instead the handler must return to its caller with the help of the lRET
command. With that, DOS expects a code in the AL register that will show it how
to react to the error. It interprets the contents of the AL register as follows:

Output Codes of a Critical Error Handler

Code Meaning
OOh Ignore the error
Olh Retry the operation
02h End program with Interrupt 23h
03h End function called with an
error (DOS 3.0 up only)

The last output code in the above list represents the most sensible reaction to an
error that can't be fixed by repeating the operation (as in the example where the
printer needs to be turned on). The receipt of this code invokes the normal ending
of the function call in which the error occurred. The function then sets the carry
flag to signal the error. While this makes a "critical" error and a "normal" error
indistinguishable to the program, it's possible to tell them apart by setting a flag
within the critical error handler.

*******.**.********************••••**********.************************
C E HAN D

--------------------------------=-----------------------------------
Description : 	 Forms the basic structure of an assembler

program, in which the DOS Ctrl-Break and *
Critical Error Interrupt are captured

--
Author : MICHAEL TISCHER
developed on 	 9/5/1988
last update : 	4/8/1989

144

Abacus 	 6.11 <Crrl><Break> and Critical E"or Interrupts

;* call CE HAND *;
;* (please leave the disk drive open so that a *;
;* Critical Error occurs.) *;
;.**.***••••••**•••••••**********••••••*****•••••**•••····**···········i
i-- constants ---===~=-===================----==--==-=--=--=====--=====-

i== stack ===--=-===========-==~-===--====-==---------=---=========-=-==
stack segment para stack ;definition of the stack segment

dw 256 dup (?) ;the stack is 256 words
stack ends lend of the stack segment
i-- data
data segment para 'DATA' ;definition of the data segment
cr err db 0 ;goes to 1, if a critical error occurs

;during access to a peripheral device
;(floppy, hard disk, or printer)

db o ;error number of the critical error
cr mes db ·Critical error! (A) bort or (R) etry: $"
next line db 13,10,"$"
end mes db ·Program ended normally.$"
brk mes db "Program aborted.$"
dat nam db "A:TEST.DAT",O ;name of the test file
data ends ;end of the data segment
; == code
code segment para 'CODE' ;definition of the CODE segment

assume cs:code, ds:data, ss:stack
start proc far

;-- install both Interrupt Handlers -------------------------
push cs ;put CS on the stack
pop ds land return as DS
mav ax, 2523h ;fct.no.: set Ctrl-Break Handler
mav dX,offset cbreak ;DS:DX now contains the address of H.
int 21h ;call DOS Interrupt
mov al,24h ;now set Interrupt 24h
mov dX,offset cerror ;DS:DX contains the address of the new H.
int 21h ;call DOS Interrupt
mov ax, data ;load segment address of the data segment in
mov ds,ax ;in the DS register

you can add your program here

for a demonstration, try to open a file ----------------
, on the opened disk drive ----------------

dat_open: 	mav ah,3dh ;function number: open file
mav al,O ;file mode: read only
mav dx,offset dat nam ;DS:DX - addresse of the filename
int 21h ;call DOS Interrupt 21h
jnc exit ;no error? NO --> END
cup cr_err,O ;critical error?
je exit ;NO --> END
call crit err ;a critical error occured
jmp dat_open ;CRIT ERR returns only if the operation

;should be retried
; (IGNORE is not possible)

, the handler must not be re-installed before the end
, of the program, since this is done by DOS

exit: 	 mov ah,9 ;function number: pass string
mov dX,offset end_mes ;DS:DX - address of the message
int 21h ;call DOS Interrupt
mov aX,4COOh ;function no.: end program (ERRCODE=O)
int 2lh ;call DOS Interrupt and end the program

;with it
start endp
;-- CRIT_ERR: called within the program after discovery of a ---------
i-- critical error
crit_err proc near

i-- output message and ask for user input ------------------
ask: 	 mav ah,9 ;function number: output string

mov dx,offset cr mes ;DS:DX = address of the message
int 21h ;call DOS Interrupt

145

6. TIu! Disk Operating System 	 PC System Programming

mov ah,l
int 21h
push ax
mov ah,9
mov dx,offset
int 21h
;-- interpret
pop ax
crnp al,"A"
je end_up
cmp aI, ·'a"
je end_up
crnp aI,"r"
je crend
crnp aI, "R"
jne ask

crend: ret
crit_err endp

;function number: input character
;call DOS 	 Interrupt
; note the input
;function number: output string

next line;DS:DX - address of the message
- ;call DOS Interrupt

the user's input ------------------------------
;retrieve the input
;abort?
;90 to "clean-up" procedure
;abort?
;go to "clean-up" procedure
iretry?
;go to end of procedure
; retry?
:no, ask again
;return to caller

;-- END_UP: executes a "clean" ending
end_up 	 proc near

;-- all opened files can be closed and the system memory
;-- allocated by the program can be freed here

mov ah,9 ;function number: output string
mov dX,offset brk mes ;DS:DX = address of the message
int 21h ;call DOS Interrupt
mov aX,4COOh ;end the program normally with the
int 21h ; 4Ch function

end up endp
;-- CBREAK: the new Ctrl-Break Handler --------------------------------
cbreak proc far

;-- all registers altered within this routine (excluding
;-- the Flag Register) have to be secured on the stack
push ds
rnov ax, data ;load the segment address of the
mav ds,ax ;data segment in the DS-Register
;-- for example, you can open a window here in which the
;-- user is asked if he really wants to end the program

jmp go on ;don't end program
;-- if the user decides to end the program, a routine with --
;-- which the program can be ended can be started here
jmp end up ;prepare termination of the program
;-- the program should not be aborted, continue normal

execution
pop ds ;restore saved register
iret ;back to DOS, where the interrupted

;function is continued normally
,-,oreak endp
;-- CERROR: the new Critical Error Handler ----------------------------
cerror proc far

;-- each of the registers (55, 5P, OX, ES, OX, CX und BX)
that was altered within this routine must be saved

;-- on the stack
sti ;allow interrupts again
push ds

146

Abacus 6.11 <Ctrl> <Break> and Critical Error 1nterrupts

rnov aX,data ;load segment address of the data segment
rnov ds,ax lin the OS-Register
rnov cr err,l ;point to critical error
rnov aX-;di ; error nmnber to AX
rnov cr_typ,al ;note error number
rnov al,3 lend function call with error
pop ds ; fetch OS again
iret

cerror endp
;--
code ends lend of the code segment

end start ;start program execution with
;the START procedure

147

6. The Disk Operating System PC System Programming

6. 12 DOS Device Drivers

A device driver is the pan of the operating system responsible for the control of,
and the communication with, the hardware. It represents the lowest level of an
operating system, and permits all other levels to work independent of hardware.
When adapting an operating system to various computers, this is an advantage.
The entire operating system doesn't have to be changed, only the various device
drivers.

In earlier operating systems, device drivers resided in the operating system code.
This meant that changes or upgrades of these routines to match new hardware were
very difficult, if not impossible. DOS Version 2.0 introduced a flexible concept of
device drivers. This makes it possible for the user to adapt even the most exotic
PC clone to DOS.

Custom drivers

Since communication between DOS and a device driver is based on relatively
simple function calls and data structures, the assembly language programmer can
develop a device driver to adapt DOS to any device. Unfortunately, device drivers
cannot be programmed in a higher level language.

When developing the code for a driver, the same rules are observed as for
developing a COM program (no direct segment access). The difference is that a
device driver starts at offset address OH, and not at lOOH. The end of this section
explains the assembly language implementation in detail.

Drivers

During the DOS boot process, the drivers NUL, CON, AUX, PRN and the drivers
for the disk drives and hard drive (if needed) are loaded and installed. They are
arranged sequentially in memory and connected to each other. If the user wants to
install his own driver, he has to inform DOS using the CONFIG.SYS file. This
text file contains the information which DOS requires for configuring the system.
Contents of the CONFIG.SYS file are read and evaluated during the boot process
after linking the standard drivers. If DOS finds the DEVICE= command, it knows
that a new driver should be included. The name of the driver and perhaps a device
and path designation are indicated after the equal sign.

ANSI.SYS

The following command sequence includes the ANSI.SYS driver, which is
supplied with DOS. This driver makes enhanced character output and keyboard
functions available:

DEVICE=ANSI.SYS

148

Abacus 6.12 DOS Device Drivers

The new driver is added to the chain immediately following the NUL device driver
(the first driver in the chain). The ANSI.SYS driver replaces the default CON
driver. To ensure that all function calls for monitor or keyboard communication
operate through ANSI.SYS, the ANSI.SYS driver is placed first in the device
group, and the CON driver is moved farther down the chain of devices. Since the
operating system moves from link to link during the search, it finds the new CON
driver (ANSI.SYS) first and uses it. Therefore, the system ignores the old CON
driver as seen in the illustration below:

Before adding

new CON
 5'driver Q

CD
I»
en
:r
cc
3
CD
3

-<
o

!.
Q....
CD

Z en

The driver chain

ASSIGN

Not all drivers can be replaced with new ones. The NUL driver is always the first
driver in the chain. Ifyou add a new NUL driver, the system ignores the new driver
and continues accessing the original NUL driver. This also applies to the drivers
for floppy disk drives and hard drives. The reason for this is that disk drives have
drive specifiers instead of names such as CON (e.g., A:). A new disk drive can be
added to the system, but since DOS may assign it the name D:, it may not be
addressed by all programs which want to access device A:. This problem can be
avoided by redirecting all device accesses using ooS's ASSIGN command. You
can make the ASSIGN command part of the AUTOEXEC.BAT file. It executes
after adding drivers and executing the CONFIG.SYS file. To redirect all accesses
from drive A: (the first disk drive) to device D: (in this case, a new driver for a new
disk drive), the AUTOEXEC.BAT file must contain the following command
sequence:

149

6. The Disk Operating System PC System Programming

ASSIGN A=D

The drivers for mass storage devices and the drivers such as PRN are handled
differently. ooS has two kinds of device drivers:

Characta' device drivers

Block device drivers

Character device drivers communicate with the keyboard, screen, printer and other
hardware on a character by character (byte by byte) basis. Block device drivers can
transmit an entire series of characters during each function call (disks, hard disks,
etc.). The two driver groups differ somewhat through the ways each supports
different functions.

6.12.1 Character Device Drivers

Let's start with character device drivers because their structure is simpler than block
device drivers. Character device drivers transmit one byte for every function call.
They communicate with devices such as the keyboard, display, printer and modem.
A device driver can service only one device. Therefore, individual drivers for
keyboard, display, printer, etc., exist in ooS after booting.

Character devices can operate in either cooked mode or raw mode.

Cooked mode

In cooked mode, the device driver reads characters from the device and performs a
test for certain control characters. OOS then passes the character to an internal
buffer. DOS also checks to determine whether any <Enter>, <Ctrl><P>,
<Ctrl><S> or <Ctrl><C> characters exist. If the system detects the <Enter>
character, it ignores any further input from the device driver, even if the specified
number of characters has not yet been read. Then the characters read are copied from
the internal buffer to the buffer of the calling program. If characters are output in
cooked mode, DOS tests for <Ctrl><C> or <Ctrl><Break>. If one of these
combinations is detected, the currently running program stops. Pressing
<Ctrl><S> temporarily stops the program until the user presses any other key.
<Ctrl><P> redirects the output from the screen to the printer (PRN). Pressing
<Ctrl><P> a second time redirects the output from the printer back to the screen.

Raw mode

In raw mode, the device driver reads all characters without testing. If a program
wants to read in 10 characters, it reads exactly 10 characters, even if the user
presses the <Enter> key as the second character of the string. Raw mode transmits
the characters direct to the calling program's buffer, instead of using an internal
DOS buffer. During character output, raw mode doesn't test for <Ctrl><C> or
<Ctrl><Break>.

150

Abacus 6.12 DOS Device Drivers

DOS function 44H of interrupt 21H defmes the mode of the character device driver
(see the end of this section for a detailed description of this interrupt).

6.12.2 Block Device Drivers

A block device driver normally communicates with mass storage devices such as
floppy or hard disks, or high speed cassette tapes. For this reason, they
simultaneously transmit a number of characters which are designated as a block. In
some cases, a single call to a function transmits several blocks of data. The sizes
of these blocks can differ from one mass storage device to another, as well as
within one particular mass storage device.

How block device drivers work

Unlike character device drivers, a block device driver can control several devices at
the same time. You can even divide one device into several logical units. For
example, a 40 megabyte hard disk can be divided into two 20 megabyte hard disks
with the names C and D. These logical devices have single-letter specifiers instead
of device names or fllenames. The device designation depends on its position in the
chain of device drivers. If a device driver supports several logical devices, single
letters can be used as specifiers in sequential order. This is why the example above
lists two logical drives named C and D instead of C and F.

Everyone of these devices must have a flle allocation table (FAn and a root
directory. Block device drivers make no distinction between cooked and raw modes.
They always read and write the exact number of blocks unless an error is detected.

Access

There are several ways to access a device driver. Character device drivers are
accessed using the normal FCB or handle functions by simply indicating the name
of a driver (e.g., CON: instead of a fllename). A block device driver is accessed
using the normal DOS functions (flle, directory, etc.) by using the drive designator
assigned by DOS during the boot process.

Functions IH through CH of interrupt 21H invoke read and write operations in a
device driver. Two other options exist for accessing device drivers. These will be
discussed shortly.

6.12.3 Structure of a Device Driver

Even though the two types of device drivers differ in some important details, they
do have similar structures. Each has a device header, a strategy routine and an
interrupt routine (a different kind of interrupt from the ones you've read about up
until now).

151

6. The Disk Operating System PC System Programming

Device beader

The device header appears at the beginning of each device driver and contains
infonnation needed by OOS for implementing the driver.

The fIrst two fIelds are the link to the next driver (offset and segment address) in
the chain of device drivers. The memory locations required for these link fIelds
must be reserved by the programmer, but OOS fIlls in when the driver is installed
in the system. The next fIeld of the device header is the attribute word. The
attribute word describes the device driver and tells OOS, among other things, if it
is a block or character device driver.

RAM
OOH nff....t- "nnr...... "f n .."j- nriv.. r 11 worn)

+ 02H Seament address of next driver 11 word) \7000+ 04H Device attribute 11 word)
+ 06H Offset address of strateqv routine (1 word)
+ 08H Offset address of interrupt routine (1 word) /F=
+OAH Driver name from character driver (8 bytes)

or number of devices used by block driver "
'

Device driver header

152

Abacus 6.12 DOS Device Drivers

15 14 13 12 11 10 9 8 7 6 5 4 321 0 bit
1=Cl.IT9rlt sIa"ldardI I I I I I I-+IXI IXIXIXIXIXIXIXI output delAce

I 1 =a.rrent sta1dErd
il>Ut deIAce

... 1=a.rrent
dockdeW:e

..
1=OJrrent
NULdeW:e

..
1=Medum
cha1ge
mcognized

1=OOn-1BM
~ bmat

(I:.b:k diver)

1~lJl1i
i1s1n.Ja3dL...-. (cf1crac.U <:tiwr)

1=1OCTL
support

0=I:lI0ck driI.er .. 1=Ghaa::Uctiwr

Structure ofthe device attribute

Only bits 11 through 15 are used by a block driver. The IOCTL bit tells DOS if
this driver supports the IOCTL function of DOS. The end of this chapter and the
descriptions of functions 3 and 12 describe this function in greater detail. Bit 11
fIrst appears in DOS Version 3 and should be 0 in earlier versions. A block driver
indicates whether a medium change is recognized on the device supported (e.g., a
floppy disk drive). If the bit is set, the driver must support a few additional
functions.

The next two fields contain the offset address of the strategy routine and interrupt
routine. The last field contains the name of the device driver if it is a character
device driver. If the name is less than eight characters in length, blank spaces
(ASCII code 32) pad the remaining characters. If it is a block device driver, the fIrst
byte of this field contains the number of logical devices supported by the driver.
The remaining seven bytes of this fIeld remain unused and contain the value O.

Strategy routine

DOS calls the strategy routine first to initialize the driver, then repeatedly before
each subsequent I/O request from the driver's interrupt routine. The address of a data

153

6. The Disk Operating System PC System Programming

structure which contains infonnation about the operation to be performed (the
request header) is passed by DOS to the strategy routine in register pair ES:BX.
The double word pointer to the data block is stored, and control immediately
returns to DOS. DOS then calls the interrupt routine of the driver to perfonn the
actual operation.

The request header, whose address is passed to the strategy routine, always contains
at least 13 bytes and contains information which tells the driver how to perfonn
the upcoming operation. Depending on the operations performed, further
information can be added to the end of the request header which differs depending on
the operation.

RAM
+ OOH Data block lenqth in bytes

mdl \+ 01H Device number in communication
(1(1 word) 0000:0000

+ 02H Command code (1 word)
+ OSH Reserved (8 bytes)
+ DDH Media descriptor (1 byte)
+ OEH Buffer offset address (1 word)
+ 1DH Buffer segment address (1 word)
+ 12H Number (1 word)
+ 14H Starting sector (8 bytes) "/

Structure ofthe request header

DOS calls the interrupt routine immediately after calling the strategy routine. Its
first task is to save the processor registers that will have their contents changed by
the various functions of the driver to the stack. Then it obtains the command code
from field 3 of the request header and calls the appropriate command code routine.
After executing the routine, it fills in the status field of the request header and
restores the processor registers from the stack. As a last step it returns control to
the calling DOS function.

Status field

The value of the status field specifies whether the function executed without error,
or if an error occurred during execution. For this reason, every driver function must
set the DONE bit (bit 8) in the status field. This DONE bit must be set even if the
function is a dummy (non-perfonning) function.

154

Abacus 	 6.12 DOS Device Drivers

1=error
O=medium write

1=ready 	 1=unknown device
2=drive not ready

1=busy 	 3=unknown command
4=read (CRC-) error
5=parameter data block
has a false length
6=search error
7=unknown medium
8=sector not found
9=printer out of paper
10=write error
11=read error
12=common error

Statusfield error codes

6.12.4 Device Driver Functions

Under DOS Version 2, any installable device driver must support 13 functions,
numbered from 0 to 12, even if their only action consists of setting the DONE
flag in the status word. DOS Versions 3 and 4 include four additional functions
which can be supported, but are not required. Some of these functions concern one
of the two driver types, while others apply to both driver types (e.g.,
initialization). Unused functions must at least set the DONE flag of the status
word. Let's look at the various functions in detail according to their function
numbers.

Request header

Every function described here receives its arguments from the request header (whose
address is passed by DOS to the strategy routine) and stores its "results" in the
request header. For this reason, the offset address to the arguments, relative to the
beginning of the request header, is passed to the specified function. These
arguments are later transferred to variables. Besides this offset address, a flag
indicates whether this information consists of a byte, word or PTR. The PfR data
type represents a pointer to a buffer and consists of two adjacent words. The fIrst
word is the offset address of the buffer. The second word is the segment address of
the buffer.

155

6. The Disk Operating System PC System Programming

Function 0: Driver Initialization

OOS calls this function during the system boot procedure to initialize the device
driver. This function can involve hardware initialization, setting various internal
variables to their default values, or the redirection of interrupts. Since the entire
operating system has not been completely initialized at this point, the
initialization routine can only call functions 1 through OCH and 30H of OOS
interrupt 21H. These functions can be used to determine the OOS version number
and to display a driver identification message on the screen. Even if the newly
linked driver is a CON driver, the output to the display occurs through the old
CON driver, because there are no new drivers linked into the system after
completion of the initialization routine.

Initialization and the request header

The initialization routine can obtain two pieces of information from the request
header. The first item is the memory address containing the text following the
equal sign on the line in the CONFIG.SYS file that loaded the driver into the
system.

A typical line in a CONFIG.syS file can look like this:

DEVICE=ANSI.SYS

In this case, the device name is ANSI.SYS, which assigns the standard ANSI
escape sequences for screen control to the PC. The memory address passed to the
initialization routine points to the character following the equal sign (in this case,
the A of ANSI.SYS). This makes it possible to store additional information
following the name of the device driver. This information is ignored by OOS, but
can be read by other routines.

Logical device designation

The second item is only available under OOS Version 3.0 and higher, and only if
the driver is a block device driver. This is the letter designation of the frrst logical
device of the driver. The value 0 stands for A, 1 for B, 2 for C, and so on.

The initialization routine must retlD1l four parameters to the calling OOS function.
The first parameter is the status of the function, i.e., the indication of whether the
function has executed correctly. For a block device driver, the number of logical
devices supported must also be passed. This information could also be obtained
from the device driver's header, but is ignored by OOS.

156

Abacus 6.12 DOS Device Drivers

The next parameter that the device driver must pass to OOS is the highest memory
address which it occupies or uses. This lets DOS know where the next device
driver can be installed.

BPB

If the driver is a block device driver, the last argument passed must be the address
of an array which contains an entry for every logical device. This array contains the
addresses of BIOS parameter blocks (BPBs). The address is passed as two words,
the fIrst word contains the offset, and the second word contains the segment address
of the array. The fIrst two words within this table are the address for the fIrst
logical device supported. The next two words indicate the address for the second
logical device, etc. The BPB, described in detail in Section 6.12, is a data block
containing information which describes a logical device. If all or some of the
logical devices have the same format, all entries in the BPB address table can point
to a single BPB.

+ OOR Bytes per sector (1 word)

+ 02R Sectors per cluster (1 byte)
+ 03R Reserved sectors (including boot sectors) (1 word)
+ 05R Number of FATs (1 byte)
+ 06R Maximum number of entries in root directory (1 word)
+ OaR Total number of sectors (1 word)

+ OAR Media descriptor (1 byte)
+ OBH Number of sectors per FAT (1 word)

BIOS Parameter Block design

FaR = hard disk

F9R = 5.25" diskette, double-sided, 15 sectors per track

FeR = 5.25" diskette, single-sided, 9 sectors per track

FDR = 5.25" diskette, double-sided, 9 sectors per track

FER = 5.25" diskette, single-sided, a sectors per track

FFR = 5.25" diskette, double-sided, 8 sectors per track

Media descriptor byte

157

6. The Disk Operating System PC System Programming

Calling parameters of function 0:
Offset 2 (byte) Function number (0)
Offset 18 (ptr) Address of character that follows the equal sign after the

DEVICE command in the CONFIG.SYS file
Offset 22 (byte) Device number of the first device supported by the driver

(O=A, 1=B. ..) (applies to block device drivers from DOS
Version 3.0 UP only)

Returned parameters of function 0:
Offset 3 (word) Status word
Offset 13 (byte) Number of devices supported (block devices only)
Offset 14 (ptr) Address of first available memory location following the

driver
Offset 18 (ptr) Address of array containing the addresses of BPB (block

devices only)

Function 1: Media Check

This function is used only with a block device driver. A character device driver
should merely set the DONE flag of the status word and exit. This function is used
by DOS to determine whether the media (diskette) has changed. It is often used
when examining a disk directory. If the disk medium was not changed since the
last access, DOS still has this information in memory, otherwise DOS must reread
the information from the media which delays the execution of the current task.

In some cases, as with floppy disks, the answer to the question is fairly
complicated. For this reason DOS permits function 1 to answer not only with
"yes" and "no", but also with "don't know." In any case, the answer affects further
DOS activity.

If the media is unchanged, access to the media can take place immediately. If the
media was changed, however, DOS closes all internal buffers related to the current
logical device. This causes the loss of all data which should have been transmitted
to the media. Then it calls function 2 of the current device driver, loads the FAT
and the root directory. If the media check function answers with "don't know," the
additional steps taken by DOS depend on the status of the internal buffers related to
the current logical device. If these internal buffers are empty, DOS assumes that
the media was changed and acts as if function 1 answered "yes." If the buffers
contain data which should have been transmitted to the media, DOS assumes that
the media is intact and writes the data. If the media was indeed changed, the data
written to a changed media may damage the new diskette's file structure.

Since subsequent processing depends on the response from the media check
function, the driver should handle the response carefully. Before enabling the
mechanism used by the function to respond, the function examines the parameters
passed to it. If the driver supports several logical devices, the first parameter is the

158

Abacus 6.12 DOS Device Drivers

number of devices. Next is a media descriptor code. This code contains information
about the type of media last used in the current logical device. Only devices which
can handle several different formats can use this task. For example, AT disk drives
which can use both 360K and 1.2 megabyte diskette formats.

If the media check function determines that the medium in a device is non
removable (e.g., a fixed disk), it can always respond "not changed". If, on the other
hand the device media can be changed (e.g., a disk), the correct response can only
be determined by fairly complex procedures. If these procedures are not used, the
response should be "don't know".

For the sake of completeness, here are the three procedures which provide fairly
accurate results.

Since a device with changeable media has an opening and closing mechanism, the
function should check to determine whether the media was removed. However, it
cannot determine if the removed media is identical to the newly inserted medium.

If the media has a name, the function should read this name to determine whether
the media was changed. This procedure only makes sense if every media has a
unique name.

The disk drive procedure used by DOS hinges on the fact that changing medium
takes some time. DOS assumes that even a user that can move fast needs about
two seconds to remove a diskette from a drive and insert a new diskette in the same
drive. If two consecutive diskette accesses occur less than two seconds apart, DOS
assumes that no diskette change occurred.

A byte in the data block is used to indicate changes. The value -1 (FFH) means
"changed", 0 means "don't know" and 1 means "not changed".

If the media was changed, the device driver signals a media change (bit 11 in the
device attribute = 1), the address of a buffer must be passed to DOS Version 3 and
newer, which contains the volume name of the previous media. This name must
be stored there as an ASCII string and terminated with an end character (ASCII
code 0).

Calling tarameters of function 1:
Offset 1 [byte) Device number
Offset 2 [byte) Function number (1)
Offset 13 (byte) Media descriptor byte

159

6. The Disk Operating System PC System Programming

Returned parameters of function 1:

Offset 3 (word) Status word

Offset 14 (byte) Was media changed ?

FFH =yes OOH =don't know 01H =no
Offset 15 (ptr) Address of buffer containing the previous volume name

J onlY ifdevice indicates a media chan~e)

Function 2: Build BIOS Parameter Block (BPB)

This function is used only by block device drivers. A character device driver should
just set the DONE flag of the status word and exit. DOS calls this function when
the media check function determines that the media was changed. This function
returns a pointer to a new BPB for the media

As you can see by the layout of the calling parameters. the device number media
descriptor and a pointer to a buffer are passed to this function by DOS. If the
device is a standard format (bit 13 of the device attribute =0). then the buffer
contains the first sector of the FAT.

Calling parameters of function 2:
Offset 1 byte Device number
Offset 2 byte Function numberJ.~
Offset 3 ~yte Media descrit!tor ~
Offset 14 (ptr) Address of a buffer containiJlKthe FATJsee abov~

Returned~eters of function 2:
Offset 3Jwor<D J Status word
Offset 18 (pte) I Address of the BPB of addressed device

Function 3: I/O Control Read

This function passes control information from the character or block device driver
to the application program. It can only be called through function 44H of interrupt
21H if the IOCTL bit in the device attribute word in the device driver header is set
Different parameters are passed to the function. depending on whether the driver is
a c.JaraCter or a block device driver.

A character device driver is passed the number of characters to be transferred and the
address of a buffer for the transfer of the data

A block device driver is passed the device number, the media descriptor byte, the
address of the buffer to be used for the data transfer, the pointer to the flTSt sector to
be read and the number of sectors to be read.

160

Abacus 6.12 DOS Device Drivers

Calling llarameters of function 3:

Offset 1 [byte) Device number (block devices onlYL

Offset 2 [byte) Function number (3)

Offset 13 (byte) Media descriptor byte (block devices only)

Offset 14 (ptr) Address of buffer into which data should be transmitted

Offset 18 (word) Number of sectors to be read (block device) or

Number of characters to be read (character device)
Offset 20 (word) First sector to be read (block devices only)

Returned parameters of function 3:

Offset 3 (word) Status word

Offset 18 (word) Number of sectors read (block device)

Number ofchara:ters read (character device)

Function 4: Read

This function reads data from the device to a buffer specified in the calling
parameter. Should an error occur reading the data. the error status must be set.
Additionally the function must report the number of sectors or bytes read
successfully. Simply reporting an error is not good enough.

Calling parameters of function 4:

Offset 1 (byte) Device number (block device only)

Offset 2 (byte) Function number (4)

Offset 13 (byte) Media descriptor byte (block device only)

Offset 14 (ptr) Address of buffer to which data should be read

Offset 18 (word) Number of sectors to be read (block device) or

Number of characters to be read (character device)
Offset 20 (word) First sector to be read (block device only)

Returned parameters of function 4:
Offset 3 (word) Status word
Offset 18 (word) Number of sectors read (block device) or

Number ofcharacters read (character deVice)
Offset 22 (ptr) Pointer to volume ID on return of error OFH (Version 3.0

and higher)

Function 5: Non-destructive Read

This function is used by a character device driver to test for unread characters in the
input buffer. A block device should set the DONE flag of the status word and exit.

DOS tests for additional characters using this function. If more characters exist, the
busy bit must be cleared (set to 0) and the next character passed to DOS. The
character that is passed remains in the buffer so that a subsequent call to a read

161

6. The Disk Operating System PC System Programming

function will return this same character. If no additional characters exist, the busy
bit must be set (set to 1).

Function number 5

Returned...Jllll1!!!!eters of function 5:

Offset 3-.iword) I Status word

Offset 13 !byte) I Thecharocterread

Function 6: Input Status

This function is used to determine if a character is waiting to be read from the
input buffer of a character device. A block device driver should set the DONE flag
of the status word and exit.

If a character is waiting to be read from the input buffer, the busy bit is cleared (set
to 0). If a character is not in the input buffer, the busy bit is set (set to 1).

When a character is waiting to be read, the Input Status function (06H) resets the
status word busy bit to 0 and returns the character to DOS. The character is not
removed from the buffer and is therefore non-destructive. This function is
equivalent to a one-character look ahead.

Function number 6

Returned~ameters of function 6:
Offset 3 (word) JStatus word: Characters already in buffer =0; Read request to

l.J?l.!Ysical device = 1

Function 7: Flush Input Buffers

This function clears the internal input buffers of a character device driver. Any
characters read but not yet passed to DOS are lost when this function is used. A
block device driver should set the DONE flag of the status word and exit

Function number 7

162

Abacus 6.12 DOS Device Drivers

Function 8: Write

This function transfers characters from a buffer to the current device. If an error
occurs during transmission, the status word is used to indicate this error. Both
block and character devices use this function.

The parameters used for this function depend on whether the driver is for a character
or block device. Both pass a buffer address from which a certain number of
characters should be transferred. A character device driver is passed the number of
bytes to be transferred in addition to this information.

A block driver is passed the number of sectors to transfer (not the number of
characters), the number of the device to be addressed, its media descriptor and the
address of the first sector on the medium.

Should an error occur writing the data, the error status must be set. Additionally
the function must report the number of sectors or bytes written successfully.
Simply reporting an error is not good enough.

Calling parameters of function 8:

Offset I (byte) Device number (block drivers only)

Offset 2 (byte) Function number (8)

Offset 13 (byte) Media descriptor of device addressed (block device onlyl

Offset 14 {J>tt:) Address of the buffer containing data

Offset 18 (word) Number of sectors to be written (block device)

Number of characters to be written (character device)
Offset 20 (word) first sector to be written (block device only)

Returned parameters of function 8:

Offset 3 (word) status word

Offset 18 (word) Number of sectors written (block device)

Number of characters written (character device)
Offset 22 (ptr) Pointer to volume ID on return of error OFH (Version 3.0

up)

Function 9: Write with Verify

This function is similar to function 8, but with the difference that the characters
written are reread and verified.

Some devices, especially character devices such as a monitor or a printer, do not
require verification since either no errors occur during transmission (monitor) or
the data cannot be verified (printer).

163

6. The Disk Operating System PC System Programming

Calling parameters of function 9:

Offset 1 (byte) Device number JQlock drivers only)

Offset 2 (byte) Function number (9)

Offset 13 (byte) Media descriptor of device addressed (block device only)

Offset 14 (ptr) Address of the buffer containing data

Offset 18 (word) Number of sectors to be written (block device)

Number of characters to be written (character device)
Offset 20 (word) First sector to be written (block device only)

Returned parameters of function 9:

Offset 3 (word) Status word

Offset 18 (word) Number of sectors written (block device)

Number of characters written (character device)
Offset 22 (ptr) Pointer to volume ID on return of error OFH (Version 3.0

up)

Function 10: Output Status

This function indicates whether the last write operation to a character device is
completed or not A block device should set the DONE flag in the status word and
exit.

If the last write operation is complete then the busy bit of the status word is
cleared; otherwise the busy bit is set to 1.

Function number 10

Returned ~eter of function 10:
Offset 3 (word) IStatus word: The busy bit is 1 if the last character output

has not been completed

Function 11: Flush Output Buffers

This function completely clears the output buffer even if it contains characters
waiting for output. A block device should set the DONE flag on the status word
and exit.

Function number 11

164

Abacus 6.12 DOS Device Drivers

Function 12: I/O Control Write

This function passes control infonnation from the application program to the
character or block device driver. It can only be called through function 44H of
interrupt 21H provided the IOC1L bit in the device attribute word in the device
driver header is set. Different parameters are passed to the function, depending on
whether the driver is a character or a block device driver.

A character device driver is passed the number of characters to be written and the
address of the buffer from which these characters are transferred.

A block device driver is passed the device number (in case the driver services
logical devices), the media descriptor byte, the address of the buffer from which the
data is to be written, the number of the ftrst sector to be written and the number of
sectors to be written.

A character device driver returns the number of bytes written. A block device driver
returns the number of sectors written.

Calling parameters of function 12:

Offset 1 (byte) Device number @ock device only)

Offset 2 (byte) Function number (121

Offset 13 (byte) Media descriptor of addressed device (l)lock device only)

Offset 14 (ptr) Address of buffer from which data should be read

Offset 18 (word) Number of sectors to be written (block device)

Number of characters to be written (character device)
Offset 20 (word) First sector to be written (block device only)

Returned parameters of function 12:
Offset 3 (word) Status word
Offset 18 (word) Number of sectors written (block device)

Number ofcharacm written (character device)

The following four functions are supported by OOS version 3.0 and higher.

Function 13: Open

This function can be used only if the OCR (Open/Close/RM) bit in the device
attribute word in the device driver header is set Its task differs, depending whether
it is a character or block driver.

A block driver uses this function every time a ftle is opened. This function
detennines how many open fIles exist on this device. Use this command carefully,
since programs which access FCB function calls tend not to close open ftles. This
problem can be avoided by assuming during every media change that no ftles

us

6. The Disk Operating System PC System Programming

remain open. For devices with non-changeable media (e.g., a hard disk) even this
procedure may not help.

Within a character driver, this function can send an initialization string to the
device before transmitting the data. This is an advantage when used for
communication with the printer. The initialization string should not be included in
the driver, but can be called, for example, with the IOCTL function of interrupt
21H, which calls function 12 of a driver to transmit it from an application
program to the driver. The function can also be useful because it can prevent two
processes (in a network or in multiprocessing) from both accessing the same
device.

For the devices CON, PRN and AUX, this function is not called since they are
always open.

IReturned:reter of function 13:
Offset 3 (word I Status word

Function 14: Device Close

This function is the opposite of function 13. This function can only be addressed if
the OCR bit in the device attribute word of the device driver header is set Its task
differs, depending whether it is a character or block driver.

A block driver calls it after closing a file. This can be used to decrement a count of
open files. Once all files on a device are closed the driver should flush the buffers
on removable media devices, because it is likely that the user is about to remove
the media.

A character driver can use this function to send some closing control information
to a device after completing output. For a printer this could be a formfeed. As in
function 13, the string could be transmitted from an application program using the
IOC1L function.

CallillKparameters of function 14:

Offset 1 (bvte)] Device number (block device only)

Offset 2 (byte) I Function number (14)

IReturned:reter of function 14:
Offset 3 (word I Status word

166

Abacus 6.12 DOS Device Drivers

Function 15: Removable Media

This function indicates if the media in a block device can be changed or not. This
function is used only if the OCR bit in the device attribute word of the device
driver is set. A character device driver should set the DONE flag in the status word
and exit.

If the media can be removed, the busy bit is cleared; otherwise it is set to 1.

Calling parameters of function 15:

Offset 1 (byte) I Device number O>Iock device only)

Offset 2 (byte) I Function number (15)

Returned parameter of function 15:
Offset 3 (word) IStatus word: If the media can be removed, the busy bit must

contain the value 0

Function 16: Output until Busy

This function transfers data from a buffer to an output device until the device is
busy (i.e., can no longer accept more characters). As this function is supported by
character devices, a block device driver should set the DONE flag on the status
word and exit.

This function works particularly well with print spoolers, through which files can
be sent to a printer as a background activity while a program executes in the
foreground. It is possible that not all of the characters in the transfer request will
be sent to a device during this function call. This is usually not an error, it could
be the result of the device becoming busy. The function is passed the number of
characters to be transmitted as well as the buffer address. If the output device
indicates during transmission that it can no longer accept additional characters, it
indicates the number of characters successfully transferred and returns control to the
device driver.

Calling parameters of function 16:

Offset 2 (bvte) Function number (16)

Offset 14 (ptr) Address of buffer from which data should be read

Offset 18 (word) Number of characters to be read

167

6. The Disk Operating System PC System Programming

Returned parameters of function 16:

Offset 3 (word) I Status word

Offset 18 (word) I Number of characters written

6.12.5 Clock Driver

The clock driver is a character device driver whose only function is to pass the date
and time from DOS to an application. The clock driver can also have a different
name, since DOS identifies it by the fact that bit 2 in the device attribute word of
the device driver header is set to I, instead of by name. Bit 15 must also be set
since the clock driver is a character device driver. Functions 2AR to 2DH of DOS
interrupt 21H read the date and time and call the driver. A clock driver must
support only functions 4, 8 and 0 (initialization). During the call of function 4
(reading), the date and time pass from the driver to DOS. DOS can set a new date
and time with function 8. Both functions have the time and date passed in a buffer
of 6 bytes in length.

+ OOH Number of days since Jan.1,1980 (1 word)
\ 00::'000

+ 02H Minutes (1 byte)

+ 03H Hour (1 byte)

+ 04H Hundredths of seconds (1 byte) V r
+ OSH Seconds (1 byte)

Passing date and time to a clock driver

The date format is unusual. Instead of passing the month, day and year separately,
DOS passes the number of days elapsed since January I, 1980 as a 16-bit number.
A fairly complex formula converts this number into normal date format, taking
leap years into account. The clock driver normally uses function 0 and 1 of the
BIOS interrupt IAH to read and set the time.

Clocks on AT models

AT and AT-compatible computers have a battery powered realtime clock.
Functions 0 and 1 of interrupt lAR use a software controlled time counter and not
the battery powered realtime clock. When the computer is rebooted, the date and
time previously set with driver function 8 is cleared. You can use the clock driver
to access the realtime clock using functions 2 and 5 of interrupt lAH instead of
function 0 and 1.

168

Abacus 6.12 DOS Device Drivers

6.12.6 Device Driver Calls from DOS

Now that you have some familiarity with the functions of the different device
drivers, you can look toward developing your own personal device driver. Here are
the steps which take place before and after calling a device driver function.

A chain of events begins when a DOS function which handles input and output is
called using interrupt 21H. Calling one of these functions can in turn call a series
of other functions and corresponding read and write operations.

Open

One example of this is when the Open function 3DH is called to open a file in a
subdirectory. First of all, before it can be opened, DOS must find the file. This
may require the searching of a set of directories instead of just reading in the FAT.
During each access of interrupt 21H, DOS determines which of the available device
drivers should be used to read or write characters. When this happens, DOS sets
aside an area in memory to store the information required by the device driver.

For files, DOS must convert the number of records to be processed into logical
sector numbers. DOS then calls the strategy routine of the device driver, to which
it passes the address of the newly created data block (request header). Then the
interrupt routine of the driver is called, which stores all registers. It isolates the
function code of the requested function from the data block and starts to process the
function.

If the addressed driver is a character device driver, the function only has to send the
characters to the hardware or request the characters to be read.

Block devices

For a block device (e.g., a mass storage device such as a floppy or hard disk) the
logical sector number must be converted into a physical address before a read or
write access. The logical sector number is broken down into a head, track and
physical sector number.

Mter the read or write operation ends, the driver function must place a result code
in the status field of the request header to be returned to the calling DOS function.
Next the contents of all registers are restored and control is returned to the calling
DOS function, which, depending on the result of the driver function, sets or resets
the carry flag and places any error code into the AX register. The interrupt function
then returns control to the routine which called interrupt 21H.

169

6. The Disk Operating System PC System Programming

6.12.7 Direct Device Driver Access: IOCTL

Here we discuss IOCTL in detail, since it offers an alternate method of
communicating with the device driver. You can only use these functions if the
IOCTL bit of the device attribute is set

The IOCTL function itself is one of many functions addressable from DOS
interrupt 21H. Its function number is 44H. Three groups of sub-functions are
accessible:

Device configwation

Data transmission

Driver status

The number of the desired sub-function is passed to the IOCTL function in the AI..
register. After the function call, the carry flag indicates whether the function
executed correctly. A set carry flag indicates the occurrence of an error and the error
code can be found in the AX register.

Character device driver status

The number of the desired sub-function is passed to the IOCTL function in the AI..
register. After the function call, the carry flag indicates whether the function
executed correctly. A set carry flag indicates the occurrence of an error and the error
code can be found in the AX register.

Sub-functions 6 and 7 can determine the status of a character device driver. Sub
function 6 can determine if the device is able to receive data. Sub-function 7 can
determine if the device can send data. The handle of this device is passed in the BX
register.

If the device is ready, both functions 6 and 7 return the value FFH in the AI..
register.

Sub-function 2 reads control data from the character device driver. The handle is
passed in the BX register and the number of bytes to be read is passed in the CX
register. In addition, the DS:DX register pair contain the address of the buffer into
which the data will be read. If the carry flag is clear, then the function was
successful and the AX register contains the number of characters read. If the carry
flag is set, then there was an error and the AX register contains the error code.

Sub-function 3 writes control information from a buffer to the character device
driver. Again, the handle is passed in the BX register, the number of bytes to be
written in the CX register and the address of the buffer in the DS:DX register pair.

170

Abacus 6.12 DOS Device Drivers

The return codes are the same as for sub-function 2. These two sub-functions are
used to pass information between the application program and the device driver.

Block device driver status

Sub-functions 4 and 5 have the same task as sub-functions 2 and 3. However, they
are used for block devices and not character devices. Instead of passing the handle in
register BX, you pass the drive code (O=A, I=B, etc.) in the BL register.

Sub-function 0 is used to get device information for a specified handle. The sub
function nwnber is passed in the AL register and the handle in the BX register. The
function returns the device information word in the DX register.

For block devices:

bits 8-15 = reserved

bit 7 = oif a block device

bit 6 = oif file has been written

1 if file has not been written

bits 0-5 = drive code (O=A, B=I, etc.)

For character devices:

bit 15 = reserved

bit 14 = 1 if device supports IOCTL sub-functions

oif device does not support IOCTL sub-
functions

bits 8-13 = reserved

bit 7 = ifa cllarocter device

bit 6 oif end of file for input device

bit 5 = oif cooked mode

1 if raw mode

bit 4 reserved

bit 3 = I ifclock device

bit 2 = 1 ifNUL device

bit 1 = 1 ifstandard output device

bit 0 = I ifstandard input device

Cooked and raw modes

Sub-function 1 is used to set device information for a specified handle. This sub
function is often used to set the standard input device from cooked mode to raw
mode or back.

Two final interrupts are sometimes used by block device drivers. These two
interrupts, 25H and 26H are used to read from and write to the disk drive. You can
use these interrupts, for example, to process disks that were formatted using a
"foreign" operating system.

171

6. The Disk Operating System 	 PC System Programming

The device number is passed in the AL register, the number of sectors to be
transferred is passed in the ex register, the starting sector number to be transferred
is passed in the DX register and the buffer is passed in the DS:BX register. The
carry flag is clear if there was no errors. If the carry flag is set, then the error code
is returned in the AX register.

6.12.8 Tips on Developing Device Drivers

Major headaches in developing a device driver occur because of problems that arise
during the testing phases of a new driver. First, a device driver must load into a
memory location assigned to it by DOS, at an address unknown to the
programmer. Second, a newly developed eON driver can't be tested using the
DEBUG program, since DEBUG uses this driver for character input and output.

We recommend that after you write the actual driver, you write a short test
program that calls the individual functions in the same manner as DOS, but
without having the driver installed as part of DOS. The advantages to this are that
everything executes under user control, and the whole process can be corrected with
a debugger. In any case, a new device driver (especially a block device driver)
should only be linked into the system after it has been tested completely and has
been proven to be error-free.

Note: 	 When working with a hard disk, prepare a floppy system diskette
before test booting the system from the hard disk with the new driver
installed for the first time. If a small bug should exist in the new
driver, and the initialization routine hangs up, the booting process
will not end and DOS will be out of control. In such a case, the only
remedy is to reset the system and boot with a DOS diskette in the
floppy drive. Once DOS loads, you can then access the hard disk and
remove the new driver.

6.12.9 Driver Examples

This section contains a sample device driver for each of the three different types of
device drivers, to demonstrate the information you've read about so far.

The first program is a character driver which corresponds exactly to the format of a
normal console driver. The second program is a block device driver which creates a
160K RAM disk. The final program is a DOS clock driver to support an AT
computer realtime clock.

.*** ****··*********i
CONDRV *;

---;
Task : 	 This program represents a nonnal Console *;

Driver (Keyboard and Display Monitor). It should *;
serve as a framework for a driver in the form of *i
an ANSI.SYS driver. *;

172

Abacus 	 6.12 DOS Device Drivers

i*---*i
;* Author MICHAEL TISCHER * ;
;* developed on 8.4.87 * ;
,.* last Update 9.2l.B7 *.

:*---*;
;* assembly MASM CONDRV; * ;
,.* LINK CONDRV; *.,
;* EXE2BIN CONDRV CONDRV.SYS *;

;*---*:
;* c..ll Copy into Root Directory, copy the comnand *;
;* DEVICE-CONDRV.SYS into the file CONFIG.SYS *;
, and then boot t he System. *;
i···**···· ****************:

code 	 segment

assume cs:code,ds:code,es:code,ss:cocte

org 0 	 ;Program has no PSP therefore start
;at Offset address 0

;== Constants ====_=========~_===================_========__e._=_===_=

cmd_fld 	 equ 2 ; Offset command field in data block
status equ 3 ; Offset status field in data block
end_adr equ 14 ; Offset driver end-adr. in data block
num db equ 18 ; Offset number in data block
b adr 	 equ 14 ; Offset buffer address in data block

KEY SZ equ 20 ;Size of key board buffer
num-cmd equ 16 ;Subfunctions 0-16 are supported

;-- Header of Device Driver --

dw -1,-1 ; Connect ion to next driver
dw l010100000000011b ;Driver attribute
dw offset strat ;Pointer to strategy routine
dw offset intr :Pointer to interrupt routine
db "CONDRV ;new Console driver

Jump Table for functions ------------------------

fkt tab 	 dw offset init ;Function 0: Initialization
dw offset dummy ;Function 1: Media Check
dw offset dummy ; Function 2: Create BPB
dw offset no_sup ; Function 3: I/O control read
dw offset read ;Function 4: Read
dw offset read b ; Function 5: Non-dest. Read
dw offset dummy ;Function 6: Input-Status
dw offset del in b :Function 7: Erase Input-Buffer
dw offset write :Function B: Write
dw offset write iFunction 9: Write , Verify
dw offset dummy ; Function 10: Output-Stat us
dw offset dummy ; Function 11: Erase Output-Buffer
dw offset no sup ; Function 12: I/O control write
dw offset duIDmY :Function 13: Open (starting at 3.0)
dw offset dwmry ; Funct ion 14: Close
dw offset dummy ; Function 15: changeable Medium
dw offset write ; Function 16: Output unt 11 Busy

db_ptr 	 dw (?) , (?) ;Address of data block passed

key_a dw 0 iPointer to next character in KEY SZ
key_e dw 0 ;Pointer to last character in KEY-SZ
key _bu db KEY SZ dup (1) ;internal Keyboard Buffer

;~= Routines and functions of driver ==_s==~=================_m=====

173

6. The Disk Operating System PC System Programming

strat proc far :Strategy routine

mov cS:dbytr,bx :Store address of data block in the
mov cs:db_ptr+2,es ;Variable DB_PTR

ret ;back to caller

strat endp

;---

intr proc far ;Interrupt routine

push ax ;Store registers on the stack
push bx
push ex
push dx
push di
push si
push bp
push ds
push es
pushf ;store also the flag register

push cs ;Set data segment register
pop ds ;Code is identical here with data

les di,dword ptr db-ptr;Address of data block to ES:DI
mov bl,es:[di+cmd fld! ;Get command-code
cmp bl,num cmd - ;is command-code permitted?
jle bc ok - ;YES --> bc_ok

mov aX,8003h iCode for "unknown Corranand"
jmp short intr end ;back to caller

;-- Command-Code was o.k. --> Execute command ---------------

shl bl,l :Calculate pointer in jump table
xor bh,bh ierase BH
call [fkt_tab+bxl ;Call function
les di,dword ptr db_ptr;Address of the data block to ES:DI

:-- Execution of the function completed -------------------

intr end label near
or aX,OlOOh ; Set finished-bit

·mov es:[di+statusj,ax ;store everything in the status field

popf ;Restore flag register
pop es ;Restore other registers
pop ds
pop bp
pop si
pop di
pop dx
pop cx
pop bx
pop ax

ret ;back to caller

intr endp

i---

dummy proc near ;This routine does nothing

xor ax,ax :Erase busy-bit

ret :back to caller

174

Abacus 	 6.12 DOS Device Drivers

durmny endp

;---

no_sup proc near ;This routine called for all functions
;which should really not be called

mov aX,B003h ;Error: Command not recognized
ret ;back to caller

;---

store_c proe near 	 ;stores a character in the internal
;keyboard buffer
;Input: AL = character

BX = Position of the character

mov [bx+key_buJ,al ;store character in internal buffer
inc bl ;increment pointer to End
cmp bl,KEY_SZ ;End of buffer reached
jne store e ;NO --> STORE_E

xor bl,bl 	 ;new end is the beginning of buffer

store e: ret 	 ; back to caller

store c endp

;--------_._---

read proe near 	 :read a certain number of characters
;from the keyboard to a buffer

mov cx,es:[di+num_db] ;read number of characters
jcxz read e ;test if equal to 0
les di,es: [di+b_adrJ ;Address of character buffer to ES:DI
cld Ion STOSB count up
mov si, key a ;Pointer to next character in KEY S2
mov bx,kei::e ;Pointer to last character in KEY S2

read_I: cmp si,bx ;other characters in keyboard buffer?
jne read 3 ;YES --> READ_3

read_2: xor ah, ah ;Function number for reading is 0
int 16h ;Call BrOS Keyboard-interrupt
call store c ;Store characters in internal buffer-cmp al,O ;test if extended code
jne read 3 ; no --> READ_3

mov al,ah ;Extended Code is in AH
call store c ;store

read_3: mov al, [si+key_buJ ;read character from keyboard buffer
stosb ;transmit to buffer of calling funct.
inc si ;Incrernent pointer to next character
cmp si,KEY SZ ;End of buffer reached?-
jne read_4 	 ;NO --> READ_ 4

xor 8i,si 	 ;next character is the first character
;in the keyboard buffer

read_4: loop read_l irepeat until all characters read
mov key_a, si ;Store position of tr.e next character

;in the key board buffer
mov byte ptr key_e,bl ;Store position of the last character

:in the key board buffer

read e: xor ax,ax ;everything o.k.
ret ;back to caller

175

6. The Disk Operating System 	 PC System Programming

read endp

; ----------'---

read b proc near

mov ah,l
int 16h
je ready1

mov es: [di+13] ,al
xor ax,ax
ret

ready1 label near

mov ax,OlOOh
ret

read b endp

;read the next character from the
;key board but leave in the buffer

;Function number for BIOS-interrupt
;call BIOS Keyboard-interrupt
;no character present --> READ_PI

;store character in data block
;everything o.k.
;back to caller

; Set busy-bit (no character)
;back to caller

;---

del in b proc-
mov
int
je

xor
int
jmp

del_e: 	 xor
ret

del in_b endp-

near

ah,1

16h

del e

ah,ah
l6h
short del-

ax,ax

in_b

ierase input buffer

;still characters in the buffer?
;Call BIOS key board interrupt
;no character in the buffer --> END

:Remove character from buffer
;Call BIOS key board interrupt
;Test for additional characters

;everything o.k.
;back to caller

;---

write proc near

mov cx,es:[di+num db]
jcxz write e
Id£ si,es:[di+b_adr]
cld

mov ah,3
int l6h

mov ah,14

write_1: lodsb
int IOh
loop write

write e: xor ax,ax
ret

write endp

;write a specified number of
;characters on the display screen

;Number of characters read
;test if equal to 0
;Address of character-buffer to OS:SI
ion LOOSB increment count

;read current display page
;Call BIOS Video-interrupt

;Function number for BIOS interrupt

;read character to be output to AL
;call BIOS Video-interrupt
; repeat until all characters output

; everything o.k~
; ba ck to ca ller

;---

init proc near ;Initialization routine

mov word ptr es:[di+end adr] ,offset init ;Set End-Address of
mov es:[di+end_adr+2J,cs ;the driver

176

Abacus 	 6.12 DOS Device Drivers

xor ax,ax ; everything o.k.
ret ;back to caller

init endp

;=====---===-==-======--=~=============--==---=-----===-==============

code 	 ends
end

The header of this driver describes a character device driver which handles both the
standard input device (keyboard) and the standard output device (monitor). Mter
linking it into the system, setting the two bits in the device attribute calls this
driver on all function calls previously handled by the CON driver. Like any other
driver, this driver has a strategy routine and an interrupt routine. The former stores
the address of the data block in the variable DB_PI'R.

The interrupt routine saves the contents of all registers which will be changed by it
on the stack and gets the routine number to be called from the data block. It then
checks whether CONDRY supports this function. If not, it jumps directly to the
end of the interrupt routine and sets the proper error code in the status field of the
request header which was passed to the routine. Then it restores the registers which
were saved on the stack and returns control to the calling DOS function.

For any of the functions that are supported by the device driver, the offset address
of a routine to handle a particular function is determined from the table labeled
FK.T_TAB. Notice that the routines named DUMMY and NO_SUP appear several
times. DUMMY is for all functions which apply only to block device drives and
therefore are not used in this driver. The DUMMY routine clears the AX register
and sets the BUSY bit in the status word. The NO_SUP routine handles any
functions which cannot be used since the drive attribute for CONDRY does not
support these functions.

The STORE_C routine can be accessed from the lower level routines in this driver.
Its purpose is to store a character in the internal keyboard buffer of the driver. The
driver really shouldn't have this buffer available since BIOS (whose functions are
used by the driver to read characters from the keyboard) also has such a buffer. The
problem is that the BIOS always returns two characters when pressing a key with
extended codes (cursor keys, function keys etc.). If the higher level functions of
DOS only ask for one character at a time from CONDRY, the second character
must not be lost. It should be stored in a buffer and delivered to DOS by the read
function on the next call. This is STORE_C's task.

Reading characters

The next routine is the READ function. It obtains the number of characters to be
read from the request header passed by DOS. If it is 0, the routine is terminated
immediately. If not, then a loop starts which executes once for every character read
It rrrst tests for characters still stored in the internal keyboard buffer. If so, a
character is passed to the buffer of the calling function. If no additional character

177

6. The Disk Operating System PC System Programming

exists in the keyboard buffer, function 0 of the BIOS keyboard interrupt 16H
inputs a character from the keyboard. This character is also passed to the internal
keyboard buffer. If it's an extended keycode, it is divided into two characters. The
next step removes a character from the internal keyboard buffer and passes the
character to the buffer of the calling function. The process repeats until all
characters requested have been passed to DOS. Then the routine ends.

The higher level DOS functions also call the function named READ_P. It tests
whether a character was entered from the keyboard. If not, it sets the BUSY bit in
the status field of the request header passed by DOS, and returns to the calling
function. If a character was entered without having been read, the driver reads this
character and passes it to the calling DOS function in the request header, and resets
the busy bit. The character remains in the keyboard buffer, and on a subsequent call
of the read function, it is again passed to DOS. To test the availability of a
character, the READ] function uses function 1 of the BIOS keyboard interrupt
16H.

The function DEL_IN_B also gets called by the higher level DOS functions.
DEL_IN_B deletes the contents of the keyboard buffer. It removes characters from
the buffer using function 0 of the BIOS keyboard interrupt until function I
indicates that no more characters are available. This ends the function and it returns
to the calling function after the busy bit is reset

Writing characters

WRITE takes the number of characters from a buffer passed by DOS and displays
the characters on the screen. This routine uses function OEH of the BIOS video
interrupt. Once all characters have been displayed, it sets the BUSY bit in the
status field and ends the function. This function also executes when the higher
level DOS functions call the Write and Verify functions.

Initialization

The last function, the initialization routine, is called first by DOS. Since
CONDRV does not initialize variables and hardware, the routine simply enters the
driver's ending address into the passed request header. The routine returns its own
starting address since it will never be called again, and is the end of the chain of
drivers.

In its current form the driver has little use, since it uses only those functions
already available to the CON driver of DOS. It would be more practical if an
enhanced driver like ANSI.SYS were developed, through which screen design could
be more tightly controlled. For example, it's possible that such a driver would
have complete windowing capability which could be accessed from any program,
in any programming language.

The following block device driver creates a lOOK RAM disk:

178

Abacus 	 6.12 DOS Device Drivers

,.•••••**.** •••••••• **•• ***.**•.,
;* 	 RAMDISK *;
i*---*;
,.* Task : This Program is a Driver for a 160KB *;
;* RAM-Disk. *;
i*---*i
;* Author MICHAEL TISCHER *;
;* developed orun 8.4.87 *;
;* last Update 9.21.87 *;
i*---*;
; * assembly MASH RAMDISK; *;
; * LINK RAMDISK; *;
;* EXE2BIN RAMDISK RAMDISK.SYS *;
;*---*;
;* Call Copy into Root Directory, enter the command *;
;* DEVICE=RAMDISK.SYS into the CONFIG.SYS file *;
, and then boot the System. *;
i············***···*********·····****·*************·····**············i
code 	 segment

assume cs:code,ds:code,es:code,ss:code

org 0 	 ;Program has no PSP therefore begin
;at the offset address 0

i== Constants ================:=:==================~==========-=======

cmd fld equ ; Offset command field in data block
status equ 3 ; Offset status field in data block
num dev equ 13 ; Offset number of supported devices
changed equ 14 ;Offset medium changed?
end adr equ 14 ; Offset driver end-aAdr. in data block
b adr equ 14 ;Offset buffer address in data block
numcmd equ 16 ;the functions 0-16 are supported
num db equ 18 ;Offset number in data block
bpb_adr equ 18 ;Offset Address of BPB of the media
sector equ 20 ;Offset first sector number
dev des equ 22 ;Offset device-description of RAM-Disk

;== Data =====================================~=======-===============

erst b 	 equ this byte ;this is the first byte of the driver

Header of the Device-Driver --------------------------------------

dw -1,-1 ;Connection to next driver

dw 0100100000000000b ;Driver attribute

dw offset strat ;Pointer to strategy routine

dw offset intr ;Pointer to interrupt routine

db 1 ;a device is supported

db 7 dup (0) ;these bytes give the name

i-- Jump Table for the individual functions ------------------------

fkt tab 	 dw of fset init ; Funct ion 0: Ini t iali zat ion
dw offset med test ;Funct ion 1 : Media Test
dw offset get=bpb ; [unction 2: created BPS
dw offset read ; function 3: direct reading
dw offset read ;Function 4: Read
dw offset dummy ; Function 5: Read, remain in Buffer
dw offset dummy ;Function 6: Input-Status
dw offset dummy ; Funct ion 7: Erase Input-Buffer
dw offset write ; Funct ion 8: Write
dw offset write ; Function 9: Write & Verifi cation
dw offset dummy ;Function 10: Output-Stat us
dw offset dummy ;Function 11: Erase Output-Buffer
dw offset write ;Function 12: direct Write
dw offset dummy iFunctlon 13: Open (after DOS 3.0)
dw offset dummy ; Funct ion 14 : Close

179

6. The Disk Operating System 	 PC System Programming

db_ptr
rd_seg

bpb_ptr

boot sek

bpb

dw offset no rem
dw offset write

dw (:) , (?)

dw (1)

dw offset bpb, (?)

db 3 dup 	 (0)

db "MITI 1. 0"
dw 512
db1
dw 1
db1
dw 64
dw 320
db OFEh

dw 1

;Function IS: changeable Medium:
;Function 16: Output until Busy

;Address of the data block passed
;RD_SEG:OOOO beginning of the RAM-Disk

;Accepts the address of the BPS

;normally a jump command to the boot
;Routine is stored here
:Name of creator , version number
:512 bYtes per sector
;1 Sector per cluster
;1 reserved sector (boot-sector)
;1 File-Allocation-Table (FAT)
;maximum 64 entries in root directory
;total of 320 sectors 160 K8D

;Media descriptor (1 Side with 40
;Tracxs of 8 sectors each)
;every FAT occupies one sector

:-- the Boot routine not included since a System can not----
be booted from a RAM-Disk

vol_name 	db "RAMDISK ;the actual volume-name
db 8 ;Attribute, defines volume-name

;=- Routines and functions of the Driver =c_£===_&======_~___=====___==

strat proc far ;Strategy routine

mov cs:db ptr,bx ;Store address of the data block
mov cs:db=ptr+2,es ;in the Variable DB PTR

ret ; back to caller

strat endp

:---
intr proc far ;Interrupt routine

push ax ;Store registers on the stack
push bx
push ex
push dx
push di
push si
push bp
push ds
push es
pushf ;also store flag register

push cs ;Set data segment register
pop ds ;Code identical with data here

les di,dword ptr db-ptr;Address of data block to ES:DI
rnov bl,es:[di+crnd_fldl ;Get command-code
crop bl,num cmd
jle bc ok

rnov aX,8003h
jmp short intr end

;-- Command-Code was

shl bl,1
xor bh,bh
call [fkt tab+bx]-

;is command-code permitted?

:YES --> bc_ok

; Code for lIunknown Corrmand ll

;back to caller

o.k. --> Execute Command ---------------
;Calculate pointer in jump table
;erase BH
;Call function

bc_ok:

180

Abacus 	 6.12 DOS Device Drivers

;-- Execution of the function completed --------------------

intr end label near
push cs ;Set data segment register
pop ds ;Code is identical with data here

les di,dword ptr db~tr;Address of the data block to ES:DI
or aX,0100h ;Set finished-bit
mov es:[di+statusJ,ax ;store everything in the status field

popf ;Restore flag register
pop es ;restore other registers
pop ds
pop bp
pop si
pop di
pop dx
pop cx
pop bx
pop ax

ret 	 ;back to caller

intr 	 endp

i---
init 	 proc near ;Initialization routine

the following code is overwritten after the installation
by the RAM-Disk

;-- determine Device designation of the RAM-Disk -----------

mov ah,30h ;Sense DOS Version with function 30 (h)

int 21h ;of DOS-interrupt 21 (h)

cmp a1,3 ;is it Version 3 or higher?

jb prinm ;YES --> PRINM

mov al,es: [di+dev_desl ;Get device designation

add aI, "AU ;convert to letters

mov im_ger,al istore in installation message

prinm: 	 mov dx,offset initm ;Address of installation message
mov ah,9 ;output function number for string
int 2lh ;Call DOS-interrupt

Calculate Address of the first byte after the RAM-Disk -
and set as End Address of the Driver

mov word ptr es:[di+end adrl,offset ramdisk+8000h
mov ax,CS - ;Size of RAM-Disk is 32KB plus
add aX,2000h ;2 • 64KB
moves: [di+end adr+2l,ax
mov byte ptr es:[di+num devl,1 ;1 device supported
mov word ptr es: [di+bpb-adrJ,offset bpb_ptr ;Address of the
moves: [di+bpb_adr+2 J. ds ; BPB-Pointer

mov ax,es ; Segment address of RAM-Disk beginning
mov bpbytr+2,ds ;Segment address of BPB in BPB-Pointer
mov dx,offset rarndisk ;calculate to offset address 0
mov cl,4 ;Divide offset address by 16 and thus
shr dx,cl ; convert into segment address
add ax,dx ;add the two segment addresses
mov rd_seg,ax ;and store

Create Boot-Sector --------------------------------------

mov es,ax ;transfer segment address to ES
xor di,di ;Boots. begins with the 1. byte of RD

181

6. The Disk Operating System 	 PC System Programming

mov si,offset boot sek ;Address of the boot-sector in memory
mov cX,1S ;on1y the first 15 words are used
rep movsw ; copy boot-sector into RAM-DisK

;-- Create FAT --

mov di,S12 ;FAT begins with the byte 512 of RD
mov a1,OFEh ;Write media-descriptor into the first
stosb ;byte of the FAT
mov aX,OFFFFH ;Store code for bytes 2 and 3 of FAT
stosw lin FAT
mov cx,236 ;remaining 236 words occupied by FAT
inc ax ;Set AX to °
rep stosw ;Set all FAT-entries to unoccupied

;-- Create Root Directory with Volume-Name ------------

mov di,1024 ;Root Directory starts in 3rd Sector
mov si,offset vol_name ;Address of volume-name in memory
mov cx,6 ;the volume-name is 6 words long
rep movsw :Copy volume-name into RD

mov cx,1017 ;Fill the rest of the directories in
xor ax,ax ;Sectors 2, 3, 4 and 5 with zeros
rep stosw

xor ax,ax ; everything o.k.

ret ;back to caller

init 	 endp

:---
dummy proc near 	 ;This Routine does nothing

xor ax,ax ;Erase busy-bit

ret ;back to caller

dummy 	 endp

;---
med_test proc near 	 ;Media of RAM-Disk

;cannot be changed

mov byte ptr es:[di+changed),l

Kar ax,ax ; Erase busy-bit

ret ;back to caller

med test 	endp

:---
get_bpb proc near 	 ;Pass address of BPB to DOS

mov word ptr es: [di+bpb_adr) ,offset bpb

mov word ptr es:[di+bpb_adr+2),ds

xor ax,ax ; Erase busy-bit

ret ;back to caller

get_bpb 	 endp

i---
no_rem 	 proc near ;Media of RAM-Disk cannot be changed

mov ax,20 ; Set busy-bit
ret ;back to caller

182

Abacus 6.12 DOS Device Drivers

no rem endp

;---

write proc near

xor bp,bp ;Transmission DOS --> RAM-Disk
jmp short move ;Copy data

write endp

j---

read proc near

mav bp,l ;Transmission RAM-Disk --> DOS

read endp

j-- MOVE: Move a certain number of sectors between RD and DOS
Input : BP - 0 : transmit from DOS to RD (Write)

j-- 1 : transmit from RD to DOS (Read)
Output : none
Registers : AX, BX, CX, OX, SI, 01, ES, OS and FLAGS are changed

j-- Info Information required (number, first sector)
;-- is taken from the data block passed by DOS

move proc near

mov bX,es: [di+num db]
mov dX,es: [di+Sectorj
les di,es: [di+b_adrj

move 1: or bX,bx
je move e
mov ax,dx
mov el,S
shl ax,el
add ax, cs: rd_seg
mov ds,ax
xor si,si
mov ax,bx
cmp ax,128
jbe move 2
mov aX,128

move 2: sub bx,ax
add dx,ax
mov ch,al
xor cI,el
or bp,bp
jne move 3
mov ax,es
push ds
pop es
mov ds,ax
xchg si,di

move 3: rep movsw
or bp,bp
jne move 1
mov ax,es
push ds
pop es
mov as,ax
xchg si/di
jmp short move 1

move e: xer ax,ax
ret

move endp

:Number of sectors read
;Number of first sector
;Address of buffer to ES:D1

iMore sectors to read
iNa more sectors --> END
;Sector number to AX
;Calculate number of paragraphs
; (Segment units) by Multiplication
;with 32, add to Segment start of RD
; transmi t to DS
;Offset address is 0
;Number of sectors to be read to AX
;more than 128 sectors to read
;NO --> read all sectors

;YES --> read 128 sectors (64 KB)

;subtract number of sectors read
;add to sectorsto be read next
; Number sect. to be read * 256 words
;Set La-byte of word-counter to 0
; Should be read
;NO --> MOVE 3
;Store ES in-AX
;Store DS on the stack
; read ES
;ES and DS are reversed now
;exchange SI and DI
;copy data into DOS-buffer
i read ?
;NO --> maybe other sectors to copy
;Store ES in AX
;Store DS on the stack
;read ES
;ES and DS have been exchanged
;exchange SI and 01 again
iadditional sectors to copy

; everything o.k.
;back to caller

183

6. The Disk ()perating System 	 PC System Programming

;-- RAM-Disk 	 starts here ---------------------------

if IS-erst b) mod 16 ;must start on a memory address
org ($-erst b) + 16 - «$-erst_b) mod 16) ; divisible by 16

endif

ramdisk 	 equ this byte

initm 	 db M*H* 160 KB RAMDISK as Device"

db U: installed (c) 1987 by MICHAEL TISCHERS",13,lO,10

;---
code 	 ends

end

This driver is similar to the CONDRY driver. The biggest difference between the
two lies in the functions which each supports.

Note: 	 The initialization routine INIT here is more comprehensive than the
CONDRY initialization routine, and remains in memory after the end
of execution even though it is no longer needed. You'll see why this
is so in the paragraph below entitled "The INIT routine" .

First, this routine fmds the DOS version number using function 30H. If the
version number equals or is greater than 3, the request header passed by DOS
contains the device designation of the RAM disk. The system reads the
designation, changes it to a character and places the character into the installation
message. DOS function 09H is used to display this message on the screen.

Next, the program computes the ending address of the RAM disk. Since the actual
data area of the RAM disk starts immediately after the last routine of this driver,
160K is added to the program's ending address. Further, the address of a variable
(BPB_P1R) containing the address of the BIOS parameter block is passed to DOS.
This variable describes the RAM disk's format. In this case, it tells DOS that the
RAM disk uses 512 bytes per sector. Each cluster is made up of one sector and
only one reserved sector (the boot sector) exists. In addition, only one FAT exists.
Additional information indicates that a maximum of 64 entries can be made in the
root directory and that the RAM disk has 320 sectors available (160K of memory).
The FAT occupies a single sector, and the media descriptor byte FEH designates a
diskette with one side and 40 tracks of 8 sectors each.

These parameters are then placed into the request header of DOS and the segment
address of the data area of the RAM disk is calculated (which the driver itself
requires, DOS does not need this information).

The INIT routine

The RAM disk must now be formatted, to create a boot sector, FAT and a root
directory. Since these data structures are in the flrst sectors of the RAM disk, a
normal INIT routine (which releases its memory to DOS), would overwrite itself

184

Abacus 6.12 DOS Device Drivers

with these data structures and would crash the system. This is why the
initialization routine is not at the end of the last routine of the driver, which would
place it at the beginning of the RAM disk's data area.

The boot sector occupies the complete first sector of the RAM disk, but only the
fIrst 15 words are copied into it since DOS only needs these. The name "boot
sector" is actually a misnomer here, since it's impossible to boot a system from a
RAM disk.

The second sector of the RAM disk contains the FAT. The fIrst two entries are the
media descriptor byte and 0 in the entries that follow. These zeros indicate
unoccupied clusters (an empty RAM disk).

The last data structure is the root directory. It contains no entries other than the
volume name.

Remaining routines

This concludes the work of the initialization routine and returns the system to the
calling function. The remaining driver routines are examined in order.

The DUMMY routine performs the same task as the routine of the same name in
the CONDRV driver.

The MED_TEST routine is found only in block device drivers. This routine
informs DOS whether or not the medium was changed.

The next routine, GET_BPB, simply passes the addresses of the variables which
contain the address of the BPB of the RAM disk to DOS, as the initialization
routine had already done.

NO_REM allows DOS to sense whether the medium (the RAM disk) can be
changed. You cannot change a RAM disk, so the program sets the BUSY bit in
the status fIeld.

The two most important functions of the driver perform read and write operations.
As in CONDRV, the program calls Write and Verify instead of the normal Write
function, since no data error can occur during RAM access. The routine itself does
very little; it loads the value 0 into the BP register and jumps to the MOVE
routine. The READ routine performs in a similar manner, except that it loads a 1
into the BP register.

MOVE itself is an elementary routine for moving data. The BP register signals
whether data is to move from the RAM disk to DOS or in the opposite direction.
The routine receives all other data (the DOS buffer's address, the number of the
sectors to be transferred and the fIrst sector to be transferred) from the data block
passed by DOS. See the comments in the MOVE routine for details of the
procedure.

185

6. The Disk Operating System 	 PC System Programming

Changes

This RAM disk: can of course be enhanced. If you have enough unused memory,
you can extend the size of the RAM disk: to 360K. AT owners could make the
RAM disk: resident beyond the I megabyte boundary. In this case, the data transfer
between DOS and the RAM disk: would use function 87H of interrupt ISH.

The clock driver

This final sample driver directly accesses the battery powered clock of an AT
computer. It offers the advantage that when the two DOS commands DAlE and
TIME are used, the date and time are passed directly to the battery powered realtime
clock. Reading the date and time reads the information directly from the memory
locations of the realtime clock.

i**************************·*****···*********·***********************·i
;* 	 ATCLK *;
i*---*;
;* Task This program is a clock-driver which can be *;
;* used by OOS for functions which access date *;
;* and time on the battery powered clock *;
;* of the AT. *;
i*---*i
;* Author MICHAEL TISCHER *;
;* developed on : 8.4.87 * ;
.* last Update : 9.21.87 * ;
;*---*i
;* assembly MASK ATCLK; * ;
;* LINK ATCLK; * ;
;* EXE2BIN ATCLK ATCLK.SYS * ;
; *-----------------------------.-------------------------------------* i
; * Call : Copy into root directory place the command *;
;* DEVICE=ATCLK.SYS in the CONFIG.SYS file *;
;* and then boot the system. *;
i***i

code segment

assume cs:code,ds:code,es:code,ss:code

org 0 	 ;Program has no PSP, therefore
;beginning at offset address 0

;=- Constants -=--===-=-=~=-===============--==---=--==-=-----=--====-

cmd_fld equ 2 ; Offset command-field in data block
status equ 3 ; Offset status field in data block
end adr equ 14 ; Offset driver end-adr. in data block
num::::db equ 18 ;Offset number in data block
b_adr equ 14 ;Offset buffer-address in data block

i== Data ==========--=======-==-=====--==-===----=-====================

;-- Header of Device-Driver --

dw -1,-1 	 iConnection to next driver
dw 1000000000001000b 	 ;Driver attribute
dw offset strat 	 ;Pointer to strategy routine
dw offset intr 	 ;Pointer to interrupt routine
db "$CLOCK " 	 ;new clock driver

dbytr dw (1). (1) ;address of data block passed

mon tab db 31 	 ;Table with number of days in

186

Abacus 	 6.12 DOS Device Drivers

february 	db 28 ;the months
db 31,30,31,30,31,31,30,31,30,31

;== Routines and functions of the Driver ====-----------------=-------
strat 	 proc far ;Strategy routine

mov cs:db ptr,bx ;Record address of the data block in
mov cs:db:ptr+2,es ;the variable DB_PTR

ret 	 ;back to caller

strat

;---

intr 	 proc far ;interrupt routine

push ax ;Save registers on the stack
push bx
push cx
push dx
push di
push si
push bp
push ds
push es
pushf ;Store the flag register

cld 	 ;increment for string commands

push cs ;Set data segment register
pop ds ;Code is identical with data here

les di,dword ptr db-ptr;Address of data block to ES:DI
mov bl,es:[di+cmd fld] ;Get command-code
cmp bl,4 - ;Should Time/Date be read?
je ck read ; YES --> CK READ
cmp bl-;-e ;Should Time/Date be written?
je cl< write ;YES --> CK WRITE
or bl-;-bl ;should the-driver be initialized
jne unk_fkt ;NO --> unknown function

jmp init ;initialize driver

unk fkt: 	mov aX,e003h ;Code for "unknown Command"

Function Execution completed --------------------------

intr end 	label near
or aX,OlOOh ;Set finished-bit
mav es: [di+status] ,ax ;store everything in status field

popf ;Restore flag register
pop es iRestore other registers
pop ds
pop bp
pop si
pop di
pop dx
pop cx
pop bx
pop ax

ret 	 ;back to caller

intr 	 endp

;--

187

6. The Disk Operating System PC System Programming

ck read proc near ;Read Time/Date from the clock

mov byte ptr es:[di+num db],6 ;6 bytes are passed
les di,es:[di+b_adr]

mov ah,4
int 1Ah
call date ofs
stosw

mov ah,2
int 1Ah
mov bl,ch
call bcd bin
stosb
mov cl,bl
call bcd bin
stosb
xar al,al
stosb
mov cl,dh
call bcd bin
stosb

xar ax,ax
jmp short intr end

ck read endp

;ES:DI points to the DOS-buffer

;Read function number for Date
;Call BIOS Time interrupt
;Change Date after offset to 1.1.1980
;store in buffer

;Read function number for time
;Call BIOS Time interrupt
;Store hour in BL
;convert minutes
;Store in buffer
;Hour to CL
; Convert hour
;Store in buffer
;Hundredth second is 0
;Store in buffer
;Seconds to CL
; Convert seconds
;Store in buffer

;everything o.k.
;back to caller

i--

ck write proc near ;Write Time/Date into clock

mov byte ptr es:[di+nurn db],6 ;6 bytes are read
les di,es:[di+b_adr] ;ES:DI points to the DOS buffer

mov aX,es: [di]
push ax
call ofs date
mov ch,19h
mav ah,S
int 1AH

mov al,es:[di+2]
call bin bcd
mav el,al
mov al,es: [di+5]
call bin bcd
mov dh,al
mov al,es:[di+3]
call bin bcd
mav ch,al
xor dl,dl
mav ah,3
int 1AH

;Get number of days since 1.1.1980
;store number
;convert into a date
;Year begins with 19 .•
;Set function number for date
;Call BIOS Time interrupt

;Get minute from buffer
; convert to BCD
;bring to CL
;Get seconds from buffer
; convert to BCD
;bring to DH
;Get hours from buffer
; convert to BCD
;bring to CH
ino sumner time
;Set function number for time
;Call BIOS Time interrupt

;-- Calculate Day of the Week ------------------------------
xor dX,dx
pop ax
or ax,ax
je nodiv
xor dx,dx
mov ex,7
div cx
add dl,3
cmp dl,8
jb nosema
sub dl,cl
mov al,6
out 70h,al

;HI-word for division
;Get number of days from stack
;is number O?
;Yes --> bypass division
;HI-word for division
;week has seven days
;divide AX by 7

;1.1.80 was a Tuesday (Day 3)

;is it a Sunday or Monday?

;NO --> no correction necessary

; correct val ue
;Location 6 in RTC is day of week
;Address to RTC-address register

nodiv:

nosema:

188

Abacus 	 6.12 DOS Device Drivers

mov al,dl
out 7lh,al

xor ax,ax
jmp intr end

ck_write endp

;Day of the week to AL
;Day of the week to RTC-data register

;everything o.k.
;back to caller

;-- OFS DATE: Convert number of days since 1.1.1980 into date
;-- Input : AX = Number of days since 1.1.1980
;-- Output CL - Year, DH - Month and DL - Day
;-- Registers : AX, BX, ex, DX, SI and FLAGS are changed
;-- Info : For conversion of Offsets the Array MaN_TAB
:-- is used

ofs date proc near

mov cl,80
mov dh,Ol

ly: 	 mov bx,365
test cl,3
jne ly1
inc bl

ly1: 	 cmp ax,bx
jb mo
inc cl
sub ax,bx
jmp short ly

mo: mov bl,28
test cl,llb
jne nolp2
inc bl

nolp2: mov february,bl

mov si,offset mon_tab
xor bh,bh

mol: mov bl, lsi I
crnp ax, bx
jb day
sub ax,bx
inc dh
inc si
jmp short mol

day: 	 inc al
call bin bcd
mov dl,al
mov al,dh
call bin bcd
mov dh,al
mov al,el
call bin bcd
mov el,al

ret

;Year-1980
: January
;Number of days in a normal year
;is year a leap year?
;NO --> ly1
:Leap Year has one day more
;another year passed?
;NO --> Calculate months
;YES --> Increment year
;deduct number of days in this year
;calculate next year

;Days in February in a normal year
;is the year a leap year?
;NO --> nolp2
;in leap year February has 29 days
;store number of days in February

;Address of months table
;every month has less than 256 days
;Get number of days in month
;another month passed?
;NO --> calculate day
;YES --> deduct day of the month
: increment month
;51 to next month in the table
;calculate next month

;the remainder + 1 is the day
;Convert day to BCD
;transmit to DL
;transmit month to AL
; convert to BCD
;move to DH
:move year to AL
; convert to BCD
;move to CL

;back to caller

BIN BCD: Convert Binary-Number to BCD ---------------------------
Input : AL = Binary value
Output : AL = corresponding BCD-value

:-- Register : AX, CX and FLAGS are changed

bin bed proc near

xor ah,ah ;prepare 16 bit division
mov ch,10 ;work in decimal system
div ch ;divide AX by 10
shl al,l ;Shift quotient left 4 places

189

6. The Disk Operating System 	 PC System Programming

shl al,1

shl al,l

shl al,l

or al,ah ;OR remainder

ret ;back to caller

bin bcd 	 endp

j-- DATE_OFS: Convert Date in number of days since 1.1.1980 ----
i- Input : CL - Year, DH - Month and DL = Day
i-- Output : AX - Number of days since 1.1.1980

Register AX, ax, ex, DX, 51 and FLAGS are changed
j-- Info For conversion of date, the Array MeN_TAB
;-- is used

date ofs proc near

call bed bin ;Convert year to binary
mov bl,al ;transmit to BL
mov cl,dh ;transmit month to CL
call bcd bin ;Convert Month to binary
mov dh,al land transmit again to DH
mov cl,dl ;transmit day to CL
call bcd bin iconvert day to binary
mov dl,al ;and again transmit to DL

xor ax,ax ; 0 days

mov ch,bl istore year

dec bl ibaCK one year

year: 	 cmp bl,80 ;counted back to year 19BO
jb monat ;YES --> convert month
test bl,llb jis year a Leap year
jne nolpyr ;NO --> NOLPYR
inc ax ;a leap year has one more day

nolpyr: 	 add aX,365 ;add days of year
dec bl ; back one year
jmp short year iprocess next year

month: 	 mov bl,28 ;Days in February in a normal year
test ch,llb ;is current year a Leap Year?
jne nolpyrl ;NO --> NOLPYRI
inc bl ;in Leap Year February has 29 days

nolpyrl: 	mov february, bl ;store in Month table
xor ch,ch ;every month has less than 256 days
mov bX,offset mon tab ;Address of month table

mcnatl: 	 dec dh ;decrement number of months
je add_day ;all month calculated --> TAG
mov el, [bx] ;Get number of days in month
add ax,cx ;add to total-days
inc bx ;BX to next month in the table
jrnp short monatl icalculate next month

add_day: 	add ax,dx ;add current day
dec ax ;deduct one day (1.1.BO 0)
ret ; ba ck to ca ller

date ofs endp

;-- BCD_BIN: Convert BCD to Binary Number ---------------------------
Input : CL : BCD-Value

;-- Output : AL = corresponding binary value
Register : AX, CX and FLAGS are changed

bcd bin proc near 	 ;Convert BCD-value in CL to binary

i ret urn in AL

mov aI, cl ;transmit value to AL
shr al,1 ;shift 4 places right
shr al,1
shr al,1

190

Abacus 	 6.12 DOS Device Drivers

shr al,l
xor ah,ah ;Set AH to 0
mov ch,10 ;process in decimal system
mul ch ;multiply AX by 10
mov ch,cl ;transmit CL to CH
and ch,l1l1b ;Set Hi-Nibble in CH to 0
add al,ch ;add AL and CH
ret 	 ;back to caller

bcd bin 	 endp

;---

init 	 proc near ;Initialization routine

;-- the following code can be overwritten by DOS
;-- after installation of the clock

mov word ptr es:[di+end adrJ,offset init ;Set end address
mov es:[di+end_adr+2J,cs ;of the driver

mov ah,9 ;OUtput installation message
mov dx,offset initm ;Address of the text
int 21h ;Call DOS interrupt

xor ax,ax ; everything o.k.
jmp intr end ;back to caller

initm 	 db 13,10,"**** ATCLK-Driver installed. (c) 1987 by"

db " MICHAEL TISCHER",13,10,"S"

init 	 endp

;---

code 	 ends

end

The basic structure of this driver differs from the other drivers in that it calls the
individual functions directly, not through a table of their addresses. Since it only
supports functions OOH, 04H and 08H, it can test the function numbers passed by
DOS directly. If any other function occurs, it signals an error. Besides the INIT
routine, which only sets the ending address of the driver like CONDRY, the driver
only has the Read Time and Date and Write Time and Date functions.

Time routine

The TIME routine is fairly simple. For reading the clock, the routine reads the
time from the memory locations of the clock, converts the time from BCD to
binary format and then passes the time to the DOS buffer. For setting the time,
the reverse occurs: The routine reads the time from the DOS buffer, converts the
code from binary to BCD format and writes the BCD code into the memory
locations of the clock.

DOS uses the same format for indicating time as the clock: Hour, minute and
seconds each comprise one byte.

191

6. The Disk Operating System PC System Programming

Date routine

The DATE routine is more complicated. While the clock stores day, month and
year as one byte each, date encoding by DOS is the number of days since January
1, 1980. This number must be converted into a date in the form of day, month and
year as DOS writes the time and date. The reverse is true when you call the Read
function: the clock date must be converted into the number of days. Let's look at
how this is done.

The conversion routine starts with the year 1980. January 1, 1980 (called
NUMDAYS from here on) is equal to the value O. The routine tests whether this
year is less than the current year. If so, it adds the number of days in this year to
NUMDA YS, adding a day to compensate for each ltap year. Then it increments the
year and tests again for a smaller number than the current year. This loop repeats
until it reaches the current year. The routine then computes the number of days in
the current year's month of February, and enters this month into a table which
contains the number of days for each month.

In the next step, for every month less than the current month, the routine adds the
number of days in this month to NUMDAYS. Once it reaches the current month,
only the current days of the month are added to NUMDA YS. The end result is
transferred to the DOS buffer and the routine terminates.

Conversion to date format

Converting NUMDA YS into a date operates in reverse. The routine begins with
the year 1980 and tests whether the number of days in this year is less than or
equal to NUMDAYS. If this is the case, the year is incremented and the number of
days in this year is subtracted from NUMDAYS. This loop is repeated until the
number of days in a year is larger than NUMDA YS. The routine then computes
the number of days in the current year's month of February, and enters this month
into the table of the months.

January starts another loop which tests whether the number of days in the current
month is less than or equal to NUMDA YS. If this is the case, the month
increments and the routine subtracts the number of days from NUMDA YS. If the
number of days in a month is larger than NUMDA YS, the loop ends. NUMDA YS
must only be incremented enough to give the day of the month and complete the
date.

The routine then converts the date to BCD format and enters the date in the
memory locations of the clock.

6.12.10 CD-ROMs

Soon after their introduction into the audio world, the compact disk industry began
approaching the PC market. A CD-ROM drive and a PC form an interesting

192

Abacus 6.12 DOS Device Drivers

combination. The compact disk medium itself is read-only, but 660 megabytes of
data can be stored in the form of text, graphics, etc.

Many publications and references are currently available on CD-ROM, such as:

Telephone directories

Books in Print

The Bible in various translations

The English translation of Pravda

In addition, maps, photographic libraries, public domain program collections and
medical databases are available in CD-ROM format. New titles are being published
daily in this growing market.

Why CD-ROM?

The CD-ROM has a clear advantage over the printed medium. Once captured and
digitized, information can be processed by a computer in whatever form the user
needs. The possibilities appear to be limitless, considering how easy it is to read
and compare information.

Another important consideration is the ease of access for many users. Load the
driver software, press a key or two, and the information is on the screen and ready.

You can buy a PC-compatible CD-ROM player for $800 to $1,000 at the time of
this writing. These players are available as either external or internal devices.

Interfacing

The PC's hardware can be easily interfaced to a CD-ROM player. The software
may encounter some problems, however. This is understandable, since DOS was
never intended to support these devices. This subsection shows how a CD-ROM
drive. using the proper drivers and utility programs, can be accessed like a read
only floppy disk drive. This information may not be of immediate use to you.
However, this data will give you a closer look into the world of the device driver
and operating system organization.

This book mentioned earlier that the device drivers act as mediators between the
disk operating system and the external devices such as monitor, printer, disk drives
and hard disks. DOS differentiates between block device drivers and character device
drivers. As a mass storage device capable of reading information in a block mode, a
CD-ROM drive would normally be added to the rest of the system through a block
driver. Here's where the problem begins: OOS makes a number of assumptions
about block devices, and a CD-ROM drive cannot meet the criteria of these
assumptions.

193

6. The Disk Operating System PC System Programming

Memory limitations

In versions of DOS up to and including Version 3.3, the biggest obstacle to
interfacing with a block driver was the 32 megabyte limit imposed on every
volume designated as a block device. The second biggest obstacle is the lack of a
file allocation table (FAT) on a CD-ROM. Instead of the FAT, the CD-ROM
contains a form of data table into which the starting addresses of the various
subdirectories and files are recorded. However, DOS still demands a FAT which it
can at least read during driver initialization.

A character driver works better for implementing a CD-ROM driver, since DOS
makes no assumptions about the structure of the devices connected through
character drivers. Even character drivers are poorly suited for communication with a
CD-ROM drive, since they transmit characters one at a time instead of in groups
of characters. Another disadvantage is the need for a name (e.g., CON) instead of a
device designation. DOS must first see the CD-ROM driver as a character driver to
DOS to prevent read accesses to a non-existent FAT. The CONFIG.SYS file
supplies the name of the device during the system booting process.

Configuring the CD·ROM

The manufacturer usually includes CD-ROM driver software with the CD-ROM
drive package. A driver of this type usually has a name such as SONY .SYS or
HITACHI.SYS, depending on the manufacturer.

The CONFIG.SYS sequence which installs this driver can look something like
this:

DEVICE=HITACHI.SYS /D:CDRl

The device driver selects the name CDR! as the name of the CD-ROM drive.

Mter executing the initialization routine from DOS, the CD-ROM is treated as a
block driver which has been enhanced with a few special functions supporting CD
ROMs. However, DOS still views the CD-ROM player as a character driver: DOS
cannot view the CD-ROM's directory, nor can it directly access the files on the
CD-ROM.

Driver software extensions

To overcome this obstacle, many CD-ROM players come with a TSR (Terminate
and Stay Resident) program named MSCDEX (Microsoft CD-ROM Extension) in
addition to the device driver software (see Chapter 8 for information on TSR
programs). This program must be called from within the AUTOEXEC.BAT file.
The name of the CD driver can be passed to the program from the DOS prompt, as
shown in the following example:

MSCDEX /D:CDRl

194

Abacus 6.12 DOS Device Drivers

MSCDEX first opens this driver through the DOS OPEN function and provides it
a device designation. DOS assumes that MSCDEX is a device on a remote
network, as supported by DOS in Version 3.1.

MSCDEX brings us closer to the solution, since DOS handles network devices as
files containing more than 32 megabytes. These devices are accessed through
redirection, rather than direct access from DOS. The resident portion of MSCDEX
interfaces to the redirector, and intercepts all calls to the redirector. If MSCDEX
receives a call addressed to the CD-ROM drive, it adapts each instruction to a call
applicable to the CD-ROM driver. This makes a perfect connection between DOS
and the CD-ROM drive, while still allowing access to subdirectories and files at
any time.

•• I).. read acce•• Net~k call
~licatian prcwJr_

oas HSCDEX IWdirector
1cernal

CD-KJM ecce••

OOS COIlllNlnd.-..L-_--.
Ce.I) •• DIR) """""""d CD-KlM

interpret.er
dw'ice driver

CQlfMAN) .CCM

Keyboard

CD-KIM dr i ve

CD-ROM access through MSCDEX and its device driver

195

http:interpret.er

6. The Disk Operating System PC System Programming

6.13 DOS Mass Storage

Many tasks performed by DOS are unseen by the user. This is why some users
underestimate the complexity of DOS. For example, DOS requires many data
structures for handling a mass storage device, and the user may not realize this.
This section looks deeper into DOS and reveals the architecture and operation of
these data structures.

From the user's viewpoint, DOS addresses mass storage devices as volumes where
each individual volume has been assigned a letter. Floppy disk drives are identified
by the letters A and B, while the letters C or D usually identify a hard disk. A
mass storage device can have several volumes. This division into several volumes
or partitions is very practical for hard disks. Partitions on a floppy diskette don't
work as well due to the limited amount of storage space. A hard disk may be
divided into additional partitions ifUNIX (or XENIX) is used in addition to DOS.
Each of the two operating systems then has its own volume which is also
designated by its own letter.

Volume names

Each volume can be assigned a volume name when created, but this volume name
is not a requirement. The DIR command lists volume names when they are
available. Each volume has its own root directory, which can contain multiple
subdirectories and files. These subdirectories and files can be maintained and
manipulated by using one or more of the interrupt 21H functions.

Sectors

DOS subdivides each volume into a series of sectors. These sectors are organized
sequentially. Each sector contains a specific number of bytes (usually 512) and is
assigned a consecutive number beginning with sector O. Since function calls with
interrupt 21H are directed to files rather than individual sectors, DOS converts
these file accesses into sector accesses. To do this, DOS uses directories and a data
structure known as the FAT (file allocation table), which you read about earlier in
this book. Mter the desired sector number has been determined, control is passed to
the device driver which translates this sector number into a physical address. Mass
storage devices such as floppy and hard disks are divided into individual tracks
which contain a certain number of sectors. In addition to the physical sector
number, the driver must also detennine the number of the track and the number of
the read head.

196

Abacus 6.13 DOS Mass Storage

Manufacturer's name, device driver, boot routine

First file allocation table (FAT)
Sector

One or more copies of FATnumber
Root directory with volume names , Data register for files and subdirectories

Mass storage device structure

As mentioned above, every volume is divided into various areas containing the
various DOS data structures and individual files. Since the size of the individual
areas can differ depending on the type of mass storage device (and the
manufacturer), every volume contains a boot sector. The boot sector contains all
the information required to access to the different areas and data structures. OOS
creates this sector during disk formatting. Boot sectors always have the same
structure and are always located in sector 0 so that DOS can find and interpret it
properly.

The following illustration shows the layout of the boot sector.

DD(h) Jump command to boot routine (3 bytes)
(E9xxx or EBxx90)

03 (h) Manufacturer's name and version number (8 bytes)
OB(h) Bytes per sector (1 word)
DD(h) Sectors per cluster (1 byte)
OE(h) Number of reserved sectors (1 word)
10(h) Number of FATs (1 byte) ,.BPB
11 (h) Number of entries in root directory (1 word)
13(h) Number of sectors in volume (1 word)
15(h) Media descriptor (1 byte)
16(h) Number of sectors oer FAT /1 word)
18(h) Sectors per track (1 word)
lA(h) Number of read/write heads
le(h) Number of hidden sectors
lE(h) BOOT ROUTINEIFFCh)

Boot sector layout

Boot sector

The name boot sector comes from the fact that OOS boots (i.e., starts) from it.
DOS is loaded and started from disk-it is not usually stored in permanent PC
memory (ROM). After you turn the computer on, the BIOS takes over the system
initialization and loads logical sector 0 of the floppy or hard disk into memory.
Once it completes its work the BIOS starts execution at address O.

197

6. The Disk Operaling System PC System Programming

The boot sector always contains an assembly language JUMP instruction at
address O. After execution the program continues at a location further into the boot
sector. This instruction can be either a normal jump instruction or a "short jump."
Since the field for this jump instruction is 3 bytes long, but a "short jump" only
requires 2 bytes, a NOP (No Operation) instruction always follows the "short
jump" to fill in the extra byte. This NOP does nothing. A series of fields follow
which contain certain information about the organization ot the media. The first
field is 8 bytes long and contains the manufacturer's name, where this medium was
formatted, as well as the OOS version number which performed the formatting.
The next fields contain the physical format of the media (i.e., the number of bytes
per sector, the number of sectors per track, etc.) and the size of the DOS data
structures stored on the media. Since the BIOS and OOS-BIOS functions represent
the lowest level of access to disk drives and hard disks, this area is also designated
as the BIOS parameter block (BPB). Three additional fields, which can provide
additional information to the device driver about the media, follow the BPB; these
three fields aren't used directly by OOS.

Bootstrap

Next comes the bootstrap routine to which the jump instruction branches at the
beginning of this boot sector. It handles the loading and starting of DOS through
the individual system components (see Section 6.3).

Several reserved sectors may follow the boot sector. These reserved sectors can
contain additional bootstrap code. The numbers of these sectors are recorded in the
BPB in the field starting at address OEH. It terminates the boot sector and a 1 in
this field indicates that no additional reserved sectors follow the boot sector (this is
the case for most PCs).

In order for OOS to add new files or enlarge existing files, it must know which
sectors of the media are still available. This information is contained in a data
structure called the FAT (file allocation table) which is immediately adjacent to the
media's reserved area. Each entry in the FAT corresponds with a certain number of
logically contiguous sectors, called clusters, on the media. Location ODH of the
boot sector specifies the number of sectors per cluster as part of the BIOS
parameter table. Only multiples of 2 are legal values. On an XT hard disk this
location contains the value 8 (8 consecutive sectors form a cluster). As the
following table demonstrates, the number of sectors comprising a cluster depends
on the stomge medium.

Device

Sillgle sided disk drive
Double sided disk drive
AT hard disk
XT hard disk

Sectors per

1
2

4
B

cluster

The reason for joining several sectors into a cluster is derived from the logic used
by OOS to write files to a media. It disassembles the file to fit the pieces into the

198

Abacus 6.13 DOS Mass Storage

sectors which are still available, instead of selecting adjoining sectors for file
storage. This process slows file access since the read/write head must be
repositioned after almost every read function. To avoid an excessive disassembly of
the file, DOS gathers several sequential sectors on the media into a cluster. This
ensures that at least the sectors of a cluster contain a portion of a file. If DOS
didn't use clusters, a file of 24 sectors could be stored in many separate sectors,
which would require the read/write head to be positioned a maximum of 24 times
to read the entire file. The cluster principle saves a lot of time, since the file is
stored in 6 clusters and the read/write head only has to be repositioned 6 times.

There is a problem however. Since a file is assigned at least one cluster, some
storage space is wasted. Consider AUTOEXEC.BAT which is usually no longer
than 150 bytes. Normally, a single sector could contain this file (and still waste
almost 400 bytes), but AUTOEXEC.BAT occupies a cluster of 2048 bytes on an
AT, which wastes more than 1.5K of hard disk space.

Now back to the file allocation table:

The size of individual entries in the FAT under DOS Versions 1 and 2 is 12 bits.
For DOS Version 3 and later, the size of an entry in the FAT depends on the
number of clusters: if a volume has more than 4,096 clusters, then each FAT entry
is 16 bits; otherwise each FAT entry is 12 bits. The number of bits per FAT entry
must be determined before file access. The information in the BIOS parameter
block is used for this purpose. The total number of sectors in the volume can be
found starting at location 13H. Divide this number by the number of sectors per
cluster to obtain the number of clusters in the volume.

The fIrst two entries of the FAT are reserved and have nothing to do with the
cluster assignmenl Depending on the sizes of the individual entries, 24 bits (3
bytes) or 32 bits (4 bytes) can be available. The first byte contains the media
descriptor, while the value 255 ftIl in the other bytes. The media descriptor, which
is also stored in address ·15H of the BPB, indicates the device which the media uses
(for example a diskette). The following codes are possible:

Code Device
F8H Hard disk
F9H 5.25" disk drive (AT only)

2 sides, 80 tracks, 15 sectors
FCH 5.25" disk drive

1 side, 40 tracks, 9 sectors
FDR 5.25" disk drive

2 sides, 40 tracks 9 sectors
FER 5.25" disk drive

1 side, 40 tracks, 8 sectors
FFH 5.25" disk drive

2 sides, 40 tracks 8 sectors

This shows the various diskette fonnats which DOS supports in 5.25" diskettes.

199

6. Tire Disk Operating System PC System Programming

Included in DOS version 1 00 1.10 2.00 2.00 3.00
IMed:La descriotor F~ FF IFe FD IF9
Number of read/write heads 1 2 1 2 2
Number of tracks per head 40 40 40 40 80
Number 0 sectors per tracK II III 18
Number of bYtes Pe_r sector 512 512 512 512 512
Number of sectors per cluster 1 2 1 2 1
,NlllllDer or reservea sectors 1 1 11 .1 1.1
Number of Rectors Der FAT 1 1 12 7
Number of FATs 2 2 2 2 2
Number oX sectors 4 7 14 ., 14
in root directorv
Number of entries 64 112 64 112 224
in root directory
Total number of sectors 320 640 360 720 2400
Free sectors for data 313 620 351 708 2371
Number of clusters 313 315 351 354 2371
Tota caoac Ltv 160K 320K 1ROK 1360K 1.2Mea
Total file capacity 156.5K 315K 175.5K 354K 1. 185Me...'l

DOS 5.25" diskette/onnats

You may have wondered why the individual entries of the FAT are 12 or 16 bits
wide if all they do is indicate whether a cluster is occupied or not. This could have
been done with one bit: The bit could contain 1 when the cluster is occupied and 0
if the cluster is available. The reason is that the entries in the FAT help mark the
available clusters and identify the individual clusters containing a specific ftle. The
directory entry of a file tells OOS which cluster holds the fIrst data of a file. The
number of this cluster corresponds to the number of the FAT entry belonging to
it. In this entry is the number of the cluster containing the next sector of ftle data.
As the following illustration shows, a chain fonns in which the individual clusters
assigned to a ftle can be located in the proper sequence.

200

Abacus 	 6.13 DOS Mass Storage

Media descriptor
FATentry number (12 bit)

O. 	 00 F 0 R M
1.
2. 04 A T 32 32
3.

4.

5. 	
E X E

6.
7.

8.

9.

A.
B.
C.

74D.
E. IC 16F.

FAT entry andfile clusters

The FAT entry which corresponds to the last cluster of a file must contain a
special code which tells DOS that the file ends here. The following table shows
the meanings of the various FAT entries.

Code Meaning
(O)OOOH Cluster is available
(F) FFOH - (F) FF6H reserved cluster
(F) FF7H Cluster damaged, not used
(F) FF8H - (F)FFFH Last file cluster
(x)xxxH Next file cluster

Note: 	 The fIrst hexadecimal number in parentheses refers to a FAT whose
entries are 16 bits wide.

DOS is designed so that several identical copies of the FAT on the media may be
kept. This offers the advantage that in case of damage to one FAT, it can be
replaced with another, preventing data loss.

The DOS CHKDSK command tests the various FATs to see if they are identical.

201

6. The Disk Operating System PC System Programming

Directory structure

Now let's look at the structure of a directory.

The root directory of a volume immediately follows the last copy of the FAT.
This root directory (like all subdirectories) consists of 32-byte entries in which
information can be stored about individual files, subdirectories and volume names.
The maximum number of entries in the root directory, and therefore its size, is
stored in the BPB starting at address HH. The FORMAT command specifies both
the size number and the BPB. Before considering individual fields of this data
structure, here's a graphic overview of a directory entry:

+ OOH Filename (blanks padded wi spaces) (S bytes)
+ aSH File extension (blanks padded wi spaces) (3 bytes)
+ OBH File attribute (1 byte)

+ OCH Reserved (10 bytes)
+ 16H Time of last chanqe (1 word)
+ lSH Date of last chanqe (1 word)
+ 1AH First cluster of file (l word~

+ 1CH File size (2 words)

Directory entry layout

The first 8 bytes normally contain the name of the current file. If the filename is
shorter than 8 characters, DOS fills the remaining characters with spaces (ASCII
code 32). If the directory entry does not contain information on a file, but the file
is used in another manner, the first byte of the filename (therefore the first byte of
the directory entry) is identified by special code:

Code Meaning
OOH Last directory entry
OSH First character of filename

has ASCII code ESH
2EH File applies to current

directory
ESH File deleted

The second field contains the three character filename extension. If the extension is
less than three characters in length, DOS fills in the extra characters with blank
spaces (ASCII code 32). The period between filename and extension is displayed by
the DOS command DIR but is not kept in the directory; DIR displays it just to
make the names between easier to read.

Next follows the one-byte attribute field. As shown in the following figure the
individual bits of this field define certain attributes. The various attributes can be
combined so that a file (as in the IBMBIOS.COM file) can have the attributes
READ_ONLY, SYSlEM and HIDDEN.

202

http:IBMBIOS.COM

Abacus 6.13 DOS Mass Storage

7 6 5 4 3 2 1 o b i t
=wrlte-protectedI I l l I I I 1_~

p=read/write enabled
L I I ~=hldden file

(Invisible to DIR)
=system file
=volume name
=subdlrectory

arChive bit
reserved

Attributefreld in the directory

While the significance of bits 0 to 4 is easy to see, the significance of bit 5 needs
additional explanation. The name archive bit comes from its use in making backup
copies. Every time a file is created or modified, this bit is set to 1. If a program is
used to backup this file, (for example the DOS BACKUP command), the archive
bit is reset to O. The next time the BACKUP command is used, it can detennine
from the archive bit whether this file has been modified since the last backup. If it
still contains the value 0, the file doesn't have to be backed up again. If the archive
bit contains a I, the file was modified and should be backed up again.

The attributes volume name and subdirectory will be discussed in more detail
below.

A reserved field which DOS requires for internal operations follows the attribute
field

The time and date fields indicate when the file was last created or modified. Both
are stored as words (2 bytes), but have special and different fonnats.

203

6. The Disk Operating System PC System Programming

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bit

~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I
..

I I I
Hour Minute Seconds In

2-second
Increments (e.g.,)t
(13 means 26)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o bit

I I I I I I I I I I I I I I I I

I I I

Year (relative to 1980) Month Day of month

Timeldatefteldformats in directory entry

The next field indicates the number of the cluster which contains the first data of
the file. It also indicates the number of the FAT containing the number of the next
cluster assigned to the file. This field forms the beginning of a chain through
which all the clusters assigned to a ftle can be retrieved.

The file size in bytes is stored in 2 words with the lower word stored frrst. Using a
small formula and the two words, the ftle size can be calculated as follows:

File size = wordl + word2 * 65,536

Subdirectory and volume name

Both subdirectory and volume name deserve special consideration. The volume
name can only exist in the root directory and is indicated by bit 3 of the current
directory entry's attribute field. The ftlename in a volume entry acts as the volume
name; the DOS commands DIR, VOL and TREE can be used to display the
volume name.

If bit 4 of the current directory's attribute field is set, then this entry is for a
subdirectory. If in addition bit 1 in this field is set, the subdirectory can be
addressed, but will not be displayed when you execute the DIR command. For
these entries, the ftlename and extension field contain the subdirectory name; the
date and time field contain the time of its creation. The file length field is always
O. The field which normally indicates the frrst cluster of the me now indicates the
cluster which contains the directory entries of this subdirectory. They have the
same 32-byte structure as the entries in the root directory. As in a normal file, the
entry in the FAT, which corresponds with the subdirectory cluster, points to the
next cluster of the subdirectory, as long as one cluster is enough for the directory
of the subdirectory. This is not true of the root directory which extends through
several sectors or clusters, which follow each other logically. Furthermore the

204

Abacus 6.13 DOS Mass Storage

individual clusters of the root directory cannot be connected through the FAT,
because it only refers to the data area of the volume. This is the area which accepts
mes and subdirectories, but not the root directory.

The process described above reveals that DOS separates the individual mes in a
storage unit according to their directories. It doesn't store the files of one directory
in one area, but scatters the files across the storage medium.

When a subdirectory is created, two files are created with the names '.' and ' . .'
which can only be erased when you remove the entire subdirectory. The frrst of
these two mes points to the current subdirectory. and its cluster field contains the
number of the first cluster of the current subdirectory. The second entry points to
the parent directory. which in the directory tree is located ahead of the current
directory. If the parent directory is the root directory, the cluster field contains the
value O. The path to the root directory can be traced back through this entry. since
as every subdirectory searches for its parent directory it comes closer to the root
directory.

Now back to our discussion of mass storage device structures. The file area follows
the root directory just described. It occupies the remaining storage area of the mass
storage device. It accepts the individual files and various subdirectories. For every
cluster in this area there is an entry in the FAT corresponding to this cluster. If a
file is enlarged, DOS reserves a cluster which is still available to store the
additional data of the file. The FAT entry of the last cluster which formerly
indicated the end of me is changed to point to the new cluster which in tum
contains the new end character. In DOS Versions 1.0 and 2.0, unused clusters are
searched for from the beginning. In DOS Versions 3.0 and up, a more
sophisticated search is used to try to select an unused cluster in the vicinity of
other clusters comprising the file. This reduces the access time to the me as much
as possible. Conversely, when reducing file size or deleting a file, the FAT is
updated to indicate that the unused clusters are again available. They can be used
again when a new file is created or expanded.

20S

6. The Disk Operating System 	 PC System Programming

6.14 	Tips on Compatibility between Computers

This book discusses three methods of accessing PC hardware. On the one hand,
you can access available DOS or BIOS functions. On the other hand, you have the
option of developing new functions and routines for direct hardware control. While
this offers no advantage in mass storage device and keyboard access, special
routines for screen display are often much faster and more efficient than BIOS and
DOS routines used to do the same job.

For compatibility, however, DOS functions win hands down. Those of you who
want to develop programs which can run, without problems, on virtually any DOS
computer, must observe some rules for DOS function calls. These rules also apply
to future compatibility. To develop programs under the current DOS versions
which should execute without problems under future versions of DOS, you should
follow the suggestions made below.

Use only DOS functions for screen and hardware access. Do not use BIOS
or other hardware dependent functions.

Display error messages on the standard error device (handle 2).

Use Version 2 UNIX-compatible handle functions for file access. This
ensures compatibility with future versions of DOS.

If you use the old FCB functions for file or directory access (e.g., for
special attributes), make sure no FCBs are opened which are already open,
and no FCBs are closed which are already closed. This could cause
problems in a network.

Check the DOS version number at the beginning of the program and end
the program with an error message if it cannot be executed under this
version.

Store as many constants as needed for program execution (e.g., the paths
of programs and files to be loaded) within the environment block. Access
these values from the environment block within the program.

Release all memory not required by the program using the DOS functions
(this is especially important when working with COM programs).

If you need additional memory, request it by using the proper DOS
functions.

Use the available DOS functions for interrupt vectors; do not access
interrupt vectors directly.

• 	 To change the contents of various interrupt vectors within a program,
flfSt save the old contents and restore them before the end of the program.

206

Abacus 6.14 Tips on Compatibility between Computers

Call one of the DOS functions (31 H or 4CH) before the end of the
program to pass a value to the calling program to signal whether the
program was executed correctly. Avoid using the other functions for
ending a program (interrupt 20H and function 0 of interrupt 21H).

Use function 59H of interrupt 21H (available in DOS Versions 3.0 and
higher) to localize error sources.

In conclusion, here is an overview of the older DOS functions to avoid. and the
new equivalent functions that can replace them.

Old
OOH End proqram
OFH Open file
IOH Close file
llH Find first entry
12H Find next entr~
13H Erase file
14H Sequential read
ISH Sequential write
16H Created file

17H Rename file
2lH Random access read
22H Random access write
23H Sense file size
24H Set data set number
26H Create new PSP
27H Random access read
28H Random access write

New
4CH End Process

3DH Open Handle
3EH Close handle
4EH Find first entry
4FH Find next entry

4lH Erase directory entry

3FH Read (through handle)

40H Write (through handle)
3CH Created handle or
5AH Created temporary file or
5BH Created new file
56H Rename directory entry

3FH Read (throuqh handle)

40H Write (throuqh handle)
42H Move file pointer
42H Move file pointer
4BH Load and execute from file

3FH Read (through handle)
40H Write (through handle)

If you follow all these suggestions, your programs will execute on other
computers and under future DOS versions with little or no modifications.

207

6. The Disk Operating System 	 PC System Programming

6.15 Undocumented DOS Structures

ooS manages the operating storage media (RAM and mass storage) and programs
which use multiple data structures. Some of these structures are thoroughly
documented and have already been described in this book. These documented
structures include:

Program Segment Prefix (PSP), which precedes every program in
memory

File Control Blocks (PCBs), which control file access

Memory Control Blocks (MCBs), which control RAM

Structures in the header ofa device driver

Environment blocks, which contain information strings about every
program in memory

The many structures which DOS keeps in mass storage (boot sector, File
Allocation Table [FA 11, root directory, etc.)

In addition, there are a number of undocumented structures. Until quite recently,
only a few people knew of the existence of these structures, since most technical
manuals concerning DOS didn't describe them. The authors of many of these
technical manuals felt that these structures weren't needed for programming, and
that their coding would change in future versions of DOS. The fact is that certain
kinds of programming do depend upon these structures, and that some applications
couldn't be realized at all without them.

Floppy disk and hard disk management utilities make intensive use of the
undocumented structures. If you examine the Norton Utilities® using a debugging
application, you'd see how much this program accesses these structures.

A minor change in these structures took place between DOS Version 3.3 and
Version 4.0, but this is the fIrst change since the introduction of ooS Version 2.0
in 1983. Therefore, the chances are almost nil of fInding altered coding in the
undocumented structures of subsequent OOS versions.

Knowing about these structures can be practical data for programming some
applications. This section lists our fIndings from viewing the Norton Utilities®.

The DOS Info Block (DIB) is the key to accessing the most important DOS
• 	 structures. This block holds pointers to several ooS structures and to other

information as well. The knowledge of its existence and construction is useful to a
program only if its address in memory is known. This address is not in a fIxed
memory location, nor can it be obtained with any of the documented functions of
DOS interrupt 21H. However, the undocumented function 52H can offer us some

208

Abacus 6.15 Undocumented DOS Structures

assistance in finding that address. Calling function 52H returns the address of the
DOS Info Block to the ES:BX register pair.

As opposed to all other DOS functions that fetch pointers to a structure or data
area, the contents of the ES:BX register pair point not to the fust. but rather to the
second field within the DIB after the function call.

DOS Info Block (DIB) structure
Addr. Contents Type
-04H Pointer to MCB 1 ptr
ES:BX Pointer to first Drive Parameter Block (DPB) 1 ptr
+04H Pointer to last DOS buffer 1 ptr
+08H Pointer to clock driver ($CLOCK) 1 ptr
+OCH Pointer to console driver (CON) 1 ptr
+10H Maximum sector length (based on all connected 1 word

mass storage devices)
+12H Pointer to first DOS buffer 1 ptr
+16H Pointer to path table 1 ptr
+1AH Pointer to System File Table (SFT) 1 ptr
Length: lEH (30) bytes

The first field in the DIB contains a pointer to the Memory Control Block (MCB)
of the fust allocated memory area. You will find detailed information on this
structure and what it does in Section 6.9 (Memory Allocation from DOS). The
pointer in the second field of the DIB gives access to a wealth of information that
could not be had in any other way. It points to the first Drive Parameter Block
(DPB), a structure which DOS lays out for all mass storage devices (floppy disks,
hard disks, tape drives, etc.).

Drive Parameter Block (DPB) structure
Addr. Contents Type
+OOH Number or symbol for corresponding drive 1 byte

(0 = A, 1 = B, etc.)
+OlH Sub-unit of device driver for drive 1 b~te
+02H Bytes per sector 1 word
+04H Interleave factor 1 byte
+OSH Sectors per cluster 1 byte
+06H Reserved sectors (for boot sector) 1 word
+08H Number of File Allocation Tables (FATs) 1 byte
+09H Number of entries in root directory 1 word
+OBH First occupied sector 1 word
+ODH Last occupied cluster 1 word
+OFH Sectors per FAT 1 b~te
+10H First data sector 1 word
+12H Pointer to header (correspond. device driver) 1 ptr
+16H Media descriptor 1 byte
+17H Used flaq (OFFH=device not yet in use) 1 byte
+18H Pointer to next DPB (xxxx:FFFF = last DPB) 1 ptr
Lenqth: lCH (28) bytes

209

6. The Disk Operating System PC System Programming

The fIrst fIeld of the OPB tells us to which device the block belongs. 0 stands for
drive A, 1 for B, 2 for C, etc. The second field specifIes the number of the subunit
To understand the meaning of this field, remember that access to the individual
devices occurs through the device driver. DOS doesn't perform direct access to a
disk drive or hard disk. This keeps DOS from having to deal with the physical
characteristics of a mass storage device. Instead, DOS calls a device driver for this
purpose, which acts as mediator between DOS and hardware.

Of course, not every device has a separate device driver, since one device driver can
support many single devices. For example, the device driver built into DOS
manages the floppy disk drives and the fust available hard disk. DOS confIgures a
OPB for each device, so a hard disk system would automatically have 3 OPBs
available (a OPB is always configured for floppy drive B, even if only one floppy
drive is actually available). Each device receives a number between 0 and the total
number of devices minus 1, to help each driver to identify the devices it manages.
This number is the one found in the subunit field.

The next field lists the number of bytes per sector. Under DOS this is almost
always 512. After this comes the interleave factor, which gives the number of
logical sectors displaced by physical sectors when the medium is formatted (more
on this in Chapter 7). This value can be 1 for floppy disk drives, 6 for the XT hard
disk and 3 for the AT hard disk. For floppy disk drives, this fIeld can also have the
value FER if no access has been attempted to the disk in the drive. The value FER
means that the interleave factor is currently unknown.

There are a number of other fields related to these two which have already been
named in connection with the management of mass storage devices through DOS
(see Section 6.13). Among other things, they describe the status and the size of the
structures DOS created to manage mass storage devices. A pointer to the header of
the device driver lies within these fields. DOS uses this pointer when accessing the
device. More information can be obtained with this pointer since, for example, the
driver attribute is listed in the header of the device driver.

Following this field is the media descriptor to which the Used flag is connected.
As long as no access to the device has occurred, this flag contains the value OFFH.
After the frrst access it changes to 0 and remains unchanged until a system reset.

The OPB ends with a pointer that establishes communication with the next OPB.
Since every OPB defines its end with such a pointer, a kind of chain is created,
through which all OPBs can be reached. To signal the end of the chain, the offset
address of this pointer in the last OPB contains the value OFFFFR., When a
program needs the information within the DOS, there are many ways to find the
address of the desired OPB. One method is to follow the chain described above by
fust finding out the address of the DIB. This gives you the pointer to the fust
OPB, from which you can follow the chain until you reach the OPB you want.

210

Abacus 6.15 Undocumented DOS Structures

There's a better way, which isn't as susceptible to changes within the DIB, through
two undocumented DOS functions. This involves the IFH and 32H functions,
which have been part of the DOS function repertoire since Version 2.0, although
not documented by Microsoft. When called, both return a pointer to a DPB to the
DS:BX register pair. While function IFH always delivers a pointer to the DPB of
the current disk drive, the address delivered by function 32H refers to the device
whose number is passed to the function in the DL register at the time it's called. (0
represents the current drive, 1 is drive A, 2 drive B etc.). It's much more flexible
than function IFH.

Access to the various DPBs with the IFH and 32H functions offers a further
advantage, because it forces DOS to retrieve other information such as the
interleave factor and the media descriptor byte, which is ascertained for the disk
drive only after the fIrst access. If you get to the DPB through the pointer in the
DIB block, the various fIelds may not have been initialized, and could contain the
wrong values.

Besides the pointer to the frrst DPB, the DIB contains the pointer to the frrst DOS
buffer at address 12H. These DOS buffers store individual sectors, so that the
sectors don't have to be repeatedly loaded from disk. The DOS buffers can be most
effective when used for storing disk sectors that are frequently needed by the
currently running program. Besides the FAT, these include the root directory and
its subdirectories. The number of buffers can be defIned by the user in the
CONFIG.SYS fIle. If this number exceeds those needed for the FAT, root directory
and subdirectories, normal sectors can also be temporarily stored here, in the hope
that they are called to be loaded again in the near future, and can be taken directly
from the buffer.

So that DOS can quickly check each buffer for the desired sector with every read
operation, the individual sectors are linked together.

DOS buffer structure
Addr. Contents Type
+OOH Pointer to next DOS buffer 1 ptr

+04H Drive number (0 = A, 1 = B etc.) 1 byte

+05H Flags 1 b~te

+06H Sector number 1 word
+08H Reserved 2 bytes
+OAH Contents of buffered sector 512 bytes
Lenqth: 210H (528) bytes

As with DPBs, this happens with the help of a pointer which appears at the start
of every buffer. Also, the last buffer is reached when the offset address of the
pointer contains the value OFFFFH. After the fIeld linking one buffer to the next
comes the number of the drive where the buffered sector originates. The value
would be 0 for drive A, 1 for B, 2 for C, etc. Besides the drive number, the
identification of a sector requires a sector number. This is located beginning at
position 06H in the DOS buffer. The last fIeld in the buffer header stores a pointer

211

6. The Disk Operating System PC System Progranuning

to the corresponding DPB, so that DOS can get information on the device which
loaded the buffered sector. Although this is the last field in the header of the DOS
buffer, the buffered sector does not end immediately after this field. There are two
more bytes which follow. The reason for this is that the DOS code is written in
machine language, and when it comes to working with memory blocks, it is most
efficient to have the buffered sector begin with an address that is divisible by 16.

The header of the DOS buffer is not the last place we run across the DPB. It turns
up again in the path table, which starts at address 16H in the DIB. This contains
the current path for each drive as well as a pointer to its DPB.

o 1 2 3 4 5 678 9 ABC DEI
0000: 41 3A 5C 43 41 43 48 45-00 00 00 00 00 00 00 00 A:\CACHE
0010: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0030: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0040: 00 00 00 00 40 20 74 80-02 27 03 FF FF FF FF 02@ t .. •
0050: 00 42 3A 5C 00 00 00 00-00 00 00 00 00 00 00 00 .B:\
0060: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0070: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0080: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0090: 00 00 00 00 00 40 40 74-80 02 00 00 FF FF FF FF ••••• @@t
OOAO: 02 00 43 3A 5C 54 43 5C-42 41 55 53 5C 41 53 4D •• C:\TC\BAUS\ASM
OOBO: 5C 48 45 52 43 4D 4F 4E-4F 00 00 00 00 00 00 00 \HERCMONO •••••••
OOCO: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OODO: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
OOEO: 00 00 00 00 00 00 40 60-74 80 02 65 05 FF FF FF@'t .. e •..•
OOFO: FF 02 00 44 3A 5C 4D 53-43 5C 42 49 4E 00 00 00 •••D:\MSC\BIN •••
0100: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0110: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0120: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
0130: 00 00 00 00 00 00 00 40-00 00 80 OD 17 00 FF FF @........
0140: FF FF 02 00

Memory dump of the path table contents

As long as the LASTDRIVE command is in the system's configuration file, the
table will have entries for drives A through the one specified by LASIDRIVE. If
this command is missing, however, the table will only have entries for each device
supported by the installed device driver. If you change the entries in this table, you
can divert one drive to another. The JOIN and SUBST DOS commands also take
advantage of this by manipulating the path table entry of the drive to be diverted.

212

Abacus 6.16 DOS 4.0

6.16 DOS 4.0

People were mther surprised when IBM introduced DOS 4.0 instead of DOS 3.4.
The version number suggests vast improvements to this operating system.
Version 4.0 does in fact have some features to offer which clearly set it apart from
its predecessors:

Full-screen system installation

Graphic user interfaces for directory display, file selection and running
progmms

Full mouse support

Support of Extended Memory Specification (EMS) according to the LIM
4.0 specification for buffer storage

Hard disk partition (volume) support and support for device capacity larger
than 32 megabytes

Improved file access through optimization of the system code

The introduction of these features mean changes in the opemting system code.
Although most of these changes will not affect most application programs, they
may cause problems in programs that lie within the system, as well as programs
developed without following rules of compatibility (see Section 6.14).

Compatibility problems

First of all, the support of hard disk partitions and files larger than 32 megabytes
implies definite changes to the DOS file system. These changes don't affect
programs that manipulate files only through the DOS interrupt 21H functions.
However, many block device drivers and progmms that access the DOS structures
of the file system directly will have to be adapted to the new file system. This
includes programs like the Norton Utilities®. PC Tools® and all the other
utilities which perform tasks such as optimizing hard disks and restoring lost files.
All of these will be of little or no use under DOS Version 4.0.

To give you a chance to adapt programs affected by these changes to DOS 4.0, the
following pages give a description of changes to the file system (see Section 6.13
for a comprehensive look at the DOS file system).

In order to best visualize the changes to the file system, let's begin with a picture
of its fundamental structure. which remains valid under Version 4.0. This
fundamental structure can be divided into three layers, one on top of the other.
These range from the logical partitioning of a mass storage device on the top layer
to a purely physical system on the bottom layer. The top layer forms the function
interface to u~r programs. This interface calls individual functions through
interrupt 21H. No changes are allowed on this level in the switch to DOS 4.0 to

213

6. The Disk Operating System PC System Programming

ensure that all applications that use these functions will continue to run normally.
File accesses from the first level are converted to device driver function calls on the
second level. In order to locate each file (i.e., retrieve the sectors which must be
accessed) this level uses various data structures which are kept in the storage
medium. These include:

The boot sector (including the BIOS parameter block [BPB])

The root directory and its subdirectories

The FAT and its duplicates

These functions cannot be changed as well, since one of the most important
demands placed on the new DOS version is the ability to work with partitions that
were created and formatted under previous versions. This is possible only if the
structures listed above are not changed. This does not leave many ways to increase
the capacity of a volume. Since the size of the FAT entry is limited to 16 bits, a
volume can use no more than 65519 clusters. Therefore, an increase is possible
only by using more sectors in a cluster.

When DOS 4.0 sets up new partitions, it assigns the following cluster sizes:

Partition and cluster sizes under DOS 4.0
Max.partition size 128 meg 256 meg 512 meg 1028 meg 2048 mee;
Cluster size 2 K 4 K 8 K 16 K 32 K
Sees. per cluster 4 8 16 32 64

While this procedure minimizes the changes on the second level of the file system,
it also has a disadvantage: The bigger the partition, the more memory it wastes.
Since the memory in a partition can only be allocated in clusters, some memory is
always wasted when a cluster is not completely ftlled. This is true of ftles that are
smaller than the cluster size. Memory space is also wasted in the last cluster of a
larger file. since the size of a ftle is rarely an integral multiple of the cluster size.

Device driver level

The changes become most noticeable on the third level of the file system, called
the device driver level. While character drivers remain unaffected by changes in the
partition size, these changes have a great impact on block drivers that support
partitions of more than 32 megabytes.

It's true that changes on this level could be kept to a minimum by increasing the
sector size from 512 bytes, but this could lead to compatibility problems with
partitions that were configured under previous versions of DOS. The only
alternative was to increase the number of sectors per partition. But when a
partition exceeds the 32-megabyte limit, the 16 bits. which up until now were
used to store the logical sector number, are no longer enough. For this reason,
DOS 4.0 has introduced a new type of block driver that supports partitions larger

214

Abacus 6.16 DOS 4.0

than 32 megabytes, and works with 32-bit sector numbers. DOS recognizes these
drivers with the help of bit 1 in the device attribute. This bit carried a value of 0 in
previous versions of DOS.

Starting with Version 4.0, DOS knows that it is dealing with a 32 bit driver if
this bit is turned on. Increasing the sector number also changed the structure of the
parameter data block, with which DOS passes information on the functions and
parameters being called, to the device driver. Since a 16-bit field is no longer large
enough for the sector number, DOS 4.0 adds a 32-bit field to the end of the block.
This stores the sector number for a 32-bit driver as a dword (double word). As
usual, the word with the smaller value is stored before that with the larger value.
To indicate that the new field is in use, DOS also loads the value -1 (FFFFH) into
the old field.

Structure of the extended parameter data block when
callin a function of a 32-bit driver under DOS 4.0

Addr. Contents Type

+OOH Lenqth of data block in bytes 1 byte
+OlH Number of device being addressed 1 byte

+02H Number of function being called 1 byte
+03H Status word 1 word
+05H Reserved 8 bytes
+ODH Media descriptor 1 byte

+OEH Address of parameter buffer 1 ptr
+12H Number of sectors to process 1 word

+14H Number of first sector for 16 bit drivers 1 word

+16H Number of first sector for 32 bit drivers 1 dword

Length: 1AH (26) bytes

The following driver functions are affected by the change to 32-bit sector numbers:

0 initialize driver

2 setBPB

3 direct read

4 real

8 write

9 write and encode

12 direct write

The structure of the BIOS parameter block (BPB), which the initialize driver
function must pass to DOS, has also changed. This structure is also part of the
boot sector of a DOS volume. It has been supplemented by two fields compared to
the old BPB, and now looks like this:

215

6. The Disk Operating System PC System Programming

Extended BIOS parameter block (BPB) structure under DOS 4.0

Addr. Contents Type

+OOH Bytes per sector 1 word

+02H Sectors per cluster 1 byte

+03H Number of reserved sectors " 1 word

+OSH Number of file allocation tables (FATs) 1 byte

+06H Number of entries in root directory 1 word

+08H Number of sectors in volume 1 word

(partitions <= 32 MB only)

+OAH Media descriptor 1 byte

+OBH Number of sectors per FAT 1 word

+ODH Sectors per spur 1 word

+OFH Number of read/write heads 1 word

+l1H Distance of volume's first sector from first 1 word

sector on medium (partitions <= 32 MB, only)
+13H Distance of first sector in volume from first 1 dword

sector on medium (partitions > 32 MB only)
+l7H Number of sectors in volume 1 dword

(partitions > 32 MB only)
Length: IBH (27) bytes

The two new fields in this extended BPB refer to the total number of sectors in the
volume and the number of sectors between the first sector on the storage medium
and the first sector of the volume. Even though these fields were already present in
the old BPB, they were there only as 16-bit values, and had to be appended as 32
bit fields. To guarantee maximum compatibility with the drivers of previous DOS
versions, DOS only needs to use the new BPB when the sector numbers cannot be
represented as 16-bit values. This happens if the distance from the first sector on
the storage medium to the first sector in the volume is greater than 32 megabytes.

The new BPB is installed while formatting a volume, but the old 16 bit fields are
used to store the number of sectors and the distance from the first sector when the
conditions mentioned above don't apply. Otherwise, the corresponding values are
entered in the 32 bit fields and the 16 bit fields are assigned a value of O.

Extending the logical sector number to 32 bits also caused a change in the way the
25H and 26H interrupt functions work. These functions represent the only way for
an end-user program to directly access the individual sectors of a volume via DOS.
If the number of the first sector to be processed was passed to the DX register of
these interrupts by an earlier DOS version, direct sector access is only possible
undt:r Version 4.0 if the volume to be accessed is smaller than 32 megabytes. To
access larger volumes in Version 4.0 and higher, the DS:BX register pair of these
interrupts must receive a pointer to the data block pictured on the next page:

216

Abacus 6.16 DOS 4.0

Structure of data block used in calling interrupts
25R and 26R under DOS 4.0
Addr. Contents ~e

+OOR Number of first sector 1 dword
+04R Number of sectors 1 word
+06R Pointer to buffer l~tr

Length: OAR (10) bytes

At the same time a value of -I (FFFFH) must be passed to the ex register, so
that OOS knows that the parameter transfer will not be following the old scheme.
In conclusion, there is one more little innovation to mention. While this has no
impact on program development under DOS 4.0, it does show that the 80386 has
truly come of age. For example, 80386 PCs can use a particular trick to speed up
file access and corresponding buffer and cache operations. OOS uses the
capabilities of the 80386 very skillfully by running string instructions using
bytes, words and dwords (double words). When copying and pushing memory
blocks within the IO.SYS and MSDOS.SYS modules, the following code
sequence is used to process the transcription in dwords:

MOV CX, NUMBER ;load number of words to move
SRR CX, 1 ;cut number of words to move in half
DB 66h ;dword prefix for string command
REP MOVSW ;copy memory block

Since neither the 8088 nor the 80286 processors can perform dword operations, the
SHR eX,1 and the DB 66H instructions are simply replaced with NOP
instructions when installing the module, if the PC is equipped with a processor
other than an 80386.

217

Chapter 7

The BIOS

BIOS is the abbreviation for Basic Input!Output System. The name indicates that
the BIOS provides basic input and output routines for communicating between
software and the hardware peripherals such as keyboard, screen and disk drive.

Why the BIOS is important

Since these routine calls are standardized, this saves the programmer the trouble of
fitting programs to one particular PC hardware configuration. This means you can
develop a program on one PC or compatible, and run it on another compatible PC
without errors, even though neither the hardware nor the individual BIOS routines
are completely compatible. This hardware independent concept contributed much to
the popularity of the PC. It offers the computer manufacturers the ability to
develop PCs which aren't quite identical to a true IBM PC, yet can run popular
software.

About BIOS functions

BIOS functions occur through the individual routines contained in the BIOS
interrupts IOH to 17H and lAR. The processor registers, whose usage is also
standardized, transfer data from the calling program to the interrupt and from the
interrupt to the calling program.

Number Meaning
lOH BIOS display function call
llH Testing the configuration
12H Testing RAM
13H BIOS disk functions
14H Functions for asynchronous communication
ISH Cassette functions
16H Reading the keyboard

219

7. TheBlOS PC System Programming

BIOS architecture

The BIOS itself is located in PC ROM, making it resident even after the computer
has been turned off. It is stored very high in the processor's address space
beginning at address FOOO:EOOO. It extends to address FOOO:FFFF, the last
location addressable on the Intel 8088 microprocessor. The BIOS routines must
create, store and modify variables, much like any other routine. Since this is
impossible in the BIOS area itself, BIOS stores these variables in the lower part of
memory starting at address 0040:0000.

This chapter begins with a description of the bootstrap, followed by descriptions of
each BIOS function, call and application.

220

Abacl4S 7.1 Booting the System

7.1 Booting the System

Section 6.3 described the booting process of DOS. The examination began at the
point where the ftrst sector of a diskette or hard disk loads into memory. From the
time you switch on the computer to the booting process, a series of events occur.
This section describes those interim events.

Initialization

Program execution in a computer based on the Intel 8088 (or one of its successors)
starts after the computer is turned on at memory location FOOO:FFFO. This
memory location is part of the ROM-BIOS and contains a jump command to a
BIOS routine which takes over system initialization. The location of this routine
may differ from one computer to another (actually from BIOS to BIOS) because
the BIOS changes internally with each manufacturer. The task this routine
performs remains identical for nearly all PCs, however.

System check

First the BIOS tests individual functions of the processor, its registers and some
instructions. If an error occurs during this test, the system stops without
displaying an error message (this is impossible with a defective processor). If the
CPU passes the test, a checksum is computed from each of the ROM's contents
and compared with the various ROMs to determine whether a defect exists there.
Each chip on the main circuit board (such as the 8259 interrupt, the 8237 DMA
controller, and the RAM chips) goes through tests and initialization.

Peripheral testing

After determining the functionality of the main circuit board, the computer tests
the peripherals (keyboard, disk drive, etc.). In addition to these hardware related
tasks, the BIOS variables and the interrupt vector table must be initialized.

The bootstrap loader

Note that no mention has been made of the operating system so far. It hasn't been
loaded into the computer from diskette or hard disk yet. Interrupt 19H, known as
the bootstrap loader, performs this task on startup or on system reset (when you
press the <AlI><Ctrl><Delete> key combination). This routine tries to load some
form of the basic operating system from a predetermined place on the diskette.

Reasons for failure

This bootstrap process may fail for a number of reasons:

There is no disk in the disk drive.

There is a disk in the drive, but the disk isn't bootable (the DOS mes are
not available on the diskette). If this occurs, the bootstrap routine

221

7. TheBJOS 	 PC System Programming

attempts to fmd the routine on the other disk drives connected to the pc,
or on a predetermined location on an existing hard disk.

If the system still cannot find the bootable system disk, there are two other reasons
that may be causing a problem:

• 	 Some older systems switch to ROM BASIC. This is a small BASIC
interpreter stored in pc ROM directly beneath the BIOS starting at
memory location FOOO:6000. New PCs display a message on the screen
requesting that the user insert a diskette containing the operating system
into the drive.

BIOS doesn't care what operating system it loads, so it may attempt to
load a non-DOS operating system if one exists on the disk. This makes it
possible to load other operating systems such as XENIX.

222

Abacus 7.2 Determining BIOS Version

7.2 Determining BIOS Version

The previous section described memory location FOOO:FFFO in conjunction with
the system startup. Usually a 5-byte-long jump instruction can be found at this
location. After this instruction, an additional 11 bytes are available (to
FOOO:FFFF), which are normally used to store the release date of the BIOS
version.

You can examine the contents of these memory locations to determine which
BIOS version your PC uses. Call the DEBUG program from the DOS prompt

debug

Enter the following line to display the bytes at the end of the ROM-BIOS:

d fOOO:fffO 1 10

The next line displays the contents of this memory location as a hexadecimal
number; the characters to the right of the hex display are the corresponding ASCn
codes. Day, month and year appear as two digits separated by "f' characters.

C>debug
-d fOOO:fffO 1 10
FOOO:FFFO EA 5B EO 00 FO 30 32 2F-30 36 2F 38 36 00 FC 00 [••• 02/06/86 •••
-q

C>

BIOS date display in DEBUG

223

7. TheBIOS 	 PC System Programming

7.3 Determining the PC Type

Usage of certain BIOS functions are more for model identification than for BIOS
version identification. They indicate the type of PC in use. They also indicate
when the BIOS has additional functions (e.g., AT BIOS is better equipped than the
PC and XT BIOS). These extra functions essentially handle string output on the
screen, realtime clock access (standard on the Anand additional RAM beyond the
1 megabyte memory limit (also standard on the An.

A program which calls these functions must first ensure that the computer in use
is in fact an AT, and that the functions addressed are available. The programmer
can use the model identification byte located in the last memory location of the
ROM-BIOS at address FOOO:FFFE. This byte can contain the following codes:

252 or FCR: AT

254 or FER: XT and portable PC

255 or FFR: PC

Note: 	 These values aren't entirely accurate. Many PC/XT compatibles
indicate completely different values in the model identification byte.
The following rule of thumb may be used: A model identification
byte of 252 identifies an AT; any other number indicates a PC/XT.

Only IBM computers have guaranteed reliable model identification numbers at
memory location FOOO:FFFE. This may not be the case for compatible
computers. Use the DOS program DEBUG to obtain the model identification byte.
Call DEBUG with

debug

Enter the following command sequence:

d fOOO:fffe 1 1

The model identification appears as a hexadecimal number on the screen.

Access to 	the model identification byte from programs

The model identification can be obtained directly from a program. Here's a short
assembler program to perform that task:

IDSeg segment at fOOOh

org Offfeh

PeID db (?)

IDSeg ends

push ds ;store data segment
rnov ax,IDSeg
mov ds,ax ;Set Data segment to BIOS

224

Abacus 73 Determining the PC Type

cmp PeID,252 ;test if AT-Code

pop ds ;restore Data segment

je IatAT

;Device is a PC/XT

IstAT label near

Higher level languages can also find the identification byte. The following BASIC
program uses the PEEK statement for reading the model identificatioo.

10 def seg - &hFOOO

20 if peek (&hFFFE) - 252 then print ·AT· else print ·PC/XT·

Turbo Pascal uses the mem array to read the model identification:

begin
if mem[SFOOO : SFFFEJ - 252 then writeln('AT')

else writeln('PC/XT');
end;

How the model identification is used in a program will be demonstrated in the
programs later in this chapter.

225

7. TheBlOS PC System ProgrfJllUtling

7.4 BIOS Screen Output Functions

The BIOS contains a series of routines which display data on the screen and
maintain other display functions. In addition to the video mode, BIOS manages
cursor positioning, text output and graphic display routines. Interrupt lOH calls all
these routines. The processor registers transfer the data between the application
program and the BIOS interrupt routine.

Under DOS versions 1.0 and 1.1, these BIOS routines were the only options for
cursor positioning and color choice. DOS Versions 2.0 and up make these
functions available under DOS as well.

More about compatibility

The BIOS routines execute faster than their corresponding DOS routines. Those
concerned about compatibility and output device redirection may be better off using
DOS routines. In any case, the application itself should dictate which routines will
be used.

The BIOS routines, like the DOS routines, offer the programmer the advantage of
independence from a particular video card (IBM monochrome, IBM color, Hercules,
etc.), since they can be adapted to various cards. Because these cards have different
features supported by BIOS, let's look at the capabilities of these cards before
examining the routines of interrupt 10H. Programs demonstrating the function
calls are listed in BASIC, Turbo Pascal, C and assembly language later in this
chapter.

Monochrome display adapter

This card displays a page of 25 lines and 80 columns. Column 0 and line 0 are in
the upper left hand comer of the display. The numbering continues to the right and
down from column 0, line o.

226

Abacus 7.4 BIOS Screen Output Functions

ROWS COLUMNS

76 77 78 19

22

2) t-+--+---it-+--+--I

Line and column numbering--monochrome display

Each of the 2000 (80*25) positions on the screen is represented by a character from
a set of 256 characters (ffiM PC standard character set) and an attribute character.
also called an attribute byte. Both characters require one byte apiece. so 2000*2
(4000 bytes) of video RAM must be available to display the entire screen. This
video RAM exists on the video display card. Since video RAM is not part of the
normal RAM. the starting address remains constant at address BOOO:OOOO for the
monochrome card.

While the PC systems have standard character sets for all the video cards described
here. the attribute bytes change from card to card.

As the figure below shows. bits 0 to 2 and 4 to 6 of the attribute byte defines the
foreground and background color of the displayed character.

227

7. TheBIOS PC System Programming

7 6 5 4 3 2 1 0 b'~t

I I I I I
"""""'r r Character color

Character Intensity
o =normal,1 =high

Background color
Blinking
o =off,1 =on

Attribute byte color structure--monochrome display adapter

Bit 3 of the attribute byte indicates the intensity of the foreground color. If it
contains a 1, the character appears in high intensity. Bit 8 indicates whether the
character on the screen should blink (a 1 in this bit causes the character to blink).
While these bits can be set in any manner, only bit combinations which "look
good" should be used for foreground and background color.

7 6 5 4 3 2 1 0 bit

III 0 I0 I0 II 0 I0 I0 I No characters
. (black on black)

7 6 5 4 3 2 1 0 bitII 0 10 10 III 0 10 11 1 Underlined characters

Normal characters
(white on black)

Inverse characters
(black on white)

White character field
(white on white)

Colors and attribute byte--monochrome display adapter

Color graphics adapter (CGA)

This card offers text display of the IBM PC standard character set and various
graphic modes. Text mode works with a resolution of either 8Ox25 or 4Ox25
characters. 40x25 resolution displays characters in double width. This mode allows
the management of up to eight different video pages (8Ox25 mode allows up to

228

Abacus 7.4 BIOS Screen Output Functions

four different pages). The line and column number assignment is similar to the
monochrome display card

eGA attribute bytes

The attribute byte used on this card mainly selects foreground and background
colors of the characters. A total of 16 colors is available. The first eight of these
may be used as background colors.

Binary Dec. Color

0000 (b) 0 Black

OOOl(b) 1 Blue

0010 (b) 2 Green

0011 (b) 3 Turquoise

0100 (b) 4 Red

0101 (b) 5 Mil9'enta

0110 (b) 6 Brown (dark yellow on some monitors)

0111 (b) 7 Light Gray (sometimes white)

1000 (b) 8 Dark Gray (or black)

1001(b) 9 Light Blue

1010(b) 10 Light Green

1011 (b) 11 Light Turquoise

1100 (b) 12 Light Red

1101 (b) 13 Light M'!genta

1110 (b) 14 Yellow (also l.ight yellow)

1111 (b) 15 White

As the figure below shows, bits 0 to 3 of the attribute bytes represent the
foreground color, while bits 4 to 6 indicate the background color. Bit 7 means the
same as in the monochrome display card: it decides whether the character should
blink.

7

I
6 5 4

I I
3 2 1 0

J J I
bit

..........,

Y Character color
Background color
Blinking
o =off,1 =on

Attribute byte structure---color graphic adapter

This card can emulate a monochrome display card (see above) in which the
attribute character has the same meaning as in the monochrome card, with the
exception that no underlined characters can be produced.

229

7. The BIOS PC System Programming

Graphic modes and the eGA

Graphic modes can have either a resolution of 64Ox200 dots with 2 colors or
32Ox200 dots with 4 colors. In both modes the upper left comer of the screen has
the coordinates 0/0.

No attribute byte exists in this mode since every dot on the display is either
illuminated with a color or not, and not composed of standard characters from a
character set. To display characters from the standard character set in this mode,
they must be drawn on the screen with pixels (dots).

In 320x200 resolution, one of the 16 available colors can be defined as a
background color. The foreground color must be one of three colors in a palette
predetermined by the graphic card. Two palettes are normally available: One
contains the colors cyan, magenta and white, while the other offers the colors
green, red and yellow.

The video RAM of this card starts at location B800:oooo (unlike the monochrome
display card which starts at BOOO:oooo). This ensures that the video RAMs of the
two cards do not overlap. They can be used in parallel with each displaying data on
its own monitor.

Hercules graphic cards

The Hercules graphic card has the same text mode as the mM monochrome display
adapter, and can display two video pages of text at a time. A Hercules card also
offers a graphic mode in which two video pages can be displayed with a resolution
of nOx348 pixels. Unfortunately, the BIOS cannot access either the two video
pages or the graphic mode. BIOS treats this card like a normal monochrome card,
which can only display one text page of 80x25 characters.

Now that you have some general knowledge of graphic adapters, here are the
functions called from interrupt lOH:

Decimal Hex Meaning
0 OH Determine Video mode
1 1H Define cursor size
2 2H Determine cursor position
3 3H Sense cursor position
4 4H Read liqht pen
5 5H Define current display page
6 6H Scroll display up
7 7H Scroll display down
B BH Read character / attribute at cursor position
9 9H Write character / attribute at cursor position
10 AH Write character at cursor position
11 BH Determine color palette for qraphic mode
12 CH Set display point in graphic mode
13 DH Sense display point in graphic mode

230

Abacus 7.4 BIOS Screen Output Functions

Decimal Hex Meaning
14 EH Character output (like a terminal)
15 FH Determine video mode
19 13H Write character string (only available on AT)

As always, the processor registers pass the function arguments. Some common
rules define which registers accept which arguments:

The AH register indicates the number of the function to be called with interrupt
IOH. If character should be displayed, or a dot placed on the screen in graphic
mode, its value passes to the AL register.

Hercules functions

If the function expects display coordinates for text mode, the X-coordinate
(column) must be loaded into the DL and the Y-coordinate (line) into the DH
register. In graphic mode the ex register accepts the X-coordinate and the DX
register the Y -coordinate. The number of the display page (if required) should be
contained in the BH register.

It is important for assembler programmers that the contents of the BX, ex, DX
and the contents of the segment registers remain the same before and after the
interrupt call. The contents of all other registers may change.

Function OH: Set video mode

Before sending output to the screen, the video mode must be selected. The current
video mode in use might not be the one you desire. Function 0 of interrupt IOH
performs this task and also selects the active video card in case the PC has several
video cards connected. For a call to this function through interrupt lOH, the AH
register must contain function number 0 and the AL register must contain the
number of the video mode to be activated. Of course only those video modes that
are supported by the video card in the PC can be activated. The following numbers
correspond to the various video modes (the video card supporting the mode is in
parentheses):

0 40*25 character monochrome text display (Color)

1 40*25 character color text display (Color)
2 80*25 character monochrome text display (Mono)
3 80*25 character color text display (Color)
4 320*200 pixel qraphics with 4 colors (Color)
5 320*200 pixel graphics with 4 colors (Color)

but shown monochrome
6 640*200 pixel qraphics with 2 colors (Color)

The mode makes no difference on a monochrome card, since only one mode exists
(80x25); this mode is constantly active. It uses the internal designation number of
7.

231

7. TheBIOS PC System Programming

Function OFH: Get video mode

The opposite of this function is function OFH. which determines the current video
mode. A value of OFH in the AH register during a call to interrupt lOH executes
this function. It returns the value of the video mode (refer to the table above) in the
AL register. As mentioned above, a monochrome card always returns the value 7.
Besides the video mode, the number of columns per display line in this mode (40
or SO) returns in the AH register and the current display page number in the BH
register.

Func'llon 02H: Set cursor position

After the video mode initialization, screen output can begin. Function 2 defines the
cursor position. Calling this function places Jhe blinking cursor in the desired
location on the screen. This sets the starting position of character display. Prior to
calling this function the AH register should be loaded with the function number
(2), the DH register with the line location of the cursor, and the DL register with
the column location of the cursor. The BH register holds the display page onto·
which the cursor should be positioned. Remember that every display page has its
own cursor for positioning the text output, but only one active or blinking display
cursor exists. This active cursor always appears on the currently displayed page.
Function 2 moves the active cursor if the value in the BH register corresponds to
the current screen page.

Function 03H: Read cursor position

The counterpart of this function is function 03H. It reads the current cursor
position of a selected display page and returns the position to the calling program.
At the call of this function the AL register must contain the function number (3)
and the BH register the number of the display page whose cursor position is being
read.

Monochrome display cards return a value of 0, since the card can only display one
page (numbered 0). After the call of interrupt lOH the DH register contains the
cursor position's line and the DL register the cursor position's column. In addition,
two values are returned to the CH and CL registers which have special
significance. They indicate the starting and ending raster scan (pixel) lines of the
cursor. These lines are independent of the displayed page.

To understand this significance. it is important to know that every text mode
character on color and monochrome cards have heights of 8 and 14 pixels per
character. respectively. The programmer can choose at which of these pixel lines
the blinking cursor begins and at which it stops.

232

Abacus 7.4 BIOS Screen Output FlUlCtions

These values must of course remain within the legal values of the individual video
cards (i.e., 0 to 7 for a color card and 0 to 13 for a monochrome card), otherwise
the blinking text cursor may disappear from the screen.

Function 01 H: Define cursor size

While these values are read with the help of function 3, function 1 is used to set
these values. The AH register loads with a I, the CH register with the starting line
of the cursor, and the CL register with the ending line of the cursor, before calling
interrupt lOH. The starting line must be smaller than or equal to the ending line,
or the cursor becomes invisible.

Function 05H: Set active display page

This book has frequently mentioned the current display page without telling how
to activate this page. Function 05H of interrupt 10H performs this task. Place a
value of 5 in the AH register and the number of the page you want activated
(displayed on the monitor) in the AL register. The number of the page to activate
depends on how many pages are available in the current video card and video mode.
Since the monochrome video card offers only one display page, using this function
with a monochrome card makes no sense at all. The following values are allowed
for the color card's different video modes:

o to 7 (40*25 character text display [Color-card])
o to 3 (80*25 character text display [Color-Card])

After selecting the video mode and moving the cursor to the desired location on the
screen, one or more characters are output on the screen in most ~s. BIOS makes
various functions available which have different abilities in providing character
display on the screen. One difference between these functions is that they process
control codes in various ways. These control codes are the ASCII codes 7, 8, 10
and 13. They represent the following:

7 Bell Iproduces a sound
8 Backspace erases preceding character & moves

cursor back one character position
10 Linefeed moves cursor one line down
13 Carriage return moves cursor to start of current line

Some functions view these codes as normal ASCII characters and execute them
accordingly. Other functions see them as control codes. For example, code 7
produces a sound with some functions. The choice of which function to use
depends on which control code processing is desired.

Text display in graphic mode

Text display functions can be used in both text and graphic modes. Text output in
graphic mode creates different characters since the characters must be drawn on the

233

7. TheBlOS PC System ProgrtlnlnUng

screen from pixels. The PC uses ASCII codes to set the graphic pixels. While the
character samples for the ASCII codes 0 to 127 are already stored in the ROM, the
character patterns for the codes 128 to 255 must be read from a table in RAM.
This table installs itself in RAM when you execute the DOS GRAFfABL
command.

BIOS obtains the address of this table from the memory locations OOOO:OO7C to
OOOO:OO7F, where the table's offset address lies in the lower two bytes and the
table's segment address in the upper two bytes. These memory locations are inside
the interrupt vector table but can be used for this purpose since interrupt IFH
(whose address normally appears there) remains unused.

Having this table stored in RAM makes it possible to define your own table, so
that special characters which are not contained in the standard character set can be
displayed on the screen. Since every character is comprised of 8 bytes, the first 8
bytes of the table are reserved for ASCII code 128, the next 8 for the code 129, etc.
Each byte contains the bit pattern for one of the 8 lines which compose a
character. Bit 0 represents the dot on the right border of the character matrix, bit 7
the dot on the left border. If you set a bit to 1, this illuminates the corresponding
pixel on the screen.

Function 09H: Write character with attribute
Function OAH: Write character

Functions 09H and OAH are available for character output. Function OAH displays
the character in the color determinedoy the attribute corresponding to that
particular screen position. Function 09H sets the color (attribute) of the character
to be displayed. Neither function moves the cursor to the next screen position after
character display. Character output resumes at the same location on the next
function call. Function 02H must be called to move the cursor to the next screen
position for displaying readable text

Determining the function call

Both functions 09H and OAH interpret the control codes described above as normal
characters and display them accordingly. During the call of these functions the
contents of the AH register depend on whether the user called function 09H and
OAH. The AL register accepts the ASCII code of the character to be displayed. The
display page for character display can be found in the BH register. The CX register
contains a number which indicates how many times the character should be
displayed. Because of this, it's possible to display a character several times with
just one interrupt call (this saves time and memory). If you want the character in
the AL register displayed only once, a 1 must be stored in the CX register during
the function call. Since function 09H also determines the color of the character to
be output, the BL register passes the character color.

234

Abacus 7.4 BIOS Screen Output Functions

Function OEH: Teletype mode

A serious disadvantage of these two functions is that the cursor's position does not
advance after the function call. Function OEH cures this problem. It acts like a
terminal, hence its nam~the TIY (feletype output) routine. The cursor advances
to the next screen position after a character is displayed. If the cursor reaches the
end of the screen line, it moves to the beginning of the following line. If the
cursor is in the last display screen position (line 24, column 79), the entire screen
is scrolled one line upward and the top line of the screen disappears from the
display area. In addition, the function clears line 24 and the cursor moves to the
beginning of the line.

Another approach to control codes

Unlike functions 09H and OAH, function OEH treats control codes according to
their functions, and not as normal ASCII codes. Like function OAH, characters are
displayed by function OEH using the character color (attribute) already present at
that screen location. This is valid for text mode only. In graphic mode, the
foreground color must be passed in the BL register.

Prior to the function call, the AH register must be loaded with function number
OEH, the AL register loaded with the code of the character to be displayed and the
BH register with the display page intended for character display.

Function OSH: Read character/attribute

While functions 09H, OAH and OEH display characters on the screen, function OSH
makes it possible to read characters from the screen, i.e., to sense the character and
attribute displayed. Before the call, the value 08 must be loaded into the AH
register and the number of the display page from which the character should be
loaded into the BH register. The display position from which the character should
be read is the current cursor position in the display page indicated by the BH
register.

In text mode the character code can be read directly from video RAM. However,
graphic mode requires a comparison between the bit pattern at the current cursor
position and every character's bit pattern in the character set

After the function call, the AH register contains the attribute (color) and the AL
register contains the ASCII code of the character read.

Function 06H: Scroll window up

Function 06H scrolls the screen up one or more lines, or clears sections of the
screen by displaying spaces (ASCII code 32). These operations can only be
performed on the current display page. To call this function, you must load the AH
register with the function number (6). The AL register is loaded with the number

235

7. TheBIOS PC System Programming

of lines the display should be moved up. A 0 in this register instructs the function
to fill the screen area with spaces instead of scrolling the screen. The BH register
contains the color (attribute) for the blank line. The CH, CL, DH and DL registers
define the display page window to be scrolled or cleared. The C register represents
the upper left comer of the window, while the D register defines the lower right
comer of the window. The following list illustrates the meaning of each register:

Reg Meaning
CR Line of the upper left corner of the window
CL Column of the upper left corner of the.window
DR Line of the lower right corner of the window
DL Column of the lower right corner of the window

Function 07H: Scroll window down

Function 07H scrolls the screen down one or more lines, or clears sections of the
screen by displaying spaces (ASCII code 32). These operations can only be
performed on the current display page. To call this function, you must load the AH
register with the function number (7). The AL register is loaded with the number
of lines the display should be moved down. A 0 in this register instructs the func
tion to fill the screen area with spaces instead of scrolling the screen. The BH
register contains the color (attribute) for the blank line. The CH, CL, DH and DL
registers define the display page window to be scrolled or cleared. The C register
represents the upper left comer of the window, while the D register defines the
lower right comer of the window. The following list illustrates the meaning of
each register:

Reg Meaning
CR Line of the upper left corner of the window
CL Column of the upper left corner of the window
DR Line of the lower right corner of the window
DL Column of the lower right corner of the window

236

Abacus 7.4 BIOS Screen Olllput FlU'lClions

Graphic functions

The following are descriptions of the functions used in the different graphic modes.
They can be used in connection with video cards capable of producing graphics.

Function OOH: Set video mode

Function OOH switches on one of the available graphic modes. The border color (or
color palette) should then be selected for the 320x200 (or text) mode by loading
function number OAH in the AH register. The BH register dictates the use of the
border color or the color palette. Ifduring the function call the BH register contains
a 0, the value in the BL register becomes the background and border color for the
graphic mode. All 16 colors are available, so the BL register can contain a value
between 0 and 15. This function remains valid for the text mode. However, only
the border color can be set. The background color for each character is set
individually by the top 4 bits of the color attribute, and therefore cannot be set for
everything.

If the BH register contains a I, the value in the BL register (0 or 1) selects the
active color palette. The palettes contain the following colors:

Function OBH: Set color palette

Once the graphic mode initializes and the colors are selected, graphic drawing can
begin. Function OBH writes graphic pixels at specified locations of the screen. The
pixel coordinates to be addressed are passed in the ex and DX registers. The values
in these registers depend on the graphic resolution of the current graphic mode. The
ex register contains the X-coordinate (column coordinate) of the pixel, and the DX
register the Y -coordinate (line coordinate) of the pixel. The function call must have
the function number (OBH) passed in the AH register. The color value of the pixel
to be manipulated is passed in the AL register. The Hercules card and the 64Ox200
mode of the color card permit the values 0 and 1 only. In the 320x200 mode of the
color card, the values 0 to 3 are allowed for the 4 possible colors. The significance
of these values depends on the active color palette. If a program enables palette 0,
the values have the following significance:

0 Color selected for background with function OBH
1 Green
2 Red
3 Yellow

237

7. TheBIOS PC System Programming

An active palette 1 changes the values slightly:

0 Color selected for backqround with function OBH
1 Cyan
2 Magenta

3
 White

Function OOH: Read pixel

Function ODH is the equivalent of this function, which detennines the color value
of a pixel. Before the call, the value ODH must be passed in the AH register, the
X-coordinates of the pixel must be loaded into the ex register, and the Y
coordinates into the DX register. The pixel color is returned as a result in the AL
register. This value corresponds to the rules described in function OBH.

Function 13H: Write string

Interrupt lOH includes another function on AT computers. Function 13H displays
strings of characters on the screen. During its call a series of arguments must be
passed, in addition to passing the function number to the AH register. The BH
register accepts the number of the display page on which the string should be
displayed (not necessarily the current display page). The starting position of the
character string on the display is in the DH (line) register and the DL register
(column). The ex register contains the number of characters in the character
string.

The AL register's contents define one of the four possible modes in which the
character string can be displayed. The string fonnat in modes 0 and 1 differ from
string fonnat in modes 2 and 3. Modes 2 and 3 place attribute bytes after every
character in the string. In modes 0 and 1, the individual characters of the string
follow one another in sequence. The attribute byte for all characters depends on the
contents of the BL register. In modes 2 and 3, 2 bytes are stored in the string for
every character displayed. For example, a character string of 4 characters requires 8
bytes of memory. The number of characters to be displayed (4 characters in this
example) must be indicated in the ex register. Another difference between modes 0
and 2 and modes 1 and 3 is in display fonnat. Mter the string display in modes 1
and 3, the cursor appears following the last character of the string. The next
character displayed with one of the BIOS functions then appears at this position on
the screen. The cursor position does not get updated in modes 0 and 2.

238

Abacus 7.4 BIOS Screen Output Functions

Demonstration programs

The following programs demonstrate the use of BIOS video interrupt functions
available from higher level languages. In Pascal and C, you'll find that using BIOS
display functions works much faster than the standard procedures and functions
provided in these languages, which use the slower DOS functions. BASIC's use of
BIOS screen functions is minimal, since these functions are even slower than the
BASIC PRINT statement

Advantage

Accessing BIOS video interrupt functions has an advantage over the use of onboard
graphic commands in higher level languages: the BIOS functions can be accessed
at any time.

Disadvantage

There is a serious disadvantage to using BIOS functions for screen output. The
higher level language display commands can accept numerical variables, which are
then converted to ASCII characters. These higher level commands can fonnat the
variables according to decimal places or a certain degree of precision, then display
these variables. However, if numerical variables are to be displayed using the BIOS
functions, they must first be converted into a character string which you must
transfer to the BIOS output function. This procedure takes time.

All three programs are identical in function. Each fills the screen with continuous
characters from the PC character set, then opens two windows in which two arrows
move up and down. How this was done, and how it will actually appear on the
screen, should become clear after you take a closer look at the program codes. The
programs limit their access to one video page, due to incompatibility problems
that could occur between monochrome and color cards. They also do not present
subroutines, functions or procedures for calling the BIOS graphic functions.

Once you understand this section you should be able to easily add the missing
functions and even write a short demo program of your own. Using BIOS video
interrupt assures that the computer will not crash and that nothing major can go
wrong.

BASIC listing: VIDEOB.BAS

100 .**************.* ••********.***********************.*.************'
110 •* V IDE 0 B BAS *,
120 ,*---*.
130 Task : Makes some Subroutines available for access *,
140 to the Display using the BIOS-Video-Interrupt *'
150 ,*
160 Author : MICHAEL TISCHER *,
170 developed on : 07/18/87
180 last Update : 05/14/89 *,
190 ,***•••***•••••********.*.*.*.*.*.**.*.*.*.*******••••*.**********,
200 '
210 CLS : KEY OFF
220 PRINT "WARNING: This Program should only be started if GWBASIC was •

239

7. The BIOS PC System Programming

230 PRINT"started from the DOS level with <GWBASIC /m:60000>."
240 PRINT : PRINT"If this was not the case enter <s> for Stop."

250 PRINT..Otherwise press any key..... ;

260 AS = INKEYS : IF AS ·s" THEN END

270 IF AS = THEN 260

280 CLS

290 GOSUB 60000 'Install function for interrupt call

300 PAGE%-O 'Display page for the output is Page 0

310 COLRR%-7 'light characters on dark background

320 FOR DISPROW%=1 TO 24 'process all display lines

330 FOR DISPCOL%=O TO 79 'process all display columns

340 CHARACTERS-CHRS«DISPCOL%+DISPROW%*80) AND 255) 'continuous code

350 GOSUB 52000 'set cursor position

360 GOSUB 57000 'Output character

370 NEXT 'next column

380 NEXT 'next line

390 VALUE%-O 'Erase Window

400 ULC%-5 : ULR%=8 : LRC%-19 : LLR%=22 'Coordinates of the 1. Window

410 GOSUB 55000 'Erase Window

420 ULC%-60 : ULR%=2 LRC%-74: LLR%-16 'Coordinates of the 2. Window

430 GOSUB 55000 'Erase Window

440 COLRR%-&H70 'dark letters on light background (inverse)

450 DISPCOL%=5 : DISPROW%-8 'Coordinates for Text output

460 T$=" Window 1 'Text for output

470 GOSUB 58000 'Output Text

480 DISPCOL%=60 : DISPROW%=2 'Coordinates for text output

490 T$-" Window 2 'Text for output

500 GOSUB 58000 'Output Text

510 DISPROW%-O : DISPCOL%-O 'upper left Display corner

520 TS-STRINGS(23," ")+"Arrow number is being drawn "+STRING$ (23," U)

530 GOSUB 58000 'Output Text

540 COLRR%=&HFO 'dark chars on light background (inverse) blinking
550 DISPCOL%-24 DISPROW%=12 'Coordinates for Text output
560 TS=" »> PC SYSTEM PROGRAMMING «< .. 'Text for output
570 GOSUB 58000 'Output Text
580 VALUE%-1 'always scroll one line
590 FOR ARROWS%-4 TO 0 STEP -1 'Output total of 10 Arrows
600 DISPCOL%=35: DISPROW%=O 'Position for number of Arrows
610 COLRR%=&H70 'dark characters on light backglound (inverse)
620 TS-STRS(ARROWS%) 'Convert number of Arrows into ASCII-String
630 GOSUB 58000 'Output Text
640 COLRR%-7 'light characters on dark background
650 FOR COUNtL%=l TO 8 'an Arrow consists of 8 Lines
660 DISPCOL%-5: DISPROW%-9 'Coordinates in first Window
670 T$=STRINGS (8-COUNTL%," U) +STRINGS (2*COUNTL%-1, "*") +STRINGS (8-COUNTL%, U U)

680 GOSUB 58000 'Output Arrow line
690 DISPCOL%-60 : DISPROW%-16 'Coordinates in second Window
700 GOSUB 58000 'Output arrow line
710 ULC%=5 : ULR%=9 : LRC%-19: LLR%=22 'Coordinates of 1. Window
720 VALUE%-1 'scroll one DISPROW
730 GOSUB 56000 'Scroll Window down
740 ULC%=60 : ULR%=3 LRC%-74: LLR%-16 'Coordinates of 2. Window
750 VALUE%-1 'Scroll one Line
760 GOSUB 55000 'Scroll Window up
770 NEXT 'next Arrow Line
780 NEXT 'next Arrow
790 CLS
800 KEY ON
810 END
820 '
50000 1************************.*.**************••*.******************1
50010 ,* Sense Video mode and other Parameters

1*__*' 50020
50030 Input none
50040 Output : VMODE% the current Video mode
50050 PAGE% the current Display page
50060 DISPCOL% the number of Columns per Line
50070 Info the Variable Z% is used as Dummy

• __ k*k._ •••••• _ ••••••••••••• _ ••••••••• __________ ••••• _kk*kkkkkk.f50080
50090

240

Abacus 7.4 BIOS Screen Output Functions

50100 DISPCOL%-15 'Get Function number for Video mode
50110 INR%=&H10 'Call BIOS-Video-Interrupt 16(h)
50120 CALL IA(INR%,DISPCOL%,VMODE%,PAGE%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%)
50130 RETURN 'back to caller
50140 '
51000 '***'
51010 '* Define appearance of blinking Text-Cursor
51020 ,*---*,
51030 Input: BEGLIN% is the beginning Line of the Text-Cursor
51040 ENDL% = is the End Line of the Text-Cursor
51050 Output: none
51060 Info the Variable Z% is used as Dummy
51070 ' •••**********'

51080 '

51090 FKT%=l 'Set Function number for appearance of Cursor

51100 INR%=&H10 'Call BIOS-Video-Interrupt 16(h)

51110 CALL IA(INR%,FKT%,Z%,Z%,Z%,BEGLIN%,ENDL%,Z%,Z%,Z%,Z%,Z%,Z%)

51120 RETURN 'back to caller

51130

52000 ,*********.*.*.********* •••*.*** ••• ** ••••*.*.*.*.*.***.*********,

52010 '* Set Cursor Position
52020 '*---*'
52030 Input PAGE% is the Number of the Display page
52040 DISPCOL% is the new Column of the Cursor
52050 DISPROW% is the new Row of the Cursor
52060 Output none
52070 Info The position of the blinking Text-Cursor is only
52080 influenced by the call of this subroutine if the
52090 Display page indicated is the current Display page
52100
52110 the Variable Z% is used as Dummy
52120 1***'
52130 '

52140 FKT%=2 'Set Function number for Cursor position

52150 INR%=&HIO 'Call BIOS-Video-Interrupt 16(h)

52160 CALL IA(INR%,FKT%,Z%,PAGE%, Z%,Z%, Z%,DISPROW%,DISPCOL%,Z%, Z%, Z%,Z%)

52170 RETURN 'back to caller

52180 '

53000 1***1
53010 ,* Read Cursor Position and Beginning and End Row
53020 ,* of the blinking Text-Cursor
53030 1*--_________ *1
53040 Input: PAGE% - is the Number of the Display page
53050 Output: DISPCOL% - Column of the Cursor in the Display page
53060 DISPROW% Row of the Cursor in the Display page
53070 BEGLIN% = beginning Line of the Text-Cursor
53080 ENDU is the End Line of the Text-Cursor
53090 Info the Variable Z% is used as Dummy
53100 1***.*********************1
53110 FKT%=3 'Read Function number for Cursor position
53120 INR%-&H10 'Call BIOS-Video-Interrupt 16(h)
53130 CALL IA(INR%,FKT%,Z%,PAGE%,Z%,BEGLIN%,ENDL%,DISPROW%, DISPCOL%,Z%,Z%,Z%,Z%)
53140 RETURN 'back to caller
53150
54000 1********.***********************.******************.***********1
54010 '* Set the current display page on the
54020 I * screen
54030 1* _____---_________ *1
54040 Input : PAGE% = is the Number of the Display page
54050 * Output: noneI

54060 '* Info : the Variable Z% is used as Dummy
54070 '***1
54080 FKT%-5 'Set Function number for Display page
54090 INR%-&H10 'Call BIOS-Video-Interrupt 16 (h)
54100 CALL IA(INR%,FKT%,PAGE%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%)
54110 RETURN 'back to caller
54120
55000 1***'
55010 ,* Scroll current Display page up or erase
55020 1*---*1

241

7. The BIOS PC System Programming

55030 Input VALUE' = how many Lines to scroll,.55040 ULC% = Column upper left
55050 ULR% - RoW upper left
55060 LRC% ~ Column lower right'.55070 LLR% Row lower right
55080 COLRR% = COLRR of erased Lines

.'.'.'.'.'
55090 Output: none
55100 Info If VALUE% 0 is indicated, the
55110 Display area is erased
55120 the Variable Z% is used as Dummy
55130 ,.****_. ___ *. ___ ._**.***_*_. ___ .* ___ *_***_*** __ * ___ • __ **********'

55140 '

55150 FKT%-6 'Function number for scrolling up

55160 INR%='H10 'Call BIOS-Videa-Interrupt 16(h)

55170 CALL IA(INR%,FKT%,VALUE%,COLRR%,Z%,ULRt,ULC%,LLR%,LRC%, Z%,Z%,Z%,Z%)

55180 RETURN 'back to caller

55190 '

56000 ,********xx_* ___ *_*** __ **_* _____ *_. ___ **_*_****_** ____ x*_x****_*,

56010 '* Scroll current Display Page down or erase
56020 '*---*,
56030 Input : VALUE% = how many Lines to scroll
56040 ULC% = Column upper left
56050 ULR% = Row upper left'.56060 LRC% Column lower right
56070 LLR% Row lower right
56080 COLRR% = COLRR of erased Lines
56090 Output: none
56100 Info If VALUE% 0 is indicated, the
56110 Display area is erased
56120 The Variable Z% is used as Dummy
56130 .***'

56140 '
56150 FKT%=7 'Function number for scrolling down
56160 GOTO 55160 'Call is identical with scrolling up
56170 '
57000 .***.*********************.
57010 '* Write a character of a designated COLRR to the current
57020 '* Cursor position in the designated Display Page
57030 ,* __---------*1

57040 Input: CHARACTER$ the character for output
57050 COLRR% COLRR of the character for output
57060 PAGE% is the Number of the Display page .57070 Output: none ,
57080 Info the Variables ZL%, ZH% and ZE\ are Dummies
57090 1***'
57100

57110 fKT%=9 'Output function numbers for character and Attribute

57120 INR%~&H10 'Call BIOS-Video-Interrupt 16(h)

57130 ZL%~l 'Output character only once (LO-Byte)

57140 ZH%=O 'Output character only once (HI-Byte)

57150 ZE%=ASC(CHARACTER$) 'Get ASCII-Code of character to be output

57160 CALL IA(INR%,FKT%,ZE%,PAGE%,COLRR%,ZH%,ZL%,ZL%, ZL%,ZL%,ZL%,ZL%,ZL%)

57170 RETURN 'back to cal,ler

57180 '

58000 1***'

58010 '* Output a String starting at a certain Position within a

58020 '* Display page with a constant Attribute

58030 ,*---*,
58040 Input : T$ the String for output

58050 COLRR% COLRR of the String (Attribute)

58060 PAGE% is the number of the Display page

58070 DISPCOL% Column - start of String

58080 DISPROW% ~ Row - start of String
 .'58090 Output: none

58100 Info the Variables ZC% and ZE% are Dummies

58110 1***'

58120
58130 GOSUB 52000 'Set Cursor position for Output

58140 FOR ZC%=l TO LEN(T$) 'process all chars or strings individually

58150 CHARACTER$-.... 'output a blank first

242

Abacus 7.4 BIOS Screen Output Functions

58160 GOSUB 57000
58170 ZE%-ASC(MID$(T$,ZC%,l» 'Get a character from the String
58180 FKT%-14 'Function number for Teletype-Output
58190 CALL IA(INR%,FKT%,ZE%,PAGE%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%)
58200 NEXT 'Output next character
58210 RETURN 'back to caller
58220 '
60000 ,**************.*********.*************************.************'
60010 initialize the Routine for the Interrupt call60020 1*___*'

60030 '* Input: none
60040 '* Output: IA is the Start address of the Interrupt-Routine *,
60050 1***,
60060 '
60070 IA=60000! 'Start address of the Routine in the BASIC-Segment
60080 DEF SEG 'Set BASIC Segment
60090 RESTORE 60130
60100 FOR 1% - 0 TO 160 : READ X% : POKE IA+I%,X% NEXT 'poke Routine
60110 RETURN 'back to caller
60120 '
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139, ll8, 20,136, 44,139, ll8, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255

The program can be divided into three parts. Lines 100 to 700 represent the
demonstration program proper, which uses the subroutines in lines 50000 to
58220. These subroutines call a special function of the BIOS video interrupt and
access the routine for interrupt calls as described earlier. The program DATA
begins on line 60000.

See the header of each subroutine for the variables of each subroutine and what
each variable does.

It should be noted that all subroutines receive and return numerical values as
integer variables. Do not forget the percentage character after a variable. In certain
cases a real variable of the same name can be initialized, but the subroutine
expected an integer variable and the wrong parameters will be passed to the BIOS
function.

Pascal and C implementations

The individual functions and procedures of the next two programs are fully
documented and should be self-explanatory. The two programs resemble each other
strongly, since the procedures, functions and variables have the same names.

243

7. TheB/OS 	 PC System Programming

Pascal listing: VIDEOP.PAS

{*************************.***************************.***************}
(* 	 v IDE 0 P PASCAL *)
(*---*)
(* Task makes functions available which are *)
(* based on the BIOS-Video-Interrupt but are not *)
(* provided by PASCAL *)

{*---*/
{* Author MICHAEL TISCHER */
{* developed on : 07/10/87 */
(* last Update : 05/14/89 *)
t***·****·**********.*.*.*}

program VIDEOP;

Uses Crt, Dos; 	 { Adds DOS and CRT units to Turbo

const 	NORMAL $07; Definition of character-attribute
BOLD ~ $Of; in relation to a monochrome
INVERS $70; Display card
UNDERLINE $01;
BLINK = $80;

type 	 TextTyp string [80J ;

var 	 i, { Loop variable for the Main program /
j,
le,
I integer;
I String string [2]; (accepts number of Arrows)

{****************************••****.*.*****••*************************}
(* GETVIDEOMODE: Read current Video mode and Parameters *)
(* Input none *)
{* Output The Variables listed below get the values after the */
{* call of the Procedure */
{ ••**************•• *********************************••••**************}

procedure GetVideoMode(var 	VideoMode, {Number of current Video mode
Number, (Number of Columns per Line
Page : integer); {current display page

var Regs Registers; { Register-Variable for call of Interrupt

begin
Regs.ah := $OF; { Function number
intr ($10, Regs); { Call BIOS-Video-Interrupt
VideoMode := Regs.al; Number of Video mode)
Number := Regs.ah; { Number of characters per line /
Page .= Reqs.bh; Number of the current display page /

end;

{****•• ****••••••*******.*.********•••****************.***************}
{* SETCURSORTYPE: defines the appearance of the blinking *)
{* Display cursor * /
{* Input see below * /
{* Output none * /
{* Info for a monochrome display card the parameters */
{* can be between 0 and 13, for a color display */
{* card between 0 and 7 */
{****.*******•••••••••••••••••••••• * •• *•••••••••••••• * •••••• *******••• }

procedure SetCursorType(Beginline, (Beginning line of the cursor
Endl : integer); End line of the cursor

var Regs Registers; Register variable for the interrupt call

244

Abacus 	 7.4 BIOS Screen Output Functions

begin
Regs.ah 1; Function number
Regs.ch .- Beginline; { Beginning and
Regs.cl := Endl; { End line
intr($10, Regs); { Call BIOS-Video-Interrupt

end;

{*******************.**********.* ••• ***************•••••• *************}
(* SETCURSORPOS: defines the position of the cursor in the *)
(* display page output *)
(* Input see below *)
(* Output none *)
(* Info The position of the blinking display cursor changes *'
1* only through the call of this procedure, if the *)
1* indicated display page is the current display page *)
{****************** •• ******.****.*************************.***********}

procedure SetCursorPos(Page, { display whose Cursor is set
Column, (new Column of the Cursor
Line integer); {new Line of the Cursor

var Regs Registers; (Register variable for the interrupt

begin
Regs.ah := 2; { Function number
Regs.bh Page; { display page
Regs.dh . Line; Display coordinates
Regs.dl := Column;
intr($10, Regs); Call BIOS-Video-Interrupt

end;

{**********************•••*.***********************.*.****************}
{* GETCURSORPOS: senses the position of the cursor in a display *'
{* page and its start and end line *'
{* Input see below *'
{* Output The variables listed below contain the values after *)
{ * the call of the procedure *)
{* Info the start and end line of the cursor is independent *)
{* of the indicated display page *'
{**********************.*******.*.************************************}

procedure GetCursorPos(Page : integer; { the display page
var 	Column, Column of the cursor

Line, { Line of the cursor
Beginline, Start line of the cursor
Endl : integer); (End line of the cursor

var Regs Registers; Register variable for the interrupt)

begin
Regs.ah :- 3; { Function number
Regs.bh := Page; { Display page
intr($10, Regs); Call BIOS-Video-Interrupt
Column := Regs.dl; { Result of the Function
Line := Regs.dh; { read from the Register
Beginline := Regs.ch; { and store in proper
Endl Regs.cl; { Variables

end;

{*******************.***.*****}
(* SETDISPLAYPAGE: set the display page *)
{* for output on the monitor *)
1* Input see below *)
1* Output none *)
{***}

procedure SetDisplayPage(Page : integer); (the new display page)

var Regs : Registers; { Register variable for the interrupt I

245

7. The BIOS PC System Programming

begin
Regs.ah :~ 5; Function number and display page
Regs.al :~ Page; (Screen page
intr($10, Regs); (Call BIOS-Video-Interrupt

end;

{***}
{* SCROLLUP: scrolls a display area by one or more *1
{* lines up or erases it * 1
{* Input see below * 1
{* Output none *1
{* Info If Number 0 is passed, the display area *1
{* is filled with blanks * 1
{***}

procedure ScrollUp (Number, { Number of lines to be scrolled
COLOR, (Attribute for the blank lines created
Co1umnUL, { Column in the upper left hand corner
LineUL, { line in the upper left corner
ColumnLR, (Column in the lower right corner
LineLR integer); { line in the lower right corner

var Regs Registers; { Register variable for calling Interrupt

begin
Regs.ah :~ 6; Function number and number
Regs.al .- Number;
Regs.bh := COLOR; (Color of empty line(s)
Regs.ch := LineUL; { Upper left
Regs.cl ColumnUL; { coordinates
Regs.dh LineLR; { Lower right
Regs.dl :~ ColumnLR; { coordinates
Intr ($10, Regs); { Call BIOS-Video-Interrupt

end;

{***}
{* SCROLLDOWN: Scrolls a display area by one or more *1
{* lines down or erases it *1
{* Input see below * 1
(* Output none *)

(* Info If Number 0 is passed, the display area *)
{* is filled with blanks *1
{***}

procedure ScrollDown(Number, { Number of lines to be scrolled
COLOR, { Attribute for the blank line(sl created
ColumnUL, { Column in the upper left corner
LineUL, { line in the upper left corner
ColumnLR, { Column in the lower right corner
LineLR integer); {Line in lower right corner

var Regs Registers; Register-Variable for call of Interrupt

begin
Regs.ah := 7; Function number and number
Regs.al := Number;
Regs.bh := COLOR; (Color of blank line(s)
Regs.ch := LineUL; { upper left
Regs.cl := ColumnUL; { coordinates
Regs.dh := LineLR; { Lower right
Regs.dl ColumnLR; { coordinates
Intr ($10, Regs) ; { Call BIOS-Video-Interrupt

end;

{***}
{* GETCHAR: Read a character including Attribute from an indicated *1
(* position in a display page *)
(* Input see below *)
(* Output see below *)

{***}

246

Abacus 	 7.4 BIOS Screen Output Functions

procedure GetChar(Page, display page accessed
Column, { Display Colmnn
Line : integer; { Display line
var Character : char; { the character
var COLOR integer); { its At tribute

var 	Regs : Registers; Register-Variable for the Interrupt
CurColumn, { current display Column
CurLine, { current display line
CurPage, { current display page
Dummy integer; (stores Variables which are not needed

begin
GetVideoMode(Dummy, Dummy, CurPage); {sense current display page
GetCursorPos(CurPage, CurColumn, CurLine, (Get cursor position

Dummy, Dummy); (in the current display page

SetCursorPos(Page, Column, Line); { cursor on the position indicated

Regs.ah :~ 8; { Get Function number for char. and Attribute

Regs.bh :~ Page; { display page

Intr ($10, Regs) ; { Invoke DOS registers

Character :~ chr(Regs.al); ASCII-Code of character

COLOR := Regs.ah; Attribute of the character

SetCursorPos(CurPage, CurColumn, CurLine);{ Set cursor old position

end;

{***}
(* WRITECHAR: Writes a character with indicated color to the *)
(* current cursor position in the display page *)
'* indicated *)
(* Input see below *)
(* Output none *)'* Info during the Output of characters, the control codes *)
(* such as carriage-Return are treated as ASCII codes *)
{*********************.***}

procedure WriteChar(Page : integer; , Display page for writing
Character : char; ASCII-Code of the character
COLOR integer); { its Attribute

var Regs Registers; (Register variable for the interrupt)

begin
Regs.ah :~ 9;
Regs.al ord (Character) ; { Function number and character code
Regs.bh '= Page; { Display page
Regs.bl := COLOR; { Display color
Regs.ex :- 1; { output character only once
Intr ($10, Regs) ; { call BIOS-Video-Interrupt

end;

{** •• ***********************}
(* WRITETEXT: Writes a String starting at an indicated position in *)

(* a display page. *)

(' Input see below *)

'* Output none *)

(* Info During output of characters the control characters *)

(* such as Carriage-Return are treated as such. *)

(* If writing continues beyond the End of the display, *)

(* will be scrolled up one line *)

{***}

procedure WriteText(Page, { Display page for output
Column, Column, from which output starts
Line, { Line, from which output starts
COLOR integer; (Color for all characters
Text TeKtTyp) ; (Text for output

var Regs Registers; Register variable for call of Interrupt)

247

http:chr(Regs.al

7. TheBIOS PC System Programming

Counter integer; { Loop Counter }

begin
SetCursorPos(Page, Column, Line); Set cursor

for Counter :- 1 to length(Text) do process characters

begin (in sequence

WriteChar(Page, ' " COLOR); Color at the current position
Regs.ah '= 14;
Regs.al := ord(Text[Counter]); Function number and character
Regs.bh := Page; (Display page
Intr($10,Regs) ; { Call BIOS-Video-Interrupt

end;
end;

{*******************.*******•••*******.*********** ••**** ••************}
(** MAIN PROGRAM ** J
{** ••••**********************************••**********.********•••*****}

begin
clrscr; { Erase display
for i :- 1 to 24 do Perform lrne 1 to 24
for j := ° to 79 do { do all Columns

begin

SetCursorPos (0, j, i); (position cursor

WriteChar(O, chr(i*80+j and 255), NORMAL); Write a character

end:
ScroIIDown(O, NORMAL,S, 8, 19, 22); Erase Window 1

WriteText(O, 5, 8, INVERS,' Window 1 t) ;

ScroIIDown(O, NORMAL, 60, 2, 74, 16); Erase Window 2

WriteText(O, 60, 2, INVERS,' Window 2 I) ;

WriteText(O, 24, 12, INVERS or BLINK, • »> PC SYSTEM PROGRAMMING «< ');

WriteText(O, 0, 0, INVERS, ; Still have to draw '+

f arrows on the screen ');
for i := 49 downto 0 do (draw a total of 50 Arrows)
begin

str(i:2, IString); convert i in ASCII-String

WriteText(O, 37, 0, INVERS, IString);

j := 1; (every Arrow consists of 16 lines

while j <= 15 do

begin

k := 0;
while k < j do (create a line of the Arrow
begin

SetCursorPos(O, 12-(j shr 1)+k, 9); Arrow Window 1
WriteChar(O, '*', BOLD);
SetCursorPos(O, 67-(j shr 1)+k, 16); Arrow Window 2
WriteChar(O, '*', BOLD);
k :- succ (k);

end;
ScrollDown (1, NORMAL,S, 9, 19, 22); scroll Window 1
ScroIIUp(l, NORMAL, 60, 3, 74, 16); scroll Window 2
for I := ° to 8000 do (Wait Loop

j := j+2;
end;

end:
clrscr; (Erase display)

end.

248

Abacus 7.4 BIOS Screen Output Functions

C listing: VIDEOC.C

1**------_·_·_---_··*--·-··-·_---_·-·_*----------_·_·-... xwxwxxxxxxxx./1* v IDE 0 C *1
1*---*1
1* Task makes functions available which are not *1
1* available from the Library of MICROSOFT and *1
1* the TURBO C-Compilers *1
1*---*1
1* Author MICHAEL TISCHER *1
1* developed on : 08/13/87 *I
1* last Update : 05/14/89 *1
1*---*1
I * (MICROSOFT C) *I
1* Creation MSC VIDEOC; *1
1* LINK VIDEOC; *1
1* Call VIDEOC *1
1*---*1
1* (BORLAND TURBO C) *I
Ixxxxx*ww*xx ________ • _____ *_*_* _______________ *_** ____ ._*_________ *___ /1* Creation : through the RUN command on the menu bar *1

tinclude <dos.h> 1* include Header-Files *1
finclude <io.h>

fdefine NORMAL Ox07 1* Definition of the character Attribute *1
'define BOLD OxOF 1* in relation to a monochrome *1
fdefine INVERS Ox70 1* Display card *1
tdefine UNDERLINE Ox01
tdefine BLINK Ox80

1--------------------_·-···_--·-··-------_· __ ·_--_···- .__ .-.--*------*/1* GETVIDEOMODE: Read current Video mode and Parameters *1
1* Input : none *1/ ___________ • ____________ • ___ ._••• __ *_* ________ ._•• ___ *x*x*xww*xx ____./1* Output : see below *1

void GetVideoMode(VideoMode, Number, Page)
int *VideoMode; 1* the Number of the Video mode *1
int *Number; 1* Number of Columns per line *1
int *Page; 1* Number of current display page *1

union REGS Register; 1* Register variable for Interrupt-Call *1

Register.h.ah ~ 15; 1* Function number *1
int86 (OxIO, &Register, &Register); 1* Call Interrupt IO(h) *1
VideoMode ~ Register.h.al; 1 Number of Video mode *1
Number ~ Register.h.ah; 1 Number of Characters per line *1
Page = Register.h.bh; 1 Number of current display page *1

)

1------------_·_-------------------*---------------_·- *xwxxxw*wxx_. ___ /1* SETCURSORTYPE: defines the appearance of the blinking display *1
1* cursor *1
1* Input see below *1
1* Output none *1
1* Info for a monochrome display card the parameters *1
1* can be between 0 and 13. For a color *1
1* display card between 0 and 7 *1
/***/

void SetCursorType(Beginline, Endl)
int Beginline; 1* Beginning line of the cursor *1
int Endl; 1* End line of the cursor *1

union REGS Register; ;* Register variable for Interrupt-Call *1

249

http:Register.h.bh
http:Register.h.ah
http:Register.h.al
http:Register.h.ah

7. TheB/oS PC System Programming

Register.h.ah - 1; /* Function number */
Register.h.ch Beginline; /* Beginning line of cursor */
Register.h.cl Endl; /* End line of cursor */
int86(Ox10, 'Register, 'Register); 1* Call Interrupt 10(h) */

)

/.* •••***.****/
1* SETCURSORPOS: defines the position of the cursor in the indicated */
/* display page */
1* Input see below */
/* Output none */
/* Info The position of the blinking display cursor changes */
/* only if the call of this function refers to */
/* current display page */
/*** **** •• **********j

void SetCursorPos(Page, Column, Line)

int Page; /* Display page where the cursor will be set */

int Column; /* new cursor Column */

int Line; /* new cursor line */

union REGS Register; /* Register variable for Interrupt-Call */

Register.h.ah 2; 1* Function number */
Register.h.bh Page; /* Display page */
Register.h.dh Line; /* Display line */
Register.h.dl Column; 1* Display Column */
int86 (OxlO, 'Register, 'Register); /* Call Interrupt 10 (h) */

)

j***********************.************.***•• *********************.*.***/
/* GETCURSORPOS: Get the position of the cursor in a certain */
/* display page and its start and end line */
/* Input none * /
/* Output see below */
/*******************.*****•••••••********************.*.********•• ****/

void GetCursorPos(Page, Column, Line, Beginline, Endl)

int Page; /* Number of display page */

int *Column; /* Column, where the cursor is located *1

int *Line; /* Line, where the cursor is located */

int *Beginline; /* Start line of the cursor */

int *Endl; /* End line of the cursor */

union REGS Register; /* Register variable for Interrupt-Call */

Register.h.ah - 3; /* Function number */
Register.h.bh - Page; /* Display page */
int86 (Ox10, &Register, &Register); /* call Interrupt 10 (h) */
Colurnn - Register.h.dl; / Read result of the Function */
Line = Register.h.dh; / from the Registers */
Beginline - Register.h.ch; / and assign to proper */
Endl - Register.h.cl; / Variables */

)

/********************.*****************.******** ••• ***********••******/
/* SETDISPLAYPAGE: sets the display Page which is to be represented */
/* on the display */
/* Input see below */
/* Output none */
/********************.*****+** ••***********•• *************************j

void SetDisplayPage(Page)

int Page; /* Number of the new current display page */

union REGS Register; /* Register variable for Interrupt call */

250

http:Register.h.cl
http:Register.h.ch
http:Register.h.dh
http:Register.h.dl
http:Register.h.bh
http:Register.h.ah
http:Register.h.dl
http:Register.h.dh
http:Register.h.bh
http:Register.h.ah
http:Register.h.cl
http:Register.h.ch
http:Register.h.ah

Abacus 7.4 BIOS Screen Output Functions

Register.h.ah = 5; /* Function number */
Register.h.al - Page; /* Display page */
int86 (OxlO, &Register, &Register); /* Call Interrupt lO(h) */

I

,*.**************** •• **•• ******.*.*******.****************************/
/* SCROLLUP: Scrolls a display area up one or several */
/* lines or erases it */
/* Input see below */
/* Output none */
/* Info If 0 is passed as number, the display */
/* area is filled with blanks */
/***.******* •• **************/

void ScroIIUp(Number, Color, ColumnUL, LineUL, ColumnLR, LineLR)
int Number; /* Number of lines to be scrolled */
int Color; /* Color or Attribute for the blank lines */
int ColumnUL; /* Column in upper left corner of the display area */
int LineUL; /* Line in upper left corner of the display area */
int CoI umnLR; /* Column in lower right corner of the display area */
int LineLR; /* Line in lower right corner of the display area */

union REGS Register; /* Register variable for Interrupt call */

Register.h.ah - 6; /* Function number */

Register.h.al Number; /* Number of lines */

Register.h.bh Color; /* Color of blank line(s) */

Register.h.ch - LineUL; /* Set Coordinates of the */

Register.h.cl ColumnUL; /* display Window to be scrolled */

Register.h.dh LineLR; /* or erased */

Register.h.dl ColumnLR;

int86 (OxlO, &Register, &Register); /* Call Interrupt lO(hl */

I

/*************.***************************.********************.******/
/* SCROLLDOWN: Scroll a display area by one or more */
/ * lines down or erase it * /
/* Input see below * /
/* Output none */
/* Info If ° is passed as number, the display */
/* area is filled with blanks */
/********* •• ***********•• ***•• **/

void ScrollDown(Number, Color, ColumnUL, LineUL, ColumnLR, LineLR)
int Number; /* Number of lines to be scrolled */
int Color; /* Color or Attrib.ute for the blank lines */
int ColumnUL; /* Column in upper left corner of the display area */
int LineUL; /* Line in upper left corner of the display area */
int ColumnLR; /* Column in lower right corner of the display area */

int LineLR; /* Line in lower right corner of the display area */

union REGS Register; /* Register variable for Interrupt call */

Register.h.ah = 7; /* Function number */

Register.h.al Number; /* Number of lines */

Register.h.bh Color; /* Color of blank line(s) */

Register.h.ch LineUL; /* Set Coordinates for the */

Register.h.cl = ColumnUL; /* display window to be */

Register.h.dh LineLR; /* scrolled or erased */

Register.h.dl = ColumnLR;

int86(OxlO, &Register, 'Register); /* Call Interrupt lO(h) */

)

j ••************* •••***/
/* GETCHAR: Read from a designated display position */
/* a character and its Attribute-Byte */
/* Input see below */
/* Output see below */
/***/

251

http:Register.h.dl
http:Register.h.dh
http:Register.h.cl
http:Register.h.ch
http:Register.h.bh
http:Register.h.al
http:Register.h.ah
http:Register.h.dl
http:Register.h.dh
http:Register.h.cl
http:Register.h.ch
http:Register.h.bh
http:Register.h.al
http:Register.h.ah
http:Register.h.al
http:Register.h.ah

7. The BIOS PC System Programming

void GetChar(Page, Column, Line, Character, Color)
int Page; 1* Display page from which the character is to be read *1
int Column; 1* Display column of the character *1
int Line; 1* Display line of the character *1
char *Character; 1* the character at this position *1
int *Color; 1* its Attribute-Byte (Color) *1

union REGS Register; 1* Register variable for Interrupt call *1
int Dummy; 1* for Variables which are not required *1
int CurPage; 1* the current display page *1
int CurLine; 1* the current display line *1
int Curcolumn; 1* the current display Column *1

GetVideoMode(&Dummy, &Dummy, &CurPage); 1* Get current display page *1
GetCursorPos(&CurPage, &CurColumn, &CurLine, /* Get current cursor */

&Dummy, &Dummy); 1* position *1
SetCursorPos(Page, Column, Line); 1* Set cursor *1
Register.h.ah ~ 8; 1* Function number *1
Register.h.bh ~ Page; 1* display page *1
int86 (OxlO, &Register, &Register); 1* Call Interrupt lO(h) *1
Character ~ Register.h.al; 1 Read results from the Registers *1
Color ~ Register.h.ah; 1 and assign *1
SetCursorPos(CurPage, CurColumn, CurLine);I* cursor to old position *1

)

/***/
1* WRITECHAR: writes a character with an Attribute *1
1* at the current cursor position in the page indicated *1
1* Input see below *1
1* Output none *1
1*** ****************/
void WriteChar(Page, Character, Color)

int Page; 1* The character appears in this display page *1

char Character: 1* the character to be output */
int Color; 1* its Attribute or Color *1

union REGS Register; 1* Register variable for Interrupt call *1

Register.h.ah 9; 1* Function number *1
Register.h.al Character; 1* the character to be output *1
Register.h.bh Page; 1* display page *1
Register.h.bl Color; 1* Color of character to be output *1
Register.x.ex 1; 1* output character only once */
int86 (OxlO, &Register, &Register); 1* Call Interrupt lO(h) *1

)

1*** ****************/
1* WRITETEXT: Writes a character string with constant cJlor */
1* starting at a designated position within a display page*1
1* Input see below */
1* Output none */
1* Info Text is a pointer to a character vector which contains *1
1* the text to be output and is terminated *1
1* with a '\0' character */
1*** ****************/
void WriteText(Page, Column, Line, Color, Text)
int Page; 1* the Text is output in this display page *1
int Column; 1* display Column for Output *1
int Line; 1* display line for Output *1
int Color; 1* Color/Attribute of the Text *1
char *Text; 1* Text for output *1

union REGS Register; 1* Register variable for Interrupt call *1

SetCursorPos(Page, Column, Line); 1* Set cursor *1
while (*Text) 1* Output Text up to '\0' character *1

{

252

http:Register.x.ex
http:Register.h.bl
http:Register.h.bh
http:Register.h.al
http:Register.h.ah
http:Register.h.ah
http:Register.h.al
http:Register.h.bh
http:Register.h.ah

Abacus 7.4 BIOS Screen Output Functions

WriteChar(Page, Color); f* Color for characters *f
Register.h.ah ~ 14; f* Function number *f
Register.h.bh = Page; f* display page *f
Register.h.al - *Text++; f* the character for output *f
int86(Ox10, &Register, &Register); f* Call Interrupt *f

}

1--*-·--------·_---------_·--_·_·_·_··_---------------**************.*/
f* CLEARSCREEN: erase the 80*25 character Text display and set *f
f* cursor into the upper left display corner *f
f* Input none */
f* Output none */
/***•• -**-*-----------/
void ClearScreen()

int CurPage; f* current display page *f
int Dummy; /* Dummy variable *f

ScrollUp(O, NORMAL, 0, 0, 79, 24); f* clear screen *f
GetVideOMOde(&Dummy, &Dummy, &CurPage); f* Get current display page *f
SetCursorPos(CurPage, 0, 0); /* Set cursor *f

)

1·-·----------*----_·_·-·_---------_·_-------_.-·_----*************r**/
f** MAIN PROGRAM '**f
1-*---··_--_·_·_-_·_--------·_·_-----------_·_.._·_*--****************/
void mainO

int i, j, k, 1; f* Loop variables *f
char Arrows [3] ; f* accepts number of Arrows as ASCII-String */

ClearScreen 0 ; f* Clear Screen *f
for (i - 1; i < 25; i++) /* process all lines *f
for (j = 0; j < 80; j++) /* process all Columns *f
I
SetCursorPos 10, j, i}; /* position cursor *f
WriteChar(O, i*80+j&255, NORMAL); f* write characters *f

)

ScrollDown(O, NORMAL, 5, 8, 19, 22); f* erase Window 1 */

WriteTextlO, 5, 8, INVERS," Window 1 ");

ScrollDown(O, NORMAL, 60, 2, 74, 16); f* erase Window 2 *f

WriteTextlO, 60, 2, INVERS,· Window 2 "I;

WriteText(O, 24, 12, INVERS I BLINK, " »> PC SYSTEM PROGRAMMING «< ");

WriteText(O, 0, 0, INVERS, " There are It) ;

WriteText (0, 40, 0, INVERS, "arrows left to draw H} i

for (i = 49; i >= ° ; i--) f* draw 50 Arrows *f

{

sprintf(Arrows, "\2d", i); f* Convert number of Arrows to ASCII *f
WriteText(O, 37, 0, INVERS, Arrows); f* and output *f
for (j = 1; j < 16; j+= 2) f* every Arrow consists of 16 lines */

{
for (k = 0; k < j; k++) f* create a line of the Arrow *f
I
SetCursorPos(O, 12-(j»1)+k, 9); f* Arrow Window *f

WriteChar(O, '*', BOLD);

SetCursorPos(O, 67-(j»1)+k, 16); f* Arrow Window 2 *f

WriteChar(O, '*', BOLD);

)

ScrollDown(l, NORMAL, 5, 9, 19, 22), f* Scroll Window 1 down */
ScrollUp(1, NORMAL, 60, 3, 74, 16); f* Scroll Window 2 up *f
for (1 - 0; 1 < 4000 ; 1++) f* Wait Loop *f

)
}

ClearScreen 0 ; f* Clear Screen *f

I

253

http:Register.h.al
http:Register.h.bh
http:Register.h.ah

7. TheB/OS PC System Programming

7.4. 1 The EGA and VGA BIOS

The BIOS functions for screen output have been part of ROM-BIOS since the early
days of the PC. Although they have proven themselves in thousands of
applications, they don't work with the newer types of graphic cards. EGA and
VGA cards are becoming more and more common in the PC market.
Incompatibilities arise between hardware and software, because these cards have
little in common with the eGA and MDA cards for which the original BIOS
functions were intended.

To make EGA and VGA cards compatible with programs that use BIOS functions
to do their screen output, the BIOS functions must first be adapted to the new
hardware standards. The frrst option would be to replace the ROM-BIOS on the PC
motherboard with new ROMs. This solution can create other problems, because no
set standard currently exists for EGA or VGA. Unlike the eGA and MDA cards,
where the mM standard took over simply because there were no other alternatives,
EGA and VGA manufacturers have yet to define a universal standard. Such a
standard would have to apply to hardware, options and capabilities as offered by
each manufacturer.

EGA/VGA ROM-BIOS

Since trying to adapt the ROM-BIOS included with the computer to every graphic
card on the market is impractical, the manufacturers of these systems use the
opposite approach. They package an independent ROM-BIOS with their video
cards. There is a small ROM on the video card itself which contains the necessary
screen output functions. When the system is booted, the BIOS detects this ROM
expansion and allows it to redirect the BIOS video interrupt 16H to its own
routines, replacing the old functions.

By using these routines, all of the programs which use BIOS functions for output
can be executed without problems, but the enhanced capabilities of these video
cards are not used. Since the ROM-BIOS on the motherboard is intended to work
only with eGA and MDA cards, it supports only the capabilities of these cards.
So the graphic card manufacturers extend the BIOS in these video cards by
including new functions or upgrading old functions, so that the enhanced video
capabilities can be used.

This section is dedicated to these functions. No real standard exists for these BIOS
extensions, as mentioned previously. We could use this section to describe the
video functions of the more important EGA and VGA cards (many different cards),
but even with this information you still wouldn't be able to write programs which
would be compatible with all of the video cards on the market. Writing a program
for a specific video card makes sense only when you want the program to run with
that card only.

254

Abacus 7.4 BIOS Screen Output Functions

EGA/VGA video modes

Instead. let's look at the lowest common denominator. the video modes and
functions supported by virtually all EGA/VGA cards. If you stick to this "low
level" standard. you can be fairly sure that your programs will run properly with
all EGA/VGA cards. The basis of this standard is the set of video modes supported
by the original EGA card, introduced by IBM in 1985. or the original VGA card,
introduced by IBM in 1987. All of the manufacturers of compatible cards have
included similar functions in their own cards, and added their own features.

All EGA and VGA cards have flexibility in common, which allows them to
emulate other video cards, as well as perfonn other tasks. The type of emulation
depends on the monitor connected, since unlike other cards, EGA/VGA cards can
by used with different types of monitors.

Monitors and EGA/VGA

If you connect a monochrome monitor to an EGA or a VGA card, it assumes the
features of an MDA or Hercules graphic card. If you connect a color monitor to an
EGA or a VGA. it emulates a normal CGA card. However. EGA/VGA cards run
best when connected to a multisync monitor, which allows color displays at higher
resolutions than Hercules or CGA. The standard resolutions (640x350 for EGA,
640x480 for VGA) can be displayed on a multisync monitor with no problem.
However, mUltisync monitors also support the higher resolutions available on
many EGA and VGA cards. Resolutions of 800x600 pixels and 1024x768 pixels,
are common. These higher resolutions can be used only if the EGNVGA card has
enough RAM, since the extended graphics mode requires additional video RAM to
handle the higher resolutions. The programmer doesn't have to worry much about
this, because almost all EGA cards come with 256K RAM standard. Very few
EGA cards come with a mere 64K and must be expanded to 256K. Most VGA
cards come equipped with 256K of video RAM, as well as a special VGA BIOS.
This special BIOS may require special drivers to operate in conjunction with
graphical user interfaces such as GEM® or Microsoft Windows®.

In addition, to support the new graphic modes with higher resolutions, EGA cards
offer a palette of 16 colors chosen from the 64 available colors. In text mode it is
also possible to set the heights of individual characters, so that up to 43 lines can
be displayed on the screen at once, instead of the nonnal 25 lines.

VGA features

The VGA card is even more powerful. In text mode, the VGA card can display 25
lines, 43 lines and even 50 lines of text. In addition, the VGA has even more
colors available (262,144 colors, as opposed to the EGA's 64-color spectrum). Of
course, these colors are only effective when displayed on a monitor that has a high
enough resolution.

255

• • • • • • • • • • • • • •

7. TheBlOS PC System Programming

The rest of this section shows how these extended features can be used and how the
original BIOS functions have changed. '

As with the normal BIOS, all of the video modes in the EGA/VGA BIOS are set
with the help of function OOH of the BIOS video interrupt. This function has not
been changed since the old BIOS, but it has been extended. The number of the
video mode to be set is passed in the AL register. The following codes are allowed:

EGA/VGA Card Video Modes
Code Mode MONO COLOR EGA!VGA
OOH 40x25 characters, 16 colors
01H 40x25 characters, 16 colors
02H 80x25 characters, 16 colors
03H 80x25 characters, 16 colors
04H 320x200 graphic pixels, 4 colors
05H 320x200 graphic pixels, 4 colors
06H 640x200 graphic pixels, 2 colors
07H 80x25 characters, monochrome •
ODH 320x200 graphic pixels, 16 colors •
OEH 640x200 graphic pixels, 16 colors •
OFH 640x350 graphic pixels, monochrome •
lOR 640x350 ~raphic pixels,16 colors** •
llR 640x480 graphic pixels 2 colors

12R 640x480 graphic pixels, 16 colors

13R 230x200 graphic pixels, 256 colors

.*.*.** VGA only
** EGA cards with 64K of added RAM can only display 4 colors

EGA and VGA cards can suppress clearing the video RAM when switching to a
new video mode. If you want to to do this, bit 7 of the AL register must be set in
addition to video mode number when the function is called.

The codes listed above are also valid for the function OFH, which is used to
determine the current video mode.

Nothing much has changed in functions OlH to OEH. Slight changes have been
made to functions OIH and 03H, which defme and read the design of the cursor. We
will discuss these changes later. You can also get exact descriptions of these
functions from the appendices, where all of the functions of the EGA/VGA BIOS
are described.

Extended functions

After function OFH, which also appeared in the old ROM-BIOS, we have three
new EGA/VGA functions numbered lOH, IlH, and 12H. These new functions are
dedicated to a specific task and have a number of sub-functions.

256

Abacus 7.4 BIOS Screen Output Functions

Function 10H

Function lOR comprises all of the sub-functions for using the color capabilities of
the EGA/VGA cards. Before we describe these functions, we should first look at
the way in which the EGA and VGA cards create colors.

Unlike the MDA and eGA cards, the two nibbles of the attribute byte of a
character in text mode do not directly specify the color or attributes of the character
in the EGA. They comprise an index to one of the 16 palette registers of the EGA
card, which then contains the actual color. This makes it possible to set the desired
colors individually, and allows color changes simply by changing the contents of
the palette registers. The interpretation of the palette register contents, and the
number of displayable colors, depend on the type of monitor used. The EGA card
itself can generate 64 colors, but these can be displayed only on EGA or multisync
monitors, since these monitors have the six color lines required (26 = 64). There
are two lines available for each fundamental color (red, green, and blue), where the
two lines control the intensity level of the color. These six lines correspond
directly to the lower six bits of a palette register, as the following figure shows.

7 6 5 4 3 2 1 0 bit

Ix:xlrlglblRIGIBI

I ...
... Blue (Intense) Green (Intense) Red (Intense)

..• Blue (less Intense)

..... Green (less Intense) Red (less Intense)

EGA palette registers when connected to EGA or multisync monitor

This color scheme is not available when a normal color monitor is connected. It
has only four lines for the color representation, three of which are assigned the
fundamental colors red, green, and blue. The fourth line simply allows the
resulting color to be displayed at higher intensity. These limited possibilities affect
the structure of the palette register, which clearly differs from the six-bit structure
used when an EGA or multisync monitor is connected. A total of only 16 colors
can be displayed in this mode.

257

7. TheB/OS PC System ProgrDnlllling

Blue

Green

Red

Intensity

EGA palette registers when connected to a color monitor

The bits of a palette register take on a completely different meaning when the card
is connected to a monochrome monitor. In this case the monitor cannot display
different colors, and can only display bright, inverse, and underlined characters.
When connected to such a monitor, the meanings of the individual bits correspond
to those of the attribute byte of an MDA card, which we examined earlier in this
chapter.

DAC color table

The VGA card also uses the most significant and least significant nibbles of the
attribute byte as an index, pointing to one of 16 palette registers. Unlike the EGA
card, which only contains the color code, this byte contains a value between 0 and
255. This number acts as a reference to the DAC (digital analog converter) color
table. This table allows the VGA card to convert a digitally notated color code into
an analog video signal. The DAC color table sees each color code as three six-bit
values, with each value representing the degree of red, green and blue intensity in
the color.

As the following figure shows, the color code layout in some registers plays a role
which also involves the BIOS. Bit 7 of each value controls the grouping of the
different registers in the DAC color table, thus controlling the mode control
register of the video controller. If this bit contains a 0, the index in the DAC color
table bases its palette register on the contents of bits 0 to 5, and the color select
register on bits 2 and 3. The consequence is that the DAC color table is divided
into four groups of 64 consecutive registers. The value in the palette register
represents the index in this group, whereby the active group itself selects the color
based on the contents of bits 2 and 3 of the color select register.

When bit 7 of the mode control register contains a 1, the DAC color table divides
into 16 groups of 16 consecutive registers. The index of this table is based on bits
0-3 of the corresponding palette register, and bits 0-3 of the color select register.

258

Abacl4S 7.4 BIOS Screen OUlpIll FlUlCtions

These registers select the active color group from within the DAC color table, and
the contents of the palette registers represent the index of this group.

You can use this form of coding for creating fast and easy color changes when
characters on the screen must be changed rapidly. This involves storing different
groups in the DAC color table which specify brighter or darker colors, and quicldy
incrementing the active color grouping through the col<r select register.

7 6 7 6

I~o~I~~__~____~I:f:~~f
Mode-Control-Register

Color code layout ofthe VGA card

To perfectly emulate a eGA or an MDA card, the EGANGA BIOS sets the
individual palette registers (or in the case of the YGA card, the DAC color
registers) to the same color scheme used by a CGA or an MDA card when the
corresponding mode is initialized In the case of CGA emulation (EGA/VGA card
and a eGA monitor),this means that palette register 0 contains the value 0,
palette register 1 the value 1, etc. At the same time, the color select register of the
YGA card must be set to the frrst of 16 palettes whose color codes correspond to
those of a CGA card. This also applies to CGA modes 4 and 5 (320x200 pixels,
four colors), which work with one of two color palettes which can be selected via
function OBH, sub-function 1. The EGA BIOS simply loads the corresponding
colors into the lower three palette registers, depending on the palette selected.

There is normally no need to change the contents of the palette registers in this
case, since no new colors can be displayed on the screen. Individual colors can
easily be exchanged with each other.

Things are different when an EGA/VGA or multisync monitor is connected. The
EGANGA BIOS loads values 0 to 15 into the 16 color registers when the text

259

7. TheBIOS PC System Programming

mode is initialized, but this does not exhaust the color options of the EGA card.
To make full use of these options, sub-function OOH of function lOH can be used
to load one of the 16 palette registers. In addition to the function number in the
AH register and the sub-function number in AL, this function must also be passed
the number of the palette (0 to 15) in BH and the new color value for this palette
in the BL register. Since this function does not check the number of the register, it
can also be used to change the contents of a 17th palette register (screen border and
background color in the graphics mode), although it is better to use sub-function
01H of function lOH for this. Besides, it doesn't make much sense to set a
background color in the text modes, because the text display takes up almost the
entire screen with only two or three raster lines left over for the output of a border
color. The contents of this palette register are ignored when a monochrome
monitor is connected.

To call the function for accessing this palette register, the AH register must fIrSt
be loaded with the function number lOH and the AL register with the sub-function
number 01H. The BH register holds the border color, which is then loaded into
palette register 16 when the function is called.

Sub-function 02H of function lOH is used when you want to load all of the palette
registers at the same time, including the register for the border color. In addition to
the function and sub-function numbers in AH and AL, respectively, the address of
a table must be passed in the ES:DX register pair. This table contains the values
for the 17 palette registers. When this function is executed, the contents of this
table will be copied into the 17 palette registers and will cause all of the colors on
the screen to change at once.

The last sub-function of function lOH (for EGA only) defines the meaning of a bit
in the text modes. As with the CGA and MDA cards, this bit can also be used on
the EGA card to emphasize a character by either displaying it on a bright
background color or flashing it, if the bit is set. While the meaning of this bit can
be changed only by directly programming the video hardware with CGA or MDA
cards, the EGNVGA BIOS can perform the same task using sub-function 03H of
function 10H.

As with calling the other sub-functions, the function and sub-function numbers
must be passed in registers AH and AL. The meaning of bit seven of the attribute
byte is determined by the contents of the BL register. The value of zero in this
register sets the bright background color, while the value one causes all characters
on the screen, with bit seven of their attribute bytes set, to flash on and off.

The VGA card has additional functions available for accessing this table. These
functions are all sub-functions of function lOH, and are only accessible from the
VGAcard.

The contents of a single DAC color register can be modified using sub-function
lOH. Load the AL register with the sub-function number, the BX register with the

260

Abacus 7.4 BIOS Screen Output Functions

number of the corresponding register (0-255) and the CH, CL and DH registers
with the color code. Then call the function. To help correctly interpret the contents
of this register, the DAC color table must be coded as an IS-bit value (6 bits for
red, 6 bits for green and 6 bits for blue). The red components must be loaded into
the DH register, the green components into the CH register, and the blue
components into the DL register.

You must load the number of the register to be updated into the BX register. The
registers receive the number of the DAC register to be updated when you call sub
function ISH.

Any number of DAC color registers can be loaded at a time using sub-function
I2H. The number of the first DAC color register to be loaded is passed to the BX
register, and the number of DAC color registers to be loaded is passed to the CX
register. The new contents of the DAC color registers are loaded into a buffer (the
address of this buffer is contained in the ES:DX register pair). Each DAC color
register receives three consecutive bytes from this buffer. These three bytes specify
the green components, the red components and the blue components of the color
code.

Reading the DAC color· table

Sub-function I7H reads the contents of a group of DAC color registers. The
number of the frrst DAC color register to be read is passed to the BX register, and
the number of registers is passed to the CX register. The contents of this register
copies the VGA BIOS to a buffer, whose segment and offset address may be found
in the ES.DX register pair. The structure is identical to that of sub-function 12H.
Remember that the registers for each DAC color register consist of three bytes (not
one), and to allocate a buffer of appropriate size.

Organizing the DAC color table

Sub-function 13H allows the organization of the DAC color table and the active
color group, offering two of its own sub-functions. If the BL register contains the
value 0, then the sub-function copies bit 0 of the BH register into bit 7 of the
mode control register of the VGA controller. The organization of the DAC color
table can then be broken down into 4 or 16 groups. However, if the BL register
contains the value I when this sub-function is called, then the sub-function copies
the contents of the BH register into the color select register, then selects the active
color group.

The contents of both registers can be conveyed by calling sub-function lAH. After
calling this function, the content of bit 7 of the mode control register is passed to
the BL register, and the contents of the color select register is passed to the BH
register.

261

7. TheBIOS PC System Programming

Gray scales

Sub-function OBH converts the color codes within the OAC color table into gray
scales. Pass the number of the first register to be converted into the BX register,
and the number of registers to be converted to the CX register. The conversion
results in a color value between 0 (black) and 1 (white), based on a red intensity of
30%, a green intensity of 59% and a blue intensity of 11%.

Palette registers

The VGA BIOS still has more sub-functions in function 10H for reading the
palette registers. Sub-function 07H reads the contents of any palette register. When
the function is passed and the number of the palette register is passed to the BL
register, the number of the contents is returned in the BH register. This allows read
access to the contents of the overscan register (the color border on palette register
16), but this access requires the use of sub-function 08H. Like sub-function 07H,
the result is loaded into the BH register.

Sub-function 09H loads the contents of the entire palette table (i.e., all 16 palette
registers and the overscan registers) into a 17-byte buffer. The segment address of
this buffer is loaded into the ES register, and the offset address is loaded into the
OX register.

Another feature of the EGA and VGA cards are their ability to work with a number
of different fonts and font sizes. This feature allows the EGA/VGA cards to be used
with different monitors, in different resolutions. Since the screen resolution is
determined by the monitor hardware and cannot be changed, the video card must
adapt to the monitor's resolution. Exceptions to the rule are the more versatile and
expensive multisync monitors, which get their name from the ability to adapt
themselves to different synchronizations (resolutions).

Of the different monitors which can be used in connection with an EGA or a VGA
card, the color monitor, normally used in conjunction with a CGA card, has the
poorest resolution. It only has a resolution of 640 pixels (horizontal direction) by
200 pixels (vertical direction). If you want to display 25 lines of 80 columns each
on the screen, you will have to use a character matrix of 8 by 8 pixels so that all
of the characters fit on the screen.

Even though the monochrome monitor cannot display different colors, it does offer
a resolution of 720 by 350 pixels when used with an MDA or Hercules graphics
card. The individual characters are displayed with a matrix of 9 by 14 pixels.

EGA and multisync monitors also have a vertical resolution of 350 pixels, but can
only display 640 pixels horizontally. The resolution of individual characters is 8 x
14 pixels-only slightly less than that of the monochrome monitors. VGA cards
and multisync monitors usually support a minimum vertical resolution of 480
pixels, but some units even support 600 raster lines. VGA cards often permit
character matrices of 8x16 (text mode) and 9x16 pixels.

262

Abacus 7.4 BIOS Screen Output F/UlCtions

Character generators

In order to support the various resolutions, the EGA/VGA cards have their own
character generators which can display characters in any height between one and 32
raster lines. The number of text lines per screen depends on the height of the
displayed characters and the resolution of the monitor. To make the best use of this
feature, the EGA/VGA cards get the bit patterns of the characters from a section of
the video RAM instead of from ROM.

Function 11H

Normally the character generator is programmed automatically and the appropriate
character set is loaded when a video mode is initialized, but it is possible for a
program to control these features with function IIH. You might want to use this
to display more than the usual 25 text lines on a monochrome, EGA, or multisync
monitor. But even if you do want to use 25 lines, these functions offer the ability
to redefine individual characters of the character set or to install an entirely new
character set. This can be done with sub-function OOH. Like all of the sub
functions of function IIH, the value IIH must be passed in the AH register and
the sub-function number must be passed in the AL register. A number of other
parameters must also be passed in the other processor registers. The BH register
stores the height of the individual characters. Since this function is intended for
modifying individual characters of the current character set, you must load the
height of these characters here. As mentioned above, the height of characters on
monochrome, EGA, or multisync monitors is normally 14 lines (or with the VGA
card, 16 lines on a VGA or multisync monitor), while on color monitors it is 8
lines. The BL register stores the number of the character table in which the
character will be loaded. Theoretically a number 0 through 3 can be given here for
one of the four different character tables, but you should restrict yourself to
modifying character table 0, because it is the only table guaranteed to be accessible
by EGA cards with less than 256K RAM. This character table is also the one into
which the EGA BIOS loads the character definitions when the video mode is
initialized with function OOH. Since you may not want to redefine the entire
character set, the CX register holds the number of characters to be defined
(maximum of 256). The number of the first character to be defined is placed in the
DX register and may not exceed the value 255.

The character definitions themselves are stored in a buffer whose address is passed
in the ES:BP register pair. The bit patterns of the individual characters are placed
in this buffer such that the height of each character (BH register) also specifies the
number of bytes per character in the buffer.

The individual characters are stored sequentially, so the total size of the buffer is
the number of characters multiplied by the height of the characters. The eight bits
of each byte reflect the status of the individual pixels in each raster line. Ifa bit is
set, the pixel will appear at the corresponding position in the foreground color. If
the bit is cleared, the pixel will appear in the background color. Note that the

263

7. The BIOS PC System Programming

character matrix is actually eight pixels wide, even through the characters are
displayed with a width of nine pixels on a monochrome screen. In this case the
ninth bit is not taken from the character definition, the last bit on each line is
simply duplicated.

Bit
ES:BP

7 6 5 4 3 2 1 0 .. First character
Line 1 00111000b

2 OOl11000b

3 OOOlOOOOb

4 11111110b

5 OOOlOOOOb

6 OOlOlOOOb

7 OlOOOlOOb

8 .. OOOOOOOOb
Second character

Line 1

2

Buffer structure after calling function IIH. sub-junction OOH

As long as characters with the appropriate ASCII codes are displayed on the screen,
the changes will be noticeable immediately after this function is called.

While sub-function DOH can be used to load user-defined characters into the
character set, sub-functions OlH and 02H are used to load the two ROM character
sets contained on the EGANGA card. Sub-function OlH loads the entire 8x14
character set of the EGANGA card into one of the four character tables. Sub
function 02H loads the 8x8 CGA-compatible character set into one of the four
character tables. In addition to the function and sub-function numbers, both
functions are passed the number of the character table in which the character set is
to be loaded in the BL register. If the character table involved is the one currently
displayed on the screen, then the changes will be visible immediately after the
function is called. Although these two functions load the character sets, they do
not set the character generator to the height of the appropriate character set. For
example,if you load the 8x8 character set into the current character table while the
characters are being displayed in an 8x14 matrix, you will get a rather strange

. display. Raster lines one to eight will have the bit-map of the 8x8 character set
while lines nine to 14 will have the remainder of the 8x14 set.

Sub-function 04H (available to VGA only) serves a similar purpose to sub
functions OlH, 02H and 03H. The difference is that calling sub-function 04H loads
the 8x16 ROM character set into one of the four character tables.

264

AbaclLf 7.4 BIOS Screen OMlpIll Functions

If you want to work with several character sets in parallel, it is recommended that
you load the individual character sets into their own character tables and then
switch between the tables. Sub-function 03H is used to switch to a new character
table. In addition to the function and sub-function numbers, it must be passed the
number of the character table to be activated in the BL register.

Sub-functions lOH, llH, and 12H are almost identical to sub-functions OOH, om,
and 02H. They are also used for loading character sets, but they program the
character generator at the same time. This has the result that the characters are
displayed with the proper character height after the function is called. The number
of text lines on the screen changes automatically.

Function lOH is used to load and activate user-defined character sets and is called
exactly like function OOH. The number of text lines which are displayed after the
call to the function results from the vertical resolution of the monitor divided by
the height of the individual characters. If this division is not even and there is a
remainder, the remaining lines will be divided equally between the top and bottom
borders of the screen. Partial text lines are not displayed.

Sub-functions llH and 12H load and activate entire character sets. If the 8x14
character set is loaded with sub-function llH and a monochrome, EGA, or
multisync monitor is being used, 25 lines (EGA) or 28 lines (VGA) will be
displayed on the screen. If this is done while a color monitor is connected, which
has a vertical resolution of only 200 lines, only 14 lines will be displayed on the
screen.

These changes must also be taken into account when calling function 12H, which
loads and activates the 8x8 character set The usual 25 lines will be visible on a
color monitor, while on the other monitors the screen will consist of 43 text lines
(EGA) or SO text lines (VGA).

VGA BIOS has an additional sub-function. When sub-function 14H is called, it
loads and activates the 8x16 ROM character set. Only 25 lines of text will appear
on the screen.

Regardless of the number of text lines which result from calling one of these
functions, the EGA BIOS ensures that the traditional BIOS functions for screen
output (function numbers OOH to OFH) will still work properly. Even if the screen
contains 43 lines, you can call the functions for character output, scrolling the
screen, and access the lines outside of the usua125-line boundary. However, you
should avoid using multiple screen pages and just use page 0, or you may run into
problems withlhe BIOS versions of various manufacturers.

Cursor emulation

Certain EGA cards can have problems with the mechanism called cursor
emulation. This involves converting the starting and ending lines of the cursor
when the height of the character matrix is changed. For example, if the character

265

7. TheBIOS PC System Programming

height decreases from 14 to 8 lines, then the cursor will be invisible if it was in
the range of raster lines from 9 to 14. To prevent this, the BIOS converts the
starting and ending lines to the new matrix height. This mechanism must be
disabled at the beginning of a program. Unfortunately, no function for doing this
exists in the EGA BIOS; the only way to disable it is to clear a flag in one of the
BIOS variables (bit 0 in the byte at address 0040:0087). The programs at the end
of this section demonstrate this in practice. The VGA BIOS ~ possess such a
function, as we'll see shortly.

Function 12H

All of the functions described so far can only be used in conjunction with an EGA
card or a VGA card To detennine if an EGNVGA card is installed, the EGNVGA
BIOS offers function 12H, which is not available in the normal ROM-BIOS. It is
called with the function number in AH and the value IOH in the BL register. If
this value is still in the BL register after the call, you can assume that no
EGNVGA card is available and the normal ROM-BIOS was called, which does not
support this function. A different value shows that an EGA or a VGA card is
available. In this case the BH, BL, and CL registers contain configuration
infonnation about the installed EGNVGA card.

The value in BH specifies the video mode that will be activated after the system is
booted. Since another mode may have been enabled in the meantime, this
information is of little use. The value in the CL register, which tells you what
kind of monitor the card is driving, is much more useful. The following values are
returned for the individual monitor types:

OBH monochrome monitor
09H high-resolution (EGNVGA or multisync) monitor
08H color monitor

The contents of the BL register are also useful. They specify the amount of RAM
installed in the EGA card. The following codes can appear:

o 64K 1 128K
2 192K 3 256K

This distinction is important if you want to work with multiple character tables or
with the high-resolution graphics modes of the EGNVGA card. For example,
graphics mode number IOH, which offers a resolution of 64Ox350 pixels, can be
used only if the EGANGA card has at least 128K of RAM. The number of
character tables available also depends on the size of the RAM. This can be
detennined by the incrementing by 1 the number returned in the BL register.

266

Abacus 7.4 BIOS Screen Output FlUlCtions

Function 1AH

Function lAH, sub-function OOH informs the user of whether an EGA card or a
VGA card is installed. This function is only available to VGA cards. You must
pass the function number to the AH register and place the value OOH in the AL
register. This determines whether a VGA card is installed. If the value OOH
remains unchanged, there is no VGA card available. while a returned value of lAH
indicates a VGA card. The contents of the BL register indicate the active video
mode:

Code Meaning
OOH No video card
OlH MDA card / monochrome monitor
02H CGA card / color monitor
03H Reserved
04H EGA card / higp-res monitor
OSH EGA card / monochrome monitor
06H Reserved
07H VGA card / analog monochrome monitor
aSH VGA card / analog color monitor

Function 12H, sub-function 20H can be used to install an alternate hardcopy
routine. This can be used when the screen is displaying more or fewer than 25
lines. Since the normal hardcopy routine of the BIOS assumes that there are 25
lines on the screen, it always prints exactly 25 lines, which may omit some lines
from the hardcopy. The alternate hardcopy of the EGANGA BIOS always accounts
for the actual number of lines displayed on the screen, and is therefore preferable to
the normal hardcopy routine. It is installed by calling the BIOS video interrupt
lOR, whereby the value 12H is passed in the AH register and the value 20H must
be in the BL register.

The VGA BIOS includes six other sub-functions of function 12H, exclusively for
control of the VGA card. Sub-function 30H helps determine the number of raster
lines available (not text lines) when a VGA is operating with a VGA or multisync
monitor. In CGA mode this becomes only 200 lines instead of 400. The sub
function number must be loaded into the BL register. The VGA BIOS interprets
the number it finds in the AL register as the number of raster lines. A value of 0
in the AL register indicates 200, the value 1 indicates 350 and the value 2 indicates
400 raster lines.

Working in conjunction with color selection as mentioned above, so that EGA and
VGA cards can load their palettes or DAC registers, the color spectrum of a CGA
card can be emulated. Sub-function 31H enables or disables this emulation in the
VGA card after calling function OOH (video mode selection). Calling this sub
function signaled by the value 0 in the AL register activates green light, while a
value of 1 tells the VGA BIOS to avoid loading the corresponding register.

267

7. TheBIOS PC System Programming

Automatic gray scaling

Sub-function 33H specifies the status of automatic gray scale summing. This
summing instructs BIOS accesses to the DAC color table to automatically convert
color values into gray scales. The contents of the AL register indicate this status:
A value of 0 indicates conversion enabled, while a value of 1 indicates no
conversion.

Function 12H, sub-function 34H controls the suppression of cursor emulation. A
value of 0 in the AL register enables cursor emulation, while a value of 1
suppresses this emulation.

Function 13H

We will mention one last function of the EGA/VGA BIOS. It is not exactly new,
since it was already in the AT ROM-BIOS, but it was not in the PC or XT BIOS.
This is function 13H, which displays a string on the screen. There are four
different output modes available, which differ in how the string is passed to the
BIOS and whether or not the cursor will be placed at the end of the string when the
output is done. Also, the functions differ in whether all the characters in the string
will be given a constant color or provided with individual attributes. In the first
case, the buffer, the address of which is passed in the ES:BP register pair, need
only contain the ASCII codes of the characters to be printed. The color for all of
the characters is taken from the BL register. In the second case, the attribute byte
for each character follows its ASCII code in the buffer.

The contents of the AL register determine which mode will be used:

0= One color for all of the characters. The cursor position does not
change.

1 = One color for all of the characters. The cursor will be placed after the
last character of the string.

2 = The buffer contains the individual attributes. The cursor position does
not change.

3 = The buffer contains the individual attributes. The cursor will be
placed after the last character of the string.

The number of the screen page on which the string is to appear can be specified in
the BH register, but this should always be the current page. Otherwise problems
will arise with printing control characters (carriage return, linefeed, etc.). The CX
register holds the length of the string. This refers to the number of characters to be
printed (attributes must not be counted in modes 2 and 3). The output position is
passed to function 13H in registers DH (line) and DL (column). And, fmally, we
shouldn't forget the function number in the AH register.

268

Abacus 7.4 BIOS Screen Output Functifms

\

Demonstration programs

Mter so many register assignments, function numbers, and the like, it helps to be
able to see some example programs to put the information into perspective. Many
of the functions we discussed are found in the programs listed below. Not all of
them are called by the actual main program but are included to show you how it's
done.

The programs have two main tasks. First, they show you how to work with and
program the color palettes. Second, and even more important, these programs
show you what possibilities are offered by defining your own character sets. Here
this is used to display a small graphic in text mode. This could be used when you
want to display a personal or company logo on the screen, but the characters
needed are not found in the ASCII character set. In the e~ample program, this is
demonstrated by displaying the text "PC Internals Michael Tischer" on the screen
in large, fancy lettering while in text mode. This message was first drawn with a
graphics program and then converted to a kind of virtual raster. This corresponds in
density to the character matrix <f 8xlipixels in the text mode when an EGA
monitor is connected. With the he1p of this raster we discovered that four rows of
30 characters each, for a total of 120 characters, were required to display this
graphic in text mode. The next step was to convert the bit-map of this graphic so
that it could be loaded into one of the character tables with the help of sub-function
DOH of function llH. Each eight consecutive pixels were combined into a byte and
then 14 of these eight-bit units in a column were combined together. The results
are the initialized arrays in the program listing.

Once these data-are created, the most time-consuming part of the whole procedure
is done, since all we have to do is call the appropriate function in order to load the
characters into the character table so we are able to display them on the screen.
This proved to be something of a problem in C because none of the functions for
interrupt calls allowed a value to be assigned to the BP register, which is where the
offset address of the character buffer must be passed. We had to write a small
assembly language routine which just loads the parameters passed to it into the
required registers and then calls the BIOS video interrupt

Inside the example program the bit patterns for the graphic are loaded into the
character definitions for the ASCII codes 128 to 248 with the help of this function.
The new characters replace the foreign characters and the border characters, but the
standard ASCII characters like letters and numbers are retained. You can load the
bit patterns in other parts of the character set as well, if you wish.

One r~utine in the program which is not executed is called SetLine and allows the
number of text lines on the screen to be set (25 or 43). If you use this function to
put the screen in 43 line mode, you first make certain arrangements regarding
screen output. Both Pascal and C send their output to the screen using DOS
functions when printf or writeln is called. Turbo Pascal allows direct access to the
video RAM under certain conditions, but this doesn't change the problem. Here it

269

7. TheBIOS 	 PC Synem Programming

depends on whether or not an extended screen driver (ANSI.SYS) is installed. If
such a driver is not installed, the OOS will use BIOS function OEH of interrupt
16H, which also handles screen scrolling. Since this function is part of the EGA
BIOS, it will properly recognize that the screen consists of 43 lines and will not
scroll it until the 44th line is reached. Things are different with most ANSI.SYS
drivers, which perform scrolling themselves. Since many of them assume a 25-line
screen, they will scroll until the 26th line is reached and the remaining lines will
be wasted.

To avoid such problems, the two output routines in the example programs offer
the ability to output strings directly to the video RAM and avoid the DOS
functions.

Pascal listing: EGAP.PAS

{$V-} 	 { don't check length of strings}

{************************.***}
{* EGAP 	 *}
{*--*}
(* Description : demonstrates the use of the functions of the *)
{* EGAlVGA BIOS. *}
(*--*)
{* Author : MICHAEL TISCHER *}
(* developed on : 08/30/1988 *)
{* last update : 06/07/1989 *}

{********************************.*.***********************************}

program EGAVGAP;

Uses Dos, CRT; (bind in the DOS and CRT units
type BytePtr = Abyte; (pointer to a byte

VElb - record describes a screen position as 2 bytes

Character char; 	 (the ASCII code
Attribute byte; 	 (the attribute
end;

VRam = array [0 •• 4000) of VelB; { describes the video RAM
string8 = string[80]; output string for PrintAt

const 	VIDEO INT - $10; { BIOS video interrupt
LINE25 = 25; { 25 line screen
LINE43 = 43; (43 line screen
MCMO = 0; constants for GetMonTyp
COLOR - 1;
EGA = 2;

Font : array[l •• 120, 1•• 14] of byte - {

(0, 0,255, 62, 28, 28, 28, 28, 28, 28, 28, 28, 28, 31), E }
(0, 0,252, 7, 1, 1, 1, 1, 1, 1, 1, 1, 7,252) , A }
(0, 0, 0, 0,129,195,195,199,199,206,206,142, 14, 14), C }
(0, 0, 62,193,128,128, 0, 0, 0, 0, 0, 0, 0, 0), H I
(0, 0, 16,144,112, 48, 48, 16, 16, 0, 0, 0, 0, 0), }
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), L I
(0, 0, 3, 0, . 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), I I
(0, 0,254,248,112,112,112,112,112,112,112,112,112,112), N I
(0, 0, 0, 0, 0, 0, 0, 0, 0,252, 61, 30, 30, 28) , E }
(0, 0, 0, 0, 0, 0, 0, 0, 0,248, 6, 7, 3, 3), I
(0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0,128) , c }
(0, 0, 32, 96,224,224,224,224,224,254,224,224,224,224), 0 I
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 12, 28, 24), N I
(0, 0, 0, 0, 0, 0, 0, 0, 0,240, 28, 6, 7, 7), T }

(0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 15, 7, 7, 7), A I

270

Abacus 7.4 BIOS Screen OllJpwl FlUJCtions

0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 39, 71,135,128), I

0, 0, 0, 0, 0, 0, 0, 0, 0,126, 30, 15, 15, 14), 111
0, 0, 0, 0, 0, 0, 0, 0, 0,124,131, 3, 1, 1), S
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,129,131,195),
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62,193,128, 0), T
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,192,224,224), H
0, 0,248,120, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56) , E
0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 48, 48, 48, 48),
0, 0, 0, 0, 0, 0, 0, 0, 0,196, 52, 12, 4, 4), B
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , I
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), T
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), p

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), A
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , T

28, 28, 28, 28, 28, 28, 28, 28, 62,255, 0, 0, 0, 0), T
0, 0, 0, 0, 0, 0, 0, 0, 0,128, 0, 0, 0, 0), E

l4, 14, 14, 7, 7, 3, 3, 1, 0, 0, 0, 0, 0, 0), R
0, 0, 0, 0, 0, 0,128,128,193, 62, 0, 0, 0, 0) , N
0, 0, 0, 0, 16, 16, 32, 64,128, 0, 0, 0, 0, 0) ,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , 0
0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0), F

(112,112,112,112,112,112,112,112,248,254, 0, 0, 0, 0) ,
(28, 28, 28, 28, 28, 28, 28, 28, 62,255, 0, 0, 0, 0), A
(3, 3, 3, 3, 3, 3, 3, 3, 7,159, 0, 0, 0, 0),
(128,128,128,128,128,128,128,128,192,240, 0, 0, 0, 0), e
(224,224,224,224,224,224, 96,112, 49, 30, 0, 0, 0, 0), H
(56, 63, 56, 56, 56, 24, 92, 76,134, 1, 0, 0, 0, 0) , A
(7,255, 0, 0, 0, 0, 1, 2, 12,240, 0, 0, 0, 0), R
(7, 7, 7, 7, 7, 7, 7, 7, 15, 63, 0, 0, 0, 0) , A
(0, 0, 0, 0, 0, 0, 0, 0,128,224, 0, 0, 0, 0) , e
(14, 14, 14, 14, 14, 14, 14, 14, 31,127, 0, 0, 0, 0), T
(1, 1, 1, 1, 1, 1, 1, 1, 3,207, 0, 0, 0, 0), E
(192,192,192,193,193,195,195,193,225,248, 0, 0, 0, 0), R
(0, 7,120,192,192,128,128,192,195,124, 0, 0, 0, 0),
(224,224,224,224,224,224,224,240,112, 29, 0, 0, 0, 0), I
(56, 56, 56, 56, 56, 56, 56, 56,124,255, 0, 0, 0, 0), N
(31, 31, 31, 0, 0, 64, 96, 96,112, 71, 0, 0, 0, 0) ,
(0,224,248,252, 28, 12, 4, 12, 24,224, 0, 0, 0, 0), T
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), H
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , E
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), A
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), s
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , e
(0, 0,252, 60, 30, 30, 30, 23, 23, 23, 19, 19, 19, 17) , I
(0, 0, 0, 0, 0, 0, 0, 1, 1, 1,130,130,130,196), I
(0, 0,126,120,240,240,240,112,112,112,112,112,112,112),
(0, 0, 28, 28, 28, 0, 0, 0, 0,252, 60, 28, 28, 28) , e
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 12, 28, 24), H
(0, 0, 0, 0, 0, 0, 0, 0, 0,240, 12, 2, 7, 7), A
(0, 0, 63, 15, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7), R
(0, 0, 0, 0, 0, 0, 0, 0, 0, 62, 65,129,128, 0), A
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,128,192,192,224), e
(0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 64,224,224,224) , T
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,192, 96,112,112) , E
(0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 24, 48,112, 96), R
(0, 0, 0, 0, 0, 0, 0, 0, 0,192,112, 24, 2B, 28),
(0, 0,252, 60, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28), S
(0, 0, 0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0), E
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), T
(0, 0, 63, 56, 48, 48, 32, 32, 32, 0, 0, 0, 0, 0),
(0, 0,255,112,112,112,112,112,112,112,112,112,112,112), 0
(0, 0,225,225, 97, 32, 32, 32, 32, 15, 3, 1, 1, 1) , F
(0, 0,192,192,192, 0, 0, 0, 0,192,193,195,195,195),
(0, 0, 0, 0, 0, 0, 0, 0, 0,252, 3, 0, 0, 0), T
(0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 65,195, 71, 70), H
(0, 0, 0, 0, 0, 0, 0, 0, 0,124,131, 0, 1, 1) , E
(0, a, 15, 3, 1, 1, 1, 1, 1, 1, 1,129,193,193) ,
(0, 0,192,192,192,192,192,192,192,207,208,224,224,192), I

271

7. TheBIOS 	 PC System Programming

0, 0, 0, 0, 0, 0, 0, 0, 0,128, 96,112, 48, 56), (B)

0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 12, 24, 56, 48), (M)

0, 0, 0, 0, 0, 0, 0, 0, 0,224, 56, 12, 14, 14), (-)

0, 0, 0, 0, 0, 0, 0, 0, 0,126, 30, 14, 15, 15), { p }

Q, Q, 0, 0, 0, 0, 0, 0, Q, 60, 78,142, 14, 0) , (C)

17, 17, 16, 16, 16, 16, 16, 16, 48,254, 0, 0, 0, 0) ,
(196,196,232,232,232,112,112, 8O, 32, 35, 0, 0, 0, a),
(112,112,112,112,112,112,112,112,248,254, 0, 0, 0, 0) ,
(28, 28, 28, 28, 28, 28, 28, 28, 62,255, 0, 0, 0, 0),
(56, 56, 56, 56, 56, 24, 28, 12, 6,129, 0, 0, 0, 0) ,
(7, 0, 0, 0, 0, 0, 1, 2, 12,240, 0, 0, 0, 0) ,
(7, 7, 7, 7, 7, -:..7, 7, 7, 15, 63, 0, 0, 0, 0) ,
(0, 0, 0, 0, 0, 0, 0, 0,129,231, 0, 0, 0, 0) ,
(224,224,224,224,224,225,225,224,240,252, 0, 0, 0, 0) ,
(0, 3, 60,224,224,192,192,224,225, 62, 0, 0, 0, 0) ,
(112,240,112,112,112,112,112,120,184, 14, 0, 0, 0, 0) ,
(224,255,224,224,224, 96,112, 48, 24, 7, 0, 0, 0, 0) ,
(28,252, 0, 0, 0, 0, 4, 8, 48,192, 0, 0, 0, 0),
(28, 28, 28, 28, 28, 28, 28, 28, 62,255, 0, 0, 0, 0) ,
(a, 0, 0, 0, 0, 0, 0, 0, 0,128, 0, 0, 0, 0) ,
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,
(0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0) ,
(112,112,112,112,112,112,112,112,248,254, 0, 0, 0, 0) ,
(I, 1, 1, I, 1, I, I, I, 3, 15, 0, 0, 0, 0) ,
(193,193,192,192,192,194,195,195,227,250, 0, 0, 0, 0),
(240,254,255, IS, 1, 0, 0, 0,129,126, 0, 0, 0, 0) ,
(14, 14,142,206,206,198, 71,195,129, 0, 0, 0, 0, 0) ,
(I, 0, 0, 0, 0, 0, 0, 0,131,124, 0, 0, 0, 0) ,
(193, 1, 1, 1, 1, 1, 65,129, 3, 15, 0, 0, 0, 0) ,
(192,192,192,192,192,192,192,192,224,249, 0, 0, 0, 0) ,
(56, 56, 56, 56, 56, 56, 56, 56,124,255, 0, 0, 0, 0) ,
(112,127,112,112,112, 48, 56, 24, 12, 3, 0, 0, 0, 0) ,
(14,254, 0, 0, 0, Q, 2, 4, 24,224, 0, Q, 0, 0) ,
(14, 14, 14, 14, 14, 14, 14, 14, 31,127, 0, 0, 0, 0) ,
(0, 0, 0, 0, 0, 0, 0, 0, 0,192, 0, 0, 0, 0» ;

var 	 VLine{VLine) , stores the current cursor position
VColumn{VColurnn),
NumLin,e (NumLine) : byte; (number of screen lines
Mono -; : boolean; TRUE, if monochrome monitor

{*** ••••• _--*-.-.-..-_.--*----_.._....__ .*-.-----.-._-***-_..*---..__ ._}.)(* CErnul: Switches the cursor emulation of the EGA card on or off.
(. Input - DOlT ~ TRUE : Cursor emulation on. *)
(* ",1 FALSE: Cursor emulation off. *)
(. Output the current cursor column *)
{~**************************************.************* ***_._.--_. __ ._._}
procedure CErnul{ Dolt: boolean);

var ViolnfoByte : byte absolute $0040:$0087; (BIOS info byte)

begin
if DoIt then turn emulation on?

ViolnfoByte :E ViolnfoByte or 1 { yes, set bit 0
else \ { NO

ViolnfoByte .= ViolnfoByte and 254 mask out bit 0
end;

{***--.*-_•• ----_._--_._--_.*._._._--._.-.-._---------***.-_._.----*..-}
(* GetCS: Returns the current output column. *)
(* Input : none *)
{* Output : the current cursor column *}
{***_._._--*._._--_._---.._._-------------------------***-.---*----_._.}
function GetCS : byte;

begin
GetCS .= VColumn; { get column from global variable }

end;

272

Abacus 	 7.4 BIOS Screen Output Functions

{*••• ****.*••••*.****************.************•••••****.**********••••*}
{* GetCZ: Return the current output line. *}
{* Input : none *}
{* Output : the current output line *}
t*·*****···***···*******···*****···*******···*************.* •••****.***}

function GetCZ : byte;

begin
GetCZ •• VLine; { get line from global variable }

end;

t**···**······**************************·*·*·*····********••••••••*****}
{* CharDef: Defines the bit pattern of an individual character. *}'* Input ASCII - ASCII code of the first char to be defined *}
{* - TABLE number of the character table (0 bis 3) *}
{* - MATRIX number of lines in the character matrix *}
{* - NUMBER - number of characters to be defined *}
{* - BUFPTR - pointer to the buffer with the character *}
{* Output none *}
{*•••** ••• ***** •••••••• ** •• **•••**.** •••••••*** ••••••• ******•••********}

procedure CharDef{ 	Ascii, Table, Matrix, Number: byte;
BufPtr BytePtr};

var Regs Registers; { processor registers for interrupt call }

begin
Regs.ax :- $1100; { ftn. no.: character generator, subftn. 0
Regs.bh :- Matrix; { line height of the matrix
Regs.bl .- Table; { number of the character table
Regs.cx Number; number of the character to be defined
Regs.dx Ascii; { first character to be defined
Regs.bp :- Ofs(BufPtrA }; { offset address of the buffer
Regs.es := Seg{ BufPtr A); {segment address of the buffer
intr(VIDEO_INT, Regs); { call BIOS video interrupt

end;

{************************************.***********.********.*** •••******}
{* GetMonTyp: Determines the type of monitor attached. *}
{* Input none *}
{* Output : the monitor type: MOMO monochrome monitor *}
{ COLOR color monitor *}
{* EGA - EGA or Multisync monitor *}
{********•••************************* ••******** ••**********************}

function GetMonTyp 	 : byte;

var Regs : Registers; { processor registers for interrupt call }

begin
Regs.ah :~ $12; ftn. no.: get configuration
Regs.bl :- $10; { subfunction number
intr(VIDEO_INT, Regs); { call BIOS video interrupt
case Regs.cl of CL contains the monitor type}

$OB GetMonTyp :~ MOMO; (monochrome monitor)

$08 GetMonTyp COLOR; color monitor}

$09 GetMonTyp := EGA; { EGA monitor }

end;
end;

{**************************.***}
{* SetCur : Sets the blinking cursor and the internal output position *}
{* Input - COLUMN output column (0 79) *}
{* - LINE = output line (1 •• n) *)
{* Output none * }
{**}

procedure SetCur(Column, Line: byte);

273

7. TheBIOS PC System Programming

var Regs Registers; { processor registers for interrupt call)

begin
Regs.ah .= $2; { ftn. no.: set cursor position
Regs.bh .= 0; { screen page 0
Regs.dh .= Line; { set coordinate
Regs.dl Column;
intr(VIDEO INT, Regs); { call BIOS video interrupt
VLine := Line; { save coordinates in internal variables
VColumn := Column;

end;

{*••**************************************.*********.******************}
{* SetCol : Defines the contents of one of the 16 color registers in *j
{* the EGA card. * j
{* Input - REGNR - number of the color register *j
{* - COLOR = color value (0 to 63) *j
{* Output none *'
{**.*****************}

procedure SetCol (regnr, color byte' ;

var Regs : Registers; processor registers for interrupt call ,

begin
Regs.ah .= $10; ftn. no.: set colors/attributes
Regs .al := 0; { subfunction 0
Regs.bl regnr; { set number of the register
Regs.bh :- color and 63; { set color value (mask out bits 6 and 7) ,
intr(VIDEO_INT, Regs); { call BIOS video interrupt ,

end;

{***--**--**._.-.--.-}

{* SetBorder : Defines the border color. *'
{* Input : - COLOR = color value (0 to 63) *'
{* Output : none *'
{********************.********************** •• ********.****************}

procedure SetBorder(color byte) ;

var Regs : Registers; { processor registers for interrupt call ,

begin
Regs.ah .= $10; { ftn. no.: set colors attributes
Regs.al := 1; { subfunction 0
Regs.bh := color and 63; { set color value (mask out bits 6 and 7)
intr(VIDEO_INT, Regs); { call BIOS video interrupt

end;

{************** •• *************************************.****************)

{* SetLines Sets the number of lines. *'
{* Input Sub-function of function 11H: *'
{* $11 8x4 character set *'
{* $12 : 8x8 character set *'
{* $14 : 8x16 character set *'
{* Output none *'
{*** •••**************}

procedure SetLines(Lines byte) ;

var Regs : Registers; { processor registers for interrupt call ,

begin
Regs.ah := $U; ftn. no.: character generator
Regs.al :- Lines; { sub-function of fnc. Ilh
Regs.bl := o· { use character table 0
intr(VIDEO_INT, Regs); { call BIOS video interrupt

end;

274

Abacus 	 7.4 BIOS Screen Output F/UlCtions

{*** ••• ********* ••••• **•••** •••••••••••••••••****••••••*.*.****.*.*••••)

{* IsEga: Determines if an EGA card is installed and handles the *.
{* initialization of the global variables. *.
{* Input : none *.
{* Output : TRUE, if an EGA card is installed, else FALSE. *.
{*•••••••••••••••• **•••** •••••••****.** •••• **••••••••••*.******* •••*.*.}

function IsEga : boolean;

var 	Regs : Registers; (processor registers for interrupt call •

begin
Regs.ah :- $12; (ftn. no.: get video configuration
Regs.bl :- $10; (subfunction number
intr(VIDEO INT, Regs); call BIOS video interrupt
if Regs.bl-<> $10 then is it an EGA or VGA card?

begin 	 { yes
(*- create pointer to VRAM depending on the monitor connected -*'
Mono :- Regs.bh - 1; (connected to monochrome monitor? ,
IsEga :- TRUE; { an EGA card was discovered ,

end
else

IsEga •• FALSE; (no EGA card discovered ,
end;

{••• **•••••••• ** ••••** ••••••••••••••••••••••••••••••** •• **•••••••••** ••)
{* IsVga: Determines whether a VGA card is installed, and initializes *'
{* the global variables. *.
{* Input none *'
{* Output TRUE if a VGA card is installed, otherwise FALSE. *'
(* Info Use this function BEFORE calling the ISEGA in your own *'
(* application, since the TRUE for some EGAs also applies *'
(* to this routine as well. *'
f···_···*******•••***•••*)

function IsVga : boolean;

var Regs : Registers; { processor register for the interrupt call ,

begin
Regs.ah := $IA; (function no.: Determine video system
Regs.al :- $00;
intr(VIDEO INT, Regs); (Call BIOS video interrupt
if (Regs.al - $IA) and « Regs.bl = 7) or (Regs.bl - 8 » then

begin (VGA card installed and active
Mono :- FALSE;
IsVga := TRUE; { definitely a VGA card on board

end
else

IsVga FALSE; (no VGA card connected ,
end;

f*···-···-***.******..*****}
(* PrintAt: Outputs a string at the give screen position with a *'
{* certain attribute. *.
(* Input - COLUMN - output column (0 •• 79) *'
{* - LINE - output line (0 •. NUMLINE-l *'
(* - COLOR = attribute for the characters to be printed *'
(* - OUSTR = the string to be printed *'
(* Output : none *.
f*············_······_···························**********************}
procedure PrintAt(Column, Line, Color:
byte; OutStr string8);

var 	ColorRAM VRam absolute $B800:0000; (describes physical VRAM
MonoRAM VRam absolute $8000:0000; (describes physical VRAM
Index word; index into the VRAM array
Stren, length of the string to be printed
i byte; (running pointer to the string

275

7. TheB/OS PC System Programming

begin
Stren :- length(OUtStr); get length of the string
Index :- Line * 80 + Column; { set index in the array

if Mono then
begin { yes

for i:~1 to Stren do { run through the string
begin

MonoRAM[Index] .Character '= OutStr[i]; { set character
MonoRAM[Index].Attribute : Color; { set color
inc (Index); { increment the index

end;
end

else output to the color screen
begin

for i:=1 to Stren do { run through the string
begin

ColorRAM[Index] .Character :- OUtStr[i];{ set character
ColorRAM[Index].Attribute :- Color; { set color
inc(Index); { increment the index

end;

end;

{*-- calculate new cursor position ---------------------------------*1
SetCur«VColumn + VLine * 80 + Stren) mod 80,

(VColumn + VLine * 80 + Stren) div 80);
end;

{**** ••************************************.**********-----_ ••••_---_._}
(* Blinking: Defines the meaning of bit 7 in the attribute of a *1
{* character in the text modes. *1
{* Input - DoBlink = TRUE: blinking *1
(* FALSE: intense background color *1
(* Output none * 1
{------------------------_._._---_._._-_._.------------------_._.--*---}
procedure Blinking(DoBlink boolean I;

var Regs : Registers; (processor registers for interrupt call)

begin
Regs.ah :~ $10; { ftn. no.: set colors/attributes
Regs.al := $3; { subfunction number
if DoBlink then (blinking?

Regs.bl '. 1 yes, BL = 1 : blinking
else { no

Regs.bl :~ 0; { yes, BL 0: intense background color
intr(VIDEO_INT, Regs); (call BIOS video interrupt

end;

{--** ••••_-*-_._. __ ._.----_.__ .__ ._----_._. __ .-.------.-*_..__ ._._-_._.}
(* CIs: Clears the screen, causing the video mode to be reset. *)
(* The palette registers will also be filled with the default *)
(* values and the character set will be reset. *)
{* Input : none * 1
{* Output : none * 1(._._._...-__._.__ ._._-------_...._----------....-._-----_._._-----)
procedure CIs;

var Regs : Registers; { processor registers for interrupt call 1

begin
Regs.ah :- $0; { ftn. no.: set video mode
if Mono then connected to monochrome monitor

Regs.al := 7 { yes, 80x25 text display
else (no, color monitor

Regs.al -= 3; { yes, 80x25 character text display
intr(VIDEO_INT, Regs); { call BIOS video interrupt

end;

276

Abacus 	 7.4 BIOS Screen Output Functions

{.*••• * ••••**•••••*.*•••~ ••••** •••*.*.*.* •••••• *•••••• ••**•••••••• *•••• }
{* EgaVga : Demonstrates how to use the functions of the EGA/VGA BIOS."}
{* Input : TRUE if VGA card installed, otherwise FALSE *}
{* Output : none *}
{*****•••**•••••••• * ••••*.*•••• J

procedure EqaVga (VGA : boolean);

var 	i, j, k word: { loop counter
OutStr string8; logo output string
Regs Registers; { processor register for the interrupt call

begin >

(*-- Add EGA/VGA hardcopy routine *)
Regs.ah := S12; { alternate select function
Regs.bl :- S20; (sub-function: install rtne
intr(VIDEO_INT,RegS); { call interrupt
{*-- prepare screen layout ---*)
SetCur(O,O);
CIs; (clear the screen
Blinking(FALSE); { light background instead of blinking

if (VGA) then Check compatibility in case characters must be
begin redefined, and the characters must be changed

Reqs.ah '= S12; into 350-line mode (changed back into EGA
Regs.bl := S30; mode) •
Regs.al '. 1;
intr (VIDEO_INT, Regs); { call BIOS video interrupt

SetLines (S11); 	 activate 8x14 character set
end:

CharDef(128, 0, 14, 120, BytePtr(@font»; (define character

for i:-l to 250 do (run through the loop 500 times
begin (write color bars to the video RAM

PrintAt(Getcs, GetCZ, «i mod 14) + 1) shl 4,' ');
if i <> 250 then { last color bar?

PrintAt(GetCs, GetCZ, 0, ' .) ; 	 (no
end:

for i:-l0 to 15 do 	 (make room for logo
PrinTat(22, i, 0, ' ') ;

k :- 128; first character in logo
for i:-O to 3 do the logo consists of 4 lines

begin
OutStr :- "; empty the string
for j:=1 to 30 do (each line consists of 30 characters

begin
OutStr '. OutStr + chr(k); (append the char to the string
inc (k); increment K

end;
PrintAt(24, i+ll, 15, OUtStr); output the string

end;
PrintAt(l, 1, 15, ' The most important characters are I) ;

PrintAt(l, 2, 15, still present in spite of the logo! ');

Printat (1, 3, 15, ' ') ;

Printat(l, 4, 15, ' !"'S%," ()*+-./0123456789:;<->?@ ');

Printat(l, 5, 15, 'ABCDEFGHIJKLHNOPQRSTUVXXYZ[\I~ ');

Printat(l, 6, 15, ' 'abcdefghijklmnopqrstuvxyz(I}-- ');

Printat(33, 21, 15, ' ') i

Printat (33, 22, 15, • press any key to end the program. .) ;

Printat(33, 23, 15, • .) ;

SetCur(34, 22);

(*-- change the colors in the color bars --------------------------"}

i :- 0; { start value for the color registers }

while (not KeyPressed) do { repeat until key is pressed }

begin
inc(i); (increment the color value for the first register

for j:-l to 14 do { run through registers 1 to 14

277

7. TheBIOS PC System Programming

SetCol(j, i+j and 63); { write color value in the register)
end;

if { VGA) then { Switch VGA card back into 400-line mode I
begin

Regs.ah • - $12;
Regs.bl :- $30;
Regs.al .- 2;
intr(VIDEO_INT, Regs); { call BIOS video interrupt

SetLines ($14); activate 8x16 character set
end;

CIs; { clear screen I
end;

t··········**·····***····**····················**····· ...••.•••. **•••• *}
{.. MAIN PROGRAM ** }
{•••••••••••***•••• ***** ••••••••••••••••••••*** •••••••••••••••••** ••••*}

begin
if IsVga then { VGA card installed?

EgaVga(true { YES, run demo
else

begin
if IsEga then { EGA card installed?

begin (YES
if (GetMonTyp = EGA I then EGA monitor attached?

EgaVga (false) (YES, run demo
else { NO, wrong monitor

begin
writeln('This program only works with an EGA ');
writeln('card or VGA card, and a monitor ');
writeln('supported by one of these cards. ');

end;
end

else
writeln('No EGA or VGA card installed••. ·+

• Program aborted.');
end;

end.

C listing: EGAVGAC.C

/ ••••••••••••••••• ** •••••••••• **** ••••••••••••••••• ****** •••*.* •••*****/

'* EGA V G A C *1
'*--*1'* Task : Demonstration using the functions available *' '* in the EGA-,VGA-BIOS *'
'*--*''* Author MICHAEL TISCHER *' '* Developed on : 08'30/1988 *''* Last update : 05'02/1989 *'
'*--*'
'* (MICROSOFT C) * ,
1* Creation CL lAS Ic EGAVGAC.C *1
'* LINK EGAVGAC EGAVGACA; *I
1* Call EGAC * I
1*--*1
1* (BORLAND TURBO C) *f
1* Creation Make a project file containing the following: *f
1* EGAVGAC *I
1* EGAVGACA.OBJ *f
1* Before compiling, select the Options menu *f
1* and the Compiler option - make sure that the *f
f* Small model is active *1'*
1*
1*

Select the Linker option - make sure that the
Case-sensitive link is set to Off
The program will compile with one warning...

*f
*1
*f

278

Abacus 	 7.4 BIOS Screen Ordput Functions

1* 	 this is okay, it will run correctly *1
/ ••••****.**********•••**************.***.******.**********.***********/

I*~= Add include files ===-====--=====~====----=====-===~==~====------*I

'include <dos.h>
'include <stdlib.h>
'include <string.h>
'include <stdarg.h>
'include <bios.h>

1*=- Typedefs ------======~~--~~~====--===-~~=--====-=-------=========*1

typedef unsigned char BYTE; 1* Create a byte *1
typedef unsigned int WORD;
typedef BYTE BOOL; 1* like BOOLEAN in Pascal *1
typedef struct velb far * VP; 1* VP = FAR pointer to the video RAM *1

1*=- Function definition from the assembler module ==--===---=~~~=~~~~*I

extern void chardef(BYTE ascii, BYTE table, BYTE lines,
BYTE amount, BYTE far * buf);

I*=~ Structures =~~==~~=-===---===~=~~~~=~~-=----=============-=----==*/

struct velb { 1* Describes a two-byte position on the screen *1
BYTE ascii code, 1* ASCII code *1

attribute; /* Corresponding attribute */
);

/*== Macros =========================-__==_============-==============*/

/*-- MK FP creates a FAR pointer to an object out of a ---------------*/
/*-- segment address and an offset address ---------------------------*/
'ifndef MK_FP /* MK FP not defined yet? *1
'define MK_FP (seg, ofs) «void far *) {(unsigned long) {seg) «161 (ofs»)
.endif

'define VOFS(x,y) { 80 * (Y) + (x » /* Offsetpos. in video RAM *1
'define VPOS(x,y) {VP) (vptr + VOFS(x, y » 1* Pointer in VRAM *1
'define GETCZ () (vline) 1* Returns the current cursor line *1
'define GETCS () (vcolumn) /* Returns the current cursor column */

/*== Constants ============================-===============~==-=====-**/

'define TRUE 1 1 /* Constants for working with BOOL *1
'define FALSE 1 a

'define VIDEO INT Ox10 	 1* BIOS video interrupt */

'define MONO 0 1* Monitor types for GETMON *1
'define COLOR 1
'define EGA 2

'define PAUSE 100

1*== Global variables ==~~===~~~~====--=========~~====================*/

VP vptr; 1* Pointer to the first character in video RAM *1
BYTE vline, 1* States the current cursor position *1

vcolumni
BOOL mono; 1* TRUE if a monochrome monitor is connected *1

/** ••****.***** ••*****.*****
Function : C EMU L 	 *

--
Task Enables/disables cursor emulation on the

EGA card.

Input parameters - DOlT - TRUE : Emulation on

279

7. TheBIOS PC System Programming

FALSE: Emulation off *
* Return values : None
************************.*.********.******************.****************/

void cemul(800L doit)

1*-- Definition of video info byte at offset address OxS? within ----*1
1*-- the BIOS variable segment --------------------------------------*1

'define VIO_INFO_BYTE «BYTE far *) MK_FP(Ox40, OxS?»

if (doit) 1* Cursor emulation enabled? *1
VIO_INFO_BYTE 1- 1; 1 YES, set bit 0 *1

else 1* NO, *1
VIO_INFO_BYTE &= 254; 1 clear bit 0 *1

/***
Function : GET M ° N *

.*--**
Task Determines the type of monitor connected.
Input parameters None*
Return values Monitor type

MONO - monochrome monitor

*

* COLOR- Color monitor
* EGA - EGA or multisync monitor
****************.**********.****••••*****.*.**********.****************/

BYTE getmon ()
(

union REGS regs; 1* Processor register for interrupt call *1

regs.h.ah = Ox12; 1* Function number: Determine configuration *1
regs.h.bl = Ox10; 1* Sub-function number *1
intB6(VIDEOINT, ®s, ®s); 1* Call BIOS video interrupt *1
if (regs.h~cl == OxOB) 1* Monochrome monitor? *1
return (MONO); 1* YES *1

if (regs.h.cl OxOB 1* color monitor? *1
return(COLOR); 1* YES *1

else 1* NO, must be EGA *1
return (EGA);

/******************************** ••*** ••***********•••******************
* Function : SET CUR *
**---~----------.*

Task Sets the screen cursor and the internal
* position of the output.

Input parameters - COLUMN the cursor column
- LINE ~ the cursor line *

Return values None *

********************************.*****•••***************---.-._--_•• -._/

*

void setcur(BYTE column, BYTE line)
(
union REGS regs; 1* Processor register for interrupt call *1

regs.h.ah 2; 1* Function number *1
regs.h.bh - 0; 1* Use video page zero *1
regs.h.dh = vline = line; /* Use global variables for coordinates *1
regs.h.dl - vcolumn = column;

int86 (VIDEO_INT, ®s, ®s) ; 1* Call BIOS video interrupt *1

)

1*--··--------·_·--··_··_·_·_*----_·_·_--*·_·_··------ *****************.
Function :SETCOL

--
Task Defines the contents of one of the 16 EGA *

* color registers.

280

http:regs.h.dl
http:regs.h.dh
http:regs.h.bh
http:regs.h.ah
http:regs.h.cl
http:regs.h.bl
http:regs.h.ah

Abacus 7.4 BIOS Screen Output Functions

Input parameters - REGNR Color register number
- COLOR Color value (0-15)

Return values None *
.****/

void setcol(BYTE regnr, BYTE color)

union REGS regs; /* Processor register for the interrupt call */

regs.h.ah Ox10; /* Function no.: Set color/attribute */
regs.h.al 0; /* Sub-function 0 */
regs.h.bl regnr; /* Set register number */
regs.h.bh - color & 63; /* Set color number (Bits 6 and 7) */
int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */

)

/***
Function : SET B 0 R D E R

--
Task Sets the border color.
Input parameters: - COLOR = Color value (0-15)
Return values : None

***1

void setborder(BYTE color)

union REGS regs; /* Processor register for the interrupt call */

regs.h.ah Ox10; /* Function no.: Set color/attribute */
regs.h.al 1; /* Sub-function 1 */
regs.h.bh color & 15; /* Set color value */
int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */

)

/************************.**
Function : SET LIN E S

--
Task Determines the number of lines.
Input parameters: - Sub-function no. for calling function 11H

Ox11 8*14 character set
Ox12 8*8 character set
Ox14 8*16 character set (VGA only)

Return values None
.*********•••********•• /

void setlines(BYTE lines)

union REGS regs; /* Processor register for the interrupt call */

regs.h.ah Ox11; /* Function no.: Character generator */
regs.h.al lines; /* Sub-function no. */
regs.h.bl 0; /* Use character table 0 */
int86(VIDEO INT, ®s, ®s); /* Call BIOS video interrupt */

)

/*****.*****.* ••*.******.*.*****************.********* ••••• *********.***
Function : I S EGA

**---_.*
Task Determines whether an EGA card is installed.
Input parameters: None
Return values TRUE when an EGA or VGA card is installed, and

false in any other case
****** •• ***.*.**********••• /

BOOL is ega ()
{
union REGS regs; /* Processor register for the interrupt call */

281

http:regs.h.bl
http:regs.h.al
http:regs.h.ah
http:regs.h.bh
http:regs.h.al
http:regs.h.ah
http:regs.h.bh
http:regs.h.bl
http:regs.h.al
http:regs.h.ah

7. TheBIOS PC System Programming

regs.h.ah ~ ox12; j* Function number: Determine video configuration *j
regs.h.bl - OxlO; j* Sub-function number *j
intB6(VIDEO INT, ®s, ®s); j* Call BIOS video interrupt *j
if (regs.h:bl !- OxlO) j* Is it an EGA or VGA card? *j

j*-- Set pointer in video RAM for attached monitor ----------------*j
vptr - (VP) MK FP((mono = regs.h.bh) ? OxbOOO : OxbBOO, 0);

return (regs.h.bl !- OxlO); j* BL !- OxlO --> EGA or VGA *j

I

1·-*·······-_·····---_·_·-······_··-··_·········_····--..-............. .

Function : I S V G A *

•• _-----------------------=---**
Task Determines whether a VGA card is installed.

Input parameters: None

Return values TRUE when a VGA card is installed;

FALSE in any other case.
Info This function should be called before the

is ega function, because the parameters in the *
is-ega function also apply to VGA cards (i.e.,
TRUE will be returned to is ega for a VGA card.
Call is vga first in your own applications,
then call is ega •.-...-._.._.-_._-_.-._.-._._......•-_._-_._...._----.-._......---_...-./

BOOL is vga ()
{
union REGS regs; j* Processor register for the interrupt call *j

regs.h.ah ~ OxlA; j* Function no.: Determine video configuration *j
regs.h.al = OxOO; j* Sub-function number *j
int86 (VIDEO INT, ®s, ®s); j* Call BIOS video interrupt *j
if (regs.h~al -~ OxlA && (regs.h.bl~~7 I I regs.h.bl~=B))

{ j* VGA card connected to VGA monitor? *j
mono = FALSE;
vptr ~ (VP) MK_FP(OxbBOO, 0); j* Set pointer in video RAM *j
return TRUE;

I
return FALSE; j* No VGA card installed *j

)

j_•• _-----.---._._.-.-----•••• _-----_._._•••• _._••• _-- - •••• _-_. __ ._. __ .

* Function : P R I N TAT
--

Task Displays a string on the screen.

* Input parameters: - COLUMN ~ Display column.
* - LINE ~ Display line.

- CHCOLOR Character attribute. *
- STRING ~ Pointer to string. *

Return values None
Information - This function dces not recognize format specs *

as supplied by PRINTF.
- When the function reaches the end of the *

screen, the screen will not scroll up•
• _----.-.- •• _•• _••• _.-_••••• *••••••• *•••*•••••••••••••••**** •••****.**./

void printat(BYTE column, BYTE line, BYTE chcolor, char * string)

register VP lptr; /* Floating pointer to video RAM *j
register BYTE i; j* points to the number of characters *j
unsigned newofs; j* Computes new coordinates *j

lptr = VPOS(column, line); j* Set pointer in video RAM *j
for (i=O ; *string ++lptr, ++1) j* execute string *j

{

lptr->ascii code * (string++); j* Character in video RAM *j
lptr->attribute ~ chcolor; j* Set character attribute *j

)

282

http:regs.h.al
http:regs.h.ah
http:regs.h.bl
http:regs.h.bh
http:regs.h.bl
http:regs.h.ah

Abacus 	 7.4 BIOS Screen Output Functions

/*-- compute new cursor coordinates --------------------------------*/

vcolumn - (newofs - ((unsigned) line * 80 + column + i» , 80;
vline - newofs / 80;

)

1-·*-··_·_····_···········_--_··················_···_· .*_.****_._.••._-
Function : P R I N T FAT 	 *

--
* 	 Task Displays a string on the screen (like PRINTF),

writing the string directly to video RAM.
Input parameters: - COLUMN = Display column. *

- LINE - Display line. *
- CHCOLOR- Character color. *

*
- STRING = Pointer to the string.

= Additional arguments as needed.
Return values None *
Information - When the end of the screen is reached, the *

screen will not scroll up. *
string can use the normal format specifier

group as used with PRINTF.***._--_•••_-_._._••-••__ •••_••••_._._••_._-----------**..._.._._--/

void printfat (BYTE column, BYTE line, BYTE chcolor, char * string, ••.)

va list parameter; 1* Take parameter list for VA .•• Macros from */
char output[255]; /* the formatted, displayed string */

va start(parameter, string);/* Get parameters in PARAMETER variable */
vsprintf(output, string, parameter); 1* Convert string *1
printat(column, line, chcolor, output); 1* Display string */

)

1--*-······-· __ ·_··_·-·_·· __··· __···--------_·······_- -***-------_._ ..-.
Function : B LIN KIN G 	 *

**--*.
Task Defines the meaning of bit 1 of the attribute *

byte of a character in text mode.
Input parameters: DOBLINK = TRUE Blink.

FALSE: Light background color. *
Return values : none

-***.- •••• _----.-.--_._---_._••_---_ •••• ------------**************•• * •• /

void blinking (BOOL doblink
(

union REGS regs; /* Processor register for the interrupt call */

regs.h.ah OxlO; /* Function no.: Set color/attribute */
regs. h. al Ox3; /* Sub-function number */
regs.h.bl = doblink ? 1 : 0; /* BL = 1 : blinking */
int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt *1

)

/ ••••••••••••••••••••••••••••* ••••••••• * •••••••••••••••••••••••*.* ••••••

Function : C L S 	 * .._--_..
* 	 Task Clears the screen and resets the video mode.

This reset includes the palette registers, as
well as the character set in use. *

Input parameters: none
Return values none *

.***.* •••••• **•••••••••••••••••••••••••••••••••••••• * •••••••••••••••••• /

void cIs II
{
union REGS regs; /* Processor register for the interrupt call */

regs.h.ah - OxO; /* Function no.: Set video mode */
regs.h.al - (mono 1 3; /* 80x25-char text mode */

283

http:regs.h.al
http:regs.h.ah
http:regs.h.bl
http:regs.h.ah

7. TheBlOS 	 PC System Programming

int86 (VIDEO_INT, ®s, ®s); 1* Call BIOS video interrupt *1
}

/***
Function : N a KEY

.*--**
Task Tests for a depressed key. *

* Input parameters: none *
Return values TRUE if a key is depressed, otherwise

FALSE.*
.*.*****.****.***********/

BOOL nokey ()

(
tUdef TURBOC 1* Using TURBO C to compile? *1
returnC-bioskey(1) -= °); 1* YES, read keyboard from BIOS *1

telse 1* Using Microsoft C to compile .•• *1
return(_bios_keybrd(_KEYBRD_READY) -- °); 1* Read from BIOS *1

fendif
}

/**********************************.*.************* ••••••*.*************
* Function : EGA V G A 	 *
.*--**
* Task Demonstrates the application of EGA/VGA BIOS *

functions

* 	 Input parameters: VGA : TRUE when working with VGA card
FALSE in any other case

Return values none *
•••••••********************************.*******.*.****************.****/

void egavga(BaaL VGA)
f
static BYTE font [120J [14J = f 1* Character definition for logo *1

f 0, 0,255, 62, 28, 28, 28, 28, 28, 28, 28, 28, 28, 31}, 1* T *1
f 0, 0,252, 7, 1, 1, 1, 1, 1, 1, 1, 1, 7,252}, 1* h *1
(0, 0, 0, 0,129,195,195,199,199,206,206,142, 14, 14}, 1* e *1
f 0, 0, 62,193,128,128, 0, 0, 0, 0, 0, 0, 0, OJ, 1* s *1
f 0, 0, 16,144,112, 48, 48, 16, 16, 0, 0, 0, 0, OJ, 1* e *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1* *1
(0, a, 3, 0, 0,. 0, 0, 0, 0, 0, 0, 0, 0, OJ, 1* *1
{ 0, 0,254,248,112,112,112,112,112,112,112,112,112,112}, 1* *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0,252, 61, 30, 30, 28}, 1* n *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0,248, 6, 7, 3, 3}, 1* e *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 0, 0,128}, 1* s *1
f 0, 0, 32, 96,224,224,224,224,224,254,224,224,224,224}, 1* *1
f 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 12, 28, 24}, 1* c *1
f 0, 0, 0, 0, 0, 0, 0, 0, 0,240, 28, 6, 7, 7}, 1* 0 *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 15, 7, 7, 7}, 1* n *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 30, 39, 7l,135,128}, 1* t *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0,126, 30, 15, 15, 14}, 1* a *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0,124,131, 3, 1, 1}, 1* *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,129,131,195}, 1* n *1
f 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62,193,128, OJ, 1* *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,192,224,224}, 1* t *1
{ 0, 0,248,120, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56}, 1* h *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 48, 48, 48, 48}, 1* e *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0,196, 52, 12, 4, 4}, 1* *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, OJ, 1* b *1
{ 0, 0, a, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, OJ, 1* i *1
f 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, OJ, 1* t *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, OJ, 1* *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, OJ, 1* p *1
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a}, 1* a *1
{ 28, 28, 28, 28, 28, 28, 28, 28, 62,255, 0, 0, 0, OJ, 1* t *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0,128, 0, 0, 0, OJ, 1* t *1
{ 14, 14, 14, 7, 7, 3, 3, 1, 0, 0, 0, 0, 0, OJ, 1* e *1
{ 0, 0, 0, 0, 0, 0,128,128,193, 62, 0, 0, 0, OJ, 1* r *1
{ 0, 0, 0, 0, 16, 16, 32, 64,128, 0, 0, 0, 0, OJ, 1* n *1

284

Abacus 7.4 BIOS Screen OWplit Functions

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , 1* s *1

0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0) , 1* *1

/112,112,112,112,112,112,112,112,248,254, 0, 0, 0, 0), 1* f *1

{ 28, 28, 28, 28, 28, 28, 28, 28, 62,255, 0, 0, 0, 0), 1* o *1

{ 3, 3, 3, 3, 3, 3, 3, 3, 7,159, 0, 0, 0, 0), 1* r *1

{128,128,128,128,128,128,128,128,192,240, 0, 0, 0, a) , 1* *1

/224,224,224,224,224,224, 96,112, 49, 3D, 0, 0, 0, 0), 1* t *1

/ 56, 63, 56, 56, 56, 24, 92, 76,134, 1, 0, 0, 0, 0), 1* h *1

{ 7,255, 0, 0, 0, 0, 1, 2, 12,240, 0, 0, 0, D), 1* e

{ 7, 7, 7, 7, 7, 7, 7, 7, 15, 63, 0, 0, 0, 0), 1* *1*'

{ 0, 0, 0, 0, 0, 0, 0, 0,128,224, 0, 0, 0, 0), 1* e *1

{ 14, 14, 14, 14, 14, 14, 14, 14, 31,127, 0, 0, 0, D), 1* h *1

/ 1, 1, 1, 1, 1, 1, I, 1, 3,207, 0, 0, 0, 0), 1* a *1

{192,192,192,193,193,195,195,193,225,248, 0, 0, 0, 0), 1* r *1

/ 0, 7,120,192,192,128,128,192,195,124, 0, 0, 0, 0), 1* a *1

/224,224,224,224,224,224,224,240,112, 29, 0, 0, 0, a) , 1* e *1

{ 56, 56, 56, 56, 56, 56, 56, 56,124,255, 0, 0, 0, D), 1* t *1

{ 31, 31, 31, 0, 0, 64, 96, 96,112, 71, 0, 0, 0, 0), 1* e *1

/ 0,224,248,252, 28,. 12, 4, 12, 24,224, 0, 0, 0, 0), 1* r *1

/ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, D), 1* s *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1* *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1* n *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1* e *1

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1* e *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1* d *1

{ 0, 0,252, 60, 30, 30, 30, 23, 23, 23, 19, 19, 19, 17), 1* e *1

{ 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,130,130,130,196), 1* d *1

{ 0, 0,126,120,240,240,240,112,112,112,112,112,112,112), ,* *1

/ 0, 0, 28, 28, 28, 0, 0, 0, 0,252, 60, 28, 28, 28), ,* *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 12, 28, 24), 1* n *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0,240, 12, 2, 7, 7), 1* *,

{ 0, 0, 63, 15, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7), 1* t *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, 65,129,128, 0), 1* h *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,128,192,192,224), 1* e *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 64,224,224,224), 1* *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,192, 96,112,112), 1* 1 *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 24, 48,112, 96), 1* 0 *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0,192,112, 24, 28, 28), 1* g *1

{ 0, 0,252, 60, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28), 1* 0 *1

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), ,* *,

{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), 1* a
*'

'{ 0, 0, 63, 56, 48, 48, 32, 32, 32, 0, 0, 0, 0, 0), 1* t *1
{ 0, 0,255,112,112,112,112,112,112,112,112,112,112,112), 1* *1
{ 0, 0,225,225, 97, 32, 32, 32, 32, 15, 3, 1, 1, I) , I" t *1
{ 0, 0,192,192,192, 0, 0, 0, 0,192,193,195,195,195), 1* h *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0,252, 3, 0, 0, 0) , 1* e *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 64, 65,195, 71, 70), 1* "I
{ 0, 0, 0, 0, 0, 0, 0, 0, 0,124,131, 0, 1, 1), 1* e *1
{ 0, 0, 15, 3, 1, 1, 1, 1, 1, 1, 1,129,193,193), I" e *1
{ 0, 0,192,192,192,192,192,192,192,207,208,224,224,192), ,* n *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0,128, 96,112, 48, 56), ,* t *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 12, 24, 56, 48), 1* e *1
{ 0, 0, 0, 0, o . , 0, 0, 0, 0,224, 56, 12, 14, 14), 1* r *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0,126, 30, 14, 15, 15) , 1* *1
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 60, 78,142, 14, D), 1* 0 *1
{ 17, 17, 16, 16, 16, 16, 16, 16, 48,254, 0, 0, 0, 0), 1* f *1
{196,196,232,232,232,112,112, 80, 32, 35, 0, 0, 0, 0), 1* *1
{112,112,112,112,l12,112,112,112,248,254, 0, 0, 0, 0), 1* t *1
{ 28, 28, 28, 28, 28, 28, 28, 28, 62,255, 0, 0, 0, 0), ,* h *'
{ 56, 56, 56, 56, 56, 24, 28, 12, 6,129, 0, 0, 0, 0), 1* e *'
{ 7, 0, 0, 0, 0, 0, 1, 2, 12,240, 0, 0, 0, 0), ,* *,

{ 7, 7, 7, 7, 7, 7, 7, 7, 15, 63, 0, 0, 0, 0), 1* s *1

{ 0, 0, 0, 0, 0, 0, 0, 0,129,231, 0, 0, 0, D) , 1* e *1

{224,224,224,224,224,225,225,224,240,252, 0, 0, 0, 0), 1* r *1

{ 0, 3, 60,224,224,192,192,224,225, 62, 0, 0, 0, 0), 1* e *1

{112,240,112,112,l12,112,112,120,184, 14, 0, 0, 0, 0) , 1* e *1

{224,255,224,224,224, 96,112, 48, 24, 7, 0, 0, 0, OJ, ,* n *1

{ 28,252, 0, 0, 0, 0, 4, 8, 48,192, 0, 0, 0, 0), 1* *1

{ 28, 28, 28, 28, 28, 28, 28, 28, 62,255, 0, 0, 0, 0),

{ 0, 0, 0, 0, 0, 0, 0, 0, 0,128, 0, 0, 0, 0),

285

7. TheBIOS PC System Programming

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0),

1112,112,112,112,112,112,112,112,248,254, 0, 0, 0, 0),

I 1, 1, 1, 1, 1, 1, 1, 1, 3, 15, 0, 0, 0, 01,

(193,193,192,192,192,194,195,195,227,250, 0, 0, 0, 0),

(240,254,255, 15, 1, 0, 0, 0,129,126, 0, 0, 0, D) ,

(14, 14,142,206,206,198, 71,195,129, 0, 0, 0, 0, D),

(1, 0, 0, 0, 0, 0, 0, 0,131,124, 0, 0, 0, D) ,

(193, 1, 1, 1, 1, 1, 65,129, 3, 15, 0, 0, 0, D),

(192,192,192,192,192,192,192,192,224,249, 0, 0, 0, 0) ,

I 56, 56, 56, 56, 56, 56, 56, 56,124,255, 0, 0, 0, 0) ,

1112,127,112,112,112, 48, 56, 24, 12, 3, 0, 0, 0, D),

(14,254, 0, 0, 0, 0, 2, 4, 24,224, 0, 0, 0, 0),

I 14, 14, 14, 14, 14, 14, 14, 14, 31,127, 0, 0, 0, 0) ,

(0, 0, 0, 0, 0, 0, 0, 0, 0,192, 0, 0, 0, 0)

) ;

union REGS regs; /* Processor register for the interrupt call */
unsigned i, j, k; /* Loop counter */
double delay; /* Loop counter for PAUSE */

/*-- Prepare screen --*/
cIs () ; /* Clears screen */
blinking(FALSE); /* Light background color instead of blinking */
setcur (0, 0); /* Move cursor to upper left corner */

/*-- Install EGA and VGA hardcopy routine --------------------------*/
regs.h.ah = Ox12; /* Function no.: Alternate Select */
regs.h.bl = Ox20; /* Sub-funct. Ox20 = Install hardcopy routine */
int86(VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */

if (VGA) /* Check for compatibility */
(/* and check custom characters */
regs.h.ah = Ox12; /* VGA card in 350-line mode */
regs.h.bl = Ox30; /* Toggle EGA card */
regs.h.al 1;
intB6(VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */

setlines(Ox11); /* Enable 8x14 character set */
I

chardef (128, 0, 14, 120, (BYTE far *) font); /* Define characters */

for (i=O; i<250; ++i) /* Execute loop 250 times */
(/* Write color blocks to video RAM */
print fat (GETCS () , GETCZ(),«i%14)+1)«4," "I;
print fat (GETCS(), GETCZ(), 0," ");

I
for (i=10; i<16; ++i) /* Allocate space for logo */
printat (22, i, 0, " ");

for (k=128, i=O; i<4; ++i) /* The logo consists of ASCII */
(/* characters 128-248 */
for (j=O; j<30; ++j)
printfat (j+24, i+11, 15, II'C n I k++);

printat (1, 1, 15, "The most important characters are");
printat(l, 2, 15, "still present despite the logo! ·)i
printat (1, 3, 15, .) ;"
printat (1, 4, 15, " !\"'$%&' ()*+-./0123456789:;<->?@ H);
printat (1, 5, 15, " ABCDEFGHIJKLMNOPQRSTUVXXYZ[\\)A ");-printat (1, 6, 15, . 'abcdefghijklmnopqrstuvxyz("- M) ;

printat (33, 21, 15, .) ;
H

printat(33, 22, 15, • Press any key to end the program. H) ;

printat (33, 23, 15, H) ;H

setcur(34, 22);

/*-- Change colors in the color blocks -----------------------------*/

i = 0; /* Starting value for color register */

286

http:regs.h.al
http:regs.h.bl
http:regs.h.ah
http:regs.h.bl
http:regs.h.ah

Abacus 7.4 BIOS Screen Output Functions

while nokey ()) 1* Repeat until the user presses a key *1
(
for delay-O.O: delay < PAUSE: ++delay)

++i; 1* Increment color value for the first register *1
for (j-l: j<15: ++j) 1* Go through registers 1 to 14 *1

{
setcol (j, i+j & 63) : 1* Write color value in register *1
if (!nokey()) 1* Key pressed? *1
break: 1* YES --> Stop loop before restarting *1

if (VGA) 1* Go into 400 line mode *1
(1* Enable VGA card *1
regs.h.ah - Ox12:
regs.h.bl Ox30:
regs.h.al = 2;
int86(VIDEO_INT, ®s, ®s): 1* Call BIOS video interrupt *1

setlines(Ox14); 1* Enable 8*16 character set *1
}

cIs (); 1* Clear screen *1
)

,********************************.*******************•••••****.******•• /
1** MAIN PROGRAM **1
,**************************************.**************.* •••************/

void main ()
{
if (is vga () 1* Is there a VGA card installed? *1

egavga (TRUE); 1* YES *1
else 1* No VGA installed - go on *1

{
if is_ega(» 1* Is there an EGA card installed? *1

{ 1* YES *1
if (getmon() _E EGA 1* Is there an EGA monitor connected? *1
egavga (FALSE): 1* YES, start demo *1

else
(1* wrong monitor *1
printf(HThis program functions only with an\nH):
printf ("EGA monitor. \nH) ;

)

else 1* If no EGA or VGA card connected *1
printf("ATTENTION! There is neither an EGA nor a H

" VGA card installed. \n°);

Assembler listing: EGA VGACA.ASM

i···************************··************************·*·*····*********i
;* EGA V G A C A *;
i*--*i
;* Task : Generates a functions for custom designing *;
;* chara ct ers. *;
;*--*i
;* Author MICHAEL TISCHER *;
:* Developed on : 09/25/1988 *;
;* Last update : 06/07/1988 *;
i*--*;
;* Assembly MASH EGAVGACA; *;
;* ... Link with a C program whose memory model *;
, has been set to SMALL *;
i*********************************···*****·**********·**·*·····********i

287

http:regs.h.al
http:regs.h.bl
http:regs.h.ah

7. TheB/OS PC System Programming

;- Segment declarations for the C program -------------------

IGROUP group text ;Addition to program segment
DGROUP group const, bss, _data ;Addition to data segment

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public 'CONST';This segment includes all read-only
CONST ends ; constants

segment word public 'BSS' ;This segment includes all un-initial
ends ;ized static variables

DATA segment word public 'DATA' ;This segment includes all initialized
·/'----.;global and static variables

DATA ends

i-- Program ----------==-===----=------=====-=====---------=----=------
_TEXT segment byte public 'CODE' ;Program segment

public _chardef

;--
;-- CHARDEF: Defines the appearance of a character --------------------
;-- Call from C : void chardef(BYTE ascii, BYTE table, BYTE lines,
; -- BYTE amount, BYTE far • but);
;-- Return value: none

chardef proc near

sframe struc ;Stack access structure
bptr dw ? ;Take BP
ret adr dw ? ;Return address of calling program
ascIi dw ? ;ASCII code of character
table dw ;Number of character table
lines dw ? ;Character matrix height
amount dw ? ;Number of characters to be defined
bufptr dd ? ;FAR pointer to buffer
sframe ends ;End of structure

frame equ [bp - bptr I iAddresses elements of structure

push bp ;Push BP onto stack
mov bp,sp ;Transfer sp to BP

mov aX,1100h ;Function no. IlH, sub-funct. 0
mov bh,byte ptr frame. lines ;Character matrix height
mov bl,byte ptr frame. table ;Number of, character table
mov cl,byte ptr frame.amount ;Number of' characters
xor ch,ch
mov dl,byte ptr frame.ascii ;Get ASCII code of character
xor dh,dh
les bp,frame.bufptr ;Buffer address to ES:BP
int lOh ;Call EGA BIOS video interrupt

pop bp ;Pop BP off of stack
ret ;Return to C program

_chardef endp

;--

ends ;End of code segment
end ;End of program

288

Abacus 	 7.5 Determining System Configuration using BIOS

7.5 Determining System Configuration using BIOS

Some programs (e.g., copy programs) must detennine how many disk drives are
connected to the PC, or how much RAM exists on the main circuit board or
motherboard. This infonnation can be obtained with the help of BIOS interrupt
llH.

The content of individual registers is not important during the call of this
interrupt, since neither the function number nor another argument must be passed.

The configuration, which is determined during the system booting process, is
returned in the AX register. The individual bits of this register contain the
following infonnation:

Bit (s) Meaning
0 Equal to 1 if 1 or more disk drives are available
1 Unused
2 & 3 RAM memory on the main circuit board

00 = 16K

01 = 32K

10 = 48K

11 = 64K

4 & 5 	 Video mode durinq system boot

00: unused
01: 40*25 characters - color card
02: 80*25 characters - color card
03: 80*25 characters - mono card

6 & 7 	 Indicates number of disk drives in system if bit 0 is
1

00 = 1 disk drive
01 = 2 disk drives
10 = 3 disk drives
11 = 4 disk drives

8 Equal to 0 when DMA chip is available

9 - 11 Number of RS-232 cards attached

12 Equal to 1 if joystick attached

13 Unused

14 & 15 indicates the number of printers

While this bit assignment is the same for the PC and the XT, it differs from the
configuration word returned by the AT. To interpret the content of the AX register
correctly, you must know the model of the computer being tested.

289

7. TheBJOS 	 PC System Programming

Bit Meaning

00 Equal to 1 if 1 or more disk drives are available

01 Equal to 1 if system has a math coprocessor

02-03 Unused

04-05 Video mode during system boot

00: Unused
01: 40*25 cnaracters - color card
02: 80*25 characters - color card
03: 80*25 characters - mono card

06-07 	 Indicates number of disk drives in system if bit 0 is
1
00 = 1 disk drive
01 2 disk drives-
10 - 3 disk drives
11- 4 disk drives

08 Unused

09-11 Number of RS-232 cards attached

12-13 Unused

14-15 indicates the number of I'rinters

Do not use this function to sense the current video mode, since it only indicates
the video mode switched on during system booting. Function ISH of interrupt
IOH provides the number of the current video mode.

290

Abacus 7.6 Determining Available RAM using the BIOS

7.6 Determining Available RAM using the BIOS

While interrupt IIH only returns the amount of RAM on the main circuit board,
interrupt I2H obtains the amount of RAM available in the entire system. The
total amount of RAM from the main circuit board and any memory expansion
cards are returned. The DIP switch settings on the memory boards determine the
amount of memory reported available on the PC and XT. The interrupt routines
derive the amount of RAM on an AT by reading one of the 64 memory locations
on the battery powered realtime clock.

Memory limits

This method determines RAM below the 1 megabyte limit only. The 8088's
addressing capability limits memory to 1 megabyte, so the PC and XT can report
on the entire memory available. The AT's 80286 processor can manage up to 16
megabytes of memory. However, interrupt 12H cannot report on any RAM beyond
1 megabyte.

The memory size returned is passed in the AX register as a multiple of IK (1024
bytes, not 1000 bytes). For example, if the AX register contains 256, you have
256K of RAM available in your PC.

Demonstration programs

The three program listings in this section are practical examples of the interrupts
described in the preceding section. The three programs, which were written in
BASIC, Pascal and C, are identical in their basic design.

They test the model identification byte in memory location FOOO:FFFE to
determine whether the computer is a PC, XT or AT. The equipment designation
appears on the screen. This model identification acts as the basis for identifying the
processor type as well. The program assumes that an AT has an 80286 and all
other PCs have an 8088 processor. During the next step in the programs, interrupt
I2H determines the amount of RAM on the circuit board and returns that amount
As mentioned above, the AT can have additional RAM memory beyond the 1
megabyte limit. Each program tests for that additional RAM if the equipment
designation indicates an AT. The programs use function 88H of interrupt ISH (see
Appendix B for detailed documentation). For the moment, all you need to know is
that this function passes the amount, in multiples of IK, of RAM above the 1
megabyte limit to the AX register.

After displaying this information, interrupt IIH determines the equipment
configuration. The last task of the program consists of filtering out the
information encoded in the bits of the configuration word and displaying it on the
screen.

To keep the program from becoming too long, the programs limit themselves to
the identical bits of the configuration words in the PC, XT and AT. For example,

291

!

7. The BIOS PC System Programming

the programs skip the AT infonnation concerning the availability of a math
coprocessor.

You may want to rewrite this program so that it displays all the infonnation
contained in the cQnfiguration word according to computer type.

The comments in each listing should answer any questions you may have about
program flow.

BASIC listing: CONFIGB.BAS

100 ***.**********••••*********** •••• ****••••••••*********.****,1 ••••••

110 CON FIG B
120 ,*___----------*1
130 Task Displays the Configuration of the PC
140
150 ,* Author MICHAEL TISCHER *,
160 developed on 7.20.87 *'
170 ,* last Update 9.21.87 *'
180 ••*********•••• *****•••••••••••******************••*••*.*****••• *.'
190 '
200 CLS : KEY OFF
210 PRINT"WARNING: This program should only be started if the GWBASIC "
220 PRINT"was started from the DOS level with <GWBASIC Im:60000>."
230 PRINT: PRINT"If this was not the case, then input <s> for Stop."
240 PRINT"Else press any key ..• ";
250 AS - INKEY$: IF AS "s" THEN END
260 IF A$ - "" THEN 250
270 GOSUB 60000 'Install Function for interrupt Call
280 CLS 'Clear Screen
290 DEF SEG ~ &HFOOO 'BIOS-Segment
300 PRINT "CONFIG (c) 1987 by Michael Tischer"
310 PRINT
320 PRINT "Configuration of Your PC"
330 PRINT "---"
340 PRINT "PC-Type "; 'determine PC type
350 IF PEEK(&HFFFE) - &HFF THEN PRINT "PC" GOTO 390
360 IF PEEK(&HFFFE) &HFE THEN PRINT "XT" GOTO 390
370 IF PEEK(&HFFFE) = &HFC THEN PRINT "AT" GOTO 390
380 PRINT "unknown"
390 PRINT ·Processor 80";
400 IF PEEK(&HFFFE) &HFC THEN PRINT "286" ELSE PRINT "88"
410 INR\ - &H12 'BIOS-interrupt reads RAM size
420 DEF SEG 'Set BASIC-Segment again
430 CALL IA(INR\,RAMHI\,RAMLO%,Z\,Z\,Z\,Z\,Z\,Z',Z',Z',Z',Z\)
440 PRINT "~Memory (Main Circuit Board) :";RAMHI*256+RAMLO%;"KB"
450 DEF SEG - &HFOOO 'BIOS-Segment
460 IF PEEK(&HFFFE) <> &HFC THEN 520 'branch if not AT
470 DEF SEG 'set BASIC-Segment again
480 INR\ ~ &H15 'Call Cassette interrupt
490 RAMHI\ = &H88 'Function for reading of HI-RAM size
500 CALL IA(INR\,RAMHI\,RAMLO%,Z',Z\,Z\,Z\,Z\,Z\,Z\,Z\,Z\,Z\)
510 PRINT "Additional ~Memory :";RAMHI*256+RAMLO%;"KB beyond 1 MS"
520 DEF SEG 'Set BASIC-Segment again
525 INR\ ~ &Hll 'BIOS-interrupt reads Configuration
530 CALL IA(INR\,CONFHI\,CONFLOt,Z\,Z\,Z\,Z\,Z\,Z\,Z\,Z\,Z\,Z\)
540 PRINT "Video mode after Start : ";
550 IF CONFLOt AND 48 - 0 THEN PRINT"undefined" : GOTO 590
560 IF CONFLOt AND 48 - 16 THEN PRINT"40*25 Character, Color-Card" GOTO 590
570 IF CONFLOt AND 48 - 32 THEN PRINT"SO*25 Character, Color Card" GOTO 590
580 PRINT"80*25 Character, Mono-Card"
590 PRINT"Disk drives :";INT (CONFLOt/64) +1
600 PRINT"RS232 cards :";INT(CONFHI'/2) AND 3
610 PRINT"Printer cards :";INT(CONFHI\/64)
620 PRINT

292

Abacus 7.6 Determining Available RAM using the BIOS

630 END

640 '

60000 ,************************.*************.*.**********************'
60010 ,* Initialize the Routine for interrupt-Call *,
60020 ,*---*,
60030 '* Input: none

60040 ,* OUtput: IA the Start address of the interrupt-Routine *,

60050 '***,
60060 '
60070 IA-60000! 'Start address of the Routine in the BASIC-Segment
60080 DEF SEG 'Set BASIC-Segment
60090 RESTORE 60130
60100 FOR It - 0 TO 160 : READ xt : POKE IA+lt,Xt NEXT 'Poke Rout ine
60110 RETURN 'back to Caller
60120 '
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, "66,233,108,255

Pascal listing: CONFIGP,PAS

{**********************.**}
{* CON FIG P PASCAL *)

{*---*)
{* Task : OUtputs the Configuration of the PC on the *)
{* Display Screen *)

{*---*)
{* Author MICHAEL TISCHER *)
{* developed on : 7/7/87 *)
{* last Update : 5/18/89 *)
{***********~*** ***************}

program CONFIGP;

Uses Crt, DOSi { Add DOS and Crt)

{***}
{* PRINTCONFIG: Display PC's configuration *)
{* Input : none *)
{* OUtput: none *)
{* Info : The configuration output depends on the PC type *)
{**********************.**}

procedure PrintConfig;

var AT boolean; { is the PC an AT?
)Regs Registers; { Register variable for interrupt eall

begin
clrscr; { Clear screen
if mem[SFOOO:SFFFE) = SFC then AT := true { test if AT or

else AT := false; {PCorXT
writeln('Configuration of this PC');
wriceln('--');
write('PC-Type : ');
ease mem[SFOOO:SFFFEJ of Read PC type again

SFF writeln{'PC'); { SFF is a PC
SFE : writeln{'XT'); { SFE is an XT
SFC : writeln('AT') { SFC is an AT
else writeln {'Unknown') ;

293

7. The BIOS PC System Programming

end;

write ('Processor INTEL') ;

if AT then writeln('80286') { the AT has an 80286,

else writeln('8088'); (PC and XT h~ve an BOBB processor
intr(S12, Regs);
writeln('RAM-Memory ',Regs.ax, I KBI);
if AT then { is the PC an AT?
begin (YES

Regs.ah :- $88; Function number for additional RAM size
Intr($15, Regs); (call BIOS cassette interrupt
writeln('additional RAM ',Regs.ax,' KB beyond 1 MS I);

end;
Intr(Sll, Regs); call BIOS configuration interrupti
write ('Video mode after start ') ;
case Regs.al and 48 of (Determine video mode }

o writeln('undefined');

16 writeln('40x25 character color card');

32 writeln('80x25 character color card');

48 writeln('80x25 character mono card')

end;

writeln('Disk drives " succ(Regs.al shr 6 and 3»;

writeln('RS-232 cards " Regs .ah shr 1 and 3);

writeln (' Printer cards " Regs.ah shr 6)

end;

{*********************••******************************.***************}
{* MAIN PROGRAM *)
{***}

begin
PrintConfig; { Display configuration I

end.

C listing: CONFIGC.C

/** ••••• ******************/
/* CON FIG C */
/*---*/
/* Task : Outputs the configuration of the PC on the * /
/* Display Screen */
/*---*/
/* Author MICHAEL TISCHER * /
/* developed on : B.13.87 */
/* last Update : 9.21.87 */

/*---*/
/* (MICROSOFT C) */
/* Creation MSC CONFIGC */
/* LINK CONFIGC PEPO; */
/* Call CONFIGC */

/*---*/
/* (BORLAND TURBO C) */
/* Creation : With the RUN command in the Command Line */
/.***••*****.*********,

'include <dos.h> /* Include Header-Files */
tinclude <io.h>

extern short int PeekB(); /* PEEKS linked with MicroSoft C */

'define FALSE 0 /* Constants make reading the */
tdefine TRUE 1 /* Program text easier * /

1***/
/* CLS: Clear Screen and Cursor to upper left corner */
/* Input : none */
/* Output : none * /
/***/

void ClsO

294

http:succ(Regs.al

Abacus 	 7.6 Determining Available RAM using the BIOS

union REGS Register;

Register.h.ah - 6;
Register.h.al - 0;
Register.h.bh - 7;
Register.x.ex = 0;
Register.h.dh - 24;
Register.h.dl = 79;
int86 (Ox10, &Register,

Register.h.ah 2;
Register.h.bh - 0;
Register.x.dx 0;
int86(OxI0, &Register,

}

/* Register-Variable for interrupt-Call */

/* Function number for Scroll-UP */

/* 0 for clear */

/* white characters on black background */

/* left upper screen corner */

/* Coordinates of the lower */

/* right screen corner */

&Register) ; /* Call BIOS-Video-interrupt */

/* Set Function number for Cursor position */

/* Screen page 0 */

/* Coordinates of upper left screen corner */

&Register); /* Call BIOS-Video-interrupt */

/**••••••*/

/* PRINTCONFIG: Output the PC Configuration */
/* Input : none * /
/* Output : none */
/* Info : the configuration output dependent on the PC-Type */
, ••••****••••••••• **•••• ***** ••••••••**.***••••**•••••************.***/

void PrintConfig()

union REGS Register; /* Register-Variable for interrupt-Call */
short int AT; /* the PC and AT? */

Cls(); /* Clear Screen */
if (PeekB(OxFOOO, OxFFFE) == OxFC) AT = TRUE; /* Determine if the */
else AT = FALSE; /* PC and AT */

printf("CONFIG (c) 1987 by Michael Tischer\n\n");
printf ("Configuration of this PC\n");
printf("---\n");
printf ("PC-Type : ");
switch (PeekB(OxFOOO, OxFFFE» /* Determine PC-Type again */

(

case OxFF printf("PC\n"); /* OxFF a normal PC */
break;

case OxFE printf ("XT\n"); /* OxFE an XT */
break;

case OxFC printf ("AT\n") ; /* OxFC an AT */
break;

default 	 printf ("Unknown\n"); /* Code unknown */
break;

printf ("Processor : INTEL 80");

if (AT) printf ("286\n"); /* the AT has an 80286, */

else printf("88\n"); /* PC and XT have an 8088 Processor */

printf("RAM-Memory : ");
int86 (Ox12, &Register, &Register); /* Get RAM size */
printf ("%d KB\n", Register .x.ax); /* and output */
if (AT) /* the PC an AT? */

{ /* YES */
Register.h.ah = Ox88; /* Function number for additional RAM */
int86(Ox15, &Register, &Register); /* Get RAM size */
printf("additional RAM : %d KB beyond 1MB\n", Register.x.ax);

}

int86(Ox11, &Register, &Register); /* BIOS-Configuration-interrupt */

printf("Video mode after Start : "I;

switch(Register.x.ax & 48)

{
case 0 printf ("undefined\n");

break;

case 16 printf ("40*25 Character Color-Card\n");

break;

case 32 printf("80*25 Character Color-Card\n");

295

http:switch(Register.x.ax
http:Register.x.ax
http:Register.h.ah
http:Register.x.dx
http:Register.h.bh
http:Register.h.ah
http:Register.h.dl
http:Register.h.dh
http:Register.x.ex
http:Register.h.bh
http:Register.h.al
http:Register.h.ah

7. The BIOS PC System Programming

break;
case 48 printf("80*25 Character Mono-Card\n");

break;

printf ("Disk drives \d\n" , (Register .x.ax » 6 & 3) + 1);
printf ("RS232-Card \d\n", Register.x.ax » 9 & Ox03);
printf ("P rinter-Card \d\n\n", Register .x.ax » 14);

I

/******.**************************•••*****************.*•••***********/

/** MAIN PROGRAM HI
/**************************••***•••***************** •• ****************/

void mainO

PrintConfig 0; 1* OUtput the Configuration *1
)

296

http:Register.x.ax

Abacu 7.7 Accessing the Floppy Disk from the BIOS

7.7 Accessing the Floppy Disk from the BIOS

A cassette recorder was the primary form of mass storage in the early days of
personal computing. However, floppy drives soon became the standard. PCs can
control a maximum of four disk drives, numbered 0 to 3. DOS designates the first
two units as drive A and drive B.

Early disk-based PC systems used only one side of disks for data storage. DOS
Versions 1.1 and later store data on both sides of the disk.

Disk structure

Each side of a disk consists of 40 tracks of 9 sectors each. Each sector has a
capacity of 512 bytes. The tracks are numbered from 0 to 39. Track 0 is located on
the outer edge and track 39 on the inner edge of the disk. The two disk sides have
designations of side 0 (front) and side 1 (back). This disk has a total storage
capacity of 360K.

The disk drives included with AT computers have 80 tracks with 15 sectors instead
of 40 tracks with 9 sectors. An AT floppy drive can store up to 1.2 megabytes of
data per disk. Systems with a 1.2 megabyte drive can read both 1.2 meg disks as
well as 360K disks.

Note: While it's possible to write 360K formatted disks using an AT type
1.2 megabyte drive, the resulting disks are not always readable by a
standard PCIXT 360K drive.

The following shows the structure of a disk:

297

7. TheB/OS PC System Programming

Track 1
Track 2
Track 3

Sector 1
Sector 2

Structure ofa disk

This structure is based on DOS specifications. It's possible to program the disk
controller directly or use the various BIOS functions to alter the disk structure.
Some methods of copy protection take advantage of this capability to arrange the
data on the disk in such a way that DOS cannot use the data directly.

The methods of transferring data to or from the disk are identical. First the
read/write head moves to the proper track. Since the disk moves constantly, the
sector to be processed eventually passes by the head, allowing data transfer.

BIOS makes some functions available for disk access at the lowest level. BIOS
thinks ofDASD (Direct Access Storage Device) rather than disk drives.

A total of six BIOS disk functions can be accessed by calling interrupt 13H and
passing the function number to the AH register.

Function 0: Reset disk

Function 0 resets the disk drive. The reset always executes automatically during
system start, but should also occur when an error occurs during the call of one of
these six functions. Before the interrupt call, function number 0 must be loaded
into the AH register. After the execution of the function the error status is returned
in the AH register. A value which indicates the type of error if any, is returned in
the AH register after all 6 functions.

298

Abacus 7.7 Accessing the Floppy Disk from the BIOS

If a program calls the reset function without the disk drive previously reporting an
error, error code 1 (function number not pennitted) may be returned in certain
cases, even though no error occurred. For this reason, the fWlction should be called
only after an error, and not after every disk operation.

Function 1: Status

Function 1 senses disk status without disk access. If it returns a value of 0 as a
result, no error occurred. Another value represents one of the following error codes:

01H Function number not permitted
02H Address-marking not found
03H Write attempt on write ...£rotected disk
04H Sector address not found
06H disk changed
OSH DMA-Overrun
09H Data transmission beyond sE!<,lment border
10H Read error
20H Disk controller error
40H Track not found
SOH Time-Out error, drive does not respond

If one of these errors appear, the disk operation just completed has been repeated
several times following a reset. Most of the time the repeated operation succeeds
without an error. If not, the current program in memory should react to the error
condition in a suitable manner and display an error message.

Working with the functions presented here, a time-out error can occur frequently
after a read operation. It usually occurs because of the speed decrease required to
read the disk: The old speed cannot be resumed immediately after reading.

Function 2: Read

Function 2 reads disk data. The BIOS must know the location from which you
want disk data read. This infonnation is passed in the DL, DH, CL and CH
registers:

DL Drive number (0 to 3)

DH Disk side (always 0 for single sided disks)

o = Front side
1 = Back side

CL First sector to be read (1 to 9/1 to 15)
CH Track containing_ sector to be read

299

7. TheBIOS PC System Programming

Up to 9 sectors (PC/XT disk drives) or 15 sectors (AT disk drives) can be read
using one function call. The AL register specifies this number of sectors. Since
disk drives usually store data belonging together in sequential sectors, this enables
fast data access (e.g., 9 x 512 bytes = 4.5K in one disk revolution).

The address of a buffer in memory must be passed in registers ES and BX since the
data transfer area has no fixed location in RAM in which it can reside. The ES
register accepts the segment address of the buffer and the BX register accepts the
offset address.

The function returns the error status to the AH register, and the number of sectors
read in the AL register. In addition to the AH register, a set carry flag (carry flag =
1) signals the occurrence of an error.

Function 3: Write

Function 3 allows write access to the disk. It accepts arguments similar to those
used in function 2 above:

DL Number of the drive (0 to 3)
DH Disk side (always 0 for single sided disks)

o = Front side
1 = Back side

CL First sector to be written (1 to 9/1 to 15)
CH Track in which the sector to be written is located

The value in the AL register indicates the number of sectors to be written, while
the ES and BX registers indicate the address of the memory area from which the
data should be read. The function passes the error status in the AH register, and the
number of sectors written in the AL register. The carry flag has the same meaning
as in function 2.

Function 4: Verify disk

Function 4 tests whether data is transferred properly to and from the disk. The
BIOS bases correct data transmission on a cyclical redundoncy check (CRC) value,
instead of just comparing data in memory with data on disk. Using a CRe
involves summing the value of each individual byte in a sector with a specific
formula. Since most disk drives work well and have exceptional reliability, most
programmers ignore this function. DOS only uses this function to test data that
was transmitted to a disk in response to an active VERIFY ON flag.

300

Abacus 	 7.7 Accessing the Floppy Disk from the BIOS

The register setup is similar to functions 2 and 3 (see above), with the difference
that the AH register must contain 4. Since the function doesn't need a buffer
address, ~ function does not use the BX and the ES registers.

Note: 	 This function only works properly on a PC or an XT: ATs may
return incorrect results.

Function 5: Format

The last function of interrupt 13H allows the user to format part of a disk. Disk
formatting (e.g., with the DOS command FORMAl) is a requirement since disks
used by the PC are soft-sectored. This means that software, not hardware,
determines the positioning of the sectors and tracks on the disk. The operating
system must install the tracks and sectors on the disk using this function. Sectors
don't have to contain 512 bytes. This BIOS function lets you format 128, 256,
512 or 1,024 bytes per sector. However, you must format a complete track.

The function number (5) must be passed in the AH register. The AL register is
loaded with the number of sectors to format the track with. This number cail be
less than the DOS default values of 9 or 15. The number of the track to be
formatted is passed in the CH register. This track number must be a value from °
to 39 (PC1Xl) or from °to 79 (Al). The number of the disk drive is passed in the
DL register and the disk's side in the DH register.

Besides this information, the format function also requires a field containing
formatting char~teristics, which is also needed by the functions for reading,
writing and verifying a sector. The address of this field is passed in the ES and BX
registers. The segment address is loaded in the ES register and the offset address in
the BX register.

This table contains an entry consisting of four bytes for every sector to be
formatted:

Byte 1 Track to be formatted
Byte 2 Disk side (always 0 for single sided disks)

o = Front side
1 = Back side

Byte 3 Number of sector

Byte 4 Number of bytes in this sector

o = 128 bytes
1 = 256 bytes
2 = 512 bytes
3 = 1024 bytes

Even though the function already possesses the number of the track to be formatted
and the disk side, these items appear here again for reasons of safety. The sectors
are placed into this table sequentially, which assigns the first sector the logical
number 1 and the second sector the logical number 7.

301

7. TheBIOS PC System Programming

While the logical and physical numbers of the sectors usually agree in a disk drive.
it makes sense in a hard disk to change the logical number of a sector instead of its
physical number. The hard disk of the XT reduces access time for individual sectors
by displacing the logical sectors by six in relation to the physical sectors.

Also the number of bytes which a sector can accommodate does not have to be
uniform. since each sector may be defined in the table. With this and other
parameters of the table, copy protection can be developed based on formatting.
Format-based copy protection cannot be processed by the operating system.

In addition to information such as the disk drive and sector number passed to the
BIOS functions during a call, the BIOS also requires a series of other items to
enable some disk operations. These parameters are passed in the device parameter
table. Such a table exists in the ROM BIOS. but you can install your own in
RAM. The address of the new device parameter table must be placed into memory
locations 0000:0078 to OOOO:OO7B. These memory locations should contain the
address of interrupt lEH (the PC doesn't use this interrupt).

OOS also offers the option of providing a unique device parameter table which
changes some values of this table from the BIOS default. accelerating access to the
disk drives.

The table itself consists of 11 bytes. The frrst two bytes transfer directly to the
disk controller. They indicate the step time and the DMA mode. The step time is
the maximum time period in which the read/write head of the disk drive can move
from one track to another.

The second byte indicates the time the disk drive motor can continue to run after a
disk operation. It defaults to 2 seconds since it assumes that this is the maximum
amount of time between consecutive disk accesses. Disk access speed is quicker if
the disk motor has already achieved operational speed and does not have to be
brought up to speed again. The value in this memory location is based on the 18
unit per second system clock. so a value of 18 represents running time of about
one second

302

Abacus 7.7 Accessing the Floppy Dislcfrom the BIOS

The value in byte 3 indicates the number of bytes per sector for a write or read
operation. It corresponds to the values for formatting a sector, so it normally
contains the value 3 (512 bytes per sector). If you want to write or read sectors
with other sector sizes, the proper value must be entered into this memory
location.

Byte 4 gives the maximum number of sectors per track. The PCf)IT disk drive
defaults to the value 9 in this location, while the AT defaults to the value 15
decimal.

Byte 5 of the table contains a value that represents the amount of empty space
between the end of a sector and the start of the following sector. This space relates
to the time BIOS must allow to elapse until the next sector appears under the
read/write head (not units of length). The value for this memory location defaults
to 42.

Byte 6 determines the data transfer length, which has no influence on data
transmission in most cases.

Since formatting of a disk occurs through the magnetization of certain areas, the
sizes of the non-magnetic spaces between sectors must be determined. Byte 7
records this, and these spaces must be larger than the space between sectors in byte
5 so that the beginning of a sector can be recognized properly.

Byte 8 accepts the ASCII code of the character which fills a sector during
fonnatting. The BIOS defaults to the division character V (ASCII code 246).

After the read/write head moves from one track to another it requires a rest period
to let the vibrations connected with the movement fade away. Then it can properly
perfonn any disk accesses which follow.

This rest period given in byte 9 of the table defaults to multiples of 1 millisecond.
While the BIOS grants 25 milliseconds of rest, DOS only permits 15
milliseconds.

The last entry of the table in byte 10 gives the time duration during which the disk
motor achieves operating speed. The value in this memory location defaults to
multiples of 1/8 second. Even here DOS requires more from the read/write head
than BIOS. It provides only a 1/4 second waiting period, as opposed to 1/2 second
for BIOS.

303

7. TheBIOS PC System Progrfllllllling

High density disk drives

Part of the introduction of the AT included high density 1.2 megabyte disk drives.
To ensure compatibility with earlier disk drives, they are capable of reading and
writing 320/360K disks despite the increase to the higher capacity of 1.2
megabytes. They can also recognize a change of the disk media. For support of
this new capability, AT BIOS contains three new disk functions which are called
through interrupt 13H like previous functions.

The first of these new functions determines the drive type in use. During the
function call, in addition to function number ISH, the number of the drive (0 or 1,
2 reserved for the hard disk) must be passed in the DL register. The function
returns the type of the drive in the AH register:

AH= 0 no drive available

AH = 1 disk drive does not detect disk change

AH = 2 disk drive does detect disk change

AH = 3 Hard disk

If the drive detects a disk change it can be sensed with the help of function 16H.
After calling this function by passing the value 16H to the AH register and the
number of the drive (0 or 1), the function returns a number to the AH register
which tells whether the disk was changed since the last disk access. If this register
contains the value 6, the disk was changed. The value 0 indicates that no change
took place.

The last new function, function 17H, must be called before calling the formatting
function (function number 5) on PC/AT or PS(l machines to tell the controller
how it should format the disk. It should format the disk in either the 320/360K or
the 1.2 megabyte format. Besides the function number in the AH register and the
drive number in the DL register, a code must be passed to the AL register
indicating not only the format type, but also the type of disk drive in use. This
code has the following meaning:

1 format to 320/360K on a 320/360K-drive

2 format to 320/360K on a 1.2 meqabyte-drive

3 format to 1.2 MB~e on a 1.2 meqabyte-drive

J 304

Abacus 7.7 Accessing the Floppy Disk from the BIOS

Demonstration programs

The disk monitor in this section combines all the functions you have read about so
far. The monitor versions, written in BASIC, Pascal and C, all have the same
basic structure. Let's examine this structure before looking at the individual
programs.

The beginning of each program initializes variables, configures the screen and
resets the disk drives. Next the input loop executes; this loop is the center point of
the program. It displays the program prompt DISKMON> and then waits for user
input. After the user enters input and presses the <Return> key, the program
ensures that this input calls an executable command. If the input is illegal, the
program displays an error message and returns to the program prompt. Legal input
calls the subroutine, function or procedure requested.

All three programs support the Help, Format, Get, Fill, Constants and End
commands. The Fill command fills a sector with one character. The End command
terminates the program. There is no Write command in the monitor's command
set. This is because the amount of coding required to create a window for editing
the 512 bytes of a sector would have made the program listings too long.

All disk access commands ask for the track and perhaps the sector number of the
disk, but not the disk drive number or the disk side number. The program defaults
to disk drive 0 (drive A:) and disk side O. The Constants command lets you change
these defaults so you can access another disk drive or disk side. This command also
specifies the format parameter needed for an AT (i.e., what disk format should be
used).

Like all other user input, the program transfers this input to the BIOS instead of
the program itself. This disk monitor checks the BIOS's reaction to the input The
BIOS returns an error message in response to illogical or false input. Every disk
monitor command which accesses the disk drive reads the error status of the disk
drive after command execution. An error message then appears on the screen as
needed.

Let's take a close look at the monitor commands:

? Entering a question mark (?) at the program prompt displays a list of
the available commands.

Get This overview includes a Get command which reads and displays a
sector of the disk. An internal buffer stores the contents of this sector
after input and displays the contents on the screen. Certain control
characters such as carriage returns or linefeed are shown as character
strings instead of as ASCII codes. For example, <CR> appears
instead of an actual a carriage return, and <LF> appears instead of a
linefeed. While reading a sector the program assumes that the sector
has the standard format of 512 bytes.

305

7. The BIOS 	 PC System Programming

Format 	 The Format command formats the selected sector in a 512-byte
format. Remember that a 360K disk can have a maximum of 9
sectors per track and a 1.2 megabyte disk can have a maximum of 15
sectors per track. You can assign fewer sectors, but you must specify
at least one sector.

Reset 	 The Reset command resets the disk drives. It also can be called by
various commands when the disk drive reports an error. If it's called
by the user before an error occurs, this can cause an error message.
Most disk error messages cannot cause damage to the drive.

BASIC listing: DISKMONB.BAS

100 ••••••••••**••••**•••••••••••**•••••••**••••••••••••••••••**••••**1

110 '. DISKMONB ,. 	 .'
120 .*---*.
130 Task Diskmon is a small Diskette monitor based .'140 on the BIOS-Interrupt 13 (h)

150 Author MICHAEL TISCHER

160 '. developed on 07124/87 .'.'
170 last Update 05/20/89 0'

180 ._••••••••••••••••••••••• _•••••••- •••••••••••- ••••••••**•••••••••••
190 '
200 CLS : KEY OFF
210 PRINT "WARNING: This Program should only be started if GWBASIC was"
"220 PRINT "started from the DOS level with <GHBASIC Im:60000>."
230 PRINT: PRINT"If this was not the case, please input <s> for Stop."
240 PRINT "Else press any key ••• ";
250 A$ - INKEY$: IF AS = "s" THEN END
260 IF A$ - ". THEN 250
270 DIM SECTOR%[255] 'Stores Sectors to be read or written
280 DIM FD% [29] 'Formatting data (maximum 0-29 - 30 Words)
290 GOSUB 60000 'Initialize Interrupt-Routine
300 CLS 'Clear Screen
310 KEY OFF 'Turn off Function key assignment
320 COLOR 0,7 'dark characters on light background (invers)
330 PRINT" DISKMON (c) 1987 by Michael Tischer ? = Help·
340 COLOR 7,0 'light characters on dark background
350 VIEW PRINT 2 TO 24 'Lines 2 to 24 form a window
360 DR% - 0 'access unit 0 (A) first
370 SIDE% - 0 'access the first Diskette side
380 FTYP' - 3 '1.2 MB Diskettes in 1.2 MB drive
390 DEF SEG = &HFOOO 'Set BIOS-Segment
400 IF PEEK(&HFFFE) = &HFC THEN AT' = - 1 ELSE AT' = 0 'test if AT
410 DEF SEG 'Set BIOS-Segment again
420 GOSUB 50000 'Execute Reset
430 GOSUB 51000 'Output Error message if necessary
440 INPUT"DISK-MON>",E$ 'User input prompt
450 IF E$ = ." THEN 440 'no input --> repeat input prompt
460 IF E$ = ·1" THEN GOSU8 53000 GOTO 440 'Display Help-Text
470 IF E$ = "r" THEN GOTO 420 'Reset
480 IF E$ "s" THEN GOSUB 54000 GOTO 430 'fill a Sector
490 IF E$ "f" THEN GOSUB 55000 GOTO 430 'format a Track
500 IF E$ "g" THEN GOSUB 56000 GOTO 430 'Read Sector and display
510 IF E$ - "c" THEN GOSUB 57000 GOTO 440 'Input Constants
520 IF E$ = "e" THEN VIEW PRINT 1 TO 24: CLS END 'End Program
530 PRINT"unknown Command!" : GOTO 440
540 '
50000 .****.*.*••******.*••• ******••••*.*•••**********.***••********.*.
50010 '0 Execute Reset of all Disk drives .'
50020 ,*---*'
50030 ,. Input: none
50040 OUtput: DST' = the Diskette-Status
50050 ,. Info Z% is a Dummy-Variable ..

306

Abacus 7.7 Accessing the Floppy Disk from the BIOS

50060 ,******.*.***************.*** •••• *******************.* •••*******,
50070 '

50080 DST% = 0 'Function number for Reset

50090 INR' - 'H13 'Call BIOS-Diskette-Interrupt 13 (h)

50100 CALL IA(INR%,DST%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%,Z%)

50110 RETURN 'back to caller

50120 '

51000 ,****.**********.***••••**.*** •••***••••••••***••••••• *.*******.,

51010 ,. Output Error Message based on the Diskette-Status
51020 ,.---.'
51030 ,. Input : DST% = Status of the last Diskette operation
51040 ,. OUtput: none
51050 .••••• ***••• ***** •• ****••••**••* ••••••••***•••••••••••••••••••• *1
51060
51070 IF DST% - 0 THEN RETURN '0 = everything o.k.
51080 PRINT "ERROR: ";
51090 IF DST% - &Hl THEN PRINT"Function number not allowed .. : GOTO 50000
51100 IF DSn &H2 THEN PRINT"Address-Marking not found" : GOTO 50000
51110 IF DSn = &H3 THEN PRINT"Write attempt on protected Disk" : GOTO 50000
51120 IF DST% &H4 THEN PRINT"Sector not found" : GOTO 50000
51130 IF DST\ &H6 THEN PRINT"Diskette changed" : GOTO 50000
51140 IF DST\ &H8 THEN PRINT"DMA Overrun" : GOTO 50000
51150 IF DST'" &H9 THEN PRINT"Data transmission beyond segment border" GOTO 50000
51160 IF DST% = 'HI0 THEN PRINT"Read Error" : GOTO 50000
51170 IF DST% 'H20 THEN PRINT"Error of Disk-Controller" : GOTO 50000
51180 IF DSn ,H40 THEN PRINT"Track not found" : GOTO 50000
51190 IF DST' - 'H80 THEN PRINT"Tirne Out Error" : GOTO 50000
51200 PRINT"Error ";DSn;" unknown" : GOTO 50000
51210 '
53000 ,************** •• ******************* •••** •••••••****************'
53010 ,. Oisplay Help-Text on the screen

53020 ,.---*,
53030 ,. Input: none
53040 ,. Output: none
53050 ,.***********.***************.************************.****.*.*.'

53060

53070 PRINT

53080 PRINT"C 0 M MAN D 0 V E R V lEW"

53090 PRINT.. ------------------------------- ..

53100 PRINT"e End"

53110 PRINT"g = Get (Read)"

53120 PRINT"s Sector fill"

53130 PRINT" r Reset"

53140 PRINT" f Format"

53150 PRINT"c Constants"

53160 PRINT"? = Help"

53170 PRINT

53180 RETURN 'back to caller

53190 '

54000 ,***.***1

54010 '. Fill a Sector
54020 ,*__---------*1

54030 Input : DR'" the Number of the unit addressed
54040 SIDU the number of the Disk side addressed
54050 Output: DST' the Diskette status
54060 Info Z' is a Dummy-Variable
54070 1.**********************************.****.**********************1
54080
54090 INPUT "Track :", TRACK% 'Track in whiCh the Sector is located
541 00 INPUT .. Sector : ", SECTOR' 'Sector to be filled
54110 INPUT "Character: ",Z$ 'Fill Character
54120 IF Z$ = THEN Z$ = CHR$ (0)
54130 FOR I'" - 0 TO 511 : POKE VARPTR(SECTOR'[O])+I"',ASC(Z$) : NEXT
54140 DST'" 3 'Function number for writing
54150 INR% = &H13 'Call BIOS-Diskette-Interrupt 13(h)
54160 NUM' - 1 'Number of Sectors
54170 OFS1O' - 0 OFSHI% = 0 'initialize Variables
54180 SEG' - -1 'Use BASIC DS for ES
54190 NUM' - 1 'Number of Sectors to be read
54200 OFS1O' - VARPTR(SECTOR%[O]) AND 255 '10 , HI-Byte of the Offset

307

7. The BIOS PC System Programming

54210 OFSHI' - INT(VARPTR(S8CTOR%[0) / 256) 'address of Var S8CTOR%[0)
54220 CALL IA(INR%,DST%,NUM%,OFSHIt,OFS1O%,TRACK%,S8CTOR%,SID8%,DR%, Z%,Z%,S8G',Z\)
54230 R8TURN 'back to caller
54240 '
55000 ,-.-**_•• __..._-_•.••••••••_.__ ._.•.__ ._._---._._--_.•••* •••••• _,
55010 ,* Format a Track
55020 '*---*,
55030 Input : DR' = the number of the unit
55040 SIDE% - the number of the disk side
55050 FTYP% - Type of Disk drive
55060 An = -1 if computer is an AT, otherwise 0, *
55070 Output: DSn = the Diskette status
55080 Info Z' is a Dwmny-Variable *'
55090 '.**_ ••• _---_ ••••••••••••_-_••• _••••••• _---_ ••••••••••••*-----_.'
55100
55110 IF NOT (AT') TH8N 55150 'if not AT, then no format fitting
55120 FKT% ~ &H17 'Set Function number for DASD Type
55130 INR% - &H13 'Call BIOS-Diskette-Interrupt 13(h)
55140 CALL IA(INR%,FKT%,FTYP%,Z%,Z%,Z\,Z%,Z',DR\,Z',Z%,Z%,Z%)
55150 INPUT "Track : ",TRACK% 'Number of Track to be formatted
55160 INPUT "Number Sectors: ",NUM% 'Number of Sectors to be installed
55170 IF NUM% > 15 TH8N 55160 'maximum of 15 sectors can be installed
55180 FOR 1% = 0 TO NUM%-1 'one entry for every Sector
55190 POK8 VARPTR(FD%[0)+I%*4,TRACK% 'Enter number of Track
55200 POK8 VARPTR(FD%[0)+I%*4+1,SIDE% 'Enter number of side
55210 POK8 VARPTR(FD%[O)+1%'4+2,1%+1 'Enter Sector number
55220 POK8 VARPTR(FD'[O)+1\'4+3,2 'format Sector with 512 Bytes
55230 NEXT 'Process Entry for next Sector
55240 DST\ = 'Function number for Formatting
55250 INR% = &H13 'Call BIOS-Diskette-Interrupt 13 (h)
55260 OfS1O\ = 0 : OFSHI\ = 0 'initialize Variables
55270 SEG% = -1 'Use BASIC OS for ES
55280 OFS1O' = VARPTR(FD\[OJ) AND 255 '10 and HI-Byte of Offset
55290 OFSHI% - INT(VARPTR(FD%[O]) / 256) 'address of Var. fD%[O)
55300 CALL IA(INR%,DST%,NUM%,OFSHI%,OFS1O%,TRACK%,Z%,SIDE%,DR%, Z%,Z%,SEG\,Z%)
55310 R8TURN 'back to caller
55320
56000 1. __ *_._ *._--------------*-----*--*._--*-----_._.-*.********,
56010 '. read a Sector and display
56020 '*---••
56030 Input: DR% the Number of the drive to be accessed
56040 SIDE% - the number of the Diskette side
56050 Output: DST% the Diskette status
56060 Info Z% is a Dummy-Variable
56070 ,** •••••••••***** ••*****.***••••• ** •••• ** •••••••••• ****.* ••• ****,

56080 '
56090 INPUT "Track :", TRACK' 'Track in which the Sector is located
56100 INPUT "Sector: ", SECTOR% 'the Sector to be filled
56110 DST% 2 'Function number for reading
56120 INR% = &H13 'Call BIOS-Diskette-Interrupt 13(h)
56130 NUM% = 1 'Read a Sector
56140 OFS1O% = 0 : OFSHI% ~ 0 'Create Variables
56150 SEG% ~ -1 'Use BASIC OS for 8S
56160 OFS1O\ = VARPTR(SECTOR%[O]) AND 255 '10 and HI-Byte of Offset
56170 OFSHI% - INT(VARPTR(S8CTOR%[0) / 256) 'addr of the Var S8CTOR%[0]
56180 CALL IA(INR%,DST%,NUM%,OFSHI%,OFSLO%,TRACK%,SECTOR%,SIDE%,DR%, Z%,Z',SEG%,Z%)
56190 IF DST% <> 0 THEN R8TURN 'on error do not output data
56200 PRINT STRINGS(80,"-");
56210 FOR 1% - 0 TO 511 'process all Bytes of the Sector read
56220 Z% = P88K(VARPTR(SECTOR%[0]) + 1%) 'get a Byte from the Sector
56230 IF Z\ - 0 THEN PRINT "<NUL>"; : GOTO 56350
56240 IF z% = 7 TH8N PRINT "<BEL>"; : GOTO 56350
56250 If' (Z% = 8) OR (Z% = 29) TH8N PRINT "<BS>"; GOTO 56350
56260 IF Z% 9 THEN PRINT "<TAB>"; : GOTO 56350
56270 IF z% 10 THEN PRINT "<LF>"; : GOTO 56350
56280 IF Z\ 11 THEN PRINT "<HCM> " ; : GOTO 56350
56290 IF Z% 12 THEN PRINT "<FF>"; : GOTO 56350
56300 IF Z% 13 TH8N PRINT "<CR>"; : GOTO 56350
56310 IF z% 27 THEN PRINT "<ESC>"; GOTO 56350
56320 IF Z% 30 THEN PRINT "<CUP>"; : GOTO 56350

308

Abacus 7.7 Accessing the Floppy Disk from the BIOS

56330 IF zt - 31 THEN PRINT "<CDN>"; GOTO 56350
56340 PRINT CHRS(Z'); 'output Byte as ASCII character
56350 NEXT 'output next Byte
56360 PRINT
56370 PRINT STRINGS(80,"-");
56380 RETURN 'back to caller
56390 ' •• _•• _•• _••• ____ • __ ._._._ •• _._._ •• ____ ._••••___ ._ •••• _**********1
57000

57010 '. Input Constants (Unit number, Diskette side, etc.) .'

57020 '*---*.

57030 Input : AT' * -1 if computer is an AT, else 0

57040 ,. Output: DR% - Number of unit to be accessed

57050 SIDE' - Number of disk. side

57060 FTYp% = Type of Disk drive

57070 1. _____ --------------_.-•• _._._ •••• _-------_._----- ••-**••••••••.

57080 '

57090 INPUT "Unit-Number (0-3) : ",DR'

57100 INPUT "Diskette side (0 or 1): ",SIDE'

57110 IF NOT (AT') THEN RETURN 'Diskette format only for AT

57120 PRINT"Formatting Parameter:"

57130 PRINT" 1 - 320/360 KB diskette in 320/360 KB Drive"

57140 PRINT" 2 = 320/360 KB diskette in 1.2 MB Drive"

57150 INPUT" 3 = 1.2 MB diskette in 1.2 MB Drive -- Please input: ",FTYP'

57160 RETURN 'back to caller

57170 '

60000 1***************** ••••••••••••••••******************•••••••_ ••••• '

60010 '. initialize the Routine for Interrupt call .'
60020 '*--*.
60030 '. Input: none
60040 ,. Output: IA is the Start address of the Interrupt-Routine
60050 ,----------------- •••• __ ._ •••_------*-*-_.-._-........ .

60060
60070 IA=60000! 'Start address of the Routine in the BASIC-Segment
60080 DEF SEG 'Set BASIC-Segment
60090 RESTORE 60130
60100 FOR It = 0 TO 160 READ X% POKE IA+I%,X% NEXT 'Poke Routine
60110 RETURN 'back to caller
60120 '
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0, :'39, 118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255

"
Structurally this program resembles the other BASIC programs which have been
presented. The main program with the input loop is in lines 300 to 540. Then
follow the individual commands of DISKMON which exist as subroutines between
lines 50000 and 57170. The subroutine for initializing the interrupt call starts at
line 60000 (the program uses this interrupt frequently).

The use of a BASIC variable as a buffer for the reading and wtiting of data is
somewhat complicated in this program. The program dimensions an integer array
with elements from 0 to 255. Since every element in this array requires 2 bytes
(for integer), the program allocates 512 bytes for a buffer. The problem arises from
the BASIC interpreter's garbage c:;ollection routine. When it removes data, which is
no longer needed, from the variable storage area, it also moves the data buffer. The

309

7. 	 The BIOS PC System Programming

address of this buffer which was supposed to be passed to BIOS is no longer valid.
Other data are now stored there.

During a write operation this wouldn't be very bad, since only false data would be
written to the disk. During a read operation this could lead to a crash of the BASIC
interpreter, since variable memory could be destroyed. To prevent this, establish
the address of the buffer variable immediately before the BIOS function call. Also,
make sure that the variables which accept this address are constantly available. For
this reason DISKMON initializes the two variables with 0 before storing the
buffer address in them. This offset address must receive the segment address of the
current BIOS function in the ES register. Since the BASIC data segment contains
the buffer address, the contents of the Data segment register DS must be passed to
ES. This is done by passing the value -1 for ES which causes the interrupt
function to copy the contents of the DS registers to ES.

Pascal listing: DISKMONP .PAS

{**.**•••*****••*****••••••**••••••**.**••••••*******•••************.*}
1* DIS K M 0 N P *'
1*---*'
{* Task : DISKMON is a small disk monitor based on *'
{* the functions of the BIOS diskette *'
{* interrupt 13 (h) *}
{*---*}
{ * Author : MICHAEL TISCHER *'
(* developed on : 7/9/87 *'
{' last update : 5/19/89 *}
{•••••••• **•••••• *****•••***.****•••••• ** •••••*****•••******•••*******)

program DISKMON;

Uses Crt, Dos; 	 (adds Crt and Dos features

type BufferTyp = array [1 •. 1] of char;
FormatTyp = record { BIOS requires this information for

Track, { every sector of
Side, { a track to be formatted
Sector,
Length byte;

end;

var 	ErrCode byte; Error status after diskette operation
Command : string[!]; { Command input by the USer
FTyp, Diskette type for formatting function
DriveNum, { Number of current drive
Side : integer; Number of the current diskette side
Dummy : integer; { Dummy variable
AT : boolean; { is the computer an AT?

{***•••••***.****** •••*****••••****•••****.*****.**.**••*********••••*}
{* RESETDISK: Reset for all attached disk drives *}
{* Input : none *}
{* Output : error status .}
{*••*****•••••** ••••****••***.**•••**.**•••****.**.*.***••************j

function ResetDisk : integer;

var Regs Registers; Register variable for interrupt call

begin
Regs.ah := 0; 1 Function number for reset is 0 }

310

Abacus 7.7 Accessing the Floppy Disk from the BIOS

intr(s13, Regs); I Call aIOS disk interrupt
ResetDisk Regs. ah; I Read error status

end;

{•••••••••••*****.****••••• *******••••••••******•••••••••••••••*******}
(* GETDISKSTATUS: reads the error status *)
(* Input : none *)
(* Output : the error status *)
f*·············· __ ·················_·················-......**•••••••• }

function GetDiskStatus integer;

var Regs : Registers; (Register variable for interrupt call)

begin
Regs.ah := 1; (Function number for error status is 1)
intr(s13, Regs); (Call aIOS disk interrupt)
GetDiskStatus :- Regs.ah; (Read error status).

end;

(-_.....--------_..._.......•••........_---------_....---------_._....)

1* READSECTORS: read a certain number of sectors *)
1* Input: see below *)
(* Output: error status *)
{*._._----_._._------*_.... _---_ .. *_._--._---_._.._..--*_._._._-------}
function ReadSectors(DriveNum, { Disk drive for reading

Side, Side or read/write head number
Track, { track to be read
Sector, { The first sector t.o be read
Number, Number of sectors to be read
SegAdr, Segment address of the buffer
OfsAdr : integer; { Offset address of the buffer
var NumRead : integer) : integer;

var Regs Registers; { Register variable for interrupt call)

begin
Regs.ah 2; { Function number for reading is 2
Regs.al Number; { Set number of sectors for reading
Regs.dh Side; { Set side number
Regs.dl DriveNum; { Set drive number
Regs.ch Track; I Set track number
Regs.cl Sector; { Set sector number
Regs.es := SegAdr; { Set buffer address
Regs.bx := OfsAdr;
intr($13, Regs); (Call aIOS disk interrupt
NumRead := Regs.al; (Number of sectors read
ReadSectors '= Regs.ah; { Read error status

end;

t······················ __ ···········_····_············************...*}
(* WRITESECTORS: Write a certain number of sectors *)
(* Input : see below *)
(* Output. : error status *)
{-_._-_ •• _------------**}

function WriteSectors(DriveNum, ! Disk drive
Side, I Side or read/write head
Track, { Track to be written
Sector, First sector to be written
Number, Number of sectors to be written
SegAdr, { Segment address of the buffer
OfsAdr : integer;! Offset address of the buffer
var NumWritten : integer} ! integer;

var Regs Registers; { Regist.er variable for interrupt call)

begin
Regs.ah :- 3; ! runct.ion number for writ.ing is 3)

311

http:Regist.er

7. The BIOS 	 PC System Programming

Regs.al .~ Number; (Set number of sectors to be read

Regs.dh := Side; (Set side number

Regs.dl .- DriveNurn; (Set drive number

Regs.ch :- Track; { Set track number

Regs.cl Sector; (Set sector number

Regs.es •• SegAdr; { Set buffer address

Regs.bx :- OfsAdi;

intr($13, Regs); Call BIOS disk interrupt

NumHritten :- Regs.al; Number of sectors written

WriteSectors •• Regs.ah; { Read error status

end:

~{-*_._._--._.._._-------**...._----_._. __ ._....-...._-*-__---_._._}
(* SETDASD: must be called for an AT before formatting to indicate *)
(* if it should be formatted with 360 KB *)

{* or with 1.2 MB *'
{* Input: see below *'
(* Output : none 	 *)
{..._..._._. __....__ ._.._. __ ._._._._......_-.__----_......_._._---}

procedure SetDasd(DiskFormat integer) ;

var Regs : Registers; (Register variable for interrupt call ,

begin
Regs.ah $17; Funct ion number
Regs.al :~ DiskFormat; {' Format
Regs.dl :~ DriveNum; (Drive number
intr ($13, Regs); 	 (Call BIOS disk interrupt

end:

{* FORMATTRACK: formats a track *)
(* Input: see below *)
(* Output: the error status *'
function FormatTrack(DriveNurn, Number of the disk drive

Side, the side or head number
Track, (Track to be formatted
Number, Number of sectors in this track
Bytes integer) : integer;

var 	Regs : Registers; (Register variable for interrupt call)
DataField array [l •• lS} of FormatTyp; (maximum 15 sectors)
LoopCnt : integer; (Loop counter ,

begin
for LoopCnt :~ 1 to Number do Create sector descriptor
begin

DataField[LoopCnt].Track :- Track; (Number of the track
DataField[LoopCnt] .Side :- Side; (Diskette side
DataField[LoopCnt].Sector 's LoopCnt; { Number of the sector
DataField[LoopCnt].Length :~ Bytes; (Number of bytes in the sector

end;
Regs.ah '= 5;
Regs.al '. Number; (Function number, Number
Regs.es seg(DataField[I]); Address of the data field in
Regs.bx ofs(DataField[I]); (registers ES and BX.~

Regs.dh := Side; (Side number
Regs.dl DriveNum; (Drive unit
Regs.ch := Track; (Set track number
intr($13, Regs); (Call BIOS disk interrupt
FormatTrack Regs. ah; (Read error status

end;

{------------._-------.---_...._.._._-----------------_._._-----------}
(* WRITEERROR: Output error message according to error value *)
(* Input: the error number *)
(* Output: none *)

312

Abacus 7,7 Accessing the Floppy Disk from the BIOS

{*._ •••••••••••••••••••• __ ._ ••••••••• _•••••••••••••• _-_ ••••••••••_._--}

procedure WriteError(ErrorNumber : integer);

begin
case ErrorNumber of

SOO (0 means no error
SOl writeln('ERROR: Invalid function number');
S02 writeln('ERROR: Address marking not found');
S03 writeln('ERROR: Write attempt on protected disk');
S04 writeln('ERROR: Sector not found');
S06 writeln('ERROR: Diskette changed');
S08 writeln('ERROR: DMA overrun');
$09 writeln('ERROR: Data transmission beyond segment border');
S10 writeln('ERROR: Read error');
S20 writeln('ERROR: Disk controller error');
S40 writeln('ERROR: Track not found');
S80 writeln('ERROR: Time out error');
else writeln('ERROR: Error ',ErrorNumber,' unknown');

end;
if (ErrorNumber <> 0) then ErrorNumber:~ResetDisk; { Reset performed J

end;

{_.......... __........._...•••......._.••............-...._.._._.._..-.

{* CONSTANTS: Input of the two constants and *J
{* diskette side or head number, as well as diskette *J
{* type for AT * J
{* Input : none * J
{* output : none * J
{••......•..••.__.....__..••••....•_.......-_..._-_....._---......._--}

procedure Constants;

begin
write('Unit-Number (0-3) : ');
readln(DriveNum); Read unit number
write ('Diskette side (0 or 1): ');
readln(Side); Read head number
if AT then { only for AT
begin

writeln('Format-Parameter: ' };
writeln(' 1 ~ 320/360-K8-Diskette 1n 320/360-KB drive');
writeln(' 2 ~ 320/360-KB-Diskette in l,2-MS drive');
write(' 3 = l,2-M8-Diskette in l,2-M8-drive -- Please input: '),
readln (FTyp)

end;
end;

{...._......_..............••.........•••......_---_ .••........•...... }

{* HELP: Display help text on the screen *J
{* Input : none *J
{* OUtput : none *J{*-*-._._--_._......_-----_.... __ ._.._._--._._._._.-.-*)

procedure Help;

begin
writeln(.13'IO'C 0 M MAN D 0 V E R V lEW');
writeln('-------------------------------');
writeln('e End');
writeln('g - Get (Read) ');
writeln('s = Sector fill');
writeln('r - Reset');
writeln('f - Format');
writeln('c Constants');
writeln('? ~ Help'.13.10);

end;

{******.* •••• ***********•••*********.**•• *******.*.*******************}
{* READSEC: Read a diskette sector and display it on the screen *J

313

http:Help'.13.10

7. The BIOS 	 PC System Programming

{* Input : none *)
{* Output : none *)
{----_ ••_-_ ••••••••••••_._•• _••••••• _._••••_••_._. __ .-•••*_•••• _••••• _}

procedure READSEC;

var 	DataBuffer : array [1 •. 512J of char; { the characters read
Track, { the track from which to read
Sector : integer; { Sector to be read

begin
write (' Track ') :
readln(Track); { Read track from keyboard)
write('Sector: ');
readln(Sector); Read sector from the keyboard
Errcode :- ReadSectors(DriveNum, Side, Track, Sector, 1,

seg{DataBuffer), ofs(DataBuffer), Dummy);

if (ErrCode = 0) then { Error occurred during reading?

begin

write('--'+

'--'}i
for Dummy:=l to 512 do { output the 512 characters }
begin

case DataBuffer[DurnmyJ of
.00 write('<NUL>'); {treat control characters separately)
t07 write('<BEL>');
.08 write (' <BS>') ;
.09 write (' <TAB>');
tlO write('<LF>');
t13 write('<CR>');
t27 write (' <ESC>') ;
else write(DataBuffer[Durnmy»; {output normal character}

end;

end:

write {t13.10'--' +

end
'--');

else WriteError(Errcode); 	 { output error message
end;

(-*-_•••••_.*_.-.-----_._._---_._._._._....--------_.---**._._._._....}
{* FORMATIT: format a certain number of sectors of a *}
{* track with 512 bytes each *}

{* Input : none *)
{* Output : none *}
{-** ••••••• _-_•• _._._._._-----_.- •• _._._•••• __ ••••• _-- ••• _._._---_.-._}

procedure Formatlt;

var 	Track, Track to be formatted
Sector integer; { Number of sectors

begin
write (' Track ') ;
readln (Track) ; I Read number of tracks from keyboard
write (' Sector: ');
readln (Sector); Read number of sectors from the keyboard }
if AT then SetDasd(FTyp); { if AT then diskette type }
WriteError(ForrnatTrack(DriveNum, Side, Track, Sector, 2»;

end;

{************************************.************** ••*·****·**·******t

{* FILLSECTOR: Fill a sector with a character *)
{* Input : none *}
{* Output : none * }
{****.**}

procedure FillSectar;

var DataBuffer : array [1 •• 512J of char; {Content of sector to fill}

314

Abacus 7.7 Accessing the Floppy Disk from the BIOS

LoopCnt, I Loop counter

Track, { Track in which the sector is located

Sector : integer; Number of sector to be filled

FillChar : char; { the fill character

begin
write (' Track ') ;
readln(Track); { Read track from keyboard
write (' Sector ') ;
readln(Sector); Read sector from keyboard
write ('Character: ');
readln(FillChar); \ Read the fill character from the keyboard
for LoopCnt :- 1 to 512 do
DataBuffer[LoopCntI := FillChar; Fill buffer with characters

WriteError(WriteSectors(DriveNum, Side, Track, Sector, 1,
seg(DataBuffer), ofs(DataBuffer), Dummy));

end;

{** ••••**********•••••************** ••••••••••**.*************••••****}
** MAIN PROGRAM **)
{*****.************.**••••••• *********•••••**.************•••*********}

begin
clrscri (Clear screen
textbackground(7); (light background
text color (0) ; (dark characters
writeln(' DISKMON: (c) 1987 by Michael Tischer '+ \ Headline

? = Help ');

textbackground(O); I dark background

text color (7); (light text

window (1, 2, 80, 25); (only first line does not belong to window

DriveNum := 0; I Indicate unit 0 as constant

Side := 0; (Side a as constant

FTyp :- 3; 1.2 MB diskette in 1.2 MB unit

if mem[SFOOO:SFFFEI = SFC then AT : = true (test if AT or

else AT := false; (PC or XT

WriteError(ResetDisk); perform Reset

repeat

repeat

write ('DISKMON>'); (output prompt

readln(Command); (Read command from keyboard

unt il (Command <> ");

case (Command [11) of

I?' : Help; \1 display help text

'r' WriteError(ResetDisk); (r perform reset

's' FillSector; (s fill a sector

, f' Format It; (f format a track

'g' READSEC; (g read a sector

Ie': Constants; (c input constants

else if Command <> 'e' then writeln('unknown command');
end;

until (Command = 'e'); (e end program)
end.

The DISKMON in Pascal and the following version in C strongly resemble each
other. Both have the input loop inside the main program and the individual
commands placed in procedures or functions outside the main program. Unlike the
BASIC version of DISKMON, a difference exists between the DISKMON
commands and the BIOS function call. They are stored in separate program
sections. This has the advantage that the BIOS function calls can be easily
transferred as stand alone modules to other programs.

Problems with addressing the data buffer don't exist in C or in Pascal as they do in
BASIC. The buffer is a local variable.

315

7. The BIOS PC System Programming

There are two small differences between the C and Pascal versions. They are in the
screen display and the administration of constants for unit number, disk side, etc.
While the Pascal version defines these as global variables, the C version defines
them as local variables within the mainO program area.

C doesn't allow easy window defmition for performing tasks. This is why the C
version of DISKMON doesn't use the flTSt screen line as a status line to output a
copyright notice and cali the Help command.

C listing: DISKMONC.C

1**/
1* DIS K M 0 N C *1
1*--*1
1* Task : DISKMON is a short disk monitor program, *I
1* using BIOS interrupt 13(h) functions *1
1*--*1
1* Author MICHAEL TISCHER *1
1* Developed on : 08/15/1987 *1
1* last update : 06/08/1989 *1
1*--*1
1* (MICROSOFT C) *I
1* Creation : CL lAS DISKMONC.C *1
1* Call : DISKMONC *1
1*--*1
1* (BORLAND TURBO C) *1
1* Creation Make sure Case-sensitive link is OFF before *1
1* compiling & linking *1
1* Select Compile/Make or RUN (no project file) *1
/********************••****************.******************•••**********/

1*== Add include files ========---========================-=--=-======*1

finclude <dos.h>
finclude <stdio.h>
finclude <ctype.h>

1*== Typedefs ===========-- ----======================-----==--====---*1

typedef unsigned char byte; 1* Create a byte *1

1*== Constants =====================-------=-----~====-==============*I

'define FALSE 0 1* Constants to make reading the *1
'define TRUE 1 1* source code easier *1

'define NUL 0 /* null character */
'define BEL 7 /* bell character code */
'define BS 8 /* backspace character code */
'define TAB 9 /* tab character code */
'define LF 10 /* linefeed character code */
'define CR 13 1* Return key code */
'define EF 26 1* End of file code */
'define ESC 27 1* Escape code */

1*""''''' Macros ~-------------==-=-=-=--======-----~----* /

.ifndef MK FP 1* MK_FP still undefined? */

'define MK FP (s,o) «void far *) « (unsigned long) (s) «16) I (0»)

'define peekb(a,b) (*«byte far *) MK_FP«a), (b»»

'endif

/*-- The following macros state the offset and segment addresses of --of
/*-- any pointer ---*1

316

Abacus 	 7.7 Accessing the Floppy Disk from the BIOS

fdefine GETSEG (p) «unsigned) « (unsigned long) «void far *) p)) » 16))
'define GETOFS (p) «unsigned) «void far *) p))

/* -- Function declarations --*/
byte DRead (byte, byte, byte, byte, byte, byte far *);
byte DWrite(byte, byte, byte, byte, byte, byte far *);

/*-- Structures ----------=---=-------====--=--------=-====-=-=-------*/
struct ForrnatDes (/* Describes format of a sector */

byte 	Track,
Side,
Sector, /* logical sector number */
Length;

) ;

I-***k*-----*----**--*-*----*--*-*-***-*-*-*--****-*-* -*---*-*-*-**-*--/
/* RESETDISK: Reset all drives connected to system */
/* Input : none */
/* Output : error status */
I_W*kkWkk __ * _______ *_****_*_*_*** ____ **_***_* ____ *_*_***kk***k*kkkk* ___ /

byte ResetDi sk ()

union REGS Register; /* Register variable for interrupt call */

Register.h.ah - 0; /* Function number for reset - 0 */

Register.h.dl = 0; /* Reset disk drives */

intS6(Ox13, &Register, &Register); /* Call BIOS disk interrupt */

/* printf("Result: %d\n", Register.h.ah); */
return(Register.h.ah); /* Return error status */

)

I_W**kW*k ______ *_* __ * _______ * __ **_** _____ **_** __*** __ *kk*k**kkkkkk*k ___ /

/* WDS: Display status of the last disk operation */
/* Input : see below */
/* Output : TRUE if no error, otherwise FALSE */

/*-*-*----*----*-**--*********-------*------_ ..._------_._._-----------/
b~e WDS(Status)

byte Status; /* Disk status */

(

if (Status) 	 1* Error occurred? *1
(/* YES */

printf ("ERROR: ");

switch (Status) /* Display error rnsg */

case OxOl printf (tlFunction number not perrnitted\n");

break;

case Ox02 printf ("Address marking not found\n") ;

break;

case Ox03 printf("Disk is wri te-protected\n"} ;

break:

case Ox04 printf("Sector not found\n");

breaK;

case Ox06 printf("Disk changed\n");

break;

case OxOS print! ("DMA overflow\nll);

break;

case Ox09 print f ("Data transfer past segment limit\n") ;

break;

case OxlO printf ("Read error\n ll);

break;

case Ox20 print f ("Disk controller error\n II) ;

break;

case Ox40 printf ("Track not found\n U);

break;

317

http:return(Register.h.ah
http:Register.h.ah
http:Register.h.dl
http:Register.h.ah

7. TheBIOS 	 PC System Programming

case OxBO printf("Time OUt error\n");

break;

case Oxff printf("Illegal parameter\n");

break;

default printf("Error %d unknown\n", Status);

I

ResetDisk (); 	 1* Execute reset on error *1
I

return (! Status);
I

,*******.***********************************••*************************/
1* DREAD: Read specified sector from disk *1
1* Input : see below *1
1* Output : error status *1
/************************** ••••*****************.**********************/

byte DRead(Drive, Side, Track, Sector, Number, Buffer)
byte 	Drive, 1* Drive number *1

Side, 1* Disk side or read-write head number *f
Track, f* Track number *f
Sector, 1* First sector to be read *f
Number, f* Number of sectors to be written *f
far * Buffer; f* FAR pointer to a byte vector *f

union REGS Register; f* Register variable for interrupt call *f
struct SREGS SRegs; f* Variables for segment register *f

Register.h.ah - 2; f* Function no. for read is 2 *f
Register.h.al Number; 1* Number in AL register *f
Register.h.dh Side; f* Side in DH register *f
Register.h.dl Drive; f* Drive number in DL *f
Register.h.ch - Track; f* Track in CH register *f
Register.h.cl - Sector; f* Sector in CL register *f
Register.x.bx - GETOFS (Buffer); f* Offset address of buffer *1
SRegs.es - GETSEG(Buffer); f* Segment address of buffer *1
intB6x(Ox13, &Register, &Register, &SRegs);
return(Register.h.ah); f* Return error status *f

}

/*****.**.*****.*****************/
1* DWRITE: Write to the specified number of sectors *f
f* Input : see below * f
f* Output : error status *1
/*************** •••*******************.***************.*********••*****/

byte DWrite(Drive, Side, Track, Sector, Number, Buffer)
byte 	Drive, f* Number of drive to be accessed *f

Side, f* Disk side or number of read-write head *f
Track, f* Track number *f
Sector, 1* First sector to be written *f
Number, f* Number of sectors *f
far * Buffer; f* FAR pointer to a byte vector *f

union REGS Register; f* Register variable for interrupt call *f
struct SREGS SRegs; f* Segment register variables *f

Register.h.ah = 3; f* Function no. for write is 3 *f
Register.h.al - Number; /* Number in AL register *f
Register.h.dh Side; f* Side in DH register *f
Register.h.dl - Drive; f* Drive number in DL *1
Register.h.ch Track; /* Track in CH register *f
Register.h.cl - Sector; 1* Sector in CL register *f
Register.x.bx - GETOFS(Buffer); 1* Offset address of buffer *f
SRegs.es = GETSEG(Buffer); f* Segment address of buffer *f
intB6x(Ox13, &Register, &Register, &SRegs); f* BIOS disk into call *f
return(Register.h.ah); f* Return error status *f

I

318

http:return(Register.h.ah
http:SRegs.es
http:Register.x.bx
http:Register.h.cl
http:Register.h.ch
http:Register.h.dl
http:Register.h.dh
http:Register.h.al
http:Register.h.ah
http:return(Register.h.ah
http:SRegs.es
http:Register.x.bx
http:Register.h.cl
http:Register.h.ch
http:Register.h.dl
http:Register.h.dh
http:Register.h.al
http:Register.h.ah

Abacus 7.7 Accessing the Floppy Disk from the BIOS

/**/

1* FORMAT: format a track *1
1* Input see below *1
1* Output error status *1
1* Info BYTES parameter gives the number of bytes in the for- *1
1* matted sector. The following codes are allowed: *I
1* 0 = 128 bytes, 1 = 256 bytes *I
1* 2 = 512 bytes, 3 = 1024 bytes * I
1-**··_·_·_·_·_·_·_-*-*_·_-*-*·_--------*-*-----------....*------*--**-/
byte Format (Drive, Side, Track, Number, Bytes)
byte Drive,

Side, 1* Side/head number *1
Track, 1* Track to be formatted *1
Number, 1* Number of sectors in this track *1
Bytes; 1* Number of bytes per sector *1

union REGS Register; 1* Register variable for interrupt call *1
struct SREGS SRegs; 1* Segment register variables *1
struct FormatDes Formate[15j; 1* Maximum of 15 sectors *1
byte i; 1* Loop counter */

if (Number <= 15) 1* Is number o.k.? *1
{

for (i = 0; i < Number; i++) 1* Set sector descriptor *1
(
Formate[ij.Track = Track; 1* Track number *1
Formate[ij .Side = Side; 1* Disk side *1
Formate[i] . Sector = i+1; 1* Sector increments by 1 *1
Formate[i].Length = Bytes; 1* Number of bytes in sector */

)

Register.h.ah = 5; I' Function number for formatting *1
Register.h.al Number; 1* Number in AL *1
Register.h.dh Side; 1* Side number in DH *1
Register.h.dl Drive; 1* Drive in DL *1
Register.h.ch = Track; 1* Track number in CH *1
Register.x.bx GETOFS (Formate); 1* Offset addr. of table *1
SRegs.es-GETSEG(Formate); I' Segment address of buffer *1
int86x(Ox13, 'Register, &Register, &SRegs); 1* Call BIOS disk intr.'1
return(Register.h.ah); 1* Return error status *1

}
else return(OxFF); 1* Illegal parameters *1

}

/-*-----_.._._---_._.*---------*------****._._-*-*.-.--_._.._._---**---/
1* CONSTANTS Change drive number, disk side and disk type *1
1* (PC/XT or AT) *1
1* Input see below *1
1* Output none *1
j----**-*---*--_ ..._._._._--------***_._._....._---_.----------*_._._--/
void Constants(Drive, Side, FTyp, AT)
byte *Drive, 1* Pointer to drive variable *1

·Side, 1* Pointer to side variable *1
FTyp, 1* Disk drive type *1
AT; 1* TRUE if computer is an AT *1

printf ("Drive number (0-3): ");
scanf(U%d", &Drive); 1* Read drive number *1
printf ("Disk side (0 or 1): ");
scanf ("%d", 'Side); 1* Read head number *I
if (AT) 1* Used only by ATs *1

(
printf('IFormat parameter:\n");
printf(" 1 320/360K diskette in 320/360K drive\n");

printf(" 2 320/360K diskette in 1.2MB drive\n");

printf(" 3 1.2MB diskette in 1.2MB drive - please enter choice: ");

319

http:return(Register.h.ah
http:Register.x.bx
http:Register.h.ch
http:Register.h.dl
http:Register.h.dh
http:Register.h.al
http:Register.h.ah

7. The BIOS 	 PC System Programming

scanf ("'d", &FTyp);
)

/**********.~******.********************.******************************'
1* HELP: Display help screen *1
1* Input : none *1
1* Output : none *1
/**.***********/

void Help ()

printf ("\nDISKMON (c) 1987 by Michael Tischer\n\n");

printf ("C 0 M MAN D 0 V E-'R V I E W\n");

printf("-------------------------------\n");

printf (" [E/e) End\n");

printf("[G/g] - Get (read)\n");

printf (" [Sis] - Fill a sector\n");

printf (" [R/r] Reset \n");

printf (" [F/f] Fonnat\n");

printf (" [C/c] - Constants\n");

printf (" [?] - Help\n\n");

)

/**************.******•••••••*********••• ** •••*************************/
1* GET Read a disk sector and display it on the screen * I
1* Input : none *1
1* Output : none *1
/**/

void ReadSector(Drive, Side)
byte Drive; 1* Drive number *f
byte Side; f* Disk side number *f

byte Buffer[512]; 	 f* Contents of filled sector *f
int 	 i, f* Loop counter *f

Track, f* Track in which filled sector lies *f
Sectori f* Number of sector to be filled *1

printf("Track : ..);

scanf(U'd", 'Track); f* Read track number from keyboard *f

printf ("Sector: ");

scan! ("\dlt , &Sector); f* Read sector number *f

if (WDS(DRead(Drive, Side, Track, Sector, 1, Buffer»)

(

printf("--"):

printf{"--");

for (i - 0; i < 512; i++) f* Display characters read from disk *f

switch (Buffer[i]) 	 1* ASCII code conversion *f

(

case NUL printf ("<NU1.>");

break:

case BEL printf ("<BE1.>");

break:

case BS p!'intf ("<BS>");

break;

case TAB printf ("<TAB>U);

break;

case LF print! (II<LF>");

break:

case CR printf ("<CR>");

break:

case ESC printf ("<ESC>");

break:

case EF : printf ("<EOF>");

break:

default : printf ("'e", Buffer[i]) ;

)

320

Abacus 	 7.7 Accessing the Floppy Disk from the BIOS

printf("\n--");
printf("--\n");

)

,.****•• ***••***•• ** •••••••••••• ** ••••• ** ••••••••••••• *** •••****.****.*,

j.****************.**••••••• *****••••••••••*** ••• ***••*********••******/

1* FORMAT: Format a specified number of sectors in a track with *1
1* 512 bytes *I
/* Input : none *1
/* Output : none *1

void Format It (Drive, Side, AT, FTyp)

byte 	Drive, 1* Drive number *1
Side, 1* Disk side number *1
AT, 1* TRUE if computer is an AT *1
FTyp; 1* Disk drive type *1

int 	 Track, 1* Track to be formatted *1
Number; 1* Number of sectors to be formatted *1

printf ("Track ") ;
scanf(n\d", &Track); 1* Read track number from keyboard *1
printf ("No. of sectors ") ;
scanf ("%d", &Number); 1* Read number of sectors *1
if (AT) 1* Is computer an AT? *1

(

union REGS Register; 1* Register variable for interrupt call *1

Register.h.ah - Ox17; 1* Function no. for set DASD-Type *1

Register.h.al FTyp;

Register.h.dl Drive;

int86 (Ox13, &Register, &Register); /* Call BIOS disk interrupt *1

I
WDS(Format(Drive, Side, Track, Number, 2, AT, FTyp»;

)

j**. *****************/
1* FILL Fill a sector with a character *1
/* Input : see below */
1* Output : none *1
/*****************************••**********************************••***/

void FilUt (Drive, Side)

byte Drive: /* Drive number */

byte Side: /* Disk side number */

byte Buffer [512J; /* Contents of sector to be filled */
int 	 i, /* Loop counter */

Track, /* Track in which the sector lies *1
Sector; /* Number of sector to be filled *1

char Character; 	 /* Fill character *1

printf ("Track ");

scanf("\d", &Track); /' Read track number from keyboard */

printf ("Sector ");

scant (H%d", &Sector); /* Read sector number from keyboard * /

printf ("Fill char. ") ;

scant ("\r%c", &Character); / * Read fill character from keyboard * /

for (i : 0; i < 512; Buffer[i++j : Character)

WDS (DWrite (Drive, Side, Track, Sector, 1, (byte far *) Buffer»;
J

/**/
/*~ MAIN PROGRAM **1
/**/

321

http:Register.h.dl
http:Register.h.al
http:Register.h.ah

7. TheBlOS 	 PC System Programming

void main()

int 	 Drive, 1* Drive *1
Side, 1* Disk side *1
FTyp; 1* Disk and disk drive format *1

byte AT; 1* Computer type (AT or PC/XT) *1
char Entry; 1* Accept user input *1

Drive - Side - 0; 1* Default of drive 0, side 0 *1
FTyp - 3; 1* 1.2-MB diskette in 1.2-MB disk drive *1

1*-- Read PC type from location in ROM-BIOS -------------------------*1

AT - «(byte) peekb(OxFOOO, OxFFFE» -- OxFC) ? TRUE: FALSE;
printf("\n\nDISKMON (c) 1987 By Michael Tischer\n\n");
WDS(ResetDisk(»; 1* Execute reset first *1
do

I
printf("? = Help> .); 1* Display prompt *1
scanf("\r \lc", &Entry); 1* Get user input *1
switch(Entry = toupper(Entry» 1* Execute command *1

(

case I? • Help() ; 1* Display help screen *1
break;

case 'R' WDS(ResetDisk(»; 1* Execute reset *1
break;

case 's' Filllt(Drive, Side); 1* Fill a sector *1
break;

case 'F' Formatlt(Drive, Side, AT, FTyp) ;
break;

case 'G' ReadSector(Drive, Side); 1* Read sectors *1
break;

case 'C' Constants (&Drive, &Side, &FTyp, AT);

break;

default if (Entry != 'E') printf("Unknown command\n");

)

)

while (Entry != 'E'); 1* "EW or "e" ends program *1

}

322

Abacus 	 7.8 Accessing the Hard Disk from the BIOS

7.8 Accessing the Hard Disk from the BIOS

The original XT models included 10 megabyte hard disks. Hard disk drives are now
the mass storage device of choice on PCs, with the floppy disk running a close
second. However, the two devices have many features in common.

Like the floppy disk, a hard disk consists of magnetized plates, also called disks,
which can store data as magnetic impulses. Unlike the floppy disk, a hard disk
contains several of these disks. The plates in a hard disk can store data on both
sides, and therefore must have a read/write head above and below each disk for
reading and writing data.

Hard disk format

Hard disk formatting is similar to that of a floppy disk: Each disk is divided into
tracks which have sectors within them. A cylinder consists of all sectors which can
be accessed without moving the read/write heads. In other words, the heads remain
stationary within one cylinder while the disk moves beneath them. Moving the
heads to another set of tracks accesses another cylinder. Every cylinder contains the
same number of sectors, which in turn contain a constant number of bytes.

Partitions

The hard disk has another division beyond track, sector and cylinder levels:
Partitions allow you to configure parts of a hard disk for different operating
systems. Although you can format a disk according to one operating system and
use that operating system exclusively, hard disks allow you to store several
operating systems at once. You can allocate the number of cylinders needed for
each operating system when formatting a hard disk. The first sector of the hard disk
contains the information about this memory allocation. This information includes
data about the beginning of each partition and its size, as well as which operating
system lies in this partition (e.g., DOS has code 1). It also records which
operating system is active and which operating system should be started during the
system boot

XT and AT models can control hard disks capable of storing 10 megabytes, 20
megabytes, 40 megabytes and more. Both hard disks have 2 disks (4 sides)
(numbered 0 through 3) and accept 17 sectors per cylinder of 512 bytes each. The
difference in capacity lies only in the number of cylinders. The XT hard disk has
306 cylinders numbered from 0 to 305 on each side of its disk medium; the AT has
615 cylinders numbered from 0 to 614 on each side of its disk medium. The XT
hard disk has a minimum capacity of 10.16 megabytes and the AT hard disk a
minimum capacity of 20.41 megabyte.

Note: 	 Exercise extreme caution when using the BIOS hard disk access
functions. Unlike a disk drive which you can test out with an unused
disk, you can't do the same with a hard disk. Careless use of the
Write or Formatting function could lead to irretrievable data loss. If

323

7. TheBIOS PC System Programming

you plan to try these functions, back up the entire hard disk ~
you try these functions.

BIOS accesses the hard disk through interrupt 13H-the same interrupt used for
floppy disk access. The individual functions are identical for hard disk and floppy
disk drives, but hard disk control is very different from floppy disk drive control.
BIOS uses different modules for controlling the hard disk and disk drives. When
you call interrupt 13H, it accesses the hard disk routine ftrst. This routine tests
whether the hard disk or floppy disk drive should be addressed, based on the device
number in the DL register. If the hard disk is involved, it calls the proper routine
in the hard disk module. On the other hand, if the floppy disk drive should be
addressed, another module must be called by calling interrupt 40H, which points to
the old disk interrupt 13H.

All hard disk functions share the condition that after the function call they use the
carry flag to signify whether they could perform their task or if an error occurred. If
this is the case, the carry flag sets and an error code passes to the AH register. The
individual codes have the following meanings:

OIH Addressed unavailable function or drive
02H Address marking not found
04H Sector not found
OSH Error during controller reset
07H Error durinq controller initialization
09H DMA transmission error: S~ment border crossed
OAH Sector defective
lOH Read error
llH Read error corrected with ECC
20H Controller defect
40H Search operation failed
SOH Drive does not respond (Time out)
AAH Drive not rea<!y
CCH Write error

When anyone of these errors occur except error 01, execute a reset and try calling
the function again. Most of the time the error won't recur.

~ore about errors

If error IIH occurs during the read function, the data read in may not actually be
defective. This error indicates that a read error occurred, but that it could be
corrected with the help of the ECC (Error Correction Code) algorithm. This
procedure is similar to the CRC (Cyclic Redundancy Check) process used in the
disk drives. A complicated mathematical formula adds the individual bytes of a
sector. The result of the process goes to the disk in the form of a sector plus four
bytes. Ifa read error occurs, it can be corrected within certain limits with the help
of the stored ECC results.

324

Abacus 7.8 Accessing the Hard Dislcfrom the BIOS

The use of processor registers for data transmission becomes another parallel
between the hard disk and floppy disk functions. The function number passes to
the AH register. If the program requires the number of the hard disk to be
addressed, it always passes to the DL register. The value 80H always stands for the
first hard disk, and 81H f<r the second hard disk. The number of the read/write head
(and indirectly of the disk addressed) passes to the DH register. The CH register
accepts the cylinder number. Remember that a 10 megabyte hard disk has more
than 306 cylinders. Since this 8-bit register can only address 256 cylinders at a
time, this register alone isn't enough to indicate the cylinder number.

For this reason bits 6 and 7 of the CL register help indicate the cylinder number.
They form bits 8 and 9 of the cylinder number, permitting an addressable range of
1,024 cylinders (0-1,023). Bits 0 to 5 of the CL register provide the number of the
sector to address (they are numbered from 1 to 17 in each cylinder). If you attempt
to access several sectors at a time, the numbers of these sections pass to the AL
register. During read/write operations a buffer address must be indicated from which
data can be read or to which data can be transferred. In such a case, the ES register
passes the segment address and the BX register the offset address of this buffer.

Function OOH: Reset

Function OH resets the controller without the need of any other parameters. After
an error occurs, this function should always be called before the next data access.
The information from the hard disk on which the execution of the reset is based
passes to the DL register.

Function 01 H: Status

Function 01H reads the hard disk drive status (this status is indicated after every
hard disk operation). The number of the drive whose status should be read must be
stored in the DL register.

Function 02H: Read sector

Function 02H reads one or more sectors. A single call of this function can read up
to 128 sectors. This limitation occurs because the hard disk controller transfers data
directly into RAM through the DMA. The DMA chip can only transfer a
maximum of 64K at a time, in one memory segment at a time. For this reason, it
is important that the complete buffer whose address passes to ES:BX fits into the
64K starting with the segment address in ES. Otherwise the DMA chip may report
an error.

This function initially reads all sectors in numerical order within the cylinder
indicated, using the read/write head indicated. Once the function reads the last sector
of a cylinder, and/additional sectors should be read, reading continues with the first
sector of the same cylinder, but using a different read/write head. After the function

325

7. TheB/OS PC System Programming

accesses the last read/write head and additional sectors still remain, the read process
continues in the first sector of the following cylinder on the fIrst read/write head.

Function 03: Write sector

Function 03H writes one or more sectors. A single call of this function can write
data in up to 128 sectors. This limitation is also caused by the DMA (see function
02Habove).

This function initially writes all sectors in numerical order within the cylinder
indicated, using the read/write head indicated. Once the function writes to the last
sector of a cylinder, and additional sectors should be written, writing continues
with the first sector of the same cylinder, but using a different read/write head.
After the function reaches the last read/write head and additional sectors still
remain, the write process continues in the first sector of the following cylinder on
the f1T8t read/write head.

Function 04H: Verify

Function 04H verifies the different sectors of a cylinder. No comparison occurs
between the data on the disk and the data in memory (no buffer address needed in
ES:BX). ECC numbers verify whether the bytes stored return the same results after
processing through the ECC algorithm. The AL register indicates the number of
sectors to be verified.

Function 05H: Format

Function 05H formats the hard disk. Before a hard disk can be accessed it must be
formatted. Similar to the function used for formatting a disk, this function must
know the read/write head and cylinder number. In addition, it must pass the address
of the buffer to the register pair ES:BX. This buffer must be 512 bytes long, even
if the function only accesses the first 34 bytes. It contains two bytes for each of
t~e 17 sectors to be formatted. The first byte indicates whether the sector is in
good condition. Assuming that every sector is in good condition, the value 0 is
entered into this byte. The second byte accepts the logical number which should be
assigned to the current sector. BIOS takes information from the first two bytes in
the table about the first physical sector of the cylinder. Bytes 3 and 4 supply
information about the second physical cylinder. Once the physical series has
already been determined, the logical sequence of the sectors can be set through 2
bytes of a sector indication in this table.

The numbers differ between a logical sector and its respective physical sector. This
shift in logical sectors, called sector interleaving, help optimize access time on a
hard disk.

326

Abacus 7.8 Accessing the Hard Disk from the BIOS

The average hard disk rotates at 60 revolutions per second. This means that the
next physical sector appears under the read/write head every thousandth of a second.
The hard disk controller is incapable of transferring the 512 bytes of the sector
previously read into the PC's memory. For this reason, the logical sectors shift in
relation to the physical sectors, so that the next logical sector only appears under
the read/write head after the hard disk controller completes the transmission of the
last sector.

The interleave factor, i.e., the number of sectors by which the logical sectors shift
in relation to the physical sectors, depends on the relationship betw.een the speed at
which the hard disk revolves, and the processing speed of the hard disk controller.
For example, if the interleave factor is 6, this means that for every sector read, a
"jump" of 5 sectors takes place before the next logical sector follows. The closer
this factor comes to 1 (in which case the physical and logical sectors are identical),
the faster the hard disk and the closer the transmission speed comes to the physical
limit.

While XT hard disks operate with an interleave factor of 1:6, AT hard disks are
twice as fast, with an interleave factor of 1:3. The effects of the interleave factor
and the relationship between logical and physical sectors can be seen in the
following table:

AT: physical logical XT: physical logical

sector sector sector sector

1 1 1 1

2 7 2 4

3 13 3 7

4 2 4 10

5 8 5 13

6 14 6 16

7 3 7 2

8 9 8 5

9 15 9 8

10 4 10 11

11 10 11 14

12 16 12 17

13 5 13 3

14 11 14 6

15 17 15 9

16 6 16 12

17 12 17 15

During a function call, BIOS enters a value into the first byte of a sector marker
which tells the calling program whether or not the sector is OK. The value 0
means OK, and the value 128 means a magnetization error occurred. Besides the

327

7. TheBIOS 	 PC System Programming

registers mentioned above, the AL register accepts the number of sectors to be
processed. Since the cylinders of the AT and XT hard disks have 17 -sector formats,
the AL register should contain the value 17 during the call of this function.

Function OSH: Check disk specs

Function OSH, passing the number of the hard disk: in the DL register, checks hard
disk specifications. This is important for examining hard disks with unusual
fonnats.

Mter the function call the DL register contains the number of attached hard disks.
This number can be 0, 1 or 2. In addition, the DH register contains the number of
read/write heads. Since the read/write head count always staI1$ at 0, a value of 7
means that S heads are available. The CL register (bits 0-7 of the cylinder number)
and the upper two bits of the CH register (bits 8 and 9 of the cylinder number)
indicate the number of cylinders. The counting here also starts at O. The last
information is found in the lower 6 bits of the CH register. It shows the number
of sectors per cylinder, where the counting begins at 1 (an exception to the rule,
since the other counts in this function begin with 0).

When a user interfaces a foreign hard disk to a PC, the BIOS must know the
characteristics of this hard disk to perform correct access. For this reason it uses
interrupt 41H for hard disk: 0 and the interrupt 46H for hard disk: 1 as pointers to a
table. This table has a format prescribed by BIOS and describes the attached hard
disk drive. BIOS stores a whole series of tables so that BIOS can adjust itself
properly during the system boot from the booting hard disk: drive.

Note: 	 If the hard disk: is already in the Pc and functions properly. do not
attempt to access the hard disk description table, since the hard disk:
could be damaged.

A table must be constructed in RAM for foreign hard disk: interfacing, and interrupt
vectors 41H or 46H must point to this table. In addition, function 9 must
configure BIOS to use this table. The number 9 declares the function. The number
of the drive (80H or 81H) is loaded into the DL register. You may never have to
use this complicated function: Most hard disk manufacturers include a
configuration program which performs the same task. Check the documentation
which came with the hard disk: for the parameters needed for the hard disk
description table.

Function OAH: read ECC
Function OBH: Write ECC

Functions OAR and OBH are additional read/write functions. They differ from
functions 2 and 3 in that they read and write the four ECC bytes at the end of each
sector in addition to the 512 bytes of data. Because of this, every sector has 516

328

Abacus 	 7.B Accessing the Hard Diskfrom the BIOS

bytes instead of 512 bytes, and only 127 sectors can be read or written at one time,
instead of 128 as in functions 2 and 3.

Function 	OBH: Recallbrate

Function OBH recalibrates one of two hard disks. It also returns the error status,
passing the error number to the DL register.

Function 1 OH: Check ready status

Function 10H tests whether or not the hard disk whose number is in the DL
register is currently prepared to execute commands. If the carry flag is set on the
return of this function, the hard disk isn't ready. An error code passes to the AH
register.

Function 14H: Self test

Function 14H forces the controller to perform an internal self test. If the controller
is OK, it returns with a reset carry flag.

Function 15H: Check drive type

Function 15H determines the type of drive. The number of the drive (80H or 81H)
passes to the DL register. If the drive is unavailable, it returns the value 0 in the
AH register after the function call. If the AH register contains a value of 1 or 2,
the device indicated is a floppy disk drive. The value 3 indicates a hard disk. If this
is the case, the ex and DX registers contain the number of sectors on this hard
disk. The two registers form a 32-bit number (the ex register contains the upper
16 bits, and the DX register the lower 16 bits).

Note: 	 We chose not to include demonstration programs in this section,
because accessing a hard disk without proper knowledge can have
serious consequences. While floppy disk drive access can be practiced
with an unused or empty disk without worrying about damage, you
only get one hard disk with a PC. One small mistake during access
could destroy all data on a hard disk.

Avoid hard disk access using BIOS functions unless absolutely necessary. Leave
these tasks to DOS functions as much as possible.

329

7. TheBIOS PC System Programming

7.9 Accessing the Serial Port from the BIOS

Computers in every part of the world communicate with each other and exchange
data. Most of the time these computers use normal telephone lines for this
communication. Phone lines only permit slow data transfer, but allow users to
communicate from almost anywhere on the planet. Data transfers serially (i.e., one
bit at a time), while the sender and receiver maintain similar transfer protocols
(parameters for data transfer).

Serial card

Since basic PC configurations aren't equipped for this type of data transmission,
data transfer is only possible when the user adds an asynchronous communication
port (IBM's catch phrase for an RS-232 card, or serial interface card).

This type of card enables data transfer between two computers direct through a
cable or through phone lines. Both the sender and receiver require a modem to
communicate using the latter method. Modems convert computer signals into
acoustical signals which can then be transmitted over telephone lines.

In addition to hardware, data communication requires software which controls the
RS-232 card. BIOS offers this software in four functions called by interrupt 14H.
Before discussing these functions in detail, let's examine data transfer protocol.

Direction of data flOW.

LSB MSB

logical 1 bit

logical 0

1, 1.5 or 2
stopblts

r---------, Start bit of
next character

Asynchronous transmission protocol

330

Abacus 7.9 Accessing the Serial Port from the BIOS

Word length

As the figure above shows, only the two line states, 0 and 1 (also called high and
low) are important The line remains high if no data transmission takes place. If
the line's state changes to low, the receiver knows that data is being transmitted.
Between 5 and 8 bits transfer over the line, depending on the word length.
Unfortunately the BIOS functions only support a word length of 7 or 8 bits. If the
line is low during data transmission, this means that the bit to be sent is O. High
signals a set bit. The least significant bit is transferred first, and the most
significant bit of the character to be transmitted is transferred last.

Parity

The character can be followed by a parity bit which permits error detection during
data transmission. Parity can be even or odd. For even parity, the parity bit
augments the data word to be transmitted, so that an even number of bits results.
For example, if the data word to be transmitted contains three bits set to 1, the
parity bit becomes 1 so that the number of 1 bits increments to four, making an
even number. If the data word contained an even number of 1 bits, the parity bit
would be zero. For odd parity the parity bit is set in such a manner that the total
number of 1 bits is odd.

Stop bits

The stop bits signal the end of the transmission of data. Data transmission
protocol permits 1, 1.5 and 2 stop bits. Some users are confused about the option
of working with 1.5 stop bits, since some believe that you can't divide a bit. The
explanation for this paradox comes from the data transmission protocol.

Baud rate

Old standards dictate that data transfers at a mte of 300 baud (about 300 bits per
second), and one stop bit The signal for a 1 bit and the signal for a 0 bit are both
events. Binary bits when transmitted in an analog environment such as phone lines
may not be identical with baud mtes. Since stop bits always have the value 1, the
line would be high for 1/300 second. If instead you keep the line high for 1/200
second, 1.5 bits are transmitted. The line remains high until a new chamcter
transfers and sets the line transmitting the start bit to low.

Some interfaces work with negative logic. In such a case the conditions for 0 and 1
in the illustration above must be reversed. This doesn't change the basic principle
of serial transmission.

Protocol settings

Data transmission only works if the sender and receiver both match various
protocol parameters. First the baud rate (the number of bits transmitted per second)
must be set The standard baud mtes for data exchange over voice telephone lines
are 300, 1200 and 2400 baud. These baud mtes depend on the capabilities of the

331

7. TlleBlOS PC System Programming

modem in use. For a dedicated (data only) telephone line or for direct data
transmission through a cable, speeds up to 9600 baud are possible. Up to 80 bytes
per second or 4800 bytes per minute can be transmitted at 9600 baud.

The word length depends on the data being transmitted. If the data consists of
nonnal ASCII characters, a 7-bit word is enough, since the ASCII character set has
only 128 characters. If the data encompasses the complete PC set of 256
characters, 8-bit words are more practical.

Next the necessity of a parity check should be determined, and whether even or odd
parity should be used. In most cases parity checking is recommended, since phone
lines do not always transmit all data correctly. The parity selected is unimportant,
as long as both sender and receiver select the same parity.

The number of stop bits must be defined. One stop bit transmits successive
characters faster than a setting of two stop bits. On the other hand, two stop bits
increase the reliability of transmission.

Sample protocol

The following illustration shows a sample transmission of an "A" character with a
protocol of 8 data bits, odd parity and one stop bit. Positive logic and a 300 baud
transmission rate are assumed. Since the ASCII code of the "A" character is 65
(OI00000I(b» and therefore contains only two 1 bits, the parity bit changes to 1
to set the number of 1 bits to an odd number.

1
logical 0 Jl n I
logical ;::::_~.~;:=:;::::;::::;~::.I---,U~:"""""":-"Ir-..,........,.....,r-----4~

I I~ I I I I ~ ITlmel •

~ ~

1/300 second

8 data bits
(01000001 (b) for

Transmitting A character: 8-bit word length,] stop bit, odd parity and 300 baud

UART

The brain of an RS-232 card is the UART (Universal Asynchronous Receiver
Transmitter). You should be familiar with the design and capabilities of this
processor, so that you can properly adapt programs to the error messages returned
by the different BIOS functions.

332

AbaclU 7.9 . Accessing the Serial Port from the BIOS

Transfer registers

A character transmitted on a data line passes first to a register designated as a
transfe; holding register. It remains there until processing ends on the character
preceding it Then the character moves to the transfer shift register from where the
UART transmits the character bit by bit over the data line. Depending on the
configuration, parity and stop bits implement the stream of data. When the BIOS
function passes the status of the data lines to the AH register, bits 5 and 6 indicate
whether these two registers are empty.

Receiver registers

The receiver shift register accepts received data, then transmits the data to the
receiver data register where the UART removes the parity and stop bits. If a
previously received character is still in the data register, bit 1 of the line status sets
to 1 to avoid overwriting. Bit 0 indicates that a character was received. If while
processing the character, the UART discovers that a parity error occurred during the
transmission, it sets bit 2 of the line status. If a breakdown occurs in the agreed
upon protocol (number of parity and stop bits), the action sets bit 3. The UART
always sets bit 4 if the data line remains longer in low (0) status than required for
the transmission of a character. Bit 7 signals a time out error. This occurs
occasionally when the communication between the RS-232 card and the modem
isn't working properly. . '

7 6 5

I I I
4

I,
3 2 1 0 bit

I I I I I
I I

Receive character

Overwrite character
In data register

Parity error

Protocol not specified

Line Interrrupt

Data register clear

Shift register clear

Time out

Line status

Function 0: Passing protocol

Before data can be transmitted or received, the UART must be informed of the
number of stop bits, etc. Function 0 of interrupt 14H serves this purpose. The
function number (0) enters the AH register, and the protocol passes to the AL
register. The bits of the AL register indicate the various parameters:

333

7. The BIOS PC System Programming

Bits Protocol
bit 0,1 Word length

10 (b) - 7 bits

11 (b) - 8 bits

bit 2 Number of Stop bits

o - 1 Stop bit

1 - 2 Stop bits

bit 3,4 Parity check

00 (b) - none

01 (b) - odd

10 (b) - even

bit 5 -7 Baud rate

000 - 110 Baud

001 - 150 Baud

010 - 300 Baud

011 - 600 Baud

100 - 1200 Baud

101 - 2400 Baud

llO- 4800 Baud

III - 9600 Baud

After initialization the function loads the line status into the AH register.

Function 1: Transmit character

Function 1 transmits characters. During its call, the AH register must contain 1
and the AL register must contain the character to be transmitted. If the character
was transmitted, bit 7 of the AH register changes to 0 after the function call. A 1
signals that the character could not be transmitted. The remaining bits correspond
to the line status.

Function 2: Receive character

Function 2 receives characters. After calling this function the AL register contains
the character received. AH contains the value 0 if no error occurred, otherwise the
value corresponds to the line status.

Function 3: Line/modem status

Function 3 senses and returns the modem status and line status. It returns the line
status in the AH register and the modem status in the AL register:

334

Abacus 7.9 Accessing the Serial Port from the BIOS

Bit 0 Modem ready to send status chang-e
Bit 1 Modem on status change
Bit 2 Telephone ringing status chafl9..e
Bit 3 Connection to receiver status chan9"e
Bit 4 Modem ready to send
Bit 5 Modem on
Bit 6 Telephone ringinJ[
Bit 7 Connection to receiver modem

Bits 4 to 7 represent a duplication of bits 0 to 3. Bits 0 to 3 indicate whether the
contents of bits 4 to 7 have changed since the last reading of the modem status. If
this is the case, the corresponding bit contains the value 1. For example, if bit 2
contains the value 1, this means that the content of bit 6 has changed since the last
reading. In reality it means that the phone just started to ring or has stopped
ringing, depending on the previous value of bit 6.

335

7. TheB/OS PC System Programming

7.10 The Cassette Interrupt

The cassette interrupt (internJpt I5H) is a leftover from the days when PCs used
cassette recorders exclusively as data storage devices. This interrupt provided four
functions (numbered 0 through 3) for enabling and disabling the cassette recorder
motor, reading from and writing to magnetic tape. As the PC gained ground in the
business world, the disk drive became popular. Consequently, the cassette drive's
popuJarity faded.

The four cassette interrupt functions remain part of the PC's ROM-BIOS. The XT
has no cassette recorder interface. In addition, the XTs cassette interrupt consists of
a short routine which sets the carry flag and stores an error code in the AH register
to tell the program that the function called is unavailable.

The AT and the cassette interrupt

The cassette interrupt returned with the introduction of the AT. New functions can
be called which have nothing to do with cassette recorder control. The following
describes these functions, available only on AT models.

Among other things, the interrupt makes two functions available based on the
time measurement of the onboard AT realtime clock. The ftrst of these is function
83H. It is useful in situations where the CPU is engaged in a time consuming task
(e.g., computing a complicated formula), but other duties must be performed at the
same time ie.g., checking the keyboard to determine if the user wants to terminate
the operation).

Function 83H: Time flag

Function 83H calls the address of a flag (a byte in the user program) in which the
highest level bit is set after a certain time period has elapsed. Within an executing
program this flag can be tested after certain amounts of time. Only two assembly
language instructions are necessary for this, so the testing requires little time.
Function number 83H passes information to the AH register. The segment address
of the flag is loaded into the ES register and the offset address into the BX register.
The time that should elapse until the flag is set is passed to the CX and DX
registers. Both registers form a 32-bit number which indicates the number of
microseconds to wait (1 second =1,000,000 microseconds).

The CX register represents the upper 16 bits of this number. To calculate the total
time, the contents of the CX register must be multiplied by 65,536 and the DX
register must then be added to the total. If the waiting period is known in
microseconds, the value for the CX and the DX register can be calculated:

ex = int(Waiting period /65,536)

DX - Waiting period mod 65,536

336

AbaclLS' 7.10 The Cassette Inlerrllpt

This function can only be called if the previous call of this function h$ ended (the
time indicated h$ elapsed). If this is not the case, the function returns immediately
with the carry flag set.

Function 86H: Walt for end time

The second time function, function 86H, differs from function 83H in that it waits
until the time indicated h$ elapsed. For this reason the function number must pass
to the AH register, and the waiting time to the ex and ox registers during the
function call. To convert the waiting time into two values for the ex and ox
registers, the formula above can be used. This function can only be called if
function 83H was not called previously, and if the time period set during its call
h$ not yet elapsed. In such a case, the function returns immediately with a set
carry flag to the calling program.

Extended memory

The AT accepts more than 640K of memory. This additional memory (called
extended) begins at 1 megabyte and cannot be accessed in real mode, in which the
80286 processor operates as an 8086 processor. Function 88H determines the
availability and size of this memory. Placing a value of 88H in the AH register
returns the size of RAM beyond the 1 megabyte boundary (excluding RAM from 0
to 640K) in lK increments in the AX register.

Function 87H: Move memory block

Function 87H moves blocks of memory within the total memory space. This
means that blocks of memory can be moved from the area below the 1 megabyte
limit to the area above the 1 megabyte limit, and the other way around. The
function should not be used for the latter, since its call is complicated and has
other disadvantages. To access memory beyond the 1 megabyte barrier, the
processor must be switched into protected mode (full 80286 mode). Function 87H
requires very comprehensive information, since the 80286 processor is more
difficult to program in protected mode than in real mode (8086 emulation under
DOS). See the end of this section for a program which demonstrates the use of
function 87H.

The function number 87H must fll'St be passed to the AH register, then the number
of the words to be moved (words only-not byteS) must be passed to the ex
register. A maximum value of 8000H corresponds to a maximum value of 64K.

Global Descriptor Table

The ES:SI register pair receive the address of the GOT (Global Descriptor Table),
which must be installed in the user program. The GOT describes the individual
memory segments of the 80286 in protected mode. The segments in protected
mode are exempt from the limitations made in real mode. While segments can

337

7. TheBIOS PC System Programming

only start at memory locations divisible by 16 in real mode, protected mode
segments may start at any memory location. Furthermore, protected mode
segments may be any size from 1 byte to 64K.

Another protected mode innovation is the access code defined for every segment. It
indicates whether the segment described is a data segment or a code segment (only
code segments can be executed). The access code also contains information on
access priority, and whether access is even permitted. Every segment descriptor
consists of 8 bytes apiece. Function 87H expects during its call that six segment
descriptors have been prepared in the GDT (i.e., memory space reserved for them).
The figure below illustrates which segment descriptors are involved, as well as the
construction of a segment descriptor.

GDT Addr.Addr Segment descriptor

+0 + OH
DUMMYSegment length

+ 8R+2 ~ GDT
Bits 0-15 of segment address

+4 START
+lOR

/
+lSHBits 16-23 of segment address

+5 DEST.

Access code
 BIOS CS

+20H

+6
+28R

Reserved (always 8) STACK
+8 +30H

Segment descriptor structure as seen by function 87H

Only the segment descriptors designated as start and destination are of interest here,
since the BIOS functions fill out the other descriptors. The first describes the
segment from which the data are taken. The destination descriptor describes the
segment into which the data are copied. The length of both segments can be
OFFFFH (64K decimal), even if fewer bytes (or words) copy over in the process. If
a lower value is indicated, do not allow the number of bytes (number of words
multiplied by 2) to be copied to exceed this amount. Otherwise the processor
notices an access across a segment boundary during copying, which triggers an
error. The address of the two memory areas must be converted to a (physical) 24
bit address. The lower 16 bits of this address enter the second field of the segment
descriptor and the upper 8 bits enter the third field. As access code 92H can be
used, which signals the processor that the described segment is a data segment with
the highest priority; that the segment exists in memory; and that the segment can
be written. The last field of the descriptor exists for reasons of compatibility with
the 80386 processor, and should always contain the value O.

While the address of the user program's buffer stays fixed, the address beyond the 1
megabyte boundary to which data should be copied can be freely selected (subject

338

Abacws 7.10 The Cassette Interrupt

to RAM avai1ability). The following table shows the addresses of the various lK
blocks beyond the 1 megabyte border as 24-bit addresses.

0 K 100000H 124 K llFOOOH
1 K 100400H 125 K llF400H
2 K 100800H 126 K llF800H
3 K 100COOH 127 K llFCOOH
4 K 101000H 128 K 120000H
5 K 101400H 129 K - 120400H
6 K 100800H 130 K 120800H
7 K 100COOH 131 K 120COOH
8 K 102000H 132 K 121000H
9 K 102400H 133 K 121400H

60 K 10FOOOH 252 K 13FOOOH
61 K 10F400H 253 K 13F400H
62 K 10F800H 254 K 13F800H
63 K 10FCOOH 255 K 13FCOOH
64 K llOOOOH 256 K 140000H
65 K l10400H 257 K 140400H
66 K l10800H 258 K 140800H
67 K llOCOOH 259 K 140COOH
68 K 111000H 260 K 141000H
69 K 111400H 261 K 141400H

After the function call the carry flag indicates the success of the function call. If
the carry flag sets, an error occurred. The value in the AH register indicates the
cause of the error:

AH = 0 No error (carry flag reset)
AH = 1 RAM parity error
AH = 2 GDT defective at function call
AH = 3 ~otected mode could not be initialized properly

A disadvantage of this function is that while the processor is in protected mode, all
interrupts must be suppressed. The reason is the fact that during the protected
mode, BIOS interrupts (e.g., timer or keyboard) can be called, but these routines
were developed for operation in real mode only. These interrupts may not work
properly in protected mode. The disadvantage can be clearly seen when you call the
timer. Since its interrupts are suppressed, protected mode performs no time
measurement, and time remains frozen for a moment. If programs call function
87H frequently, the clock may run slow by 20 or 30 seconds in one day. The clock
can be reset easily to the proper time with software, so software can bypass most
of the disadvantages.

Function 89H: Protected mode

Function 89H switches the AT into protected mode. Only someone developing his
own operating system may have any interest in this function. Any system capable

339

7. TIu!BJOS PC System Programming

of multiprocessing must run in protected mode. This function goes far beyond the
scope of this book. See the AT technical manual for more infonnation.

Function 84H: Joystick reader

Function 84H reads two joysticks connected to the AT. Two sub-functions operate
within this function: Both return a set carry flag if the adaptor to which the
joysticks should be connected doesn't exist.

The fIrSt sub-function executes by passing the function number to the AH register
and the value 0 to the OX register. It returns the status of the joystick fire buttons
in bits 4 to 7 of the AL register.

The second sub-function executes by passing the function number to the AH
register and the value 1 to the OX register. It returns current joystick positions
using X-and Y -coordinates. The X -coordinate for the fIrSt joystick can be found in
the AX, and the Y -coordinate in the BX register. For the second joystick, the ex
register contains the X -coordinate and the OX register the Y -coordinate.

Function 8SH: Read SysReq key

The <System Request> key on the AT keyboard triggers an interrupt without
producing a character code. It cannot be tested with the BIO~ keyboard reading
functions. Function 85H reads the keyboard for the <System Request> key.
Passing the function number to the AH register executes the function. The current
BIOS version doesn't implement this function within the cassette interrupt.
Usually the <System Request> key does nothing when the user presses it.
However, a machine language routine can assign a special application to the
<System Request> key. This program must only "deflect" interrupt I5H to its
own routine. If it's called by a user program or by the system, a user routine
executes instead of the cassette interrupt. It can test whether the AH register
contains the function number 85H. If this is not the case, it calls the old cassette
interrupt. If the AH register contains this function number, the user routine
performs the desired action.

The content of the AL register is also important to this user routine because it
indicates whether the user pressed or released the <System RequeSt> key. 0 means
activated, 1 released.

340

Abacus 7.10 T1I4 CasseUe Interrupt

Demonstration programs

Of all the functions made available by this interrupt, the most interesting is
probably function 88H. It permits the owners of ATs with memory beyond the I
meg limit to use memory that is inaccessible to DOS. The programs presented in
this section demonstrate easy calls to function 87H within user programs. To
illustrate the function call, each one of these programs copies the current video
RAM contents directly beyond the I megabyte memory border. It then erases the
video RAM and restores it again. The core of these programs is always the routine
which calls function 88H of interrupt ISH. It constructs a GDT for this, enters the
addresss of the start and destination area, as well as the GDT. First it converts the
two addresses (passed as segment and offset addresses) into a 24-bit-wide address.
This routine must be constructed fIrst in assembly language for the higher level
languages, then integrated into the higher level language programs. You'l see how
this is done in the documentation of the individual listings. To avoid detailed
comparison of the various assembler programs for linking into the move function,
the difference lies almost exclusively in the area of the variable passing. Otherwise
the programs are almost identical.

BASIC listing: MOVE.BAS

100 •••**.****.********.*** •••••** ••••••••••*****•••••••••••*••••••••••
110 M 0 V E *,
120 ,*---*,
130 ,* Task uses the Routine for moving a storage area *,

140 ,* to store the VideO-RAM

150 Author MICHAEL TISCHER

160 '* developed on 7.22.87 *,

170 last Update 9.21.87 .
180 , ••••••••••••••*** ••••*•••••••••••••••••••••••••••••••*.*.*.****.*.

190 '

200 CLS : KEY OFF

210 PRINT"WARNING: This program can only be started if the GWBASIC •

220 PRINT'was started from the DOS level with <GWBASIC /m:60000>"

230 PRINT : PRINT'If this is not the case, input an <s> to Stop "

240 PRINT'Else, press any key ••• ·;

250 A$ - INKEY$: IF A$ - 's' THEN END

260 IF A$ - "" THEN 250

270 CLS 'Clear Screen

280 PRINT"HOVE (c) 1987 by Michael Tischer" : PRINT

290 PRINT"This Program uses Function 87(h) of Interrupt 15(h) to copy blocks"

300 PRINT· of memory between the 'normal' RAM and the RAM beyond the·

310 PRINT·I-Megabyte border.·

320 DEF SEG - &HFOOO 'Set BIOS-segment

330 IF PEEK(&HFFFE) - &HFC THEN 380 'test if AT

340 PRINT· Since this unit is not an AT, but a PC or •

350 PRINT·XT, and they do not have memory the l-MB limit, •

360 PRINT·this program can not be executed! Sorry••• •

370 END 'Terminate Program (PC or XT)

380 PRINT· The Program will first copy the current display immediately beyond the •

390 PRINT·l MB border and thens clear the screen. If you then press a key, •

400 PRINT·the old screen content is restored.·

410 PRINT: PRINT· Please activate a key to start the program ••• ·;

420 A$ - INKEYS : IF AS .- •• THEN 420 'wait for key

430 STARTS\ - VIDEOS\ : STARTO\ - 0 'Start-area is Video-RAM:OOOO

440 GOSUB 60000 'install Function for Interrupt call

450 GOSUB 61000 'install Function for copying memory

460 GOSUB 50000 'get current Video mode

470 IF VMODE\ - 7 THEN VIDEOS\ - &HBOOO ELSE VIDEOS\ - &H8800

480 STARTO\ a 0 : STARTS\ - VIDEOS\ 'Start address is the Video-RAM

341

7. The BIOS PC System Programming

490 DESTS\ ~ 0 : DESTO' = 0 'destination area is 10000:0000
500 DlRECTION% - 1 'copy from below to above 1 MB
510 SIZE% 2000 'the size of the Video-RAM is 200 Words s

520 GOSUB 51000 'move memory
530 CLS 'clear screen
540 PRINT·Please activate a key
550 AS - INKEYS : IF AS - •• THEN 550 'wait for key
560 STARTS% - 0 : STARTO% - 0 'Start area is 10000:0000
570 DESTS' - VIDEOS% : DESTO' - 0 'Destination area is Video-RAM:OOOO
580 DIRECTION' - 2 'copy from above to below 1 MB
590 GOSUB 51000 'move memory
600 LOCATE 15, 1 'Set Cursor to column 1 of line 15
610 END
620 '
50000 '.* •••••*.*.*.****.**••••• **.* •• *** •• * •••• *** ••••***.*******.* •••

50010 '* Sense current Video Mode
50020 '*---*,

,*.*••***********.********.****.**********.*.*.****.* •••••••***.,

50030 Input: none
50040
50050

'* Output:
,* Info

VMODE% - the cu
the Variable Z%

rrent Video mode
is used as Dummy

*'
*,

50060
50070 Z%~15 'get Function number for Video mode

50080 INR%=&HI0 'call BIOS-Video-Interrupt 16 (h)

50090 CALL IA(INR%,Z%,VMODE%,PAGE%,Z%,Z\,Z%,Z%,Z%,Z%,Z\,Z%,Z%)

50100 RETURN 'back to caller

50110 '

S1000 ,********************************.****.**.****.*.*.** ••*********.

51010 '. move a memory area
51020 1*---______*'
51030 Input: STARTS' segment address of the Start area
51040 STARTO% Offset address of the Start area
51050 DESTS% segment address of the destination area
51060 DESTO% Offset address of the destination area
51070 SIZE% Number of words to be moved
51080 DIRECTION% Direction in which to move
51090 data:
51100 o = from below 1 MB --> to below 1 MB
51110 1 from below 1 MB --> beyond 1 MB
51120 2 from above 1 MB --> below 1 MB
51130 3 from beyond 1 MB --> beyond 1 MB
51140 output: none .'
51150 ._--*.••••._- •• --_._ .••-_. __ •••••.•..-••• -_ .•••••_-- ••••• __ ._•••.
51160 CALL MOVE(STARTS%,STARTO%,DESTS%,DESTO%,SIZE\,DlRECTION%)
51170 RETURN 'back to caller
51180 '
60000 ._---- ••••• _----_._- •••••• _-_ ••••• _-_ ••••• --- ••••• _••• **.*** •••• '
60010 '* initialize the Routine for Interrupt call
60020 ,*---*'
60030 '. Input: none .'
60040 '. Output: IA is the Start address of the Interrupt-Routine .'
60050 1•••• __ ---_._._------.---_ ••• ---- •••• -----.-._ •••••••• *••••• ****1
60060
60070 IA~60000! 'Start address of the Routine in the BASIC-segment
60080 DEF SEG 'Set BASIC-segment
60090 RESTORE 60130
60100 FOR I% ~ 0 TO 160 : READ X% : POKE IA+I%,X% NEXT 'poke Routine
60110 RETURN 'back to caller
60120
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118,28,138,36,139,118,26,138, 4,139,118,24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138,2 0,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136,52,139,118,14,136,20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4,88,139,118,10,137, 4, 7,31,93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255
60240

342

Abacus 7.10 The Cassette Interrupt

61000 ••••••****••***.************.********••***.************.********.
61010 ,* Initialize Routine for moving of rnrernory areas. *,
61020 1*___--------*,
61030 ,* Input: none
61040 '* Output: MOVE is the Start address of the Routine
61050 1.*****************.*.***•••******************···*****•• -******.,
61060 '
61070 DEF SEG 'Set BASIC segment
61080 MOVE~61000! 'Start address of the Routine
61090 RESTORE 61130
61100 FOR I' - 0 TO 140: READ BYTE' POKE MOVE+I', BYTE' : NEXT

61110 RETURN 'back to caller

61120 '

61130 DATA 232,115, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

61140 DATA 0, 0, 0, 0,255,255, 0, 0, 16,146, 0, 0,255,255, 0

61150 DATA 0, 0,146, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a

61160 DATA 0, 0, 0, 0, 0, 0, 85,139,236,139,126, 6,138, 45,139

61170 DATA 126, 12,139, 5,139,126, 10,139, 29,246,197, 1,232, 46, °

61180 DATA 136, 84, 28,137 68, 26,139,126, 16,139, 5,139,126, 14,139

61190 DATA 29,246,197, 2,232, 24, 0,136, 84, 20,137, 68, 18,180,135

61200 DATA 139,126, 8,139, 13,205, 21,139,229, 93,202, 12, 0, 94,235

61210 DATA 186,138,212,177, 4,210,234,117, 3,128,202, 16,211,224, 3

61220 DATA 195,115, 2,254,194,195

The DATA statements integrated the interrupt call routine and the memory
movement routine into BASIC. They contain the machine language command
codes, read and POKEd into the BASIC section starting at address 61000. This
address is also stored in the MOVE variable so that the program can be called from
the CAlL command in line 51160. For those of you who have mastered assembly
language, here is the program listing from which the DATA lines of the MOVE
function were derived.

Assembler listing: MOVEBA.ASM

i**····***** ****** •• ********;
,. * MOVEBA * ;
i*---*i
;* Task Makes the functions for moving of *;
;* memory blocks beyond the 1MB memory limit * ;
;* available in BASIC for linking *;
;*---*:
;* Author MICHAEL TISCHER *;
;* developed on : 8.22.87 * ;
;* last Update : 9.21.87 * ;
:*---*:
;* Info: the Code is fully relocatable so that the * ;
;* Routine can be poked to any place within the * ;
;* BASIC segment *;

:*---*;
; * assembly MASM MOVEBA; *;
; * LINK MOVEBA; * ;
; * EXE2BIN MOVEBA MOVEBA.COM *;
;******************************.**************••**********************:

code segment

assume cs:code,ds:code,es:oode,ss:code

i-- MOVE: Copy storage blocks beyond the 1MB limit -------------------
i-- Call from BASIC: CALL ADR(Sourcesegment, StartOffset, Destsegment,
i-- DestOffset, Size, Direction);
;- Info - after the call Variables are in the following
;-- Positions on the Stack:
;-- Startseqment - SP + 16
;-- StartOffset - SP + 14

343

http:MOVEBA.COM

7. TheBlOS 	 PC System Programming

;-- Destsegment = SP + 12
;- DestOffset - SP + 10
;- Size - SP + 8
;- Direction - SP + 6
;-- - for Direction the following Codes are accepted
;- o - from below 1 MB --> to below 1 MB
;-- 1 - from below 1 MB --> to over 1 MB
;-- 2 from above 1 MB --> to below 1 MB
;-- 3 - from above 1 MB --> to above 1 MB
;-- - the number concerns words not

bytes, and can not be larger than 8000 (h)

move 	 proc far ;GW expects during CALL Far-Procedure

;the Address of the Routine

;-- The Global Descriptor Table --------------------------------------
GDT 	 equ this word

dw 4 dup (1) ;segment Descriptors for Dummy-segment
dw 4 dup (1)

;-- segment Descriptors of the Source-Area ---------------------
dw Offffh ;segment length = 64 KB
dw (1) ;Lo-Word of the 24 bit-Address
db OlOh ;Hi-Byte of the 24 bit-Address
db 10010010b ;Data segment in memory with

;highest priority, Writeable
dw OOOOOh ;Compatibility Word for 80386

;-- segment Descriptors of the Destination-Area ----------------
dw Offffh ;segment length - 64 KB
dw (1) ;Lo-Word of the 24 bit-Address
db (1) ;Hi-Byte of the 24 bit-Address
db 100l00l0b ;Data segment in memory with

;highest priority, Writeable
dw OOOOOh ;Compatibility Word for 80386

dw/4 dup (?) ;segment Descriptors BIOS-Code-segment
dw 4 dup (1) ;segment Descriptors Stack-segment

;-- the Code of the MOVE~Routine -------------------------------------

movel: 	 push bp ;store GW Basepointer
mov bp,sp ;move SP to BP

mov di, [bp+6J ; get Address of the direction Variable
mov ch, [diJ ;move direction to CH
mov di, [bp+12] ;get Address of Destsegment-Variable
mov ax, [di] ;move destination segment address to AX
mov di, [bp+10] ;get address of DestOffset-Variable
mov bx, [di] ;move destination Offset address to BX
test ch,l ;Destination beyond 1 MB?
call calc adr ;form 24 bit Address

mov [si+da_hi-gdt],dl ; store result

mov [si+da_lo-gdt] ,ax

mov di, [bp+16] ;get address of the Startsegment-Variable
mov ax, [diJ irnove Source segment address to mav
mov di, [bp+14J ; get Address of StartOffset --Variable
moV bx, [di] ;Source Offset address to BX
test ch,2 ;is Source beyond .1 MB1
call calc adr ;form 24 bit Address
mov [si+sa_hi-gdt],dl ;store result
mov [si+sa_Io-gdt] ,ax
mov ah,087h ;Parameter for the Function call
mov di, [bp+8J ;get Address of the Size-Variables
mov cx, [diJ ;get number of words
int ISh ;call RAM-displacement function

344

Abacus 	 7.10 The Cassette Interrupt

mov sp,bp ;restore Stackpointer
pop bp ;return BP from the Stack
ret 12 ;Addresses of the Variables on the Stack

;are no longer required

Move 	 endp

i-- GET lIDR: returns the Offset address of the GOT -------------
;- Input none
;- OUtput SI - Offset address of the GOT
;- Register : SI is changed

get_adr 	 proc near

pop si ;get Address of GDT from Stack
jmp short move1 ;jump to actual Routine

j-- CALC_ADR: calculates the 24 bit (physical) Address --------------

i-- Input AX:BX = Buffer address to be converted

;-- Zero Flag - 1 : Buffer address beyond 1 MB

i-- Output DL = HI-Byte of Buffer address (bit 16-23)

;-- BX - Lo-Word of Buffer address (bit 0-15)

;-- Register AX, BX, DL, CL and FlAGS are changed

calc_adr 	 proc near

mov dl,ah ;Hi-Byte of the segment address to DL
mov cl,4 ;move Hi-Nibble of the segment
shr dl,cl ;address to the Lo-Nibble
jne under 1mb ;test if beyond 1 MB

or dl,010h ; is beyond 1 MB

under 1mb:shl ax,cl ;segment address times 16

add ax,bx ;add Offset address

jnc no more ;test if excess

inc dl iyes

no_more: ret ;back to caller

calc adr 	 endp

;=============-===============================_s========-==============

code 	 ends

end

The INLINE command, not DATA statements, integrate the MOVE routine into
the following Pascal program.

Pascal 	 listing: MOVEP.PAS

{******************••••••••*.*****.*•••***.***********••*****.***.****}
{* MOVEP *)

{*---*1
{* Task : With the help of a procedure, Data are * I
{ * copied in RAM below and above 1 MB * I
{*---*1
{* Author MICHAEL TISCHER * I
{* developed on 8/8/87 *1
1* last Update 6/8/89 *1
1*--*1
{* Info This program runs only on ATs and *1
{* only if RAM beyond 1 MB *1

345

7. The BIOS 	 PC System Programming

{ * is available
{*********•• ********••• ******* ••**********.*************•••*********.*}*'
program MOVEP;

Uses Crt, 	 Dos; {add Crt and Dos units,

var Keypress : chari

{•.•***--_••••. __ •••.• _--_.-.-_. __ ._._.-.__ •••••--_ •.•----*----_._.---}
{ * GETPAGE: returns the segment address of the current display page
{ * Input : none *' *' { * Output : the segment address of the current display page *' {-*.-*_ ••• _---_ ••••• __ ••• -._- •••••• -.-.--_._ ••• _._ ••• - •••••• **._---._.}

function GetPage : Longint;

var Regs : Registers; (Processor registers for interrupt calls'

begin
Regs.ah := 15; { Function number
intr($10, Regs); { Call 8IOS video interrupt
if Regs.al ~ 7 then GetPage :- $8000 { Monochrome card

else GetPage •• $8800; 	 (Color card
end;

(---*_ _-_... __ _-_ ..._...............-- .._......._.......... }

(* MOVE: moves memory areas *)
{* Input: see below *'
{* Output : none *'
{* Info: Direction: 0 - from below MB--> to below 1 MB *'
{ * 1 from below MB--> to above 1 MB *'
(* 2 = from above MB--> to below 1 MB *)
{ * 3 from above MB--> to above 1 MB , *'
{* Addresses above the 1MB boundary are given relative *'
{* to this value *'
{-* ••••*--_._.... _--_... _-_ ... _ _ ..._--_ ... _---**._*_._ }

($F+'
procedure 	HiMove(StartSeg, { Segment address of the start buffer

StartOfs, t offset address of the start buffer
DestSeg, { Segment address of destination buffer
DestOfs, { Offset address of destination buffer
Size, { Number of words to be copied
Direction integer); { Direction in which to copy

begin
inline (

S88/S7E/$10/SS8/S76/$OE/$88/S46/S0C/S8E/SCO/$88/$5E/$0A/

$88/S46/S0S/S88/S4E/S06/$8A/SE9/$55/$ES/$5E/SOO/$00/$00/

$OO/$OO/SOO/$OO/$OO/$OO/SOO/SOO/$OO/$OO/$OO/$OO/$OO/SO0/

$FF/SFF/SOO/SOO/S10/$92/$00/$00/$FF/$FF/$00/SOO/$00/$92/

$OO/$OO/$OO/$OO/SOO/$OO/$OO/SOO/SOO/$OO/SOO/SOO/$OO/$O0/

$00/$00/$00/$00/$50/S8C/SCO/$F6/SC5/$01/$E8/S28/$00/S2E/

$88/$S6/$1C/S2E/$89/$46/S1A/$8B/SC7/$8B/SDE/SF6/$CS/$02/

$E8/$16/$00/S2E/S88/$56/$14/S2E/$89/$46/S12/S84/$87/$0E/

S07/S59/$88/$FS/SCD/S15/$E8/S17/$5D/$E8/SCF/$8A/SD4/$Bl/

S04/$D2/SEA/S7S/$03/S80/$CA/$10/$D3/SEO/$03/$C3/$73/$02/

$FE/SC2/SC3/$SD

) ;
end;

{•• ************************.************************** ••• *************}

{ * MAIN PROGRAM 	 *'
{••• ***** ••••• ****.****.***•• ** ••*********** •••*.*.*.********••••••••• }

begin
clrscr; Clear Screen ,
writeln('MOVEP (c) 1987 by Michael Tischer');
writeln(f13f10'This Program uses Function 87(h) of ,+

346

7.10 The Cassette Interrupt Abacus

'Interrupt 15(h) to move blocks of storage ');
writeIn ('between the "normal" RAM and the RAM beyond the 1 Mega-'+

'Byte storage boundary');
if mem[$FOOO:$FFFEj <> $FC then (test if computer is an AT
begin

writeln('Since this computer is not an AT, ,+
'butaPCor ');

writeln('an XT, and these can not have storage ,+
'beyond the 1 MB boundary,');

writeln('this program can not execute on your PC! ');

writeln('Sorry •••• ');

end
else

begin

writeln('First this display page is moved immediately ,+

'beyond the 1 MB storage ');

writeln('boundary. The screen is then cleared. ,+

'After a key has been activated, ');

writeln('the old display page is restored.');

writeln("f13f10'Please activate a key now to '+

'start the program••• ');
repeat until keypressed; Wait for a key
Keypress :- ReadKey; (Read key
HiMove(GetPage,$OOOO,$OOOO,$OOOO,$2000,$1); Copy video RAM
clrscr; (Clear screen
writeln('Please press a key ••. ');
Keypress:- ReadKey; { Read key
HiMove($OOOO,$OOOO,GetPage,$OOOO,$2000,$2); Restore video RAM
gotoxy(1,15);
writeln ('That' s All! ');

end;
end.

For the Pascal programmers interested in assembly language, the assembler listing
of the MOVE function appears here.

Assembler listing: MOVEPA.ASM

;*****••• *.*** •••*******************.*.****.* •••*********·*·**********i
i* MOVEPA *;
i*---*;
;* Task copies Data between the RAM below 1 MB and *;
;* above 1 MB * ;
;* CAUTION! This is the Version for linking * ;
;* in a Pascal Program with INLINE *;
;* conmands *;
i*---*;
;* Author MICHAEL TISCHER * ;
;* developed on : 6.8.87 *;
;* last Update 6.8.89 * • ,
;*---*;
; * assembly MASM MOVEPA; 	 *;
i* LINK MOVEPAi 	 *;
, 	 convert to INLINEs and add to Turbo Pascal *;
i*************************·*********·*·****·****·***** ****************;

;== Code-segment ==============-===============-===========-=---------

code segment para 'CODE' ;Definition of the CODE-segment

org lOOh 	 ;it begins at Address lOO(h)
;directly behind the PSP

assume cs:code, ds:code, es:code, ss:code

;--Call: HiMoves(StartSeg,

347

7. The BIOS PC System Programming

;- KartO~,

;-- DestSeg,
; -- DestOfs,
;-- NumWords,
;-- Direction: word);

;-- This routine is designed as a FAR call model

movepa proc near

sframe struc ;Access structure on stack

bptr dw ? ;Taken by BP

ret adr dd ;Return address (FAR)

directn dw ; Copy direction

numwords dw ? ;Number of Words being copied

destofs dw ;Destination buffer's offset address

destseg dw ? ;Destination buffer's segment address

startofs dw ? ;Starting buffer's offset address

startseg dw ;Starting buffer's segment address

sframe ends ;End of structure

frame equ [bp - bptr 1 ;For stack addressing

push bp ;Store BP on the Stack
mov bp,sp ;Move SP to BP

mov di,frame.startseg iGet source segment from stack
mav si,frame.startofs ;Get source offset from stack
mov ax,frame.destseg ;Get destination segment from stack
mov es,ax land move to ES
mav bx,frame.destseg ;Get destination offset from stack
mav ax,frame.numwords iGet numwords from stack
mov cX,frame.directn ;Get direction from stack
mov ch,cl land send to CH
push bp ;Mark BP
call getgdt ;Determine address of GDT

;-- Variables and Data of the MOVE-Function --------------------------

GDT equ this word

THIS IS THE GDT (GLOBAL DESCRIPTOR TABLE) --------------------
dw 4 dup (?) ;segment Desc. for Dummy-segment
;-- this segment Descriptor describes the GDT itself -------
dw 4 dup (?)

;-- segment Descriptor of the Source-Area ------------------
dw Offffh ;segment length 64 KB
dw (?) ;Lo-Word of the 24 bit-Address
db OlOh ;Hi-Byte of the 24 bit-Address
db 10010010b ;Data segment in storage with

;highest Priority, Writeable
dw OOOOOh ;Compatibility Word for 80386
;-- segment Descriptor of the Destination-Area -------------
dw Offffh ;segment length = 64 KB
dw (?) ;Lo-Word of the 24 bit-Address
db (?) ;Hi-Byte of the 24 bit-Address
db 100lOOlOb ;Data segment in storage with

;highest Priority, Writeable
dw OOOOOh ;Compatibility Word for 80386
;-- this segment Descriptor describes the BIOS-Code-segment
dw 4 dup (?)

;-- this segment Descriptor describes the Stacksegment -----
dw 4 dup (?)

;-- END OF THE GDT ---

, MOVE: Moves Data between memory above and below 1 MB -------------
j- Input DI:SI = Source address (if above 1 MB as Offset to 1 MB)
i-- ES:BX - Dest. address (if above 1 MB as Offset to 1 MB)
;-- CH = move ••• from --> to
, OOb from below 1 MB --> to below 1 MB
i-- Olb = from below 1 MB --> to above 1 MB

348

Abacus 	 7.10 The Cassette Interrupt

;-- lab from above 1 MB --> to below 1 MB
i- lIb ~ from above 1 MB --> to above 1 MB
;- AX Number of words to be movef (max. 08000h)
;- OUtput Carry-Flag = 1 : Error
;-- Register : AX, BX, OL, CL, SI, ES and FLAG are changed
;-- Info : This function should not be used to move RAM below the

1-MB boundary
move: 	 push ax ; Store number of words on the Stack

mov ax,es iDestination segment address to AX
test ch,l ;is destination above 1 MB?
call calc adr ;form 24 bit Address
mov cs: [bp+28],dl ;store result
mov cs: [bp+26], ax
mov ax,di iSource segment address to AX
mov bx,si ; Source Offset address to BX
test ch,2 iis Source above 1 MB?
call calc adr ;form 24 bit Address
mov cs: [bp+20], dl ; store result
rnov cs: [bp+18], ax
mov ah, 087h ; load Parameter for function call
push cs
pop es ;set ES to CS
pop cx ;Get number of Words from Stack
mov si,bp ;load Offset address of GOT
int ISh ;call RAM moving function
jmp short ende ;back to Turbo

movepa endp

;-- GETGOT: Get Address of the GOT and jump to MOVE ------------------
;-- Input : none
;-- OUtput : CS:BP = Address of the GOT
i-- Register : only BP is changed
;-- Info: this Routine can only be used in the environment
;-- of this Program

getgdt 	 prcc near

pop bp ;Get Address of GOT from the Stack
jmp short move ;Jump to MOVE-Routine

getgdt 	 endp
r

;-- CALC_ADR: calculates 24 bit (physical) Address -------------------
;-- Input : AX:BX = Buffer address to be converted
;-- Zero Flag = 1 : Buffer address beyond 1 MB
;-- OUtput OL ~ HI-Byte of the Buffer address (bit 16-23)

BX - Lo-Word of the Buffer address (bit 0-15)
;-- Register AX, BX, OL, CL and FLAGS are changed

calc adr 	 proc near

mov dl,ah iHi-Byte of segment address to OL
mov cl,4 ; shift Hi-Nibble of segment
shr dl, cl ;address into to-Nibble
jne under_1mb ;test if above 1 MB

or dl,010h ;is above 1 MB

under 1mb:shl ax,el ;segment address times 16
add aX,bx ;add Offset address to it
jnc no_more ;test if overflow

inc dl iyes

no_more: ret ;back to caller

calc adr 	 endp

349

7. The BIOS 	 PC System Programming

ende label near ;Code stops here
pop bp ;Restore SP from atack

i== End __-==-=o:a==IO__=-=--=...:::......-___==-=--___==___-=__

code 	 ends ;End of the CODE segment

end movepa ;End of the assembler program

The C program differs from the BASIC and Pascal programs in that the MOVE
function is also present as an assembler routine, but excluded from the C program
listing. First the MOVE assembler program assembles, then the C program is
compiled. You then merge the two programs using the linker. For this reason the
listing of the C program follows with the source listing of the corresponding
assembler function.

C listing: MOVEC.C

/***/
/* M 0 V E C 	 */
/*---*//* Task: integrates an Assembler-Routine in C, which can */
/* move memory blocks beyond the 1 MB boundary */
/*---*/
/* Author MICHAEL TISCHER * /
/* developed on : 8.13.87 */
/* last Update : 9.21.87 */

/*---*/
/* (MICROSOFT C) */
/* Creation MSC MOVEC; */
/* LINK MOVEC MOVECA PEPO; */
/* call MOVEC */

/*------~--*/
/* (BORLAND TURBO C) */
/* Creation: with Project-File with the following content: */
/* movec */
/* moveca.obj */
/************.******.******.*•••••••• ****••***********************•••• ,

'include <dos.h> 1* include Header-Files */

fincl ude <io. h>

.include <conio.h>

extern void AdMove(); /* ADMOVE must be linked */
extern int PeekS(); 1* PEEKS must be linked */

/.*******.**••• ***•• **.** ••••••• *****••••••••••• **••••*********** ••••*/
/* GETPAGE; returns the Address of the current display page */
/* Input: none */
/* Output : see below * /
/************************••******.********************.******.*******./

unsigned int GetPAge()

union REGS Register; /* Register-Variable for Interrupt call */

Register.h.ah = 15; /* Function number to get Video parameter */
int86(Ox10, 'Register, 'Register); 1* Call Interrupt 10(h) */
return«Register.h.al == 7) ? OxSOOO : OxB800);

I

/***1
/* CLS Clear Screen */
/* Input none */
/* Output none */

350

http:return�Register.h.al
http:Register.h.ah

AbacllS 7.10 The Cassette Interrupt

/.***••••** ••••••••••••••••• ****••••••••••••••••••••••**•••••••••••••• /

void CIs ()

union REGS Register; 1* Register-Variable for Interrupt call *1

Register.h.ah - 6; 1* Function number for Scroll-UP *1
Register.h.al - 0; 1* 0 is for clear *1
Register.h.bh - 7' 1* white characters on black background *1
Register.x.ex - 0; 1* upper left display corner *1
Register.h.dh - 24; 1* Coordinates of the lower *1
Register.h.dl - 79; 1* right display corner *1
int86 (Ox1a, &Register, &Register); 1* Call BIOS-Video-Interrupt *1

I

, •••** ••**••••••••••••••••** ••••••••••••**•••••••••••••••••••••**•••••,
1** MAIN PROGRAM **1
/ •••••••••**••••••••••••******.****••••••••••••••••••••••••••••••••••• /

void main!)

{
printf("\nMOVE (c) 1987 b¥ Michael Tischer\n\n");
printf("This Program uses the Function 87(h) of Interrupt 15(h)");
printf(" to move memory blocks\nbetween the \"normal\" RAM and the H);
printf("RAM beyond the 1 Mega-Byte storage limit.\n");
if (PeekB(OxFOOO, OxFFFE) !- OxFC) 1* test if AT *1

(
printf("Since this PC is not an AT, but a ");

printf ("PC or XT\nand this PC can not have RAM ");

printf ("beyond the 1 MB storage limit, ");

printf ("this program can not be executed! Sorry••• \n\n");

)
else

(

printf ("After starting the program by pressing a key");

printf ("the current display\n content is ");

printf ("copied directly beyond the 1 MB-limit\n ");

printf ("and then the display is cleared. If another key is ");

printf ("\npressed ,the old display is again 00);

printf("restored.\n\nPlease press a key to 00);

printf ("start the Program ... ");

getch(); 1* wait for a key *1

1*-- Copy current Video Rrm beyond 1 MB --------------------------*1

AdMove(GetPage(), OxOOOO, OxOOOO, oxoaoo, Ox20aO, 1);

CIs () ; 1* Clear Screen *1

printf("\nPlease press a key);

getch () ; 1* get a key *1

/*-- Restore Video-RAM ---*1
AdMove(OxOOOO, oxoaao, GetPage(), OxOOOO, Ox2000, 2);
printf ("\n\nThat· s It !\n");

)

Assembler listing: MOVECA.ASM

i········*******·********··****··**··········******·**··**···**······*i
:* MOVECA *i
;*---*:
;* Task : Makes the Functions for moving of * ;
;* Storage blocks beyond the 1MB memory limit * ;
;* available for inclusion in C * ;
;*---*:
;* Author : MICHAEL TISCHER *;

351

http:Register.h.dl
http:Register.h.dh
http:Register.x.ex
http:Register.h.bh
http:Register.h.al
http:Register.h.ah

7. The BIOS 	 PC System Programming

;* developed on : 8.13.87 * ;
;* last Update : 9.21.87 *;
; *--------------~---*;
;* assembly : MASM MOVECA; 	 *.

f

;********** •••• *****************.*************.******.*****•••*****.**;

IGROUP group _text ;Grouping of Program-segments
DGROUP group const,_bss, _data ;Grouping of Data-segments

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

public AdMove ;Functions become accessible to other
iprograms

CONST segment word public 'CONST' ;this segment accepts all
CONST ends ;readable Constants

segment word public 'BSS' ;this segment accepts not all
ends ;initialized static Variables

segment word public 'DATA' 	 ;all initialized global and
;static Variables are stored in this
isegment

GOT equ this word ;the Global Descriptor Table

dw dup (1) ;segment Desc. for Dummy-segment
dw dup (?)

;-- segment Descriptors of the Source-Area --------------------
dw Offffh ; segment length - 64 KB

sa 10 dw (?) ;Lo-Word of the 24 bit-Address
sa hi db 010h ;Hi-Byte of the 24 bit-Address

db 10010010b ;Data segment in storage with
;highest Priority, Writeable

dw OOOOOh ;Compatibility word for 80386

;-- segment Descriptors of the Destination-Area ----------------
dw Offffh ; segment length = 64 KB
dw (?) ;Lo-Word of the 24-bit-Address
db (?) ;Hi-Byte of the 24-bit-Address
db 10010010b ;Data segment in storage with

;highest Priority, Writeable
dw OOOOOh ;Compatibility word for 80386

dw dup (?) ;segment Desc. BIOS-Code-segment
dw dup (?) ;segment Descriptors Stack-segment

_DATA ends

TEXT segment byte public 'CODE' ;the Program segment

;- ADMOVE: Copy Storage Blocks beyond the 1MB limit ------------------
;- Call of C: AdMove(Startsegment, StartOffset, Dest segment ,

DestOffset, Size, Direction);
;-- Info: - for DIRECTION the following Codes are accepted:
;-- o from below 1 MB --> to below 1 ME

1 from below 1 MB --> to above 1 ME
;-- 2 from above 1 MB --> to below 1 ME
;-- 3 - from above 1 MB --> to above 1 MB
;-- - the number relates to words, not Bytes
;-- and can not be larger than 8000 (h)
;-- - for moving of RAM below the I-MB border

the Functions MOVEDATA or MEMCPY should
; -- be called

_AdMove proc near

push bp ;store BP on the Stack
rnov bp,sp ;move SP to BP
push si ;C expects unchanged SI

352

Abacus 7.10 The Cassette Interrupt

mov ch, [bp+l4] ;move Direction to CH
mov ax, [bp+8] ;Destination segment address to AX
mov bx, [bp+10] ;Destination Offset address to BX
test ch,l lis Destination beyond 1 MB?
call calc adr ;form 24 bit Address
mov da_hl,dl ;store result
mov da_lo, ax
mov ax, [bp+4] ;Source segment address to AX
mov bx, [bp+6] ;Source Offset address to ax
test ch,2 lis Source beyond 1 MB?
call calc adr ;form 24 bit Address
mov sa_hl,dl ;store result
mov sa la,ax
mov ah~OB7h ;Parameter for the Function call
push ds ; load
pop es ;st ES to DS
mov cx, [bp+12] ;get number of Words
mov si,offset DGROUP:GDT ;load Offset address of GOT
int 1Sh ;call RAM moving functions

pop si ;restore old SI from Stack
mov sp,bp ;restore Stackpointer
pop bp ;get BP from Stack
ret ;Return to calling C-Prograrn

AdMove endp

, CALC ADR: calculates 24 bit (physical) Address -------------------

, Input AX:BX = Buffer address to be converted

;-- Zero Flag = 1 : Buffer address beyond 1 MB

i-- Output DL = HI-Byte of the Buffer address (bit 16-23)

, BX = Lo-Word of the Buffer address (bit 0-15)

, Register AX, BX, DL, CL and FLAGS are changed

calc_adr proc near

mov dl,ah ;Hi-Byte of segment address to DL
mov cl,4 ;move Hi-Nibble of segment address
shr dl,cl ;into the Lo-Nibble
jne under 1mb ;test if beyond 1 MB

or dl,010h ;beyond 1 MB

under_1mb:shl ax/el ;segment address times 16
add ax,bx ;add Offset address
jnc no more ;test if overflow

inc dl ;yes

no_more: ret ;back to caller

calc_adr endp

i---

ends ;End of the Program-segment
end ;End of the Assembler-Source

353

7. TheBIOS 	 PC System Programming

Here is the assembler program. No additional program code is required for
integrating the MOVE function because it is built-in.

Assembler listing: MOVEA.ASM

i*-*·--**--*_·_-_· __··---_··_**--*·_·_··_·_----*--·_·-****************;
i* 	 MOVEA *i

i*---*i
;* Task : copies data between RAM below 1 MB and *;
;* above 1 MB * ;
;*---*;
;* Author 	 MICHAEL TISCHER *.

r ' ;* developed on 6.8.87 *;
;* last Update 9.21.87 *;
i*---*i
;* assembly MASM MOVEA; *;
;* LINK MOVEA; *;
;* EXE2BIN MOVEA MCVEA.COM * ;
i*---*i
;* Call : 	 MOVEA *;
i**-·--·_-_·····-·_····_··*--*--_··-· __ ····_··_*·__ ·-****----*.__._.. -;
;=- BIOS-segment =-==========-======-========--===-=-==---========-====

bios segment at OFOOOh 	 ;used for Addressing of the

;Device-Codes

org OFFFEh ;Address of the Device-Codes in BIOS
gercode equ this byte

bios ends 	 ;End of the BIOS-segments

;-= Code-seqment _3==========_==================__=======_=====____====

code segment para 'CODE' 	 ;Definition of the CODE-segment

org lOOh 	 ;it begins at Address 100(h)
;directly after the PSP

assume cs:code, ds:code, es:bios, ss:code

;== Program ========================-========--=====-==-=-==========-==

rnovea 	 proc near

;-- Output Initiation Message ----------------------------------

mov dx,offset initm ;Offset address of the Init message
mov ah,9 ;output Function number for String

int 21h ;Call DOS-Interrupt

mov aX,OFOOOh ;segment address of BIOS
mov es,ax ;to ES
cmp es:gercode,OFCh ;is the device an AT
je isat ;YES --> continue to execute Program

;-- Device is PC or XT, Program doesn't run -------------------

mov dX,offset sorrym ;Offset address of Text
jrnp short pcxt ;Output message and terminate program

User must activate a key to start the program

isat: 	 mov dx,offset dom ;Offset address of the Text
mov ah,9 ;output function number for String
int 21h ;call DOS-Interrupt

xor ah, ah ;read a character from the keyboard

354

http:MCVEA.COM

Abacus 	 7.10 The Cassette Interrupt

int 16h ;call BIOS-Keyboard-Interrupt

i-- Move Video-RAM to 1 MB ---------------------------------

call getvseg iGet segment address of Video-RAM
mov di,ax ;and move to DI
xor si,si ; copy starting at Offset address 0

xor bx,bx ; copy after 1MB + 0000:0000
mov es,bx

mov ch,1 ifrom below 1 MB to above 1 HB

mav ax,2000 imove 2000

call move ; Words

jc fehler ion error terminate

;-- Fill VideO-RAM with characters -------------------------

call getvseg ;Get segment address of the Video-RAM
rnov es,ax ;and move to ES
xor di,di ;start at Offset address 0
mov cx,2000 ;fill the complete Video-RAM with
mov aX,87FEh ;blinking Block-Character
rep stosw

User must activate a key -------------------------------

mov dx,offset userm ;Offset address of the Text
mav ah,9 ;output function number for String
int 21h ;call DOS-Interrupt

xor ah,ah ;read a character from the keyboard
int 16h ;call BIOS-Keyboard-Interrupt

Restore Video-RAM again --------------------------------

xor di,di ;restore 1 MB + 0000:0000

xor si,si

xor bx,bx

mav ch,lOb ;from beyond 1 HB to below 1 MB

mov ax, 2000 ;move 2000

call move iWords

jc fehler iterminate on error

mav ax,4COOh ;terminate Program with call of a DOS
int 21h ;function on return of Error-Code 0

error: mov dX,offset errm ;Offset address of error message
pcxt: 	 mov ah,9 ;output function number for String

int 21h ; call DOS-Interrupt
mov aX,4COlh ;terminate Program with call of a DOS
int 21h ;function on return of Error-Code 1

mavea 	 endp

;-- GETVSEG returns the segment address of the Video-RAM
i-- Input none
, Output AX - segment address of the Video-RAM
i-- Register AX, BH and FLAGS are changed

getvseg 	 proc near

mov ah,OFH ;get function number for Video

int 10h ;call BIOS-Video-Interrupt

cmp al,7 ;is a Mono-Card installed?

jne colvideo ;NO --> Color-Card

mov ax,OBOOOh ;segrnent addr. of the mono Video-RAM
ret ;back to caller

colvideo: 	mov ax,OB800h ; segment addr. of color Video-RAM

355

7. TheBIOS PC System Programming

ret ; back to caller

getvseg endp

;-- MOVE: Moves Data between Storage above and below 1 MB
Input : DI:SI - Sourceaddress (if above 1 MB as Offset to 1 MB)

;-- ES:BX = Dest address (if above 1 MB as Offset to 1 MB)
;-- CH = move ••• from --> to
i-- OOb = from below 1 MB --> to below 1 MB

Olb from below 1 MB --> to above 1 MB
;-- lOb - from above 1 MB --> to below 1 MB
;-- llb = from above 1 MB --> to above 1 MB
;-- AX - Number of words to be moved (max. 08000h)

Output : Carry-Flag = 1 : Error
;-- Register AX, ax, DL, CL, sr, ES and FLAG are changed
;-- Info this function should not be used for moving
;-- from RAM below the 1 MB limit

move proc near

push ax ;record number of Words on the Stack
mov ax,es ;Destination segment address to AX
test ch,l ;is Destination above 1 MB?
call calc adr ;form 24 bit Address
mov da_hl,dl ; st ore result
mov da lo,ax
mov aX-;-di ;Source segment address to AX
mov bX,si ;Source Offset address to BX
test ch,2 ;is Source above 1 MB?
call calc adr ;form 24 bit Address
mov sa_hl,dl ; store result
mov sa lo,ax
mov ah-;-087h ;Parameter for the Function call
push ds ; load
pop es ;set ES to DS
pop ex ;read number of Words from Stack
mov si, offset GOT ;load Offset address of GOT
int 1Sh ;call RAM move function
ret ;back to caller

Variables and Data of the MOVE-Function --------------------------

GDT equ this word

;-- THIS IS THE GDT (GLOBAL DESCRIPTOR TABLE) --------------
dw 4 dup (?) ;segment Descs. for Dummy-segment
;-- this segment Descriptor describes the GDT itself -------
dw 4 dup (?)
;-- segment Descriptor of the Source-Area ------------------
dw Offffh ;segment length = 64 KB
dw (?) ;Lo-Word of the 24 bit-Address
db 010h ;Hi-Byte of the 24 bit-Address
db lOOlOOlOb ;Data segment in storage with

;highest Priority, writeable
dw OOOOOh iCompatibility Word for 80386
;-- segment Descriptor of the Destination-Area -------------
dw Offffh ;segment length - 64 KB
dw (?) ;Lo-Word of the 24 bit-Address
db (?) ;Hi-Byte of the 24 bit-Address
db 100lOOlOb ;Data segment in storage with

;highest Priority, Writeable
dw OOOOOh ;Compatibility Word for 80386
;-- this segment Descriptor describes the BIOS-Code-segment
dw 4 dup (1)
;-- this segment Descriptor describes the Stack segment ----
dw 4 dup (?)

;-- END OF THE GOT ---

move endp

356

Abacus 	 7.10 The Cassette Interrupt

i-- CALC ADR calculates 24 bit (physical) Address ------------------

i-- Input AX:BX - Buffer address to be converted

i-- Zero Flag = 1 : Buffer address above 1 MB

i-- Output DL - HI-Byte of the Buffer address (bit 16-23)

i-- BX - Lo-Word of the Buffer address (bit 0-15)

i-- Register AX, BX, DL, CL and FLAGS are changed

calc adr 	 proc near

mov dl,ah ;Hi-Byte of the segment address to DL
mov cl,4 ;Hi-Nibble of the segment address
shr dl,cl ;shifted to Lo-Nibble
jne under_1mb ;test if above 1 MB

or dl,010h ;lies above 1 MB

under_lmb:shl ax,cl ;segment address times 16
add ax,bx ;add Offset address
jnc no more ;test for overflow

inc dl 	 iyes

no_more: ret 	 ; back to ca ller

calc adr 	 endp

initm db 13, 10, "MOVE (c) 1987 by Michael Tischer",13,10,13,10
db "This Program uses the Function 87(h) of Interrupt"
db "15 (h) to copy memory blocks",13,10,"between 'normal' "
db "RAM and RAM above the I-Megabyte boundary".", 13, 10, "$"

dom db "The Program copies first the current display •
db "content directly", 13, 10, "after the 1-MB-boundary and"
db "the fills the screen with characters.", 13, 10
db "After a key has been activated, the old "
db "display content ",13,10,"is restored and the Pro"
db "gram terminatede",13,lO,"Please press a key, to ..
db "start the Program ... $"

sorrym db "Since this computer is not an AT, "
db "but a PC or l ', 13, 10, "XT, and these "
db "PCs can not have storage beyond the 1-MB limit,"
db 13, 10, "this program can not be started! "
db "Sorry... ",13,lO,"S"

userm db 13,10," Please press a
db "key $"

errm db "WARNING Error on access to RAM above 1 MB"
db 13,10,"S"

;== End ==~=============================~======--=====--=====-=========

code 	 ends ;End of the CODE-segment
end movea ;End of the Assembler-Program.

357

7. The BIOS PC System Programming

7.11 Accessing the Keyboard from the BIOS

Interrupt I6H provides three functions to read the keyboard and keyboard status.
The BIOS keyboard functions are very limited: No BIOS functions exist for
removing characters from the keyboard buffer or renaming keys. DOS functions
can perform these operations.

BIOS-proof keys

Some key combinations cannot be read by BIOS as key codes because they execute
commands. Activating the <PrtSc> or <Print> key calls BIOS interrupt SH. This
starts a routine which sends the current screen display to a printer, producing a
hardcopy.

The <Ctrl><Num Lock> keys stop the complete system until the user presses
another key. The keyboard buffer ignores the <Ctri><Num Lock> keys and the
subsequently pressed key, so programs cannot read these keys.

Pressing the <Ctrl><Break> key combination calls interrupt IBH. Normally the
current program stops and returns to DOS. To prevent this, this interrupt can be
directed to a routine within the application program which continues program
execution if the routine consists of an !RET assembly language instruction only.

ATs and a few advanced Penns have the <Sys Req> key. Its activation calls
interrupt ISH by passing the value 8S00H to the AX register. When the user
releases the key, the AX register then receives the value 8S0IH. The value 8SH in
the AH register represents the function number of interrupt ISH. After starting the
system, function 8SH of the BIOS interrupt ISH consists only of an IRET
instruction; pressing the <Sys Req> key has no visible result

Control codes

Most people know that any ASCII code can be entered from the keyboard using the
<All> key and the keys of the numeric keypad. Few users know about character
entry with the help of the <Ctrl> key. When used in connection with other keys,
this key can enter ASCII codes smaller than code number 32. The following figure
shows which keys can be accessed.

358

Abacus 7.11 Accessing the Keyboard from the BIOS

24 Ctrl X

25 Ctrl Y

-
~

26 Ctrl Z

Ctrl [,
Est,Shlft- Est,Ctrl-
Est

28 L
2' ..

30

32 e Spate,
Shlft
Spite,
Ctr 1-Spate,
Alt-Spate

Character input with the <Cui> key

359

7. TheBIOS PC System Programming

Function 0: Read keyboard

Interrupt 16H normally receives a call when a program expects user input of one or
more characters. If a character was already entered before the function call, the
keyboard buffer empties this character and passes it to the calling program. If there
is no character in the keyboard buffer, function 0 waits until a character has been
input and then returns to the calling program. The caller can determine the
character or activate a key from the contents of the AL and the AH registers.

ASCII

If the AL register contains a value other than 0, it contains the ASCn code of the
character. The AH register contains the scan code of the active key. The code in the
AL register corresponds to the ASCII codes for character output on the screen.
Some differences occur in the control keys:

Code Key(s)

8 <Backspace>

9 <Tab>

10 <Ctrl><Return>

13 <Return>

27 <Esc>

Scan codes

The scan code in the AH register indicates the number of the active key, where the
keys on the keyboard are numbered starting with O. Since PC, XT and AT
keyboards differ, this is unimportant for most programs. Scan codes of the various
keyboards can be found in the Appendices of this book.

Extended key codes

If the AL register contains the value 0 after the call, the AH register indicates an
extended keyboard code. The difference between the AScn code and the extended
keyboard code lies in the fact that certain keys (e.g., the cursor keys) cannot fit
within the PC's 256-character set. The following table provides an overview of
extended. keyboard codes:

Code (s) Key(s)

15 <Shift><Tab>

16-25 <Alt><Q>,<W>,<E>,<R>,<T>,<Y>,<U>,<I>,<O>,<P>

13'0-38 <Alt><A>,<S>,<D>,<F>,<G> <H>,<J>,<K>,<L>

44-50 <Alt><Z> <X>,<C>,<V> ,<N> <M>

59-68 <F1>-<F10>

71 <Home>

72 <Cursor Up>

73 <Paqe Up>

75 <Cursor Left>

77 <Cursor Right>

360

Abacus 7.11 Accessing the Keyboard from the BIOS

Code (9) Key(s)

79 <End>

80 <Cursor Down>

81 <Page Down>

82 <Insert>

83 <Delete>

84-93 <Shift><F1>-<F10>

94-103 <Ctrl><F1>-<F10>

104-113 <Alt><F1>-<F10>

115 <Ctrl><Cursor Left>

116 <Ctrl><Cursor Right>

117 <Ctrl><End>

118 <Ctrl><Page Down>

119 <Ctrl><Home>

120-131 <Alt><l> <2> <3> <4>,<5> <6> <7> <8> <9>L<0>

132 <Ctrl><Page Up>

Key combinations not contained in this table cannot be sensed using the BIOS
keyboard functions, since they don't generate keyboard codes.

Function 1: Read keyboard

Function 1 also reads the keyboard. Unlike function 0, function 1 leaves the
preceding character in the keyboard buffer. Repeated calls of function 1 or function
oread the keyboard again. Place the value 1 in the AH register to call function 1.
In contrast to function 0, function 1 immediately informs the calling program with
the zero flag after the function call if a character is available or not. If the zero flag
equals I, no character was available. If the zero flag resets, the AL and the AH
registers contain information about the activated key. As in function 0, the AL
register contains the value 0 if the user activated an extended key, and a value
unequal to 0 if the user pressed a "normal" key. The AH register contains the scan
code of normal keys; extended keys place their codes in the AH register.

Function 2: Read control keys

Function 2 has a completely different task. It reads the status of certain control
keys and conditions (e.g., <lnsert». Place the number 2 in the AH register to call
the function. The keyboard status can be found in the AL register after the function
call.

361

7. TheBIOS PC System Programming

76 5 43210

I I I I I I 1- 1=Rlght SHIFT key pressed
1=left SHIFT key pressed I I

1=CTRl key pressed
1=AlT key pressed
1=SCROll lOCK on

1=NUM lOCK on

1=CAPS lOCK on
1=INSERT on

Keyboard status byte

Demonstration programs

The following programs demonstrate the various functions of BIOS keyboard
interrupts as presented here. The four programs can be divided into two groups.
The f1fSt three programs are written in the higher level languages used throughout
this book. They call the various functions of BIOS keyboard interrupts for their
own uses. The fourth program is an assembler program. It modifies the BIOS
keyboard interrupt functions and processing, and acts as a resident program which
can be accessed at a keypress.

Checking key status

All three higher level programs make a subroutine or a function available for
reading characters from the keyboard. This alone is nothing special, since these
languages have their own instructions that serve the same purposes. The important
feature of the function is that it accepts other jobs in addition to the original task
of reading characters. It displays the status of the keyboard functions <Insert>,
<Caps Lock> and <Num Lock> in the upper right hand corner of the screen. This
is especially useful for XT and PC owners, since most keyboards don't indicate the
key status. AT keyboards and some XT keyboards provide light emitting diodes
(LED) which indicate the status of these keys. You never really know if the
<Insert> or <Caps Lock> mode is on or not.

Each program begins with a routine which reads the status of the keyboard
functions through function 2 of BIOS keyboard interrupt 16H. Since the program
only uses the <Insert>, <Caps Lock> and <Num Lock> modes, the program only
views the three highest level bits in the keyboard status byte. Based on this status
byte, a flag initializes for every keyboard function, which indicates the status of
one of these functions or modes within the program. It is reversed when compared
with the current mode. For example, if the <Insert> mode is switched off, the flag
applying to it changes to OFF. An explanation of this follows below.

362

Abacus 	 7.11 Accessing the Keyboard from the BJOS

Calling the interrupt function

After initializing the internal flags, the actual routine for keyboard reading can be
called. It also uses function 2 of the BIOS keyboard interrupt to read the keyboard
function status. It then compares the current status of each individual function with
the previous status stored in a flag. During its first call after the initialization
routine, it determines if the status of all three functions has changed since its
previous status. The change in status causes the routine to display the new status
on the screen.

This explains the reason for the flag reversal in the initialization routine. It allows
display of the keyboard function status on the screen during the fIrst call of the
keyboard routine, and not after it changed by pressing a key.

Now the routine can proceed to its actual task and read the keyboard. It uses
function 1 of the BIOS keyboard interrupt to detect whether a key is available in
the keyboard buffer of BIOS. If this is not the case, the program jumps to the
beginning of the routine and reads the keyboard function status again. This creates
a loop which runs until a keypress occurs. This loop ensures that any status
change is documented immediately on the screen.

Reading the keys

If a character appears in the BIOS keyboard buffer the loop terminates and BIOS
keyboard interrupt function 2 reads the key. The last step of this routine tests for
an extended key code. If this is the case, the program adds 256 to the code to signal
the calling routine that an extended keyboard code was received. Then control
returns to the calling routine.

This routine reads characters from the keyboard and displays them on the screen.
This process repeats until the user presses a certain key. If the user presses the
<Num Lock>, <Caps Lock> or <Insert> key, the screen immediately displays the
result.

A centralized keyboard routine as presented here can be used in other programs for
additional tasks. For example, with the help of this routine a macro conversion can
change one key into a string of characters. Another application could display help
text on the screen when the user presses a certain key. Lotus 1-2-3® and dBASE®
use this method for displaying help screens.

Note: 	 A small problem occurs with keyboard flag output. Since displaying
keyboard flags on the screen changes the cursor's position,
subsequent screen output from the program occurs at different
locations than expected. These can disturb the screen display. To
prevent this, the keyboard routine must determine the current cursor
position before the keyboard flag display. Then the routine must
restore the cursor position to its old value after displaying keyboard
status. The problem of color is very similar. Here the flag output

363

7. The BIOS PC System Programming

assumes a certain color and the old color must be restored after the
output. The problem is that none of the three languages has a
command to determine the current color. In Pascal programs for
keyboard reading. only a special procedure can set the color by
recording the colors in a variable and setting it with a command.
With these variables the keyboard routine restores the current color
after display of the individual flags.

BASIC listing: KEYB.BAS
100 '*•••_••_.--_._-_••••_-.__•••••_--_••••••__•••__ •••_--._.**._.... ,
110 KEY B

120 '*---_•.
130 ,* Task makes a subroutine available which *'
140 reads a character from the keyboard. The
150 status of the control keys *,
160 '* (INSERT, CAPS, NOM) are displayed *'

'*170 on the screen
180 Author MICHAEL TISCHER *'
190 developed on 7.22.87
200 last Update 9.21.87 .,'*
210 1* _____ -_•••_-----._._-----_._••••_._----_••••_._-_._.*******.***,
220 '
230 CLS : KEY OFF
240 PRINT"WARNING: This Program can only be started if GNBASIC was "
250 PRINT"started from the DOS level with <GWBASIC /m:60000>."
260 PRINT : PRINT"If this is not the case, please input <s> for Stop."
270 PRINT"Else press any key ..• ·;
280 A$ = INKEY$: IF A$ = "s" THEN END
290 IF A$ - "" THEN 280
300 GOSUB 60000 'install function for Interrupt call
310 CLS 'Clear Screen
320 PRINT"TAST (c) 1987 by Michael Tischer" : PRINT
330 PRINT· You can input some characters and change the status of the NOM,"
340 PRINT"CAPS and INSERT mode, where every change is documented in •
350 PRINT"the upper right corner of the display."
360 PRINT"The input of <RETURN> terminates the Program••• • : PRINT
370 PRINT"Your Input: ";
380 GOSUB 50000 'initialize keyboard-Flags
390 GOSUB 51000 'read a character
400 IF LEN(ZS) = 2 THEN 390 'on extended Code do nothing
410 PRINT Z$; 'output characters
420 IF ASC(ZS) <> 13 THEN 390 'on RETURN terminate
430 PRINT
440 END
450 '
50000 1*._.-....__ ._......_._._.__ ._._.._.._._._._.-.-._.......*••• '
50010 '. initialize keyboard-Flags .,
50020 '*--.,
50030 '. Input: none

50040 '. Output: none *'

50050 ,* Info the Variable Z\ is used as a Dummy *.

50060 the Status of the keyboard Flags is stored in

50070 •* variables INSERT', CAPS, and NUM\ *'

50080 ' ••• *•••••••••••**••• '

50090 '

50100 FKT\-2 'get function number for keyboard status

50110 INR'~&H16 'call BIOS-keyboard-Interrupt 16(h)

50120 CALL IA (INR', FKT', FLAGS', Z', n, n, n, n, n, zt, U, zt, U)

50130 IF FLAGS' AND 128 THEN INSERT' = 0 ELSE INSERT' - -1

50140 IF FLAGS' AND 64 THEN CAPS, - 0 ELSE CAPS' - -1

50150 IF FLAGS' AND 32 THEN NUM\ - 0 ELSE NOM' - -1

50160 RETURN 'back to caller

50170 '

51000 ••*••••*•••*•••***•••***.**.***.**••** ••*****•••**•••••****.**•• ,

364

Abacus 7.11 Accessing the Keyboard from the BIOS

51010 .* get a character from the keyboard and maybe output
51020 '* Flag-Status
51030 '*---*.
51040 Input: none
51050 Output: ZS - the character read
51060 Info the Variable Zt is used as Dummy
51070 if Z$ is two character long, an extended
51080 keyboard code was input. The first character of the*'
51090 string is in such a case the NUL-character,
51100 and the second character indicates the Code of the *'
51110 extended key
51120 1 __ *•••••••• __ ._ ••• ,,_•••••_,-,-,_._._---,-,----,-,-,-.-._•••• _,
51130 '
51140 FKT\~2 'get function number for keyboard status
51150 INR\-&H16 'call BIOS-keyboard-Interrupt 16(h)
51160 CALL IA(INR\,FKT\,FLAGSt,Z\,Z\,zt,Z',Z',Z\,zt,zt,Zt,zt)
51170 IF INSERT\ = «FLAGS\ AND 128) = 128) THEN 51230
51180 INSERT' - NOT INSERT' 'Insert-Status has changed
51190 COLMNt - 75 'Column for Insert-Text
51200 FLAGt = INSERTt 'Status of Insert-Flags
51210 FTEXTS - "INSERT" 'Flag-Text
51220 GOSUB 52000 'output Flag-Text
51230 IF CAPS\ ~ «FLAGS' AND 64) = 64) THEN 51290
51240 CAPS\ - NOT CAPS' 'Caps-~atus has changed
51250 COLMN\ - 69 'Column for Caps-Text
51260 FLAG' - CAPS\ 'Status of Caps-Flag
51270 FTEXT$ - " CAPS " 'Flag-Text
51280 GOSUB 52000 'output Flag-Text
51290 IF NOM\ - «FLAGS' AND 32) = 32) THEN 51350
51300 NOM' - NOT NOM\ 'Num-Status has changed
51310 COLMN' - 66 'Column for Num-Text
51320 FLAG\ = NOM\ 'Status of Num-Flag
51330 FTEXTS ~ "NOM" 'Flag-Text
51340 GOSUB 52000 'output Flag-Text
51350 FKT\-1 'test function number for characters
51360 INRt-&HI6 'call BIOS-keyboard-Interrupt 16(h)
51370 CALL IA(INR\,FKT\,Z\,Z\,Zt,Zt,zt,Z\,Z\,zt,Z\,Zt,FLAGREGt)
51380 IF (FLAGREG\ AND 64) - 64 THEN 51140'no key --> get Flags
51390 ZS = INKEYS '
51400 RETURN 'back to caller
51410
52000 I**w********.****,
52010 '* Set Cursor Position
52020 '*--*'
52030 Input: FLAG\ ~ Status of Flags either on or off
52040 fTEXTS - Flag-Text
52050 COLMN% = is the new column for Cursor
52060 CLINE% = is the new line for Cursor
52070 Output: none
52080 Info : the Variable Z\ is used as a Dummy
52090 ,*******.********* ••• ****.**.**********************************'
52100
52110 CURCLINE\ = CSRLIN-1 'record current Cursor line
52120 CURCOLMN\ = POS(O)-1 'record current Cursor column
52130 LOCATE 1,COLMN\ 'Cursor position for Flag-Text
52140 IF FLAG\ THEN COLOR 0,7 ELSE COLOR 0,0
5215~·PRINT FTEXTS
5216~'LOCATE CURCLINEt+l,CURCOLMN%+l 'set old Cursor position
52170 PKT\-2 'set function number for Cursor position
52180 INR\-&HI0 'call BIOS-Video-Interrupt 10(h)
52190 SErTE\ = 0 'set Cursor in display page 0
52200 CALL IA(INR\,FKT\,Z\,SEITE\, Z',Z\, Zt,CURCLINEt, CURCOLMNt,Z\,Z\,Z\,Z\)
52210 COLOR 7,0
52220 RETURN 'back to caller
52230
60000 ,************* ••• ***.
60010 '* initialize the Routine for Interrupt-call
60020 '*_____--*,
60030 Input: none

60040 '* Output: IA is the Start address of the Interrupt-Routine *'

365

7. The BIOS 	 PC System Programming

60050 	 ,****************.*********.*******************.*.********••***.'
60060 	 '
60070 IA-60000! 'Start address of the Routine in the BASIC-segment
60080 DEF SEC 'set BASIC-Segment
60090 RESTORE 60130
60100 FOR 1\ - 0 TO 160 : REAO X\ : POKE IA+I\,X\ NEXT 'poke Routine
60110 RETURN 'back to caller
60120 	 '
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255

Pascal listing: KEYP.PAS

{* ••**}
(* 	 KEYP. *)

{*---*)
(* Task makes a function available for reading a *)
(* character from the keyboard and outputting *)
{* the Status of the control keys (INSERT, *)
{* CAPS, NOM) on the display_ *)

{*---*)
(* Author MICHAEL TISCHER *)
{* developed on 07/08/87 *)
(* last Update 06/10/89 *)
t**********···*******··***********·***··********··****•••••********••• }

program KEYP;

Uses 	 Crt, Dos; { Add Crt, Dos units

{$V-) 	 Suppresses string length check

type FlagText - string[6]; used for passing the Flag-Name

const 	FZ ,.,. 1; Line in which the Flags are output
FS = 65; Column from which Flags are output
FlagFore 0; [Foreground color of Flags:0:

FlagBck = 7; 	 [Background color of Flags

[** BIOS keyboard status bits •• ** ••***••• **•• ** ••• ********••• *}
SCRL = 16; ScrollLock bit)
NUMI = 32; [NumLock bit)
CAPL = 64; { CapsLock bit)
INS = 128; (Insert bit)
{** Codes of some keys as presented by GETKEY ***************.*}

BEL = 7; { Code for bell character
BS = 8; Code for Backspace character
TAB a 9; { Code for Tab character
LF - 10; [Code for Linefeed
CR 13; { Code for Return
ESC - 27; [Code for Escape character
Fl = 315; { Code for F1 key
F2 - 316; { Code for F2 key
F3 = 317; { Code for F3 key
F4 = 318; { Code for F4 key
F5 = 319; { Code for FS key
F6 - 320; { Code for F6 key
F7 - 321; [Code for F7 key

366

Abacus 	 7.11 Accessing the Keyboard from the BIOS

F8 322: { Code for FB key
F9 = 323; I Code for F9 key
flO - 324; I Code for FlO key
CUP - 328; I Code for Cursor up
CLEFT = 331; Code for Cursor left
CRIGHT - 333; Code for Cursor right
CDOWN - 328; I Code for Cursor down

var 	Insert, Status of INSERT flag
Num, I Status of NUM flag
Caps boolean; I Status of CAPS flag
ForeColor, current foreground color
BckColor, current background color
key : integer; Code of key read

{**.**************.***••••••••• *** ••••••••••••••••***.-*--*-*---------}
1* NEGFIAG: negate Flag and output Text *}
{* Input: s.u. *}
1* Output: the new Status of the Flags (true = on, false - off) *}
{---* ••*--••••_..__ .••-.•••_--_••••.••••••.•••..•••_---_ ••.•_*--_._---}

function NegFlag(Flag boolean; { the last Status of the Flags
FlagReg, (current Status of the Flag 10 - off)
Column, I Column for the name of the Flags
Cline integer; (Line for the Names of the Flags
Text FlagText) ; boolean; I Name of the Flags

var 	CUrCline, current Line
CurColurnn integer; current Column

begin
if (Flag and (FlagReg - 0)) or { test if status

(notIFlag) and (FlagReg <> 0)) then (of the Flags has changed
begin (YES

CUrCline :- WhereY; (record current Line
cUrColumn :- WhereX; record current Column
gotoxy(Colurnn, Cline); { Cursor to Position for Flag-Name
if FlagReg - 0 then { is Flag reset?
begin (YES

NegFlag :- false; Result of the function : Flag off
textcolor(O); { Foreground color is black
textbackground (0) ; { Background color is black

end

else

begin { Flag is now on }
NegFlag; =true; Result of the function : flag on }
textcolor(FlagFore); { Foreground color is FLAGFORE}
textbackground(FlagBck) { Background color is FIAGBCK }

end;
write (Text) ; (Output name of the flag
gotoxy(CurColumn, CurCline); { restore old cursor position
textcolor(ForeColor); { restore old foreground color
textbackground(BckColor) { restore old background color

end
else

NegFlag '- Flag { Status of flags has not changed }
end:

{*-.*._*-••••••••• _-----_._.-._••••••••-.-._•••••••••-•• **••• *•••••••• }
{* GETKEY: Read a character and output the flag status *}
{* Input: none *}
{* OUtput: Code of the key < 256 : normal key *}
{* >- 256 : extended key *}
{•••••• * ••••••••••• _- ••••••••• _•••••• _•••••••••••_----•••_*--*--_._._-}

function Getkey : integer;

var Regs Registers; Register variable for interrupt call
keyRec boolean; { indicates if key already received

367

7. The BIOS PC System Programming

begin
keyRec :- false; no key received
repeat

Regs.ah :- S2; (read function number for keyboard status
intr(Sl6, Regs); (call BIOS keyboard interrupt

{** Adjust flags to new status ** •••**************************.*****}
Insert :- NegFlag(Insert, Regs.al and INS, FS+9, FZ, 'INSERT');
Caps :- NegFlag(Caps, Regs.al and CAPL, FS+3, FZ, ' CAPS ');
Num :- NegFlag(Num, Regs.al and NUML, FS, FZ, 'HUM');
Regs.ah :- S1; (function number for character ready?
intr(5l6, Regs); (call BIOS keyboard interrupt
if (Regs. flags and FZero - 0) then
begin

KeyRec : - true;
Regs.ah :- 0;
intr(S16, Regs);
if (Regs.al = 0) (is zero flag set ?
then Getkey :- Regs.ah or S100 (YES
else Getkey :~ Regs.al; (NO

end:
until keyRec; (repeat until a key is received

end;

{*--*-_.-.-_._-_._--*_-_._._-_*-------_.. _----*-*---_._-_.._}
(* INlKEY: initialize keyboard flags *)
(* Input: none *)
(* Output : none *)

(* Info the keyboard flags are inverted from the current *)
(* status. This outputs their current *)
(* status during the next call of the GETKEY function. *)

{---*_._._------------_._----_ .. _-----------_._._._-----*.*.*_._------}
procedure Inikey;

var Regs : Registers; (Register variable for interrupt call)

begin
Regs.ah := 52; (Read function number for keyboard status
intr (516, Regs); (call BIOS keyboard interrupt
if (Regs.al and INS <> 0) then Insert :- false (INSERT flag

else Insert :- true; { set
if (Regs.al and CAPL <> 0) then Caps :- false (CAPS flag

else Caps : - true; (set
if (Regs.al and NUML <> 0) then Num • - false HUM flag

else Num true (set
end;

{*.****.************************~********************* ----*-*-------.-}
(* SCOLCR: sets foreground and background colors for display *)
(* Input: see below *)
(* Output : none *)

(* Var. the color Is stored in the gJobal variables FORECOLCR *)
(* and BCKCOLCR *)
(* Info this procedure must be called for setting the color *)
(' so that after the output of the keyboard flag status, *)
(* the current text color can be restored *)
(* since in TURBO no functions exist for sensing *)
(* this color *)
{***}

procedure Scalor(Foreground, Background: integer);

begin
ForeColor :- foreground; Record foreground color
BckColor := Background; Record background color
textcolor(Foreground); (Set foreground color
textbackground(Background) (Set background color

end;

368

Abacus 7.11 Accessing the Keyboordfrom the BIOS

{***)
{* MAIN PROGRAM * I
{***••••*****.*.***•••******* •••)

begin
Inikey; Initialize keyboard flags
Scolor (7,0) ; (Color is white on black
clrscr; (Clear screen
writeln(.13.10'KEYP (c) 1987 by Michael Tischer');
writeln('13'10'A few characters can be input now and switch ,+

'INSERT-, CAPS- or !ruM-');
writeln('mode on or off. The status of the three ,+

'modes is always displayed in');
writeln('the upper right corner of the screen.');
writeln('Pressing the <RETURN> or the <F1>-key terminates the ,+

'program••• ');
write(.13.10'Your Input: ');
repeat (Input loop

key :- Getkey; (Get key
if (key < 256) then write(chr(key» { OUtput (if normal)

until (key - 13) or (key - Fl); Repeat until Fl or CR
writeln;

end.

C listing: KEYC.C

/*********************** •••***************************_•••• _._._•• _._-/

1* KEY C *1
1*---*1
1* Task provides a function for reading a *1
1* character from the keyboard and to output *1
1* the Status of the control keys (INSERT, *1
1* CAPS, NOM) on the display. *1
1*---*1
1* Author MICHAEL TISCHER *1
1* developed on : 8/13/87 *I
1* last update : 6/09/89 *1
1*---*1
1* (MICROSOFT C) *1
1* Creation MSC TASTC; *1
1* LINK TASTC; *I
1* Call TASTC *1
1*---*1
1* (BORLAND TURBO C) *1
1* Creation Make sure that Case-sensitive link is OFF in *1
1* the Options menu/Linker option *1
I * Select RUN menu *I
1-····-·-·_··-·-··· __··· __·· __ ····---_················ .***************/

'include <dos.h> 1* include Header-Files *1

finclude <io.h>

'include <bios.h>

1*-= Type definitions =======------====----=====------===============*1

typedef unsigned char byte; 1* Create a byte *1

1*== Constants ====--========-=--=====--==-=---====--====-----=====-=*1

1*-- Bit layout in BIOS keyboard status -----------------------------*1

'define SCRL 16 1* ScrollLock bit *1
'define NUML 32 1* NumLock bit *1
'define CAPL 64 1* Caps Lock bit *1
'define INS 128 1* Insert bit *1

'define FALSE 0 1* Constants make reading of the *1
'define TRUE 1 1* Program text easier *1

369

7. The BIOS 	 PC System Programming

'define FZ 0 /* Line in which the Flags should be output *1
'define FS 65 1* Column, in which Flags will be output *1
fdefine FlagColour Ox70 /* black characters on white ground */

/*-- Codes of some keys as returned by GETKEY () ---------------------*1
'define BEL 7 /* Bell character code *1
'define BS 8 1* Backspace key code *1
'define TAB 9 1* Tab key code */
'define LF 10 1* Linefeed code *1
'define CR 13 /* Return key code *1
'define ESC 27 /* Escape key code */
'define Fl 315 1* Fl key code *1
'define F2 316 1* F2 key code *1
'define F3 317 1* F3 key code */
'define F4 31B /* F4 key code *1
'define F5 319 I' FS key code *1
'define F6 320 I' F6 key code *1
'define F7 321 1* F? key code *1
'define FB 322 /* FB key code *1
'define F9 323 /* F9 key code *1
'define FlO 324 /* FlO key code *1
'define CUP 32B /. Cursor up code *1
'define CLEFT 331 /* Cursor left code *1
'define CRIGHT 333 /* Cursor right code *1
'define CDOWN 328 1* Cursor down */

/*-- global Variables ---./

byte 	Insert, /* Status of INSERT flag */
Num, 1* Status of NUM flag ./
Caps; /* Status of CAPS flag */

1·--·_··*_············_·_--·_··· __ ·_···········-_····· ... ****.* ••••••• /
1* GETPAGE: get the current display page *1
1* Input : none */
/, Output : see below */
1······_····_···············_·_···········_-·······_-- -*-* •• *._._ .. _._/
byte GETPAGE (I

union REGS Register; /, Register variable for interrupt call */

Register.h.ah ~ 15; /* function number */
int86(Oxl0, &Register, &Register); /* call interrupt 10 (h) */
return(Register.h.bh); 1* Number of current display page */

I

1--***-·_·_--_·_·_·_·_·-----_········_· __ ·_·_·_······- ----*-**-_..._._,
/, SETPOS: sets the position of cursor in current display page */
/' Input : see below '/
I' Output : none ,/

1* Info the position of the blinking cursor changes '/
I' with the call of this function only if ./
/* display page indicated is the current display page *1
1····_···_·······_········--·····_--_········_-_····_-....*****_._----/

void SetPos(byte Column, byte Line)

union REGS Register; /, Register-Variable for Interrupt call */

Register.h.ah - 2; /, function number */
Register.h.bh GETPAGE(); /* Display Page '/
Register.h.dh Line; /* Display Line */
Register.h.dl ~ Column; /* Display Column *1
int86(Ox10, 'Register, 'Register); 1* call Interrupt 10 (h) '/

I

370

http:Register.h.dl
http:Register.h.dh
http:Register.h.bh
http:Register.h.ah
http:return(Register.h.bh
http:Register.h.ah

Abacus 	 7.11 Accessing the Keyboard from the BIOS

/* GETPOS: Gets the Position of Cursor in the current Display Page */
/* Input : none */
/* Output : see below */
, •••••••••• ***••••••• ** •••••••••••• **••••••••••••••••••_.- •••••_••••--/

void GetPos(byte * CurColurnn, byte * CurLine)

union REGS Register; /* Register variable for interrupt call */

Register.h.ah - 3; /* function number */
Register.h.bh - GETPAGE(); /* Display page */
int86 (OxlO, 'Register, &Register); /* call Interrupt 10(h) */

CurColurnn - Register.h.dl; / Result of the function */
CurLine - Register.h.dh; / Read from the register */

I

1·---··_···-··_·_·_-_·····_--·····_·_-_· __ ·_·_·_·_·_-- -* ••••••• -._._._,
/* WRITECHAR: writes a character with an Attribute to */
/* the current cursor position in current display page */
/* Input : see below */
/* Output : none */
,_._._._-_._._._ ••• _._---_ •• _. __ •• --_._ ••••• _-----_ ••••• ***.****•••••*;

void WriteChar(char Zcharacter, byte Colour)

union REGS 	 Register; 1* Register variable for interrupt call *1

Register.h.ah = 9; /* function number */
Register.h.bh = GETPAGE(); /* Display Page *1
Register.h.al = Zcharacter; 1* the character for output */
Register.h.bl = Colour; /* Color of character to be output */
Register.x.ex - 1; /* output character only once */
int86(Oxl0, &Register, &Register); /* call Interrupt 10(h) */

I

j_._._....--__-----__._._.- .._......._--- ,

/* WRITETEXT: write a character chain with constant color */
1* starting at a certain location in the current */
/* Display Page */
1* Input : see below *1
/* Output : none */
/* Info Text is a Pointer to a character-Vector which *1
1* contains the Text to be output and is terminated with */
/* a 1'0' character. */
j----.-._--__-_ ...-._---_ ... _._-_._---_._---_.-.- -*_._-_ .. _._-_._,

void WriteText(byte Column, byte Line, char 'Text, byte Colour)

union REGS 	 InRegister,
OutRegi ster; /, Register variable for interrupt call */

SetPos (Column, Line); 1* set Cursor * /
InRegister.h.ah 14; 1* function number */
InRegister.h.bh ~ GetPage(); I' Display Page */
while ('Text) /* output Text until '\0" character *t

{

WriteChar (. " Colour); /* Indicate color for character */
InRegister.h.al ~ 'Text++; /* the character for output */
int86 (Oxl0, &InRegister, &OutRegister); /* call Interrupt *1

I

1·····················_·········-······_··············...•..•.•....... /

/* CLS: erase current Display Page * I
/* Input : none */
/* Output : none */
j •• ** •••••• ***.* ••• ************.****.*********•••• *••• fr •••••••••••••• _/

371

http:InRegister.h.al
http:InRegister.h.bh
http:InRegister.h.ah
http:Register.x.ex
http:Register.h.bl
http:Register.h.al
http:Register.h.bh
http:Register.h.ah
http:Register.h.dh
http:Register.h.dl
http:Register.h.bh
http:Register.h.ah

- -

7. The BIOS PC System Programming

void ClsO

union REGS Register; /* Register variable for interrupt call */

Register.h.ah - 6; /* function number for scroll up *f
Register.h.al - 0; f* 0 stand for clear *f
Register.h.bh - 7; f* white letters on black background */
Register.x.ex - 0; /* upper left display corner */
Register.h.dh = 24; /* Coordinates of the lower */
Register.h.dl - 79; /* right display corner *f
int86 (Ox10, 'Register, 'Register); f* call BIOS-Video-Interrupt *f

}

1-*·······_·-················_----······_·-··········· -.........,

f* NEGFLAG: negate Flag and output Text *f
/* Input : See below */
/* Output : the new Status of Flags (TRUE - on, FALSE - off) */
1-*····_----_·_·_·_-*······· __ ·_·_-_·----·_·_·_------- ***-**._ •••• _---/

byte NegFlag(byte Flag, unsigned int FlagReg,
byte Column, byte Line, char' Text)

byte CurLlne, /* current Line */
Cureol wnn, /* current Column *1
Colour; /* for Output of Flag-Text */

if (! (Flag == (FlagReg ! = 0») /* did Flag change? */

(/* YES */
GetPos(&CurColumn, &CurLine); f* get current Cursor position */
WriteText(Column, Line, Text, (Flag) ? 0 : FlagColour);
SetPos(CurColumn, CurLine); /* set old Cursor position */
return(Flag '1); /* reverse Bit 1 of Flags *f

}

else return(Flag); f* everything remains the same */
}

1··**--------_·_-·_·_-----------------_····_---_·_·_·- ***-** •• _•••••• _,
f* KEYREADY: Tests for a character from the keyboard */
f* Input: none * /
/* Output: TRUE if a key is pressed, otherwise FALSE *f
1·***-·········_-·······_·······_--_······_··········· .****._••••••••• /

i nt KeyReady ()

(
.ifdef TURBOC

strJct REGPACK Register;

Register.r ax = 1 « 8;

intr(Ox16,-&Register);

return!! (Register.r_flags & 64));

.else

return (bios keybrd(KEY8RD READY));

.endif
I

/* GETKEY: Read a character and Output Flag-Status */
f * Input : none *f
f* Output : Code of key read < 256 : normal key *f
/* >- 256 : extended ke y */,*..** ••••• ****************** •••• ***.* •••••• ***************••• **** ••**/

372

http:Register.h.dl
http:Register.h.dh
http:Register.x.ex
http:Register.h.bh
http:Register.h.al
http:Register.h.ah

Abacus 7.11 Accessing the Keyboard from the BIOS

unsigned int GetKey()

union REGS Register; 1* Register Variable for Interrupt call *1

do
(
Register.h.ah - 2; 1° read function number for keyboard status *1

int86 (Ox16, &Register, &Register); 10 call BIOS keyboard interrupt*1

Insert - NegFlag(Insert, Register.h.al & INS, FS+9, FZ, "INSERT");

Caps - NegFlag (Caps, Register. h.al & CAPL, FS+3, FZ, " CAPS ");

Num ~ NegFlag(Num, Register.h.al & NUML, FS, FZ, "NOM");

)
whi Ie (!KeyReady ());

Register.h.ah ~ 0; 1* read function number for key *1

int86(Ox16, &Register, &Register); I*call BIOS-keyboard-Interrupt*1

return«Register.h.al) ? Register.h.al : Register.h.ah I 256);

)

/********************.*******•••*********************.**.***•••••••••• /

1* INIKEY: initialize keyboard-Flags *1
1* Input : none *1
1* Output : none *1
1* Info the keyboard-Flags are reversed compared with the *1

current status. This makes it possible that their *''* current Status is output on the next call of the *',*

'* GETKEY-function. *1

,********••••• ****.*.* ••••***.*.*** ••• ***••• ***.*.*.*••••••••••••••••• /

void Inikey ()

union REGS Register; 1* Register variable for interrupt call *'

Register.h.ah 2; 1* read function number for keyboard status *1c

int86(Ox16, &Register, &Register); 1* call BIOS-Keyboard-Interrupt*'
Insert = (Register.h.al & INS) ? FALSE: TRUE; '* reverse the *'
Caps = (Register.h.al & CAPL) ? fALSE: TRUE; 1* current content *'
Num = (Register.h.al & NUML) ? FALSE: TRUE;

)

1** MAIN PROGRAM **'
/*** ••• ************ ••• ************.**************.**** •• ****** ••******/

void main ()

unsigned int key;

Cls(); '* Clear Screen *'

SetPos(O,O); '* Cursor to left upper screen corner *'

printf("KEY (c) 1987 by Michael Tischer\n\n");

printf("You can input some characters and at the same time change H);

printf("INSERT-, CAPS-\nor NOM-status. Every change H);

printf("is displayed in the upper right corner of the screen.\n");

printf("\n<RETURN> or <F1> terminates the Input ... \n\n");

printf("Your Input: ");

Inikey(); '0 initialize Keyboard-Flags *'

do

{

if «key = Getkey () < 256) '* read key *'
printf("'c", (char) key); 1* output (if normal) *'

while (! (key -- CR I I key -= Fl»; '* repeat until F1 or CR *1
printf ("\nO) ;

)

373

http:Register.h.al
http:Register.h.al
http:Register.h.al
http:Register.h.ah
http:Register.h.ah
http:Register.h.al
http:return�Register.h.al
http:Register.h.ah
http:Register.h.al
http:Register.h.al
http:Register.h.ah

7. TheBIOS PC System Programming

A resident interrupt driver

The next assembler program is a resident interrupt driver. Once a resident program
is installed in memory, other programs or data cannot overwrite it Another reason
for the name resident lies in the program's ability to point to an interrupt in its
own routine. Instead of DOS, BIOS or another interrupt routine called up to now,
the program calls its own interrupt driver routine. Before examining how this is
done, the assembler program should be explained.

The SHOWCLK program displays the current time on the screen every time the
user presses a certain key after installing it. This occurs until another key is
depressed. The key which causes the time to be displayed must be passed to the
program in the command line during its call. For example, entering the following
at the DOS prompt invokes the program and tells the program to display the time
when the user presses the <FlO> key on the XT, or the <F8> key on the AT
keyboard. When the key is pressed, the time appears on the screen at line 1 starting
at column 40:

showclk 68 III Ic40

The following removes the SHOWCLK program from memory (note the lack of
parameters):

showclk

The only stipUlation is that the actuating key must be one that generates an
extended key code (e.g., a cursor key or function key). The program sets the default
clock position to the upper right corner of the screen. This can be changed by
passing parameters in the command line during the program call. Another facet of
the program is its ability to re-install itself during a new call, if the user desires.

;***************************•• **************•••*******.*._*_•••••• - ••-;
;* SHOWCLK *;

;*---*i
;* Task : Outputs the time on the display after pressing*;
;* a key which generates an extended key code *;
; * stops when another key is pressed *;

i*---*i
;* Author : MICHAEL TISCHER *;
;* developed on : 8/1/87 * ;
;* last Update : 9/21/87 * ;

i*---*;
;* assembly : MASM SHOWCLK * ;
;* LINK SHOWCLK * ;
;* EXE2BIN SHOWCLK SHOWCLK.COM * ;
;*---*;
,Call : SHOWCLK [Key-code] [/lLine] [/cColumnj ,
,.***.,.

i-- Constants =====--========-=-====-=========-===--=====-=======-=~-=

TAB equ 9

LF equ 10

CR equ 13

;-- here starts the actual Program ----------=-----=-----------=

374

http:SHOWCLK.COM

Abacus 7.11 Accessing 1M Keyboard from 1M BIOS

code segment para •CODE' ;Definition of the CODE-segment

org 100h

assume cs:code, dS:code, es:code, ss:code

start: jmp showinit ;Call of the Initialization-Routine

;- Data (remain in memory)

alterint equ this dword ;old interrupt vector 16(h)

intaltofs dw (1) ;Offset address interrupt vector 16(h)

intaltseg dw (1) ;Segment address interrupt vector 16(h)

extkey db (1) ;extended keyboard-code, on which
keycode db (?) ;the program is called

l1nepos equ this word

column db 75 ;Line and column in which the time

line dbO ; is output

buffer dw 5 dup (?) ;stores the characters from the clock

;== this is the new kyboard-interrupt (remains in memory) ------

newint proc far

db MMTIf ;Identification of the program

or
je
jmp

ah,ah
newi 2
aint

;read character (Function OJ?
;YES --> get character and test
;NO --> call old interrupt

pushf
call cs:[alterint]
amp ax,cs:word ptr
je showtime
jrnp aiend

;for smulation of an interrupt
;call old interrupt

extkey ;was it the specified key?
;YES --> display clock
;NO --> back

call

the specified key was activated ---------------------

showtime: pushf
push ax
push bx
push ex
push dx
push di
push si
push es
push ds

;all registers which are
; must be stored

changed

getz:

cld
mav ah,lS
int 10h
mav ah,3
int 10h
push dx
push cs
pop ds
mav dx,linepos
mav ah,2
int 10h
push cs
pop es
mov ex,S
mov di,offset
mav ah,B
int lOh

buffer

ion sring commands count up
;read current display page
;call BIOS video-interrupt
iread current cursor position
; call BIOS video-interrupt
;store on the stack
;Code-sgment to the stack
; return as OS
;set cursor position
; for the time
; call BIOS video-interrupt
;Code-segment to the stack
;return as ES
;read 5 characters
;Address of the character-buffer
;read 1 character
;call BIOS video-interrupt

375

7. The BIOS PC System Programming

stosw
inc dl
mav ah,2
int lOh
loop getz
mav dx,linepos
mav ah,2
int lOh
mav ah,2CH
int 21h
mav bl,70h
push ex
mov al,ch
call bia
mav a1,": "
call prz
pop ax

; function number
xchg bl,ah
int lOh
inc dl
mav ah,2
int lOh
dec di
jne storz
pop dx
mov ah,2
int lOh

pop ds
pop es
pop 51
pop di
pop dx
pop ex
pop bx
pop ax
popf
xor ah,ah

(jrnp newi_2

aint: pushf
call cs:[alterint]

aiend: ret 2

newint endp

;-- BIA: change binary to ASCII and output
;-- Input AL - the number to be converted
;-- Output : none
;-- Register : ex, AX,

bia proc near

mov cl,lO
xor ah,ah
div cl
or aX,3030h
push ax
call prz
pop ax
mav al,ah
call prz
ret

bia endp
~,

;store character in the buffer
;next display column
;set cursor position
;call BIOS video-interrupt
;get next character
;set cursor position
;for the time
;call BIOS video-interrupt
;get time from DOS
;call DOS-interrupt
;color of clock: inverted
;record minutes
;change hours to ASCII
land output
; output colon

;get minutes
for character output

;exchange AH and BL
;call BIOS video-interrupt
; next column
;set cursor position
;call BIOS video-interrupt
;output another character?
; YES --> STORZ
;get old cursor position
;and set again
;call BIOS video-interrupt

;restore all stored registers

;simulate interrupt-routine
;call next keyboard-routine
; flag-regi ster

DL and FLAGS are changed

;we work in the decimal system
;prepare 16 bit division
;divide AX b¥ CL
;change result to ASCII
; store number
;output character and advance
; read number
;move character to AL
;output character and advance
;back to caller

cursor

cursor

;-- PRZ: output character and increment cursor position -----------
;-- Input BH - Display page for OUtput
;-- AL = the character for output

376

Abacus 	 7.11 Accessing flu! Keyboard from flu! BIOS

;-- BL - Attribute (color) of the character

; -- OUtput none

;-- Register : ex, AH, OL and FLAGS are changed

prz 	 proc near

mov ah,9 ;function number for character output
mov ex, 1 ;output character only once
int 10h ;call BIOS video-interrupt
mov ah,3 ;read current cursor position
int 10h ;call BIOS video-interrupt
inc d1 ;increment cursor column
mov ah,2 iset
int 10h ;call BIOS video-interrupt
ret ; back to caller

prz 	 endp

instend equ this byte 	 ; if SHaiCLK installed, memory can be
;released starting at this location

;== Data (can be overwritten by DOS) =-=--=======-=-------=-=

badp db "Invalid Parameter",CR,LF,"S"
installm db "SHOWCLK ee) 1987 by Michael Tischer",13,10,13,10

db "SHOWCLK was installed and can be deactivated ",13,10
db ·with a new call ",13,10
db "(but without Parameters)",CR,LF,"S"

deactivrn db "SHaiCLK was deactivated",CR,LF,"S"

allinm db "SHaiCLK is already installed", CR, LF, "S"

noinstm db "no SHaiCLK installed",CR,LF,"S"

partab dw 63 dup (?) 	 ;Address of command line parameter

;== program (can be overwritten by DOS) =======------=========

deactivate label near ;turn SHOWCLK off

mov ax,3516h ;get content of interrupt vector 16
int 21h ;call DOS-Function
crnp word ptr es: [bx+2l, "'!M" :test if SHOWCLK-program
jne noinst ;SHOWCLK not installed --> End

mov dx,es:intaltofs ;Offset address of interrupt 16(h)
mov ax,es:intaltseg ;Segment address of interrupt 16(h)
mov ds,ax ;to OS
mov aX,2516h ; reset content of
int 21h ;interrupt vector 16(h) old routine

mov ah,49h ;release storage
int 21h ;of old SHOWCL again

push cs ;store CS on the Stack
pop ds ;restore OS

entfe: 	 mov dx,offset deactivrn ;Message: program removed
xor aI, al ;program performed correctly
jrnp showend ;to end of program

noinst: 	 mov dx, offset noinstm ; Error-Message: no SHOWCLK installed
jrnp short noinerr ;output Error-Hessage and terminate

;-- Start and Initialization-Routine --------------------------------

showinit 	 proc near

cld ;on String commands count up
mov di,offset partab ;Address of Parameter-Table

377

7. The BIOS 	 PC System Programming

call parmtest ;count Parameter/determine Address
or dl, dl ;if no Parameter indicated
je deactivate ;YES --> remove last SHOWCL

;evaluate Parameter

mov bx,offset partab ;Address of the Parameter-Table
paraout: 	 mov si,[bx] ;get Address of a Parameter

lOdsw ;get first two chars of parameter
and ah,11011111b ;lower case letters --> upper case
crop aX,"L/" ;is it line indication?
je get1ine ;YES --> GETLINE
anp ax,·C/" ;is it column indication?
je getcolurnn ;YES --> GETCOLUHN

;-- Parameter must be Key cOde -----------------------

anp extkey,O ;Key cOde discovered?
je badpara ;YES --> Error

push bx ;save Pointer in PARTAB
push dx ;save remaining number of Parameters
sub si,2 ;set SI to beginning of number
call asciibin ;convert Code to binary
pop dx ;get remaining number of Parameters
pop bx ;get Pointer in PARTAB

jc badpara ;no number found --> Error
or ah,ah ;number larger than 255?
jne badpara ;YES --> wrong number
mov keycode,al ;number o.k. record it
mov extkey, 0 ;announce Key code discovery

nextpara: 	add bX,2 ;Address of the next PARTAS-Element
dec dl idecrease Parameter counter
jne paraout ;last Parameter? NO --> continue
jmp short install ;Parameter o.k. --> install program

get line: 	 mov di, offset line ;Address of Line-Variable
mov dh,24 ;Maximum value for Line
jmp pareval ievaluate Parameter

get column: mov di,offset column ;Address of the Column-Variable
mov dh,75 ;Maximum value for column

pareval: 	 push bx ;store Pointer in PARTAB
push dx ;store remaining number of Parameters
call asciibin ;convert Code to binary
pop dx ;get remaining number of Parameters
pop bx ;get Pointer in PARTAB

jc badpara ;no number found --> Error
or ah,ah ;Number larger than 255?
jne badpara ;YES --> wrong number
cmp al,dh ;Number larger than permitted?
ja badpara ;YES --> wrong number
mov [di],al ;Number o.k. therefore store
jmp short nextpara ;evaluate next prameter

allinst: 	 mov dx,offset allinm ;Error-Message: already installed
jmp short noinerr ;output Error-Message and terminate

badpara: mov dX,offset badp ; Error-Message: invalid parameter
noinerr: mov al,1 ; Error-Code

jmp showend ;terminate program

install: 	 cmp extkey,O ;Key-code discovered?
jne badpara ;NO --> Error
mov aX,3516h ;get content of interrupt vector 16
int 21h ;call DOS-function

378

Abacus 	 7.11 Accessing the Keyboard from the BIOS

cmp word ptr es: [bx+2J, "TM" ;test if already installed
je allinst ;YES --> Error

mov intalt seg, es ;segment and offset address of the
mov intaltofs, bx ;stored-interrupt vector 16(h)

mov dx,offset newint ;Offset address new interrupt routine
mov aX,25I6h ;change content interrupt vector 16
int 2Ih ito user routine

mov dx,offset installm ;Message: program installed
mov ah,9 ;output function number for string
int 21h ;call DOS-function

;-- only the PSP, the new interrupt-Routine and the ---------
;-- Data must remain resident.

mov dx,offset instend ;ca1cu1ate number of paragraphs
mov c1,4 (each 16 Bytes) at the disposal
shr dx,c1 ; of the program
inc dx
mov aX,3100h ;terminate program with End-Code 0
int 21h ;remain resident

showend: 	 mov ah,9 ;output string
int 21h ;call DOS-function
mov ah,4Ch ;function number for program
int 21h ;terminate program with End-Code

showinit 	 endp ;End of PROG-procedure

ASCIIBIN: 	 convert ASCII number to binary (max. 16 Bit)
Input OS:SI - Address of Number as ASCII-string

i-- Output AX - the converted Number
i-- Carry-Flag = 1 : Number too large
i-- Register AX, BX, ex, SI and FLAGS are changed
i-- Info the ASCII-string must be ended with Code 0

asciibin 	 proc near

xor bh,bh ;Hi-Byte of every position
mov ex,10 ;we use decimal system
xor ax,ax ;preliminary result

nx_num: 	 mov bl, [si] ;get next number
or bl,bl ; NUL-Code (End)?
je ab ende ;YES --> number converted
cmp bl-;"O" ;test if number
jb ab ret ;NO --> Error
cmp bl,"9" ;test if number
ja ab err ;NO --> Error
mul ex ;preliminary Number * 10
jc ab ret ;Number > 65535 --> Error
and bl-;-l1l1b ;convert number to binary
add ax,bx ;add to preliminary Number
inc si iprocess next number
jrnp short nx num

ab_ende: 	 clc inc Error
ret ;back to caller

ab_err: stc iError
ab_ret: ret ;back to caller

ascHbin 	 endp

;-- PARMTEST: capture Parameter in the Command Line -----------------
;-- Input OS:OOOO - Address of PSP
;-- Output OL - number of parameters found

Register AX, ex, DX, SI and FLAGS are changed

379

7. The BIOS 	 PC System Programming

;-- Info Address of every parameter is stored in Array-PARTAB as
Offset address to DS. In addition behind every

;-- parameter an ASCII-Code a is stored.

parmtest 	 proc near

cld ;on string commands count up
xor dx,dx ;number of parameters found
mov si,80h ;address where number of characters

;of the command line is stored in PSP
mov cl,byte ptr [siJ ;qet number of character
or cl,cl ;have parameters been passed?
je parmtend ;NO --> End

inc si ;SI points to start of command line
xor ch,ch ;in CX is the number of characters

getez: 	 lodsb ;move next character to AL

cmp al," .. ;is it a space?

je space ;YES --> SPACE

cmp al,TAB ;is it a Tab-character?

je space ;YES --> SPACE

;-- no Space or Tabulator -------------------------

or dh,dh ;was last character space ?
jne nextz ;NO --> process next character

inc dl ;increment number parameters found
not dh ;lndlcates no " N or TAB
mov ax,s! ;calculate address of
dec ax ; parameter
stosw ;store in parameter-Table

nextz: 	 loop getez ;get next character

mov byte ptr [siJ,O ;NUL-character as parameter-End

parmtend: 	ret ;back to caller

space: 	 or dh,dh iwas last character space character?
je nextz ;YES --> process next character

found next parameter -----------------------------

xor dh,dh ;this character was a space
mov byte ptr [si-lJ,O ;NUL-character as parameter-End
jmp short nextz ;process next character

parmtest 	 endp

i== End ====~========================--===-===-=------~-===============

code 	 ends ;End of CODE-Segment

end start

Program now

The file header describes the DOS call of the program. As mentioned above, there
are two basic options for the call: If you call the program without parameters in
the command line, it tries to remove any previously installed SHOWCLK. If you
call the program with parameters, SHOWCLK installs itself. The fIrst parameter
must be the scan code which the user wants to trigger the clock display. The line
and column parameters indicate the clock display area on the screen. If these two
parameters are missing, the clock appears in the upper right hand corner of the
screen.

380

Abacus 7.11 Accessing the Keyboard from the BIOS

The constant definition follows the file header to ease your reading of the listing.

The code segment definition follows, which accepts the program code and the data.
The ORG lOOH instruction, which places the beginning of the program at address
lOOH, indicates that SHOWCLK is a COM program. A COM program is a good
choice for a resident interrupt driver because of the compactness of having data,
code and stack in one segment.

The label START shows the fast executable instruction of the program. It jumps
first to the installation routine of SHOWCLK which has the name SHOWINIT.

This routine loads the address of a table and calls the procedure PARMTEST. It
counts the number of arguments passed in the command line and stores the starting
addresses of the individual parameters into the passed table. After this procedure
ends, SHOWINIT tests whether parameters were passed in the command line. If
this is not the case, it jumps to DEACTIVATE which removes the old
SHOWCLK from memory.

Assuming that arguments were passed to SHOWCLK in the command line,
SHOWINIT now reads the passed parameters and tests them for accuracy. If it fmds
a correct key code, this code passes to the KEYCODE variable. If the indication of
a line or column is found, it's tested for an acceptable value. If YES, it moves to
the COLUMN or LINE variable. If an error and unknown parameter or an illegal
coordinate occurs during the argument checking, the program ends with an error
code. If the parameters evaluated are correct, a jump goes to the label INSTALL. A
test searches for a keyboard code. Ifno keyboard code exists, the program ends with
an error message. If it's available, the program fast tests if SHOWCLK is already
installed.

DOS function 35H determines the address of the BIOS keyboard interrupt (the
interrupt pointing to a user routine). It returns the segment address of the interrupt
routine in ES, and the offset address in the BX register. If SHOWCLK was already
installed, an interrupt routine must be located at this address which is conlltructed
exactly like the interrupt routine which is installed, since SHOWCLK always
installs the same interrupt routine.

The routine starts with a 2-byte jump instruction to the routine itself. An
identification code follows, consisting of two ASCII characters, which can be the
initials of the author. In this case the initials are MT. INSTALL tests the address
of the interrupt routine plus 2 for the ASCII codes of the initials MT. The test is
not for MT, but for TM, since the low byte is always stored before the high byte.
If the code exists, SHOWCLK is already installed and the program terminates with
an error message. If INSTALL fmds another bit pattern, it means that no previous
version of SHOWCLK existed. INSTALL can then proceed with installation.

381

7. TheBIOS PC System Programming

Installing SHOWCLK

First INSTALL stores the address of the old interrupt routine in the INT AL TOFS
and INTALTSEG variables. Next the interrupt 16H points through DOS function
25H to the NEWINT routine. The new interrupt routine of interrupt 16H is called
if a program wants to call one of the three functions of this interrupt. A message
tells the user that the program is now installed, and the DOS prompt returns. It's
important that DOS not release the memory occupied by SHOWCLK for other
programs. This could result in another program overwriting the new interrupt
routine, and a system crash during the call of interrupt 16H. To prevent this, the
program terminates with a DOS function which makes a portion of this program
resident and prevents overwriting by other programs. Function 3lH must be
informed how many 16-byte paragraphs must be protected, starting from the
beginning of the PSP.

Protecting memory

Once installed, the new interrupt routine must stay protected from changes that
other registers could make to it. At the same time, SHOWCLK's installation
routine must remain unprotected. SHOWCLK places the interrupt routine before
the installation routine. Only the number of bytes between the beginning of the
PSP and the last byte of the interrupt routine, converted into paragraphs, must be
passed to function 32H. The new interrupt routine cannot be overwritten.

This interrupt routine must also contain variables. They are stored between the
program start instruction and the intemlpt routine code proper. This ensures that
the variables remain resident in memory. At the beginning of the interrupt routine
(NEWINT) is a jump instruction followed by the identification code. When a
program calls interrupt 16H, a jump occurs directly to label NEWel. NEWel
tests for whether the function number passed to interrupt 16H in the AH register is
O. This is the only function applicable to this program, since the function reads
characters from the keyboard buffer. If you called one of the two other functions,
the program calls the old interrupt 16H and passes control to the calling program.
If function 0 is called, it reads a character from the keyboard with the old keyboard
interrupt The program then compares this character with the key indicated when
the program call occurred. If this is not the case, control returns to the calling
program. If it was the indicated key, preparations begin to display the time on the
screen.

Stack activity

First the contents of all registers which change during the course of the program
are stored on the stack so they can be restored to the calling program. Then the five
characters of the display in the position where the time appears are read from the
screen and stored. DOS function 2CH reads the time and converts it to an ASCII
string for display. After the time appears on the screen, the old keyboard interrupt
waits for a keypress. When this occurs, the characters formerly located where the
time appears return to their old positions. The registers return from the stack and

382

Abacus 7.11 Accessing tM Keyboard from 1M BIOS

the program jumps to the beginning of the routine to read in a key. display the
time again. or pass the key to the calling program.

Deactivating SHOWCLK

The last component to be examined is the program routine called when
SHOWCLK is removed from memory. The installation routine calls it if no
parameter was passed in the command line and begins with the DEACTIV A 1E
label. The routine tests for whether SHOWCLK is already installed. If this isn't
the case, it cannot be removed, and the program terminates with an error message.
If SHOWCLK was already installed, the keyboard interrupt must point to the old
interrupt routine. The memory containing the old SHOWCLK routine must be
released

The problem is that the new SHOWCLK, which should remove the SHOWCLK
already in memory, doesn't know the address of the old interrupt routine of
interrupt 16H. It's stored in the old SHOWCLK in the variables INTALTOFS and
INTALTSEG. The two variables are in completely different programs, but there is
a simple method of reading these variables. The old SHOWCLK lies in a different
memory segment from the new SHOWCLK, but the offset addresses of the
variables and routines in both programs are identical. Since you know the segment
address of the old SHOWCLK (the segment address of the interrupt routine), the
contents of the variables INT AL TOFS and INTAL TSEG can be read from the old
SHOWCLK and the interrupt 16H can again point to the original interrupt routine.
Memory can be released again through the segment address of the old SHOWCLK
routine with the help of DOS function 49H. This concludes the task of
DECACTIV A 1E and the program can terminate after displaying a message.

Examine the listing step by step and read the comments carefully. This is
important, because the Program can serve as a basic framework for any resident
interrupt driver. We'll discuss another form of resident program (the TSR
program) in Chapter 8.

383

7. TheBIOS PC System Programming

7.12 Accessing the Printer from the BIOS

BIOS offers three functions, called by interrupt 17H, for communicating with one
or more printers interfaced to the PC. These functions have an advantage over the
DOS printer output functions: They can specify the printer to which the output
should go. The printer's number (0, 1 or 2) must be loaded into the DX register
during the function call. After each of the three function calls, the printer status
passes to the AH register. Each bit in this stams byte provides information about
the printer's task, whether it still has paper, etc.

1 = Time out erro

'"-------41=Transfer error

1=Prlnter ONLINE
~------------~

O=Prlnter OFFLINE

'"---------11=Prlnter out of-paper

'"-----------I1=Recelve mode selected

'"------------I~o~=~p~r~ln~t~er~~~____~

Printer status byte

Time out

A time out error occurs when BIOS tries to send data for a certain amount of time
to the printer, but the printer refuses the data and returns a busy message (bit 7
becomes 0). The number of tries BIOS makes before signaling a time out error
depends on the contents of address 0040:0078 in RAM. ROM uses this address for
storing variables. The value 20 which BIOS enters into these memory locations
during the system boot is different from the repeat factor of 20. The value in these
memory locations must be multiplied first by 4, then by 65,536. A value of 20
actually refers to 5 million attempts. This number is relative since the loop which
checks the printer has only a few assembly language instructions processed very
quickly by the CPU. This results in a waiting period of only a few seconds before
the BIOS reports a time out error. If working with the BIOS routine seems to
create more time out errors than usual, try increasing the value in the memory
locations mentioned above so that BIOS makes more attempts. This may help
communication between BIOS and the printer.

Various printer conditions can change a series of bits in the status byte. An ON
LINE (ready to print) printer sets bits 7 and 4. If the printer switches to OFF LINE
(e.g., for page advance) then bit 7 and bit 4 reset and bit 3 sets, indicating a
transmission error.

384

Abacus 7.12 Accessing the Printer from the BIOS

The program must decide whether new data should be sent to the printer, whether
printer output should end or further steps should be taken.

Function 0: Send character

Function °transmits a character to the printer. Load the function number into the
AH register and the ASCII code of the character you want sent into the AI...
register. After the function call the AH register contains the status byte. If the
character transmission/printing failed, the AH register contains the value 1.

Function 1: Initialize printer

The second function initializes the printer ports. You should always execute this
function before sending data to the printer for the first time. Load the function
number 1 into the AH register; no other arguments are required.

Function 2: Read printer status

Function 2 loads the status byte into the AH register. As mentioned above, the
status byte tells you the current status of the printer. Load the function number 2
into the AH register; no other arguments are required.

Demonstration programs

The programs listed in this section use the BIOS printer interrupt in the same way
as the programs listed earlier to demonstrate the BIOS keyboard interrupt. The
three higher level language programs li~d here send strings to a printer using the
BIOS printer interrupt The fourth program is an assembly language routine which
adapts the BIOS printer interrupt to its own routine.

The three higher level language programs are similar in organization and are
divided into five sections. One section is the main program. The other four
sections call the various functions of the BIOS printer interrupt. These sections
include a routine for initializing a specific printer interface, a routine for character
or string output and a routine which displays an error message on the screen if
needed. The main program initializes printer interface 0, then prints a test string on
the printer connected to this interface. If an error occurs during one of these two
operations, an error message is displayed on the monitor. This message can be
delayed if no printer is attached to the PC, since BIOS continues addressing the
printer, and gives up after a few attempts. If nothing happens for some time, don't
panic. The program will eventually report its error status.

385

7. The BIOS PC System Programming

BASIC listing: PRINTB.BAS

100 ,*******••••*******.*******.********************.*****************,
110 ,*'*__----_____*1PRINTB *,
120
130 ,* Task makes a subroutine available for sending
140 ,* strings to a printer and
150 '* registering errors during the output to the
160 ,* printer *'
170 ,* Author MICHAEL TISCHER *'
180 '* developed on 7/22/87 "
190 '* last Update 9/21/87 *,
200 1************************************.**************.*.********.**.
210 '
220 CLS : KEY OFF
230 PRINT·WARNING: This program should be started only if GWBASIC was •
240 PRINT"started from the DOS level with <GWBASIC /m:60000>.·
250 PRINT: PRINT"If this is not the case, please input <s> for Stop.·
260 PRINT"otherwise press any key ••. ";
270 AS - INKEY$: IF AS - ·s" THEN END
280 IF AS - ." THEN 270
290 GCSUB 60000 'install Function for Interrupt-Call
300 CLS 'Clear Screen
310 PRINT"PRINT (c) 1987 by Michael Tischer· : PRINT
320 PRINT"If a parallel printer is interfaced to your PC, the •
330 PRINT·following text should appear on it immediately:" : PRINT
340 PRINT·a test of the printer routines ••• • : PRINT
350 PRINT· If not, an error message will be output." : PRINT
360 PRINTER' - 0 'address the first Printer on the PC
370 GCSUB 50000 'initialize Printer
380 GCSUB 53000 'output message
390 T$ - "a test of the printer routines ••• ·+CHRS(13)+CHRS(10)
400 GCSUB 51000 'output String on the Printer
410 GCSUB 53000 'output Message
420 PRINT
430 END
440 '
50000 ,***************•••****.*.*.************************.**********.'
50010 " initialize one of the Printer interfaces "
50020 "---"
50030 " Input: PRINTER' - the Number of the Printer to be addressed "

50040 " OUtput: DS' is the Status of the Printer "

50050 "Info : the Variable Z, is used as Dummy "

50060 ,*******************************.******************••••*.**.****,

50070 '

50080 PRTHU = 0 'Hi-Byte of the Printer number

50090 FKTt-2 'initialize Function number for Interface

50100 INR'-&H17 'call BIOS-Printer-Interrupt 17(h)

50110 CALL IA(INR%,FKT%,Zt,Z%,zt,zt,Z',PRTHIt,PRINTERt,Zt,zt,zt,Zt)

50120 DS' = FKT% AND &H21 'store Printer status in DS%

50130 RETURN 'back to Caller

50140 '

51000 •••••••••••••••••••••••••••••••••••••••*•••*••••**.**•••****.*.*,

51010 " send a String to one of the Printers *'

51020 "---"

51030 Input: T$ - the String to be output *'

51040 PRINTER% - the Number of the Printer "

51050 Output: the Variable DS' contains the Printer status "

51060 •••••••*•••••*.*••••***••**.*••••••*.*.*.*******.*••*.***•••••*••

51070

51080 FOR I - 1 TO LEN (T$) 'process all characters of the string

51090 ZS - MID$(TS,I,l) 'isolate one character from the string

51100 GOSUB 52000 'output character on the printer

51110 IF DS%<>O THEN I - LEN(T$) 'on error terminate output

51120 NEXT I 'process next character

51130 RETURN 'back to Caller

51140 '

52000 '.***.***••***.******•••***.***************.******.*****•••••••• '

52010 " send a Character to one of the Printers

386

Abacus 7.12 Accessing the Printer from the BIOS

52020 ,*---.,..52030 Input: Z$ = the Character to be output
52040 •• PRINTER' = the Number of the Printer

52050 .* Output: the Variable OS, contains Printer status (O-o.k.)

52060 .* Info : the Variable Z' is used as a Dummy .,

52070 ,*************.*.*****************.*************••• *** ••••••••**,
52080 '

52090 CHARACTER' - ASC(Z$) 'the ASCII-Code of the Character

52100 FKT'-O 'print Function number for Character

52110 INR\-&H17 'call BIOS-Printer-Interrupt 17(h)

52120 CALL IA(INR',FKT\,CHARACTER',Z',Z',Z',Z', PRTHI',PRINTER',Z',Z',Z',Z')

52130 OS, - FKT' AND &H21 'record Printer status in OS,

52140 RETURN 'back to Caller

52150 '

53000 .***************••••**** ••••••••***** ••••• *******••• * •••*.*.*.**,

53010 '* Output an error-message on the basis of the Printer-Status ••

53020 ,*---.,
53030 Input: OS, = the Printer status *,
53040 '* Output: none .'53050 ,* Info : if the Printer status is o.k., no output
53060 1 •• **** •• *****•••• ******* ••••••****************••• **** •••••••••• '
53070 '
53080 IF OS, = 0 THEN RETURN 'everything o.k. --> back to Caller
53090 PRINT"Error on access to Printer: ";
53100 IF (OS" AND 1) <> 0 THEN PRINT"Time-Out-Error" : RETURN
53110 IF (OS, AND 8) <> 0 THEN PRINT"I/O Error" : RETURN
53120 IF (OS, AND 32) <> 0 THEN PRINT"no more paper " : RETURN
53130 PRINT"Error type unknown" : RETURN
53140 •
60000 ,*************••••••••••••*********.****••••****.**.**•••••••••••
60010 •• initialize the Routine for Interrupt-Call .'
60020 '.---*,
60030 '. Input: none
60040 '. Output: IA is the Start address of the Interrupt-Routine .'60050 '.******••• ***** •••••••••••••••••• ***.*** •••••• **•• ** •••••*****.'
60060
60070 IA=60000! 'Start address of the Routine in the BASIC-Segment
60080 DEF SEG 'set BASIC-Segment
60090 RESTORE 60130
60100 FOR I\ = 0 TO 160 : READ X, : POKE IA+I\,X\ NEXT 'poke Routine
60110 RETURN 'back to Caller
60120
60130 DATA 85;139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255

387

7. TheBIOS 	 PC System Programming

Pascal listing: PRINTP .PAS

(****************************••**********************.****************)
{* 	 PRINTP *j
{*------------------------------~------------------------------------*j{* Task Makes a function available for sending *j
(* strings to a printer and registers *'
(* errors during the output to the printer *'
(*---*'
(* Author MICHAEL TISCHER *'
(* developed on 7/9/87 *'
(* 'last Update 6/09/89 *'
{***}

program PRINTPP;

Uses Crt, Dos; 	 (Add crt and Dos units

{$V-' 	 Don't test string length

type Output - string[2551;

var PrintError : byte; 	 { Printer error code ,

{***}
(* PRINTCHARACTER: sends a character to the printer *'
(* Input : see below *'
{* Output : TRUE if an error occurred, else FALSE *'
{* Info : if an error is discovered, the status of the printer is *'
(* stored in the global variable PRINTERROR *'
{***}

function PrintCharacter(Character : char; (Character to be output
Printer: integer) : boolean; {Nr. of Printer

var Regs Registers; (Register variable for interrupt call

begin
Regs.ah 0;
Regs.al ord(Character); Function number & code of character
Regs.dx :~ Printer; { Printer number
intr ($17, Regs); (Call BIOS printer interrupt
if (Regs.ah and $21) <> 0 then { Did an error occur?
begin { YES
PrintCharacter := false; (Display error
PrintError :- Regs.ah; Record error code

end
else PrintCharacter :~ true { No error

end;

{**.****************}
{* PRINTSTRING: sends string to the selected printera *'
{* Input : see below *'
(* Output : TRUE if no error occurred, else FALSE *'
{***** •••***.***************}

function PrintString(Text Output; { the string to be output
Printer integer) boolean;{ Number of printer

var 	Counter integer; (loop counter
Ok boolean; { Result of the PRINTCHARACTER function

begin
Counter := 1; (begin with the first character in the string
repeat

Ok := PrintCharacter(Text[CounterJ, Printer); (Print a character
Counter := succ(Counter) (Process next character

until not (Ok) or (Counter> length(Text»); { Terminate on error
PrintString :- Ok; { Set result of the function

388

Abacus 7.12 Accessing the Printer from the BIOS

end;

{******••••***.*******.**•••••••••••••***** ••••********.*.*****.******}
{* INITPRINTER: initializes the printer interface *}
{* Input: see below *}
{* Output: true, if no error occurred, otherwise false *}
{* Info : if an Error is detected, the Status of the Printer is *}
{* stored in the global Variable PRINTERROR *}
(****.********************************.*.*****************************)

function InitPrinter(Printer : integer} : boolean; Printer number

var Regs : Registers; { Register variables for interrupt call

begin
Regs.ah :- $2; { Function number for Init
Regs.dx := Printer; { Printer number
intr($17, Regs}; Call BIOS printer interrupt
if (Regs.ah and $21) <> 0 then { Did an error occur ?
begin { YES
InitPrinter :- false; Display error
PrintError := Regs.ah; Record error code

end
else InitPrinter := true (No error

end;

{**** ••***.*** ••••••********}
{* PRINTERROR: outputs error message * 1
{* Input : none * 1
(* Output : none * 1
(* Info the error message is displayed according to the content *1
{* of the variable *}
{ * PRINTERROR * 1
{****************** ••• *******************•• ***************•••*********}

procedure PrinterError;

begin
write('Error during printer access: ');
if PrintError and 1 <> 0 Time out error?
then writeln('Time-Out Error') { YES
else if PrintError and 8 <> 0 I/O error?

then writeln (. I/O Error') (YES
else if PrintError and 32 <> 0 { No more paper ?
then writeln('out of paper') (YES
else writeln('Error unknown');

end;

{.***••• ***••••••****.*** ••• ****** •••••••••**.*******************•••• *}
(* MAIN PROGRAM * 1
{*** ••••**.** ••••••• ******** ••••• ****** ••••••••••*********************}

begin
clrscr; (Clear screen 1
writeln('PRINT (c) 1987 by Michael Tischer');
writeln(113110'If a printer is interfaced to the parallel interface '+

'0 of the PC, ');

writeln(·the following text should now appear on this '+

'printer: I);
writeln(113110'a test of the printer routines ••• ·,13110);

writeln(·otherwise the program will display an error message !');

writeln;

if InitPrinter(O) then { Initialize printer interface 0 1

begin
if PrintString('a test of the printer routines ••• ·,13flO, 0)
then writeln('all o.k.')
else PrinterError { display error message

end (Initialization error
else PrinterError; (display error message

end.

389

7. TheBIOS PC System Programming

C listing: PRINTC.C

/************ •• **•••• ****** ••• **** •••••• **.** ••••**••••• *_••••••••_-/
1* P R I N T C *1
1*---*1
1* TasK MaKes a function available for sending a *1
1* string to a printer. If any errors occur *1
1* during printing, the program will display *1'* errors on the screen */
1*---*1
1* Author MICHAEL TISCHER *1
1* developed on : 8/13/87 *1
1* last update : 6/09/89 * I
1*---*1
1* (MICROSOFT C) *1
1* Creation MSC PRINTC *1
1* LINK PRINTC; *1
1* Call PRINTC * I
1*---*1
1* (BORLAND TURBO C) * I
1* Creation : with the RUN command in the command line *11·_··_·_--_·_·_-·-··_······_--_·_·_· __ ·_·_·__·_·_-------*••• __._._--/
'include <dos.h> 1* include header files *1
finclude <io.h>

1*== Type definitions ===========-==---==============---===========*1

typedef unsigned char byte; 1* Create a byte *1
'define FALSE 0 1* Constants make reading of the *1
'define TRUE 1 1* program text easier *1

1*---·····__ ·_·_· __ ···_--------_·_·_····_·_····_··_··· ...*_._--_..-._/
1* PRINTERROR: displays error message *1
1* Input: 0 stands for o.k., else error code *1
1* Output : TRUE if no error is displayed, else FALSE *1 , ...*---_._._._._....----*_...._._._._.._. ___._._-_._*---_._._._-/

byte PrintError(Status)

int Status; 1* Printer status *1

if (Status) 1* Did an error occur ? *1
{ 1* YES *1
printf ("Error during printer access: ");
if (Status & 1) 1* Time-Out Error? *1
printf ("Time-Out Error\n"); 1* YES *1
else if (Status & 8) 1* I/O error? *1
printf ("I/O error\n"); 1* YES *1
else if (Status & 32) 1* No more paper? *1
printf ("no more paper\n"); 1* YES *1
else printf ("Error unknown\n");

return (FALSE);
}

else return(TRUE); 1* Error detected *1
}

1····_·_-··_·_·_-----_····_--_····_----_··_--_·_·_·_--._....*.***_**k/
1* PRINTCHARACTER: sends a character to the printer *1
1* Input : see below * I
1* Output : FALSE if no error occurred, else *1
1* error number *1
/******************.**********************************.**************/

byte PrintCharacter(Character, Printer)
char Character; 1* The character for output *1
unsigned int Printer; 1* Number of the designated printer *1

390

Abacus 7.12 Accessing the Printer from the BIOS

union REGS Register; /* Register variables for interrupt call */

Register.h.ah - 0; /* Function number for character printing */
Register.h.al - Character; /* Character code */
Register.x.dx - Printer; /* Printer number */
int86 (Ox17, &Register, &Register); /* call BIOS printer interrupt */
return(Register.h.ah , Ox29); /* Leave only error bits */

I

/**.**.****.*.***.***.*********~*.******************** ***************/

/* PRINTSTRING: sends a string to the selected printer */
/* Input: see below */
/* Output : FALSE, if no error occurred, else */
/* error number */
/********* •• ******************************.**************************/

byte PrintString (Text, Printer)

char *Text; /* String to be output (character vector) */

unsigned int Printer; /* Number of the printer */

byte Status; /* The printer status */

Status - FALSE; /* Initialize if string is empty */

/* Output string until end is reached or error occurs during output*/
while (*Text && ! (StAtus - PrintCharacter (*Text++, Printer)))

return (Status);
)

/******************~*****~**************************** ***************/

/* INITPRINTER: initialize the printer interface */
/* Input : see below * /
/* Output : FALSE if no error occurred, else */
/* error number * /
/**/

byte InitPrinter(Printer)

int Printer; /* Printer interface to be initialized */

union REGS Register; /* Register variables for interrupt call */

Register.h.ah = 2; /* Function number for Init */
Register.x.dx - Printer /* Printer/interface number */
int86 (Ox17, 'Register, 'Register); /* Call BIOS printer interrupt */
return(Register.h.ah & Ox29); /* Leave only error bits */

)

/***/
/** MAIN PROGRAM **/
1*** **************/

void main ()

{
printf("\nPRINT (c) 1987 by Michael Tischer\n\n");

printf ("If a parallel printer is interfaced to this PC\n");

printf(" the following text should appear soon:\n\n");

printf("a test of the printer routines .•• \n\notherwise H);

printf ("an error message is displayed on the monitor screen. \n\n");

if (PrintError(InitPrinter(O)))

PrintError (PrintString ("a test of the printer routines ... \r\n"), 0);

391

http:return(Register.h.ah
http:Register.x.dx
http:Register.h.ah
http:return(Register.h.ah
http:Register.x.dx
http:Register.h.al
http:Register.h.ah

7. TheBIOS PC System Programming

The assembly language program listed below is a resident interrupt driver. It can
~help the user whose printer runs a character set other than the PC standard. This is

true of some Epson printers, whose foreign characters are different from the PC
ASCII character set The program converts these characters before sending them to
the printer by turning the BIOS printer interrupt to its own routine, which is called
every time the BIOS printer interrupt is called.

It tests for whether or not function 0 (character output to a printer) should be
called, because only this function changes. If not, the call passes to the old printer
interrupt.

If a character should be output, the interrupt looks into a table, with the name
CODETAB, for the character. This table consists of2-byte entries. The ftrst (low)
byte contains the new code of the character to be converted. The second (high) byte
contains the old character code. The table ends with a byte containing the value O.

The routine checks the second byte of a table entry if it is identical to the character
to be printed. If the character cannot be found in the table, it passes unchanged
through the old printer interrupt for output. If the character exists in the table, it is
replaced by the first byte of the current entry, then sent for output using the old
printer interrupt.

This program has a similar structure to the resident keyboard interrupt driver
presented in Section 7.11. The main difference between the two programs lies in
the command line, because PRUM (the program listed here) doesn't pass any
parameters. It tests for an existing pre-installed version of itself when it is called.
If no installed PRUM routine exists, it installs itself. Otherwise the installed
version loads from disk or hard disk.

This program can transmit output to the printer using the BIOS printer interrupt as
well as DOS.

Assembler listing: PRUM.ASM

i*** ****************;
;* PRUM *;
;*---*:
; . Task Points the BIOS printer interrupt to its own ';
;' Routine and makes it possible for example ';
;* to convert IBM-ASCII to EPSON. ';
. * The program is deactivated again on the · ,.
;' second call and removed from memory. ·;;*---*;
;' Author : MICHAEL TISCHER ·;
;' developed on : 8/2/87 *;
;' last update : 6/09/89 ·;
;*---*;
;' assembly : MASM PRUM; ·;
;' LINK PRUM; ·;
;' EXE2BIN PRUM PRUM.COM ·;
i*---*i

Call : PRUM ';
;*** ****************i

;== Actual program starts here =====-===============--===========

392

http:PRUM.COM

Abacus 	 7.12 Accessing the Printer from the BIOS

code 	 segment para 'CODE' ;Definition of the CODE segment

org 100h

assume cs:code, ds:code, es:code, ss:code

start: 	 jmp prumini ;the first executable command

;-- Data (remain in memory) ~=----=-~=--=---=----------------=-=--==

alterint equ this dword ;Old interrupt vector 17 (h)

intaltofs dw (?) ; Offset address Interrupt vector 17(h)

intaltseq dw (?) ;Seqment address Interrupt vector 17 (h)

;-- The following table contains the new ----------
, code followed by the old code ------------------

codetab 	 db 64, 21 , --------- > '@ ,

db 125,129 'U' ----------> ')'
db 123,132 'Ii' ----------> '{ ,
db 91,142 'A' ----------> ' ['
db 124,148 'II' ---------> 'I'
db 92,153 '0' ---------> '\ '
db 93,154 '0' ----------> 'J'
db 126,225 'a' ----------> '-'
db 0 	 ;End of the table

;== this is the new printer interrupt (remains in memory) =--===~===~

newpri 	 proc far

jmp short newpri_1

db new" ;Identification of the program

newpri 1: 	or ah,ah ;print character (function O)?
jne aint ;NO --> ;address of the code table
mov bl,al ;store code in 8L

testcode: 	 lodsw ;load old (AH) and new code (AL)
or al,al ;Reached end of table ?
je not found ;YES --> Code not found
crnp ah,bl ;Is it the code for conversion
jne testcode ;NO --> continue to search table
jmp short nreset ;it was a code for conversion

notfound: 	mov al,bl ;move old code to AL again
nreset: 	 xor ah,ah ;set function number 0 again

pop ds ;restore registers
pop si
pop bx
popf

aint: 	 jmp cs: [alterintJ ;to old printer routine

newpri 	 endp

instend 	 equ this byte ;up to this mem location everything must
; remain resident

;~~ Data (can be overwritten by DOS) =~====~=========-===~===

installm 	 db 13,10, "PRUM (c) 1987 by Michael Tischer", 13, 10, 13, 10
db "PRUM was installed and can be deactivated with", 13, 10
db "a new call ",13,lO,"$"

removeit 	 db "PRUM was deactivated$",13,10

;== Program (can be overwritten by DOS) ================---~===

;-- Start and Initialization Routine -------------------------------

393

7. TheBIOS 	 PC System Programming

prumini 	 label near

mov ax, 3517h ;get content of interrupt vector 17(h)
int 21h ;call DOS function
crnp word ptr eS:[bx+2],·WC· ;test if PRUM program
jne install ;SHOWCL not installed --> INSTALL

;-- PRUM was deactivated -----------------------------------

mov dX,es:intaltofs ;Offset address of interrupt 17(h)
mov ax, es: intaltseg ;Segrnent address of interrupt 17(h)
mov ds,ax ;to DS
mov aX,2517h ;deflect content of the interrupt
int 21h ;vector 17(h) to old routine

mov ah,49h ;release storage of old PRUM
int 21h iagain

push cs ;store CS on stacK
pop ds ;restore DS

mov dx,offset removeit ;Message: Program removed
mov ah,9 ;write function number for atring
int 21h ;call DOS function

mov ax,4COOh ;terminate program
int 21h ;call function program termination

i-- install PRUM

install 	 label near

mov aX,3517h ;get content of interrupt vector 17
int 21h ;call DOS function
mov intaltseg,es isave segment- and offset address
mov intaltofs, bx ; of the interrupt vector 17 (h)

mov dX,offset newpri ;Offset address new interrupt routine
rnov ax,2517h ;deflect content of interrupt
int 21h ; vector 17 to user routine

mov dX,offset installm ;Message: Program installed
mov ah,9 ;output function number for string
int 21h ;call DOS function

;-- only the PSP, the new interrupt routine and the --------
;-- data pertaining to it must remain resident. ---------

mov dx, offset instend ;calculate the number of
mov cl,4 ;paragraphs (each 16 bytes) available
shr dX,cl ; to the program
inc dx
rnov ax, 3100h lend program with end code 0 (o.k)
int 21h ; but remain resident

;-= End ===================-=-====================================-==-=

code 	 ends ;End of the CODE segment
end start

394

Abacus 7.13 Reading the Date and TilMfrom the BIOS

7.13 Reading the Date and Time from the BIOS

The various time functions of the ROM-BIOS can be addressed through BIOS
interrupt IAH. The PC and XT each have two time/date functions. The AT has
eight time/date functions available to the user.

Realtime clock

The enhanced functions included in the AT operate in conjunction with the AT's
battery powered realtime clock (RTC). The realtime clock continues keeping time
even when the AT is switched off. This clock's method of timekeeping is quite
different from PC and XT time. PC and XT models measure time using timer
interrupt 8H, which the system calls about 18.2 times per second. Timer interrupt
8H remains independent of the CPU's clock frequency. The AT ROM-BIOS
maintains control of this interrupt, but only for maintaining software
compatibility with the PC and XT. The AT BIOS receives the current time from
the realtime clock accessing the CPU.

Function OOH: Get clock

Function number OOH gets the current clock time. You can call this function by
passing the number (0) to the AH register. The function loads the time into the
CX and OX registers. These two registers combine to form a 32-bit counter value
(CX contains the most significant 16 bits, while OX contains the least significant
16 bits). The BIOS timer increments this value by I each time interrupt 8H is
called (18.2 times per second). The total value is the result of multiplying the
contents of CX register by 65.536 and adding the contents of the OX register.
Dividing this value by 18.2 returns the number of seconds elapsed, which can then
be converted into minutes and hours.

The AT interprets time differently from the PC and XT. The PC/XT BIOS sets
this counter to 0 during the system booting process. The value returned is the time
passed since the computer was switched on (not the actual time). To obtain the
time, the current time must be converted to the value corresponding to the counter,
then passed to the BIOS (more on this later). The AT doesn't require this time
value conversion since BIOS reads the actual time from the realtime clock during
the system boot. It converts this time into a suitable timer value and saves it.
Reading the counter with the help of function 0 on the AT thus provides the
current time.

Besides this counter, a value the AL register indicates whether or not 24 hours
have pflSsed since the last reading. If the AL register contains a value other than 0,
24 hours have passed. This value does not indicate how many 24-hour periods have
elapsed since the last reading.

If the conversion of time values into clock time is too complicated, function 2CH
of DOS interrupt 21H can be used. This function simply reads and converts the

395

7. TIu! BIOS PC System Programming

current time using function 0 of interrupt lAH (see Chapter 18 of this book for
more information about function 2CH of DOS interrupt lAH).

Function 01H: Set clock

Function number 01H sets the current clock time. You can call this function by
loading the number 1 into the AH register, the most significant 16 bits of the
counter into the CX register and the least significant 16 bits into the DX register.
These two registers combine to form a 32-bit time value. If the conversion of the
current time into a timer value is too complicated, function 2DH of DOS interrupt
21H can be used instead (see Chapter 18 of this book for more information about
function 2DH of DOS interrupt 21H).

The next six functions are available only on the AT. If you attempt to call these
functions on a PC or an XT, nothing will happen (use the model identification
program described in Section 7.3 to check for AT hardware).

All six functions use BCD format for time and date indications. In this format,
two characters are coded per byte, where the higher number is coded in the higher
nibble and the lower number in the lower nibble. All six functions use the carry
flag following a return from the function call. If the carry flag is set, this indicates
that the realtime clock is malfunctioning (e.g., dead battery). The called function
could not be executed properly.

Function 02H: Get current time

Function 02H reads the realtime clock time. You can call the function by loading
the function number (2) into the AH register. The current time is returned with the
hour in the CH register, minutes in the CL register and the seconds in the DH
register.

Function 03H: Set current time

Function 03H sets the time on the realtime clock. You can call the function by
loading the function number (3) into the AH register, the hour into the CH
register, minutes into the CL register and seconds into the DH register. The DL
register indicates whether the "daylight savings time" option is desired. A 1 in the
DL register selects daylight savings time, while 0 maintains standard time.

Function 04H: Get current date

Functions 4 and 5 read and set the date stored in the realtime clock. Both functions
use the century, the year, the month and the day as arguments. The day of the week
(also administered by the realtime clock) does not apply to these functions. Ifyou
want to read the day of the week, direct access must be made to the realtime clock
(see Chapter 10 for instructions on direct access).

396

Abacus 7.13 Reading th£ Date and Time from th£ BIOS

Function 04H gets the current date from the realtime clock. You can call this
. function by loading the function number (4) into the AH register. The CH register
contains the fIrst two numbers of the year (the century). The CL register contains
the last two numbers of the year (e.g., 88). The month is returned in the DH
register, and the day of the month in the DL register.

Function 05H: Set current date

Function 05H sets the current date in the realtime clock. You can call this function
by loading the function number (5) into the AH register, either 19 or 20 into the
CH register, the last two numbers of the year into the CL register (e.g., 89
decimal), the month into the DH register, and the day of the month into the DL
register.

Function 06H: Set alarm time

Function 06H allows the user to set an alarm. Since only the hour, minute and
second can be indicated, the alarm time applies only to the current day. When the
clock reaches the alarm time, the realtime clock calls a BIOS routine which in turn
calls interrupt 4AH. A user routine can be installed under this interrupt to simulate
the sound of an alarm clock (you can program the routine to make other sounds).
During the system initialization interrupt 4AH moves to a routine which contains
only the IRET assembly language instruction. The IRET instruction forces the
CPU to terminate the interrupt so that arriving at alarm time doesn't result in any
action visible to the user. You can call this function by loading the function
number (6) into the AH register, the alarm hour into the CH register, the alarm
minute into the CL register and the alarm second into the DH register.

Function 07H: Reset alarm time

Only one alarm time can be set. If this function is called while another alarm time
is set, or has not yet been reached, the carry flag is set after the function call. A
new alarm time doesn't replace the old alarm time; the old time must be deleted
fIrst. You can call this function by loading the function number (7) into the AH
register; no other parameters are required. This call clears the last alarm time so
that a new alarm time can be programmed.

397

7. TheBIOS PC Synem Programming

7.14 BIOS Variables

The preceding sections described different BIOS interrupts and their functions.
These functions require a segment of memory for storing variables and data. For
this reason. the BIOS reserves the area of memory between addresses 0040:000 and
0050:0000 for storing internal variables. The contents of most of these variables
can be read using some BIOS functions. or by using direct access. Sometimes
direct access is the easiest method of the two, but it increases the odds of a
program not executing properly on certain PCs. Since the BIOS can vary from PC
to PC, different BIOS versions may use individual memory locations within this
area in different ways. When working with "standard issue" PCs and compatibles
(e.g., mM, Tandon, etc.), you can assume that the memory assignment provided
here remains constant between machines.

The following list describes the individual variables, their purposes and addresses.
The address indicated is the offset address of segment address 0040H. For example,
a variable with the offset address 10H has the address 0040:00 10 or 10H.

OOH-07H

During the booting process, a BIOS routine determines the configuration of its
PC. It determines, among other things, the number of installed serial (RS-232)
interfaces. These interface numbers are stored as four words in memory locations
0040:0000 to 0040:0007. Each one of these words represents one of the four cards
that can be installed for asynchronous data transmission. First the low byte is
stored, followed by the high byte. Since few PCs have four serial cards at their
disposal, the words which represent a missing card contain the value O.

OBH-OFH

During the booting process, a BIOS routine determines the configuration of its
PC. It determines, among other things, the number of installed parallel interfaces.
These card numbers are stored as four words in memory locations 0040:0008 to
OO4O:000F. Each one of these words stands for one of the four cards that can be
installed for parallel data transmission. First the low byte is stored, followed by
the high byte. Since few Pes have four parallel cards at their disposal, the words
which represent a missing card contain the value O.

10H-11H

This word represents the hardware configuration of the PC as called through BIOS
interrupt IlH. Similar to the above two words. this configuration is determined
during the booting process. The purposes of individual bits of this word are
standardized for the PC and the XT, but can differ in some other computers.

398

Abacus 7.14 BIOS Variables

12H

This byte provides stomge for infonnation gathered during the system self-test,
executed during the booting process and after a wann start. BIOS routines also use
this byte for recognizing active keys. It has no practical use for the programmer.

13H-14H

This word indicates the RAM capacity of the system in kilobytes. This
infonnation is also gathered during the booting process, and can be read using
BIOS interrupt 12H.

15H-16H

17H

18H

These two bytes test the hardware during the booting process. They have no further
use after each hardware test

This is called the lceyboard status byte because it contains the status of the
keyboard and different keys. Function 02H of BIOS keyboard interrupt 16H reads
this byte. Accessing this byte allows the user to toggle the <Insert> or <Caps
Lock> key on or off. The upper four bits of this byte may be changed by the user;
the lower four bits must remain undisturbed.

76543210

I I I I I I I I 1- 1 =Rlght SHIFT key pressed
1 = Left SHIFT key pressed ~

I

1 =CTRL key pressed
1 =AL T key pressed

1 =SCROLL LOCK on

1=NUM LOCK on

1=CAPS LOCK on
1=INSERT on

Keyboard status byte

This byte is similar to byte 17H above, with the difference that this byte indicates
the active status of the <SysReq> and <Break> keys.

399

7. Th£BIOS PC System Programming

7 6 5 4 3 2 1 0

I I 1 1 1 1 1 1 1- 1=CTRL key pressed
I 1=ALT key pressed

1 =SysReq key pressed
(AT & some Xl)

1 =Pause mode active

1=BREAK key pressed
1=NUM key pressed
1 =CAPS pressed
1=INSERT pressed

Extended keyboard status byte

19H

This byte currently serves no purpose; it will be used for status in a proposed
extended keyboard once that keyboard appears OIl the market

1 AH-1 BH

This word contains the address of the next character to be read in the keyboard
buffer (see also lEH-3DH below).

1CH-1DH

This word contains the address of the last character in the keyboard buffer (see also
lEH-3DH below).

1EH-3DH

This area of memory contains the actual keyboard buffer. Since every character
stored in the keyboard buffer requires 2 bytes, its 32-byte capacity offers space for a
maximum of 16 characters. For a normal ASCII character, the buffer stores the
ASCII code and then the character's scan code. The scan code is the number of the
activated key which generated the ASCII character. If the character in the keyboard
buffer uses an extended code (e.g., a cursor key), then the lust byte contains the
value 0 and the second byte contains the extended key code.

The computer constantly reads characters from the keyboard buffer. If the buffer is
not full, characters can be added. The address of the next character to be read from
the keyboard buffer is stored in the word at memory location 0040:001AH. When a
character is read, the character moves by 2 bytes toward the end of the buffer in

400

Abacus 7.14 BIOS Variables

memory. When a character was read from the last memory location of the buffer,
this pointer resets to the beginning of the buffer.

The same is true of the pointer in memory location 0040:001C, which indicates
the end of the keyboard buffer. If you add a new character, it is stored in the
keyboard buffer at the location indicated by this pointer. Then the pointer is
incremented by 2 to move toward the end of the buffer. Ifa new character is stored
at the last memory location of the buffer, this pointer resets to the beginning of
the buffer.

The relationship between the start and end pointers tells something about the
buffer's status. Two conditions are of special interest. The first is the condition
when both pointers contain the same address (no characters are currently available
in the keyboard buffer). The other condition is when a character should be appended
to the end of the keyboard buffer, but adding 2 to the end pointer would point it to
the start pointer. This means that the keyboard buffer is full, i.e., no additional
characters can be accepted.

1:00 1 2 34 5 6 1 8 9 10 11 l2 13 14 15 ~
~ I I I I I I I I I I I I I ~

~~ l'
0040:003D

L...-______ 0040:001A

~
Pointer to
next character
in 0040:001A

0040:001E 0040:0024 ~----------------}~ILOIHiI 0024H I
Pointer to
last character Two byte
in 0040:001C character

r-------------------------------~
Normal character: ASCII code I Scan

Extended character: OOH I Code I

Keyboard buffer with start and end pointers

401

7. TMBIOS PC System Programming

3EH

The lowest four bits correspond to the number of inSlalled PC disk drives (you are
allowed a maximum of four drives). These bytes also indicate whether the
connected drives must be calibrated. This is mostly the case after an error occurs
during read, write or search access. When an el'lU' occurs, the corresponding bit in
this byte is set to O.

3FH

The four lower bits of this byte indicate whether the current disk drive motor is in
motion. A 1 in the corresponding bit indicates this. In addition, bit 7 is always set
when write access is in progress.

40H

This byte contains a numerical value which indicates the time period until a disk
drive motor switches off. Since BIOS can only access one disk drive at a time, this
value refers to the drive last accessed. Following access to this drive, BIOS places
the value 37 into this register. During every timer interrupt (which occurs about
18.2 times per second), the value in this byte is decremented by 1. When it finally
reaches O. the disk motor is turned off. This takes place after about two seconds.

41H

This byte contains the status of the last disk access. When the byte contains the
value 0, the last disk operation was performed in an orderly manner. Another value
signals that an error code was bansmitted by the disk controller.

42H-48H

These seven bytes indicate the status of the NEC disk controller. They also
indicate hard disk controller status on hard disk systems.

49H

This byte contains the current display mode as reported by the BIOS. This is the
same value indicated when the user activates a display mode through function 0 of
the BIOS video interrup,t IOH.

4AH

This word contains the number of text columns per display line in the current
display mode.

402

Abacus 7.14 BIOS Variables

4CH

This word contains the number of bytes required for the display of a screen page in
the current display mode, as reported by the BIOS. In the 80x25-character text
mode, this is 4,000 bytes.

4EH-4FH

This word contains the address of the current screen page now on the monitor,
relative to the beginning of video card RAM. The video RAM of the color card
starts at B800:0000 for the ftrst screen page, and at B800:1000 for the second
screen page in 80x25-character text mode. This variable usually contains the value
l000H.

50H-5FH

These 16 bytes contain the current cursor position for each screen page. BIOS can
control a maximum of 8 screen pages. BIOS reserves two bytes for each screen
page. The low byte indicates the screen column, which can have values ranging
from 0 to 39 (in 4O-column mode) or from 0 to 79 (in 80-column mode). The high
byte indicates the screen line, which can have values ranging from 0 to 24. If you
change the values in this table, the immediate position of the blinking cursor
remains unchanged, but the change will become noticeable the next time you enter
characters into the corresponding display page.

You can use these bytes for positioning the cursor, but we don't recommend this
method.

60H

This byte contains the starting line of the blinking cursor, which can have values
ranging from 0 to 7 (color graphic card) or from 0 to 14 (monochrome graphic
card). Changing the contents of this byte doesn't change the cursor's appearance,
since it must first be transmitted by BIOS to the video controller.

61H

This byte contains the ending line of the blinking cursor, which can have values
ranging from 0 to 7 (color graphic card) or from 0 to 14 (monochrome graphic
card). Changing the contents of this byte doesn't change the cursor's appearance,
since it must first be transmitted by BIOS to the video controller.

62H

This byte contains the number of the currently displayed screen page.

403

7. TheB/OS PC System Programming

63H-64H

This word contains the video card port. If a PC contains several video cards, the
value stored will be the address of the currently active video card.

65H

The contents of a video controller card's mode selector dictates the current display
mode. The current value is stored in this memory location.

66H

A color card in medium-resolution graphic mode can display 320x200 pixels in
four different colors. Three of these colors originate from one of the two color
palettes. This byte contains the currently active color palette (either 0 or 1).

67H-6BH

The early PC BIOS versions could use a cassette recorder for data storage. Those
early versions of BIOS used these five bytes for cassette access when storing data.
XT and AT models, which do not have this interface, use these memory locations
in connection with RAM expansion.

6CH-6FH

These four bytes act as a 32-bit counter for both BIOS and DOS. The counter is
incremented by 1 on each of the 18.2 timer interrupts per second. This permits
time measurement and time display. The value of this counter can be read and set
with BIOS interrupt lAH. If 24 hours have elapsed, it resets to 0 and counts up
from there.

70H

This byte contains a 0 when the timer routine is between 0 and 24 hours. Byte
70H changes to 1 when the time counter routine exceeds its 24-hour limit. For
every subsequent 24-hour count, this byte remains at 1.

If the BIOS timer interrupt lAH is used to set the time, this byte resets to O.

71H

This byte indicates whether or not a keyboard interrupt occurs after the user presses
<Ctrl><C> or <Ctrl><Break>. If bit 7 of this byte contains the value 1, a
keyboard interrupt has occurred.

404

AbacllS 7.14 BIOS Variables

72H-73H

During the booting process, a reset command is sent to the keyboard Controller.
For the duration of this reset, the word at this location assumes the value 1234H.

XT BIOS variables

The hardware configurations of the XT permit the introduction of additional
variables. The following is a list of BIOS variables found in the XT and AT.

74H-77H

These four bytes are used only by hard disk systems for hard disk control.

78H-7BH

Each of these four bytes returns the status of one of the four printer ports.

7CH-7FH

Each of these four bytes returns the status of one of the four asynchronous
communication (RS-232) ports.

80H-81 H

This word contains the beginning of the keyboard buffer as the offset address to the
segment address 0040. Since the keyboard buffer normally starts at address
0040:001E, this memory location usually contains the value lEH.

82H-83H

This word contains the end of the keyboard buffer as the offset address to the
segment address 0040. Since the keyboard buffer normally ends at address
0040:003E, this memory location usually contains the value 3EH.

A T BIOS variables

The advanced features of the AT require even more BIOS variables. Here is a list of
the BIOS variables found only on AT models.

88H

This byte contains the last data transmission speed of the disk drive or hard disk.

405

7. TheBIOS PC System Programming

8CH-96H

This memory range contains variables necessary dwiog disk,lhard disk access.

97H

This byte reserves a keyboard flag which shows the status of the AT keyboard's
LED (light-emitting diode).

98H-AOH

This memory range accepts variables from the battery-powered realtime clock.

All members of the PC family (pc, XT and An have a variable in memory
location 0050:0000. This variable works in conjunction with the hardcopy routine
(interrupt 5) to prevent printer output dwiog the printing of another hardcopy. The
hardcopy routine tests for whether this flag has a value of O. Ifso, and no hardcopy
is being printed, the flag changes to 1. The BIOS can check this variable to see
whether a printout is in process. Mter a successful printout, this flag resets to 0 to
allow additional printing. If an error was detected during printer access, this flag is
set to the value 255 and the printing procedure aborts.

406

Chapter 8

Terminate and Stay Resident
Programs

Since its birth, DOS has been criticized for its inability to handle multitasking
(running more than one program at a time). Even though OS/2 is capable of
multitasking, it runs only on ATs or 80386-based computers. But TSR (Terminate
and Stay Resident) programs can bring some of the advantages of multitasking
into the world of DOS machines. This type of program moves into the
"background" once it is started, and becomes active when the user presses a
particular key combination. The SideKick® program produced by Borland
International made TSR programs very popular.

Running a TSR program isn't multitasking in the true sense of the word, since
only one program is actually running at any given time. However, with the touch
of a key, the user can immediately access such useful tools as a calculator,
calendar, or note pad. In addition to these applications, macro generators, screen
layout utilities and text editors can also be found in TSR form.

Many TSR programs can even interact with the programs that they interrupt, and
transfer data between the TSR and the interrupted program. One example of this
would be a TSR appointment book that inserts a page from its calendar in a file
loaded into a currently running word processor.

Although many different applications can be implemented with TSR programs,
TSR programs have two things in common:

all use the same basic method of operation

all are built on similar programming concepts

This chapter examines these two items, and demonstrates simple implementations
of TSR programs.

407

8. Terminate ond Stay Residelll Programs PC System Programming

Before we begin, we should point out that this involves very complex
programming. Comprehending this material requires a certain level of
understanding about how things work within the system. This is especially true of
TSR programs, since by their very defmition they all but ignore the single-task
nature of DOS, in which one program has access to all of the system resources
(RAM, screen, disk, etc.). A TSR program must contend with many other
elements of the system such as the BIOS, ooS, the interrupted program, and even
other TSR programs. Managing this is a difficult but rewarding task, and can only
be realized in assembly language. Of the available PC languages, only assembly
language offers the ability to work at the lowest system level, the interrupt level.
But although it has this capability, assembly language is as flexible as high level
languages for writing TSR applications such as calculators or note pads. Because
of this well list two assembly language programs in this chapter which will allow
you to "convert" Turbo Pascal, Turbo C, and Microsoft C programs into TSR
programs.

Activating TSR programs
f

Let's start by looking at how a TSR program is activated. To make our TSR
program come to the foreground immediately after we press a certain key
combination (called the hotkey), we must install some sort of activiation
mechanism tied to the keyboard. We can use interrupts 09H and 16H, two system
keyboard calls. Interrupt 16H is the BIOS keyboard interrupt, which programs use
to read characters and keyboard status. If we use this interrupt, then our TSR
program can only be activated when the main program is using interrupt 16H for
keyboard input

It would be better to use interrupt 09H, which is called by the processor whenever
a key is pressed or released. We can redirect this interrupt to our own routine,
which can check to see if the TSR program should be activated or not Before it
does this, the routine should call the old interrupt 09H handler. There are two
reasons for this. The ftrst has to do with the task of interrupt 09H, which informs
the system that the keyboard needs the system's attention in order to transfer
information about a key event. Therefore, interrupt 09H normally points to a
routine within the ROM BIOS which accepts and evaluates information from the
keyboard. Specifically, it receives the code from the keyboard, converts it to an
ASCII code, and then places this code in the BIOS's keyboard buffer. Since our
TSR program neither wants nor is able to handle this job, we must call the
original routine, or keyboard input will be impossible.

The second reason has to do with the fact that it is possible that other TSR
programs were installed before ours, which have redirected interrupt 09H to their
own routines. Since our program is in front of these programs in the interrupt
handler chain, their interrupt routines will not be called automatically if we do not
call the old interrupt handler. The result would be that we could no longer activate
these TSR programs. The end result is that when a TSR program is called via a

408

Abacus 8. Terminate and Stay Resident Programs

redirected interrupt routine, it should always call the old interrupt handler before or
after its own interrupt processing.

The call must not be made with the !NT assembly language instruction, since this
would just recall our own interrupt handler. This would lead to an infinite loop in
most cases, a stack overflow and an eventual system crash. To avoid this we must
save the address of the old interrupt handler when the TSR program is installed.
We can then call the old interrupt handler with this stored address with the help of
a FAR CALL instruction. To simulate calling this handler through the !NT
instruction, we must first place the contents of the flag register on the stack with
the PUSHF instruction before the CALL.

return to proqram

)10

Last installed
activate. YBS TSR proqram

YBS Other installedactivate~__
TSR proqram

YBS First installedactivate~__
TSR proqram

Read character Oriqinal

from keyboard and
 handler for interrupt
convert to ASCII 09(h) in ROM-BIOS
code

Reading keys for TSR programs using interrupt 09H

After the return from the interrupt handler, we can check to see if the hotkey was
pressed to activate the TSR. The BIOS keyboard flag at address 17H in the BIOS
variable segment (segment address 0040H) indicates the status of the following
keys:

right <Shift> key

left <Shift> key

<Ctrl> key

<Alt> key

<Num> key

<Scroll Lock> key

409

8. Terminate and Stay Resident Programs PC System Programming

<CapsLock> key

<SysReq> key (AT keyboard only)

If the appropriate keys are pressed, the user is trying to activate the TSR program.
We can only do this if certain conditions are met, all of which come down to the
fact that the DOS is not re-entrant.

DOS

Since the TSR program can be activated from the keyboard at any time, regardless
of the other processes in the system, it could conceivably interrupt a call to a DOS
function. This may not lead to problems as long as the TSR program returns to
the interrupted DOS function properly. The problem occurs when the TSR itself
tries to call DOS functions, which is hard to avoid when programming in a high
level language. Here we see the problem of re-entry. This refers to the ability of a
system to allow multiple programs to call and execute its code at the same time.
DOS is not re-entrant, however, since it is a single-task system and assumes that
DOS functions will be called in sequence, and not in parallel.

Calling a DOS function from within a TSR program while another function is
executing leads to problems because the processor register SS:SP is loaded with
the address of one of three DOS stacks when interrupt 2lH is called. Which of the
three stacks is used depends on the function group to which the DOS function
belongs, and cannot be determined by the caller. While the DOS function is being
executed, it places temporary data on this stack as well as the return address to the
calling program. If the execution of the function is then interrupted by the
activation of a TSR program which then calls a DOS function, OOS will again
load register pair SS:SP with the starting address of an internal stack. If it is the
same stack that the interrupt function was using, each access to the stack will
destroy the data of the other function call. The OOS function called by the TSR
program will be executed properly, but the problem will occur when the TSR
program ends and control returns to the interrupted DOS function. Since the
contents of the stack have been changed in the meantime by other OOS calls, the
OOS function will probably crash the system.

Bypassing re-entry

There are two ways to get around these re-entry problems: A void calling OOS
functions, or allow the TSR program to be activated only if no OOS functions are
being executed. We have already ruled out the first option, so we must use the
second. DOS helps us here by providing the INDOS flag, which is normally only
used inside DOS but which is very useful to us as well. It is a counter which
counts the nesting depth of DOS calls. If it contains the value 0, no DOS
functions are currently being executed. The value 1 indicates the current execution
of a OOS function. Under certain conditions this counter can also contain larger
values, such as when one DOS function calls another DOS function, which is
allowed only in special cases.

410

Abacus 8. Terminate and Stay Resident Programs

Since there is no DOS function to read the value of this flag, we have to read the
contents directly from memory. The address does not change after the system is
booted, so we can get the address when the TSR is installed and save it in a
variable. DOS function 34H returns the address of the INDOS flag in register pair
ES:BX.

This flag is read in the interrupt handler for intemlpt 09H since it checks to see if
the hotkey was pressed, and allows the TSR program to be activated only if the
INDOS flag contains the value O. This is not the whole solution to the problem,
however. It coordinates the activation of the TSR program with DOS function
calls of the transient program being executed in the foreground, but it does not
allow the TSR program to be called from the DOS user interface. Since the DOS
command processor (COMMAND.COM) uses some DOS functions for printing
the prompt and accepting input from the user, the INDOS flag always contains the
value 1. In this special case we can interrupt the executing DOS function, but we
must make sure that the INDOS flag contains the value I, because a DOS function
can be called from transient program or from the DOS command processor.

There is a solution for this problem too. It involves the fact that the DOS is in a
kind of a wait state when it is waiting for input from the user in the command
processor. To avoid wasting any valuable processor time, it periodically calls
interrupt 28H, which is responsible for short term activation of background
processes like the print spooler (DOS PRINT command) and other tasks. If this
interrupt is called, it is relatively safe to interrupt DOS and call the TSR program.

To use this procedure, a new handler for interrupt 28H is installed when the TSR
program is installed. It frrst calls the old handler for this interrupt and then checks
to see if the hotkey has been pressed. If this has occurred, the TSR program can be
activated, even if the INDOS flag is not O.

One more restriction must still be added-we cannot allow the TSR program to be
activated, even using the handler for interrupt 09H, if time-critical actions are
being performed in the system.

Time-critical actions

These are actions which, for various reasons, cannot be interrupted because they
must complete execution in a relatively short time. In the PC this includes
accesses to the floppy and hard disk, which at the lowest levels are controlled by
BIOS interrupt 13H. If an access to these devices is not completed by a certain
time it can cause serious system disruptions. A dramatic example is if the TSR
program performs an access to these devices before another access, which is
initiated by the interrupted program, has finished. Even if this doesn't crash the
system, it will lead to loss of data.

We can avoid this by installing a new interrupt handler for BIOS interrupt 13H.
When this handler is called, it sets an internal flag which shows that the BIOS disk
interrupt is currently active. Then it calls the old interrupt handler which performs

411

http:COMMAND.COM

8. Terminate and Stay Resident Programs PC System Programming

the access to the floppy or hard disk:. When it returns to the TSR handler ,the flag
is cleared, signalling the end of BIOS disk: activity.

To prevent this interrupt handler from being interrupted, the other TSR interrupt
handlers all monitor this flag and will activate the TSR program only if the flag
indicates that the BIOS disk interrupt is not active.

Recursion

One last condition placed on the activation of a TSR program is that recursive
activations are prohibited. Since the hotkey can still be pressed after the TSR
program has been activated, we must prevent the TSR program from being
reactivated before it is fmished. We can simply add another flag which is checked
before the TSR is activated. The TSR program sets this flag when it begins and
clears it again just before it ends. If an interrupt handler detennines that this flag is
set, it will simply ignore the hotkey.

Once all of these conditions have been satisfied, we can activate the TSR program.

Context switch

The process of activating a TSR program is called a context switch. The program
context or environment is all the infonnation needed for operating the program.
This includes such things as the contents of the processor registers, important
operating system infonnation, and the memory occupied by the program. We don't
have to worry about the program memory in our context switch, however, since
our TSR program is already marked as resident, meaning that the operating system
will not give the memory it occupies to other programs.

The processor registers, especially the segment registers, must be loaded with the
values which the TSR program expects. These are saved in internal variables when
the TSR program is installed. Since the contents of these and other registers will
be changed by the TSR program, the contents of the registers must be saved
because they belong to the context of the interrupted program and must be restored
when it is resumed.

The same applies for context dependent operating system infonnation, which for
DOS includes just the PSP (Program Segment Prefix) of the program and the
DTA (Disk Transfer Area). The addresses of both structures must be detennined and
saved when the TSR program is installed, SO that they can be reset when context is
changed to the TSR program. Also, we must not forget to save the addresses of the
PSP and DT A of the interrupted program before the context change to the TSR
program. There are DOS functions for setting and reading the address of the DT A
(DOS functions lAH and 2FH), but there are no corresponding documented
functions for the PSP. DOS Version 3.0 includes function 62H, which returns the
address of the current PSP, but has no function for setting the address.
Undocumented functions for doing both exist in DOS 2.0: function SOH (set PSP

412

Abacus 8. Terminate and Stay Ruidml Programs

address) and 51H (get PSP address). Both of these are used in our TSR
demonstration program.

One final· task is required of the TSR code. When the TSR program is activated
using interrupt 28H, an active DOS function is interrupted--one whose stack must
not be disturbed. Generally we should take the top 64 words from the current stack
and place them on the stack of the TSR program. This completes the context
change to the TSR program, which means that the TSR program can now be
started.

At the moment, the TSR program can be viewed as a completely normal program
which can call arbitrary DOS and BIOS functions. The only competitor left in the
system is the foreground program. The TSR must ensure that it leaves both the
foreground program and its screen undisturbed.

Saving the screen context

The tasks were exclusively handled in assembly language. However, the C or
Pascal program comprising the TSR program itself can save the screen context.
This screen context includes the current video mode, the cursor position and the
screen's contents. The contents of the color registers and other registers on the
video card must also be saved, if any of these values are changed by the TSR
program.

As described in Section 7.4, the video mode can easily be determined with function
OOH of BIOS video interrupt l6H. If the screen is in text mode (modes 0, 1,2,3,
and 7), the TSR program must save the first 4000 bytes of video RAM. The video
BIOS can be used for this (see Section 7.4), or you can access the video RAM
directly (see Chapter 10).

Saving the video mode becomes very complicated if a graphics mode is active,
since the video RAM for EGA and VGA cards can be as large as 256K in some
modes. If the TSR program interrupted a transient program, it may not be possible
to allocate a large enough buffer to handle both programs.

This is why many TSR programs will not activate themselves from within
graphics mode, and can only be used in text mode. Since PCs· mostly use text
mode, this doesn't present a big problem. GEM® and Microsoft Windows®,
which operate only in graphics mode, are exceptions. Since these programs usually
support some mechanism for parallel execution of calculators, note pads, etc.,
TSR programs can prove less useful under these systems.

The assembler interrace

We now have enough information to understand the operation of the two assembly
language interfaces. The two programs are based on the principles we have outlined
here; the differences between them reflect the different syntaxes of compiled C and

413

8. Terminate and Stay Resident Programs PC System Programming

Pascal programs. We will first concentrate on the common points of the two
programs.

Both programs assume that the TSR program was installed by the first call from
the DOS level, and will be reinstalled on each new call. It is important to
remember one general rule: a TSR program can be reinstalled only if no other TSR
programs have been installed in the meantime. The LIFO (Last In, First Out)
principle applies here, so the only way a TSR program can be reinstalled is if it
was the last one to be installed, and if the corresponding interrupt vectors point to
its interrupt handlers. If another TSR program was installed following it, the
interrupt vectors point to its handlers.

To support this mechanism, the assembly language interface offers the high-level
program three routines with which install and later reinstall the TSR program. To
decide whether the program should be installed or reinstalled, the first function
should be called to see if the TSR program is already installed. This routine is
passed an identification string, which will play an important role later when the
program is installed. The routine looks for this ID string within the handler for
interrupt 09H. If it finds the string, the TSR program is already installed and can
be reinstalled.

If the ID string is not discovered, the TSR program has not been installed, or
another TSR program redirected the interrupt 09H vector in the meantime. The
TSR program can then be installed with the help of the installation routine. This
routine must receive the ID string used to detect whether the program has already
been installed, the address of the high level routine which will be called when the
TSR program is activated, and the hotkey value. The hotkey value is the bit
pattern in the BIOS keyboard flag which will activate the TSR program and can be
defined within the high level language program with the help of predefined
constants.

The initialization routine first saves the addresses of the interrupt handlers for
interrupts 09H, 13H and 28H. Then the data for the context of the high level
program are read and saved in variables within the code segment, so that they are
available for the interrupt handler and for activation of the TSR program. In the
next step, the new interrupt handlers for interrupts 09H, 13H, and 28H are
installed. Finally, the number of paragraphs after the end of the program which are
to remain resident must be calculated. Here the C and Pascal interfaces differ from
each other. Information about this calculation can be found in the individual
descriptions of the interfaces.

The actual installation is now over and the program is terminated as resident.
Notice that the installation routine does not return to the high level language
program, so all initialization such as memory allocation or variable initialization
must be perfonned before the call to this routine.

414

Abacus 8. Termi1'lllle and Stay Resident Programs

If the test function of the assembly language module determines that the program
is already installed, it can be reinstalled with the help of another function. This
function is passed the address of a routine in the high level language program
which will perform a "cleanup" of the program. This process includes releasing
allocated memory and other tasks. If no such routine is to be called, the assembly
language routine must be passed the value -1. Since the "cleanup" function is in
the TSR program, and not in the program which is performing the reinstallation, a
context switch is necessary. Unlike activation of the TSR program and the
corresponding interruption of the foreground program, this is from the program
which is doing the reinstallation to the already installed TSR program. The
reinstallation returns the redirected interrupt handlers to their old routines and
releases the memory allocated by the TSR program.

In addition to these three functions which are called from the high level language
program, the assembler module contains some routines which may not be called
by high level language programs. These include the interrupt handlers for
interrupts 09H, 13H, and 28H as well as a routine which accomplishes the context
switch to and from the TSR program.

The high level lanpage programs

The following programs in C and Pascal demonstrate the assembly language
routines. They first check to see if the program is already installed or not. On a
new installation, a TSR routine is installed. You can activate the TSR by pressing
both <Shift> keys. It stores the screen contents, then displays a message and asks
the user to press a key. After this is done, the old screen contents are copied back
and the execution of the interrupted program continues.

On a reinstallation, the assembly language reinstallation program calls a cleanup
function in the TSR program. It prints the number of activations of the TSR
program, which is set to zero when the TSR program is installed and incremented
on each activation. This makes it clear that the cleanup function is actually
executed in the installed TSR program and not in the program which performs the
reinstal1ation.

TSR development

There are some procedures you should follow when developing TSR programs,
that apply to the special characteristics of these programs. First, the program
should be developed as a completely normal program, compiled and executed from
the DOS user interface, or an interactive environment. To prepare for conversion to
a TSR program, you can write an initialization routine and the actual TSR routine
which will be called when the holkey is pressed. Unlike the TSR version, you can
call these routines in the main procedure/function of the program, allowing
activation independent ofany bolkeys. You should completely develop and test the
program in this manner. Once it works correctly, you can convert it to a TSR
program.

415

8. Termi1lllle and Stay Resident Programs PC System Programming

The conversion to a TSR program is relatively simple, and involves linking in the
assembly language module to the program and calling the corresponding functions.
You can see how this is done in detail in the two example programs.

After linking the assembly language routines and converting the program to an
EXE file, it should be started only from DOS. Do not start it from within an
interactive environment like Turbo Pascal or Turbo C.

The C implementation

Since TSR programs should use as little memory as possible, the assembly
language interface was developed to be linked with the smallest C memory model
(the small model). In both Microsoft and Turbo C compilers, the program code and
data are placed in two separate segments, each of which may be no larger than
64K. The data includes global and static data as well as the stack and the heap. As
the following figures show, Turbo C and Microsoft C use different memory
organization, despite their similarities. While in Turbo C the stack is placed
behind the heap and moves from the end of the data segment to the end of the heap,
the stack is between the global data and the heap in Microsoft C.

SS:IP
St.ck

He.p

•+ Be.p

__ 641{

5S: SP
Stack

Global , Itatic data Global , atatic: data

IDS, SS,E .. DS, SS,ES

Prot)'raJII code proqr.- code

PIP PS'

Turbo C Microsoft C

Structure ofa small model program (Turbo CIMicrosoft C)

If this organization had no effect on the assembly language interface, we would be
ready to allocate the entire 64K of the data segment resident in memory in addition
to the program code. Since this would mean a significant waste of memory, and
TSR programs should use as little memory as possible, the assembly language
should mark as resident only the part of the data segment which is actually
required.

The size of this memory area depends on the size of the data (or objects) which
will be allocated on the heap by the functions callocO and mallocO. You must
guess this size and pass it to the initialization routine so that the end of the
required memory in the data segment can be calculated.

This mechanism allows you to use the heap functions normally within the TSR
program. Unfortunately, this applies only to the Turbo C compiler. Microsoft C
uses an allocation algorithm which assumes that all of the memory to the end of
the data segment is available, so allocating heap storage should be avoided within a

416

Abacus 8. Terminate and Stay Resident Programs

TSR program compiled with Microsoft C. You should allocate the buffers and
variables required when the TSR program is initialized or place the required objects
in global variables. The example C program allocates the two buffers it needs in
the mainO function and then places the addresses of the buffers in global variables.

There is something else you should be aware of when using Turbo C. Since the
stack grows from the end of the 64K data segment to the heap, it finds itself
outside the program when parts of the data segment are released again, and this in
an area of memory which DOS may give to other programs. To avoid problems
with this, the assembly language interface places the stack immediately afiel" the
heap, giving it 512 bytes of space. This should suffice for most applications, but
may lead to problems if you use large objects (such as arrays) as local variables or
pass them to other functions via the stack. In this case you should enlarge the
stack by setting the constant TC_STACK in the assembly language interface to a
larger value.

The different treatment of the stack is the reason that the initialization routine in
the assembly language interface must be told what compiler the TSR program will
be compiled with. In practice you don't have to worry about this since it is handled
within the C program with the help of constants defined with conditional
preprocessor statements.

The TSR initialization routine TSR_INIT must be called with the following
parameters (in the specified order):

Compiler type (0 =Microsoft C, 1 =Turbo C)

Pointer to the C TSR function

Hotkey (mask for reading the BIOS keyboard flag)

Number of bytes to keep free on the heap

Pointer to an identification string

The initialization routine uses the information about the compiler type and the
number of bytes which must be available on the stack to calculate the number of
paragraphs which must remain resident in memory. The C library function SBRK
is called from the assembly language routine to determine the offset address of the
current end of heap. The number of bytes which must be reserved for the heap is
added to this address. With Turbo C we also add the size of the stack, which is
appended to the heap and must also stay resident. The result of this addition is the
offset address of the last byte in memory relative to the start of the data segment.

This address is converted to paragraphs by shifting it four places to the right,
dividing it by 16. The result is the number of paragraphs which must remain
resident in the data segment. In addition, there are the paragraphs from the PSP and
the code segment. They can be calculated by subbacting the segment address of the

417

8. Terminate and Stay Resident PrQgrams PC System Programming

data segment (which is also the ending address of the code segment) and the
segment address of the PSP. Since both Turbo C and Microsoft C store the
segment address of the PSP in a global variable called _PSP, it can be read by the
assembly language routine and included in the subttaction. The program is then
ended by a call to DOS function 3tH, which keeps the specified number of
paragraphs (passed in the DX register) resident The TSR program is installed.

If a cleanup program is to be called when the. program is reinstalled with the
UNINST function, the UNINST function must be passed a pointer to this
function. In C this is done simply by using the name of the function to be called
as a parameter.

If no such function is to be called, the argument -1 must be passed. Since this is
not a valid function pointer, it must be preceded by the following cast operator:

(void (*) (void» -1

There is a symbol, NO_END_FIN. defined with this expression in the C program
which you can use in the call to UNINST.

You can get additional information from the following listing. It will make a good
basis for developing your own TSR programs.

C listing: TSRC.C

/ •• *** ••••••*************.*.*.*****•••• *************.* •••••••*******.*./
1* T S R C *1
1*--*1
1* Description : C module which is turned into a TSR program *1
1* with the help of an assembly language routine. *1
1*--*1
1* Author : MICHAEL TISCHER *1
1* developed on : 08/15/1988 *1
1* last update : 0811911988 *1
1*--*1
1* (MICROSOFT C) *I
1* creation : CL lAS Ic TSRC.C *1
1* LINK TSRC TSRCA; *1
1* call : TSRC *I
1*--*1
1* (BORLAND TURBO C) *1
1* creation Create project file with the following *1
1* contents: * I
1* TSRC *1
1* TSRCA.OBJ *1
1* Before compiling, set Options menu I linker *1
1* option I Case sensitive link to OFF *1
1··············_--_·························_········-***************.*/

I*~~ Include files ===----=-===-=-=====~==~====~===--=---=====-------=*I

'include <stdlib.h>

'include <dos.h>

1*-- Typedefs -=====~===========---------------========---* I

typedef unsigned char BYTE; 1* build ourselves a byte *1
typedef unsigned int WORD;
typedef BYTE BOOL; 1* like BOOLEAN in Pascal *1

418

Abacus 8. Terminale and Stay Residenl Programs

typedef union vel far * VP; 1* VP is a FAR pointer into the VRAM *1

1*-- Macros --~--=--------------------------------*I

.ifndef MK FP 1* was MK FP already defined? *1

'define MK- FP (seq, ofs) «void far *) «unsiqned lon'l) (seq) «161 (ofs)))

.endif
'define VOFS(x,y) (80 * (y) + (x))

'define VPOS (x, y) (VP) (vptr + VOFS (x, y))

/*-- Structures and unions ----------..=-..------~*I

struct velb { 1* describes a screen position as two bytes *1
BYTE character, 1* the ASCII code *1

attribute; 1* correspondin'l attribute *1
} ;

struct velw 1* describes a screen position as one word *1
WORD contents; 1* stores ASCII character and attribute *1

} ;

union vel 1* describes a screen position *1
struct velb h;
struct velw x;

};

1*-- Link the functions from the assembly module ---=---~~------*I

extern int is inst(char * id strin'l);
extern void uninst(void (*fkt} (void} };
extern int tsr init(BOOL TC, void (*fkt) (void), unsi'lned hotkey,

- unsi'lned heap, char * id_strin'l);

/*-== Constants ========--=--=-==--------------==..===-=====-~==--=-----*/
.ifdef TURBOC 1* are we compilin'l with TURBO-C? *1

'define TC TRUE 1* yes *1
'else 1* we are usin'l Microsoft C *1

'define TC FALSE
.endif

1*-- codes of the individual control keys for buildin'l the hotkey mask *1

fdefine RSHIFT 1 1* ri'lht SHIFT key pressed *1
'define LSHIFT 2 1* left SHIFT key pressed *1
'define CTRL 4 1* CTRL key pressed *1
'define ALT 8 1* ALT key pressed *1
'define SCRL_AN 16 1* Scroll Lock ON *1
'define NUHL AN 32 1* Num Lock ON *1
'define CAPL AN 64 1* Caps Lock ON *1
'define INS AN 128 1* Insert ON *1
'define SCR LOCK 4096 1* Scroll Lock pressed *1
'define NOH_LOCK 8192 1* Num Lock pressed *1
'define CAP_LOCK 16384 1* Caps Lock pressed *1
'define INSERT 32768 1* INSERT key pressed *1
fdefine NOF Ox07 1* normal color *1
'define INV Ox70 1* inverse color *1
'define HNOF OxOf 1* bri'lht normal color *1
'define HINV OxfO 1* bri'lht inverse color *1

'define HEAP_FREE 1024 1* leave lK space on the heap *1

'define TRUE, 1 1* constants for workin'l with BOOL *1
'define FALSE 0

'define NO_END_FTN «void (*) (void)) -1) 1* don't call an end ftn. *1

1*=- Global variables -------========--=-====--===-=====-=-----------=-*1

char id_strin'l[J - "MiTi"; 1* identification strin'l *1

419

8. Terminate D1Id Stay Resident Programs 	 PC System Programming

VP vptr; '* pointer to the first character in video RAM *'
unsigned atimes * 0; '* number of activations of the TSR program *f
union vel * scrbuf; '* pointer to the buffer with screen contents *'
char * blank_line; '* pointer to a blank line *'
/*** ••***.*.*************** •••
* Function : DIS PIN I T
----------------------------=---------------------------------------
* Description Determines the base address of the video RAM. *
* Input parameters : none *

Return value : none
.*.*.**************.**************••***********************************/

void disp init(void)
{
union REGS regs; '* processor regs for the interrupt call *'
regs. h.ah = 15; '* function number: determing video mode *'
int86(Ox10, 'regs, ,regs); '* call the BIOS video interrupt *'
'* calculate base addr of the video RAM according to the video mode *f

vptr (VP) MK_FP«regs.h.al == 7) ? OxbOOO : Oxb800, 0);m

I

/****************************** •• ********•• ****•••• *********************
* Function : DIS P P R I N T 	 *
----------------------------=---------------------------------------

Description 	 Output a string to the screen.
Input parameters : 	 - COLUMN = the output column

- LINE the output line
- COLOR = attribute for the characters *

* - STRING = pointer to the string *
Return value none *

**** •••***************.*************.********.*.***********************/

void disp-print(BYTE column, BYTE line, BYTE
color, char * string)

{
register VP lptr; '* running pointer for accessing the video RAM *'
lptr = VPOS(column, line); f* set pointer to the video RAM *'
for (; *string ; ++lptr) f* run through the string *'

(
lptr->h.character *(string++): f* write char into the video RAM *'
lptr->h.attribute color; '* set attribute for the character *'

}

/** •••••••••••••••••**••••••*.*.*••••••••••••••••• * ••••• *•• ****.****••••

* Function : S A V ESC R E N 	 *
•• _---------------------------=--------------------------------------_.*

Description 	 Saves the screen contents in a buffer. *
Input parameters - SPTR pointer to the buffer in which the *

screen will be saved.

Return value none

* Info It is assumed that the buffer is large enough to *
* hold the screen contents. 	 *
•••• **••••**.*••*•••• * ••••••••****•••••••••••********.*••••********•••*/

void save_screen{ union vel * sptr)
{
register VP Iptr; '* running pointer for accessing the video RAM *f
unsigned i: '* loop counter *'
lptr = VPOS{O, 0); '* set pointer in the video RAM *f

for (i=O; i<2000; i++) f* run through the 2000 screen positions *'
(sptr++)->x.contents = (lptr++)->x.contents; '* save char. & attr. *f

420

http:MK_FP�regs.h.al

Abacus 8. Terminate and Stay Resident Programs

/.* •••**.*********************

• Function : RES TOR ESC R E E N *
----------------------------------=---------------------------------
* Description Copies the contents of a buffer into the video *
• RAM.
• Input parameters - SPTR - pointer to the buffer in which the *
* screen contents are located *
* Return value none *
•••••••••••••••********•••*•••••**•••••••••••••••••*.************/

void restore screen(union vel * sptr)
I
register VP lptr; 1* pointer for accessing the video RAM *1
unsigned i; 1* loop counter *1
lptr = VPOS(O, 0); 1* set pointer to the video RAM *1

for (i-O; i<2000; i++) 1* run through the 2000 screen positions *1
(lptr++)->x.contents - (sptr++)->x.contents; 1* restore char.&attr.*1

/*•••*.*.*••*.*.***.********•••****.*.****.*.~*.*.****** •••• ** ••*****•••
* Function : END F T N *
--
• Description Called when the TSR program is reinstalled.
• Input parameters : none
* *Return value : none
••••*••••••••********.******************•••***••*.***••*********.*./

void endftn(void
I
1*-- release the allocated buffers ----------------------------------*1

free(blank line); 1* release the allocated buffer *1
free ((void-*) scrbuf); 1* release the buffer *1

printf(·The TSR program was activated %u times.\n·, atimes);
)

/**.****.*****************.*.*.******•• ***.*••••••••••••••• *•• **********
Function : T S R * .._--_..
Description Called by the assembler routine when the hotkey *

is pressed. *
Input parameters none *

* Return value none *
*****••••••*••••••••**••••***** ••***••••••••••••••••••····**···*·······1

void tsr(void)
I
BYTE i, 1* loop counter *1

++atimes; 1* increment the number of activations *1
disp init(); 1* determine address of the video RAM *1
save-screen(scrbuf); 1* save the current screen contents *1
for (i=O; i<25; i++) 1* run through the 25 screen lines *1
disp-print(O, i, INV, blank line); 1* clear the line *1

disp-print(22, 11, INV, "TSRC Ic) 1988 by MICHAEL TISCHER·);
disp-print(28, 13, INV, "Please press a key .•• ·);
getch () ; 1* wait for a key *1
restore screen(scrbuf); 1* copy the old screen back *1

)

1············**·*****··**********·*****··*·*·****·*******.*************1
1** MAIN PROGRAM **1
1·**************·*·******·····*··***·**·*******·**·*·**·*************·*1

void main()
I
printf ("TSRC (c) 1988 by MICHAEL TISCHER\n\n");

if I is_inst (id_string)) 1* is the program already installed? *1

421

8. TermillQle and Stay Resident Programs 	 PC System Programming

{ /* yes */
printf("TSRC was already installed--now disabling.\n"';
uninst (endftn ,; /* reinstall prg., call ftn. ENDFKT */

/*-- if no end function is to be called, the call is: -------------*/
/*-- uninst(NO_END_FTN ,; 	 -------------*/

I
else 	 /* no, the program has not been installed yet */

(
/*-- with MSC the heap buffers must be allocated now --------------*/

scrbuf - (union vel *' malloc(80 * 25 * sizeof(union vel,,;
blank line = (char *' sbrk(80 + 1 ,; /* allocate buffer */
(blank line + 80) = '\0'; / terminate buffer with NUL */
memset(blank_line, ' " 80); /* fill the buffer with spaces */

printf ("TSRC now enabled - Start: <LSHIFT> + <RSHIFT>\n",;
tsr init(TC, tsr, RSHIFT LSHIFT, HEAP_FREE, id_string);

)

Assembler listing: TSRCA.ASM

i********···*****************··******·***************·•••**************;
;* TSRCA *;

;*--*;
;* Description represents the assembler interface to a *;
;* C program which can be activated by a hotkey *;
;* as a TSR program. *;
;*--*;
;* Author MICHAEL TISCHER *;
;* developed on : 08/10/1988 *;
;* last update : OS/26/1989 *;
i*--*;
; * to assemble : MASM TSRCA; *;
; * • •• combine with C program *;
i**********··********************··************************************i

IGROUP group _text ;combination of program segments
DGROUP group const,_bss, _data ;combination of data segments

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public 'CONST';this segment holds all read-only
CONST ends ; constants

SSS segment word public 'SSS' ;this segment stores all uninitialized
SSS ends ;static variables

DATA segment word public 'DATA' 	 ;all initialized and global static
;variables are stored in this
isegment

extrn --psp word ;segment addr of the PSP of the C prg

DATA ends

i== constants ==~=====----=====-==-============~===--=-======-=-~=-=====

MlIX_ID_LEN equ 16 ;maximum length of the ID string
TC_STACK equ 512 ;512 bytes are reserved for the stack

;with TURBO-C

i== Program =~=--========~-=-======-======-==-----===============--=-===

TEXT segment byte public 'CODE' 	 ;the program segment

;-- Reference to external (C) functions -------------------------------

extrn _sbrk:near ;returns end address of the heap

422

Abac/U 8. Terminate and Stay Resident Programs

;-- Public declarations of internal functions -------------------------

public _tsr_init ;allows call from C program
public is inst
public -unInst

;-- Variables for the interrupt handler -------------------------------
;-- (only accessible via the code segment) ----------------------------

id buf db (MAX IO LEN + 1) dup (0) ;buffer for the IO string
ceytr equ this dword ;points to the routine CALL_END
ce_ofs dw offset call_end ;in the already-installed TSR program
ce_seg dw ?

;-- Variables needed for activation of the C program ------------------

c ss dw 0 ;C stack segment
c_sp dw 0 ;C stack pointer
c ds dw 0 ;C data segment
c_es dw 0 ;C extra segment

c dta ofs dw 0 ;OTA address of the C program
c_dta::::seg dw 0

cysP dw 0 ;segment addr of the PSP of the C prg
break adr dw 0 ;break address of the heap
fkt adr dw 0 ;address of the C TSR function

;-- Variables for testing for the hotkey ------------------------------

key_mask dw 0 ;hotkey mark for SIOS keyboard flag
recur db 0 ;prevents recursive TSR calls
in bios dbO ;shows activity of the SIOS disk

; interrupt

daptr equ this dword ;pointer to the DOS Indos flag
daptr ofs dw 0 ;offset address
daptr::::seg dw 0 ;segment address

The following variables store the old addresses of the interrupt
;-- handler, which will be replaced by the new interrupt handler

int9 ptr equ this dword ;old interrupt vector 9h
int9-ofs dw 0 ;offset address of the old handler
int·9_seg dw 0 ;segment address of the old handler

intl3 ptr equ this dword ;old interrupt vector 13h
intl3:::ofs dw 0 ;offset address of the old handler
int13_seg dw 0 ;segment address of the old handler

int28ytr equ this dword ;old interrupt vbector 28h
int28 ofs dw 0 ;offset address of the old handler
int2S:::seg dw 0 ;segment address of the old handler

;-- Variables which store the information of the interrupted
; -- program w

u dta ofs dw 0 ;OTA address of interrupted program
u_dta_seg dw 0

uysP dw 0 ;segment addr of the PSP of into prg.

uprg_ss dw 0 ISS and SP of the interrupted prg.
uprg_sp dw 0

i--
;-- TSR_INIT: ends the C program and makes the new interrupt ----------
;-- interrupt handler active

423

80 Terminate and Stay Resident Programs PC System Programming

;-- Call from C: void tsr init(bool TC,
;-
;-
;-
;-

tsr_init

sframeO
bpO
ret_adrO
tcO
fktptrO
keymaskO
heapO
idptrO
sframeO

frame

tiO:

-

proc near

struc
dw
dw
dw ?
dw
dw
dw ?
dw ?
ends

equ[bp-bpO]

push bp
mov bp,sp

void (fit *) (void) ,
int key mask,
unsigned heap byte,
char * id_strlng);

;structure for accessing the stack
;stores BP
;return address
; compiler (1 - TURBO-C, 0 = MSC

;pointer to C TSR function

;mask for hotkey

;heap bytes required

;pointer to the 10 string

;end of the structure

;store BP on the stack

;move SP to BP

;-- save the C segment registers ---------------------------

mov cs:c_ss,58 ;store the registers in the
mov cs:c_sp,sp ;corresponding variables
mov cs:c_es,es
mav cs:c_ds,ds

;-- copy the 10 string into the internal buffer ------------

mov si,frame.idptrO
push cs
pop es
mov di,offset id_buf
mov ex,MAX 10 LEN
lodsb -
stosb
or al,al
loopne tiO

;DS:51 now points to the string
;move CS to the stack
iand restore as ES
;ES:01 now points to 10 BUF
; copy maxmimum of MAX 10 LEN chars
;get character from string
;and place in internal buffer
;test for end of string
;continue if char!-O and CX!=O

;-- store the parameters passed ---------------------------

mov ax,frameofktptrO ;get pointer to the C TSR function
mov cs:fkt_adr,ax ;and save
mov ax,frameokeymaskO ;get mask for hotkey
mov cs:key_mask,ax iand save

;-- determine OTA address of the C program -----------------

mov ah, 2fh ;ftn. no.: get OTA address
int 21h ;call OOS interrupt
mov cs:c_dta_ofs,bx ;store address in the corresponding
mov cs:c_dta_seg,es ; variables

;-- determine address of the 1NOOS flag --------------------

mov ah,34h ;ftn. no.: get addr of the 1NOO5 flag
int 21h ;call OOS interrupt
mov cs:daptr ofs,bx ;save address in the corresponding
mov cs:daptr=seg,es ;variables

;-- get the addresses of the interrupt handler

mov ax,3509h ;get interrupt vector 9h
int 2lh ;call OOS interrupt
mov cs:int9 Qfs,bx ;save address of the handler in the
mov cs:int9=seg,es ;appropriate variable

424

Abacus 	 8. Terminate and Stay Resident Programs

mov ax,3513h
int 2lh
mov cs:intl3_ofs,bx
mov cs:intl3_seg,es

mov aX,3528h
int 2lh
mov cs:int28_ofs,bx
mov cs:int28_seg,es

;-- install the

push ds
mav ax,es
mov ds,ax

mov aX,2509h
mov dx,offset
int 2lh

mav aX,25l3h
mav dx,offset
int 2lh

mov ax, 2528h
mov dx,offset
int 21h

pop ds

i-- calculatre
i-- in memory.

xor ax,ax
push ax
call _sbrk

pop ex

new

int09

int13

int28

number

add aX,frame.heapO

;get interrupt vector l3h
;call DOS interrupt
;store address of the handler in the
;corresponding variables

;get interrupt vector 28h
;call DOS interrupt
;store address of the handler in the
;corresponding variables

interrupt handlers --------------------

; save data segment

;CS to AX and then load into DS

;ftn. no. : set interrupt 9h
;DS:DX stores the addr of the handler
;call DOS interrupt

;ftn. no.: set interrupt l3h
;DS:DX stores the addr of the handler
;call DOS interrupt

;ftn. no.: set interrupt 28h
;DS:DX stores the addr of the handler
;call DOS interrupt

;restore DS from stack

of paragraphs which must remain

;determine current break address
;as argument for SBRK on the stack
;call C function SBRK
;AX contains the end addr of the heap
;get argument from stack again
;add required heap memory

;-- With TURBO-C the stack is found behind the heap and
;-- begins with the end of the segment. It must thus
;-- be moved near the heap.

cmp byte ptr ,frame.tcO,O ; using TURBO-C?
je msc ina, MSC

add ax,TC_STACK-l ; calculate new stack pointer for TC
mov cs:c_sp,ax iand store
inc ax ;set break address

;-- calculate number of paragraphs which must remain -------
;-- resident in memory.

rose: 	 mav dx,ax
add dx,15
mov cl,4
shr dx,cl
mav ax,ds
mov bx,-ysp
mov cs: cysP, bx
sub ax,bx
add dx,ax
mov aX,3l00h
int 2lh

_tsr_init 	 endp

; get break address into DX
;avoid loss through integer division
;shift 4 times to the right and then
;divide by 16
;move AX to DS
;get segment address of the PSP
;save in a variable
;subtract DS from PSP
;and add to the number of paragraphs
;ftn. no.: end resident program
;call DOS interrupt and end program

i--

425

8. Terminate and Stay Resident Programs 	 PC System Programming

;-- IS_INST: determines if the program is already installed -----------

;-- Call from C : int ist inst(char * id string);

;-- Return value: 1, if the program was already installed, else 0

is inst proc near

sframe1 struc ;structure for accessing the stack
bp1 dw ;hold BP
ret adrl dw ? ;return address
idptr1 dw ? ;pointer to the 10 string
sframe1 ends ;end of the structure
frame equ [bp - bp1]

push bp isave BP on the stacie
mov bp,sp imove SP to BP
push di isave 01 on the stack
push si isave SI on the stack
push es ; save ES on the stack

;-- determine segment address of the current int 9 handler -

mav aX,3509h ;get interrupt vector 9h
int 21h ;DOS interrupt puts seg addr in ES
mav di,offset Id buf ;ES:OI points to installed 10 BUF
mav sl,frame.ldptr1 ;OS:SI points to the IO_STRING passed

mav ex,O ;return code: not installed
isiO: 	 lodsb ;load character from the string

cmp al,es: [dl] ;compare to other string
jne not_lnst ;not equal --> NOT INST
inc dl ;increment pointer-in String2
or al,al ;end of string reached?
jne isiO ;no, keep comparing --> ISIO

mov cl,1 ;yes --> the program is installed

not_lnst: 	 mov ax,cx ;get return code from ax
pop es ;restore saved registers from stack
pop si
pop dl
pop bp
ret ;back to the caller

is inst endp ;end of the procedure-
;--
;-- CALL ENO: calls the end function on reinstallation of the TSR
;-- program.
;-- Input 01 - offset address of the routine to be called

Info This function is not intended to be called by a C program.

call end 	 proc far

call di ;call the end function
ret ;back to the caller

;--
;-- UNINST: reinstalls the TSR program and releases the allocated

;-- memory again.

;-- Call from C void uninst(void (endfkt *) (void));

;-- Info if the value -1 (Oxffff) is passed as the pointer to

the end function, no end function will be called.
;-- Note This function should be called only when a prior call
;-- to IS_INST(1 has returned the value 1.

_uninst 	 proc near

sframe2 	 struc ;structure for accessing the stack

426

AbacllS

bp2
ret adr2
ftnptr2
sframe2

frame

dw ?
dw
dw
ends

equ [bp - bp2 J

assume es:IGROUP

push bp
mov bp,sp
push di
push si
push ds
push es

8. Terminate and Stay Resident Programs

;stores BP
;return address
;pointer to the end function
; end of the structure

;allow access to the es variables
;via ES

isave BP on the stack
;move SP to BP
;store DI on the stack
;store SI on the stack
jstore OS on the stack
;store ES on the stack

;-- determine the seq addr of the current int 9 handler --
mov ax, 3S09h ; get interrupt vector 9h
int 2lh ;OOS interrupt puts seq addr in ES

mov di,frame.ftnptr2 ;qet address of the end function
crop di,Offffh ;no end function called?
je no_endftn ;NO ---> NO_ENDFTN

;-- Perform context switch to e proqram and execute ------
;-- the specified end funtion

mov cs:ce_seq,es

mov cs:uprCJ_ss,58
mov cs:uprq_sp,sp

cli
mov ss,es:c_ss
mov sp,es:c_sp
sti

push es
mov ah,2fh
int 21h
mov cs:u dta ofs,bx
mov cs: u=dta=seq, es
pop es

mov ah,50h
mov bx,es:c-psp
int 21h

push ds
push es

mov ah,lah
mov dx,es:c dta ofs
mov ds,es:c-dta-seq
int 21h -

mav ds,es:c_ds
mov es,es:c es
call cs:[cejPtr]

;save ES in jump vector

;save current stack seqment and
;stack pointer

;allow no more interrupts
;activate the stack of the TSR
;proqram
;allow interrupts aqain

;save ES on the stack
;ftn. no.: qet DTA address
;call DOS interrupt
;save address of the OTA of the
;interrupted proqram
;qet ES back from the stack

;ftn. no.: set address of the PSP
;qet seq addr of the PSP of the e prq
;call OOS interrupt

;save ES and OS on the stack

; ftn. no.: set OTA address
;qet offset address of the new DTA
land seqment address of the new DTA
;call OOS interrupt

;set seqment register for the
;e proqram
; call the ·function

;-- perform context chanqe to the interrupt proqram

mov ah,lah ;ftn. no.: set DTA address
mov dx,cs:u dta ofs ;load offset and seqment address of
mov ds,cs:u-dta-seq ;the interrupted proqram
int 21h - - ;call OOS interrupt

pop es ;seq addr of the TSR proq from stack
pop ds ;restore OS from stack

427

8. Terminate and Stay Resident Programs PC System Programming

mov ah,50h
mov bx,Jsp
int 21h

eli
mov sS,es:uprg_ss
mov sP,cs:uprg_sp
sti

;ftn. no.: set address of the PSP
;load seg addr of the PSP
;call DOS interrupt

;don't allow interrupts
;restore stack pointer and stack
; segment
;allow interrupts again

;-- reinstall the interrupt handler of the TSR -------------

no_endftn:

_uninst

;-- program

cli
mov ax, 2509h
mov ds,es:int9_seg
mov dx, es: int9_ofs
int 2lh

mov aX,2513h
mov ds,es:int13_seg
mov dx,es:intI3_ofs
int 21h

mov aX,2528h
mov ds,es:int28_seg
mov dx,es:int28_ofs
int 2lh

sti

mov eS,es:cysp
mov cx,es
mov es,es: [02ch
mov ah,49h
int 2lh

mov es,cx
mov ah,49h
int 21h

pop es
pop ds
pop si
pop di

pop bp
ret

assume es:DGROUP

endp

;don't allow interrupts
; ftn. no.: set handler for int 9
;segment address of the old handler
;offset address of the old handler
;install the old handler again

; ftn. no.: set handler for int 13
;segment address of the old handler
;offset address of the old handler
;reinstall the old handler

; ftn. no.: set handler for int 28
;segment address of the old handler
;offset address of the old handler
;reinstall the old handler

;allow interrupts again

;seg addr of the PSP of the TSR prg
;save in ex
;get seg addr of environment from PSP
;ftn. no.: release allocated memory
;call DOS interrupt

;restore ES from ex
;ftn. no.: release allocated memoru
;call DOS interrupt

;get the saved registers back from
;the stack

;back to the called

;combine ES with DGROUP again

;end of the procedure

:------~--
;-- The new interrupt routine follows ---------------------------------
;--

;-- The new interrupt 09h handler -------------------------------------

int09 proc far

pushf
call cs:int9ytr

;simulate the call of the old handler
;via the INT 9h instruction

eli
anp
jne

cs:recur,O
ik end

;suppress interrupts
;is the TSR prog already active?
;YES: back to the called of int 9

;-- test to see if the BIOS disk int is being executed now

cmp es:in_bios,O ;BIOS disk interrupt active?

428

Abac/U 	 8. Termi7lllte and Stay Resident ProgtaITIS

;yes --> back to the caller

;-- BIOS disk interrupt not active, test for hotkey -------

push ax ;save ES and AX on the stack
push es
xor ax,ax ;set ES to the lowest memory segment
mav es,ax
mov aX,word ptr es:[417h] ;get BIOS keyboard flag
and ax,cs:key mask ;mask out the non-hotkey bits
crop ax,cs:key=mask ;are only the hotkey bits left?
pop es ;get ES and AX
pop ax
jne ik_end ;hotkey discovered? no --> back

;-- the hotkey was pressed, test to see if DOS is active

push ds ;save OS and BX on the stack
push bx
Ids bx,cs:daptr ;OS:BX now point to the INDOS flag
cmp byte ptr [bx] ,0 ;DOS function active?
pop bx ;restore BX and DS from the stack
pop ds
jne ik_end ;DOS function active --> IK_END

;-- DOS is not active, activatr TSR program ---------------

call start_tsr ;start the TSR program
iret ;back to the interrupted program

int09 endp
;-- the new interrupt 13h handler -------------------------------------

int13 	 proc far

;set flag and show that the BIOS disk
;interrupt is active

pushf ;call the old interrupt handler
call cS:int13J>tr ;simulate via int l3h
mov cs:in_bios, a ;BIOS disk interrupt no longer active

ret 2 ;back to the caller, but don't remove
;the flag reg from the stack first

intl3 endp

;-- the new interrupt 28h handler -------------------------~-----------

int28 	 proc far

pushf ;simulate calling the old interrupt
call cs:int28ytr ;handler via int 28h

cli ;suppress further interrupts
crop cs:recur,Q ;is the TSR program already active?
je idOl ; NO ---> 1001
iret ; YES ---> back to the caller

;-- the TSR program is not yet active ---------------------

idOl: 	 crop cs:in bios, a ;BIOS disk interrupt active?

jne id_end ;YES --> back to the caller

;-- BIOS disk interrupt not active, test for hotkey

push ax ;save ES and AX on the stack
push es
xor ax,ax ;st ES to the lowest memory segment
mav es,ax
mov aX,word ptr es:[417h] ;get BIOS keyboard flag
and aX,cs:key_mask ;mask out the non-hotkey bits

429

8. Terminate and Stay Resident Programs PC System Programming

anp
pop
pop
jne

call
iret

int28 endp

;-- START_TSR:

start_tsr

tsrsl:

es
ax
ik end

start_tsr

;are only the hotkey bits left?
;restore ES and AX

;hotkey discovered? NO --> back

;start the TSR program
;back to the interrupted program

activate the TSR program -----------------------------

proc near

mov cs:recur,l ;set TSR recursion flag

;-- perform context change to the e program ----------------

mov cs:uprq_ss,ss
mov cs:uprg_sp,sp

mov ss,cs:c_ss
mov sp,cs:c_sp

push ax
push bx
push ex
push dx
push bp
push si
push di
push ds
push es

;save current stack segment and
;stack pointer

;activate the e program's stack

;save the processor registers on the
;e stack

;-- save 64 words from the DOS stack -----------------------

mov ex,64
mov ds,cs:uprg_ss
mov si,cs:uprg_sp

push word ptr [sil
inc si
inc si
loop tsrsl

mov ah,5lh
int 2lh
mov cs:uysp,bx

mov ah,2fh
int 2lh
mov cs:u_dta_ofs,bx
mov cs: u_dta_seg, es

mov ah,50h
mov bx,cs:cysp
int 2lh

mov ah,lah
mov dx,cs:c_dta_ofs
mov ds,cs:c_dta_seg
int 2lh

mov ds,cs:c_ds
mov es,cs:c_es

stl
call cs:fkt_adr
cli

; loop counter
;set OS:SI to the end of the DOS stack

;save word from the DOS stack to the
;e stack and set SI to the next
;stack word
;process all 64 words

;ftn. no.: determine address of PSP
;call DOS interrupt
;save segment address of the PSP

;ftn. no.: get OTA address
;call DOS interrupt
;store address of the OTA of the
;interrupted program

;ftn. no.: set address of the PSP
;get seg addr of the PSP of the e prg
;call DOS interrupt

;ftn. no.: set DTA address
;get offset address of the new DTA
;and the segment address of new OTA
;call DOS interrupt

; set segment register for the e
; program

;allow interrupts again
;call the start function of the e prg.
;disable interrupts

430

Abacus 8. Terminate and Stay ResUUnl Programs

;-- perform context change to the interrupted program ------

mov ah,1ah ;ftn. no.: set DTA address
mov dx,cs:u dta ofs ;load offset and segment addresses
mov
int

ds,cs:u-dta-seg
21h - -

;of the DTA of the interrupted program
;call DOS interrupt

rnov ah,SOh ; ftn. no.: set address of the PSP
mov bx,cs:u-psp ;seg addr PSP of the interrupted prg.
int 21h ;call DOS interrupt

;-- restore DOS stack again -------------------------------

tsrs2:

start_tsr

mov ex, 64
mov ds,cs:uprg_ss
mov si,cs:uprg.:..sp
add si,128
dec si
dec si
pop word ptr [si)
loop tsrs2

pop es
pop ds
pop di
pop si
pop bp
pop dx
pop ex
pop bx
pop ax

mov ss,cs:uprg_ss
rnov sp,cs:uprg_sp

mov cs:recur,O
ret

endp

;loop counter
;load DS:SI with the end address of
; the DOS stack
;set SI to the start of the DOS stack
;51 to the previous stack word

;get word from the C stack to DOS stack
;process all 64 words

;restore the saved registers from the
;C stack

;reset stack pointer and stack segment
;of the interrupted program

;reset TSR recursion flag
;back to the caller

;--

ends ;endof the code segment

end lend of the program

Turbo Pascal offers only one memory model, unlike the various C compilers. The
organization of this model is well suited to TSR programs.

.. +
,
"".p

Stack

Global variable.

Pradeflned. constants

Runtime library routines

Additional unit routines

Proqram code

PSP

incr••sing
''Il10'1'
addresses

Memory layout ofa Pascal program under Turbo Pascal 4.0

431

8. Terminllte and Stay Resident Programs PC System Programming

The figure above shows that the program code and the required routines from the
various units and the runtime library follow the PSP. After these are the predefined
constants, the global data, and the stack segment. While the size of these program
components are set at compilation and cannot be changed after the program is
loaded into memory, this doesn't apply to the size of the heap, which follows the
stack segment. When new objects are created with the NEW command, the heap
grows toward the end of memory.

Turbo Pascal offers the significant advantage over C compilers of being able to set
the maximum size of the heap, as well as the stack size, with a compiler directive
inside the source code. This is the $M directive, which must be passed the
following parameters:

{$M stack size, minimum heap size, maximum heap size}

All specifications are in bytes, so the directive

{$M 2048, 0, SOOO}

results in a 2K stack and a maximum 5000-byte heap. If no such directive is found
in a program, the heap is not limited and it can grow to the end of main memory.
This would have catastrophic results for a TSR program, however, since the entire
memory would have to be reserved for the TSR program and there would be no
memory left for additional programs. But with the $M directive placed at the
beginning of the program, we can set the maximum size of the program in
memory and the number of paragraphs which must remain resident after the
program is terminated.

Turbo Pascal also allows the number of paragraphs to be reserved to be calculated
from the Pascal program, eliminating the complicated calculation in the assembly
language interface. In a C program, important data needed for this calculation
(segment addresses of the PSP and data segment, and size of the heap) are available
only at the assembly language level, but Turbo Pascal places this information in
normal variables, which are available to a Pascal program in the form of pointers.
For our purposes, we need the starting address of the PSP and the end of the heap,
since they mark the start and end of the TSR program in memory.

The figure shows that the segment address of the PSP is found in the variable
PrefixSeg, while the end of the heap is determined with the help of the pointer
variable FreePtr. This variable does not point directly to the end of the heap, but
the segment portion of this pointer contains the end address of the heap minus
$1000. This information is used within the TSR program in the ResPara
procedure, which calculates the number of paragraphs to remain resident after the
installation of the TSR.

432

Abacus 	 8. Terminate and Stay Resident Programs

In addition to this information, the initialization routine TsrInit in the assembly
language module must be passed the following information (in the specified order):

Address of the Pascal TSR function

• Hotkey (mask for reading the BIOS keyboard flag)

Number of paragraphs to be reserved

Identification string

The Pascal TSR function, the address of which is passed as the first parameter to
Tsrlnit, must be a procedure within the main program and may not be contained in
a unit. Moreover, it may not be converted to a FAR procedure with the $F+
compiler directive, since the assembly language interface assumes that it is a
NEAR procedure. The address of the procedure is determined with the help of the
function OFS and passed to TsrInit, since Turbo Pascal would otherwise place
both the offset address and the segment address on the stack.

The same applies to passing the address of a "cleanup" procedure to the function
Uolnst, which reinstalls the TSR program. If such an address is passed, the
corresponding procedure within the installed TSR program will be called before the
reinstallation. If the value $FFFF is passed as the address of this procedure, this
tells the assembly language function that no "cleanup" procedure is to be called.
To improve the readability of the listing, the constant NO_END_FIN is defined in
the constant definitions at the start of the listing. NO_END_FIN is given the
value $FFFF and should be used when calling the assembly language function
Unlnst.

The following listing can answer any additional questions you may have, and will
make a good starting point for your own TSR programs.

Pascal listing: TSRP.PAS

{************************************.****.*******.*.*****••***********j
1* T S R P *'
1*--OJ
1* Description : creates a TSR program with the help of an *'
{* assembly lanquage module. *j

1*--*'
I* Author : MICHAEL TISCHER * j
1* developed on : 08/18/1988 *j
1* last update : 05/26/1989 *j
{***•••**********•••*******}

program TSRP;

uses DOS, CRT; 	 I bind in the DOS and CRT units j

ISM 2048, 0, 5120j I 2KB for the stack and max. 5KB for the heap j
I$L tsrpaj I bind in the assembler module ,

const 	LSHIFT - 1; I left SHIFT key j

RSHIFT - 2; I right SHIFT key ,
CTRL 4; I CTRL key,

433

8. Terminate and Stay Resident Programs 	 PC System Programming

ALT 8; (ALT key
SYSREO - 1024; (SYS REO key (ST keyboard only)
BREAK 4096; (BREAK key
NUM - 8192; (NUM key
CAPS = 16384; (CAPS key
INSERT - 32768; INSERT key

NO ENO_FTN - SFFFF; { don't call an end function

type 	IdsType - string[16 J; { describes the identification string
VBuf = array[1 •• 25, 1••80J of word; { describes the screen
VPtr = AVBuf; (pointer to a screen buffer

var 	IdString IdsType; { the ID string for the TSR program
MBuf VBuf absolute $8000:0000; { the monochrome video RAM
CBuf Vbuf absolute $8800:0000; (the color video RAM
VioPtr VPtri pointer to the video RAM

(** 	 Declaration of the external functions in the assembly module ******J

procedure Tsrlnit(PrcPtr word; (offset addr of the TSR proc
KeyMask word; (the hotkey (see CONST)
ResPara word; number of para. to be reserved
IdString IdsType ; external; (the 10 string

function IsInst(IdString : IdsTYpe) boolean ; external

procedure Unlnst(PrcPtr : word); external; (reinstall TSR program

var ATimes : integer; 	 (number of TSR activations)

{******•• ***.*****•••******.*****************••••*****.***********•••*••
{* Oisplnit: creates a pointer to the video RAM *1
(* Input : none *)
{* Output : none *1
{**************.***}

procedure Oisplnit;

var Regs: Registers; (stores the processor registers)

begin
Regs.ah := $Of; function no. 15 = read the video mode
Intr(S10, Regs); (call the BIOS video interrupt
if Regs.al-7 then (monochrome video card?

VioPtr '. @MBuf (yes, set pointer to the monochrome video RAM
else { it's an EGA, VGA, or CGA card

VioPtr := @CBuf; { set pointer to color video RAM
end;

(*** ••• ****}
(* SaveScreen: saves the screen contents in a buffer *1
{* Input SPTR pointer to a buffer in which the screen contents *1
(* will be saved *1
(* Output none * 1
{***************.***.*******.*.}

procedure SaveScreen(SPtr : VPtr);

var 	line, (the current line
column bYte; the current column

begin
for line:-1 to 25 do { run through the 25 screen lines

for column:-1 to 80 do { run through the 80 screen columns
SPtrA[line, columnJ :- VioPtrA[line, columnJ; (save ch.&attr.

end;

434

Abacus 	 8. TerminaJe and Stay Resident Programs

(••••••••••••**.** •••••••********••••***.**••• **•••• ***.*••••••• *•••••*)

{* RestoreScreen: copies the contents of a buffer into the video RAM *'
{* Input BPTR pointer to the buffer whose contents are to be *' *'{* copied into the video RAM

{* OUtput none *'

{*••••••••••••••••••**.*** ••••••••••••** ••••••••••••••** ••••••••**••••• }

procedure RestoreScreen(BPtr : VPtr);

var line,
column byte;

1 the current line
the current column

begin
for line:-l to 25 do (run through the 25 screen lines

for column:-l to 80 do run through the 80 screen columns
VioPt r A[line, column] .- BPtrA[line, column]; (get ch. , attr.

end;

{••••••••••••••**••••••••**•••••***•••••••••••••••••••*••••*.*••••**••• }
1* ResPara: calculates the number of paragraphs which must be *'
(* allocated for the program *'
(* Input none *'
(* OUtput the number of paragraphs to be reserved *1
{.*.*•••••••••**••*••**.~*.*** ••*.*•••*••*.**.*.*.**.*****••••••••••••*}

function ResPara : word;

begin
ResPara Seg{FreePtrA)+SlOOO-PrefixSeg; { number of paragraphs ,

end;

{**** •••••••***•••• *** ••••• ****••••••••••••••• *** ••• ***••••*•••••*.****.
1* EndProc: Called by the assembler module when the TSR program is *1
(* reinstalled *)

1* Input none 	 *'
(* OUtput none *1
(* Info This procedure must be in the main program and may not *1
1* be turned into a FAR procedure by the $F+ compiler *1
1* directive. *)
{*••••• ***.***••• ********•••• **•••••••••• ***•••••••••••••••••••••*****.}

(SF-I 	 (don't make a FAR procedure 1

procedure EndProc;

begin
TextBackground(Black); (dark background
TextColorl LightGray); (light text
writelnl'The TSR program was called ATimes, ' times.');

end;

{***.**.****•••••• **.***•• **••••••••••••••***.****.***•••••••••****•• **}
(* Tsr: This procedure is called by the assembler module after the *)
1* hotkey is pressed. *J
(* Input none *1
{* Output none *J
1* Info This procedure must be in the main program and may not *J
{* be turned into a FAR procedure by the $F+ compiler *)
(* directive. *J
(** •••• **••••••• **.*****•••••••****.**.***••••*** •••••** •••***•• ****••• }

ISF-I 	 1 don't make a FAR procedure J

procedure Tsr;

var 	BufPtr : VPtr; { stores pointer to the allocated blocks
Column, 1 the current screen column
Line : byte; (the current screen line
Key : char;

435

8. TermilUlle and Stay Residenl Programs PC System Programming

begin
inc (ATimes); (increment call counter
DispInit; determine address of the video RAM
GetMemlBufPtr, SizeOf(VBuf)); { allocate buffer
SaveScreenl Bu!Ptr); save the screen contents
Line :- WhereY; I get current screen line
Column :- WhereX; ('let current screen column
TextBackqround I LightGray); (light background
TextColorl Black); I dark text
ClrScr; clear the whole screen
GotoXY 122, 12);
write I' TSRP Ic) 1988 by MICHAEL TISCHER');
GotoXY 130, 14);
writel'Please press a key ••• ·);
Key :- ReadKey; I wait for a key
RestoreScreenl BufPtr); { copy the old screen contents back
FreeMeml BuiPtr, SizeOflVBuf)); I release allocated buffer
GotoXYI Column, Line); I cursor back to original position

end;

{•• *******.*******************************.*******.*.**********••• *****}
{** MAIN PROGRAM **1
{***************•• ***•••**************••• ***•••*******••****.*****•••**}

begin
writelnl'TSRP Ic) 1988 by MICHAEL TISCHER');
IdStrinq := 'TROTZKY';
if I IsInstl IdStrinq)) then I proqram already installed?

begin I YES
writelnl'The TSR program now disabled.');
UnInstl Ofsl EndProc)); I remove the program

(** if no end function is to be called, the call is: ************
** UnInstl NO_END_FTN); ************1

end
else I the program is not installed yet

begin
AT1mes := 0; I the proqram was not activated yet
writelnl'TSR program now enabled. Start: <LSHIFT> + "

'<RSHIFT>');
Tsrlnitl OfslTsr), LSHIFT or RSHIFT, ResPara, Idstring);

end;
end.

Assembler listing: TSRPA.ASM

i**····*****************·**********·************************·******··**i
;* T S R P A * ;
i*--*;
;* Description This is the assembler interface to a Turbo * ;
;* Pascal 4.0 proqram which ,can be activated *;
;* via a hotkey. *;
i*--*;
; * Author MICHAEL TISCHER *;
;* developed on : 08/12/1988 *;
;* last update : 08/18/1988 *;
i*--*i
;* Info : The module must be in a program and may not *;
; * be bound into a UNIT. *;
;*--*;
; * to assemble : MASH TSRPA; *;
, ••• combine with a Turbo Pascal proqram *;
;***••*.**•••••******;

DATA segment word public ;Turbo data segment

DATA ends ;end of the data segment

436

AbaclLf 8. Terminate and Stay Residenl Programs

;- Constants ----=-=-=-'""------=---------
;maximum length of the 10 string

;-= Program. -----------------===-----===--
CODE segment byte public ;the Turbo code segment

assume cs:CODE, ds:DATA, es:COOE

;-- Public declarations of internal functions -------------------------

public tsrinit ;allows access by the Turbo program
public isinst
public uninst

;-- Variables for the interrupt handler -------------------------------
;-- (accessible only via the code segment -----------------------------

id_buf db (MAX 10 LEN + 1) dup (0) ;buffer for the 10 string
ceytr equ this dword ;points to the routine CALL_END in the
ce ofs dw offset call_end ;already-installed TSR program
ce_seg dw ?

;-- Variables neded for activation of the Turbo program --------------

t ss dw 0 ;Turbo stack segment
t_sp dw 0 ;Turbo stack pointer
t ds dw 0 ;Turbo data segment
t es dw 0 ;Turbo extra segment

t dta ofs dw a ;OTA address of the Turbo program
t::::dta::::seg dw 0

tysp dw 0 ;seg addr of the PSP of the Turbo prg.
prc_adr dw a ; address of the Turbo TSR procedure

;-- Variables for testing for the hotkey -----------------------------

key_mask dw 0 ;hotkey mask for BIOS keyboard flag
recur db 0 ;prevents recursive TSR calls
in bios dbO ;shows activity of the BIOS disk

; interrupt

daptr equ this dword ;pointer to the DOS INDOS flag
daptr ofs dw a ;offset address
daptr::::seg dw 0 ;segment address

;-- The following variables store the old addresses of the interrupt
;-- handlers which will be replaced by new interrupt handlers

int9ytr equ this dword ;old interrupt vector 9h
int9 ofs dw 0 ;offset address of the old handler
int9::::seg dw a ;segment address of the old handler

intl3ytr equ this dword ;old interrupt vector 13h
int13 ofs dw a ;offset address of the old handler
int13::::seg dw 0 ;segment address of the old handler

int2B ptr equ this dword ;old interrupt handler 2Bh
int2B-ofs dw a ;offset address of the old handler
int28::::seg dw 0 ;segment address of the old handler

;-- Variables for storinq information about the interrupted -----------
;-- program -----------

u_dta_ofs dw a ;OTA address of interrupted program
u_dta_seg dw 0

uysP dw 0 ;seg addr of the PSP of the into prg.

437

8. Terminate and Stay Resident Programs PC System Programming

dw 0 ;SS and SP of the interrupted prg.
dw 0

;--
;-- TSR1N1T: ends the Turbo program and activates the new interrupt ---
;-- handler

;-- Call from Turbo: procedure Tsr1nit(Przptr word;

;-- KeyMask word:

:-- ResPara word;

;-- 1dString string [16]);

tsrinit proc near

sframeO
bpO
ret adrO
idptrO
resparaO
keymaskO
prcptrO
sframeO

struc
dw ?
dw
dd
dw
dw ?
dw
ends

;structure for accessing the stack
;stores BP
;return address
;pointer to the 10 string
;number of paragraphs to be reserved
;mask for hotkey
;pointer to the Turbo TSR procedure
;end of the structure

frame equ [bp - bpO

push bp
mov bp,sp
push es

;save BP on the stack
;move SP to BP
;save ES on the stack

:-- save the Turbo segment registers ----------------------

mav
mov
mov
mov

cs:t_ss,ss
cs:t_sp, sp
cs:t es,es
cs:t::::ds,ds

;save the registers in the appropriate
; variables

;-- copy the 10 string into the internal buffer ------------

push ds
Ids si, frame. idptrO
push cs
pop es
mov di,offset id_buf
xor ch,ch
mov cl, lsi]
inc cl
rep movsb
pop ds

;save OS on the stack
;OS:SI now points to the string
;put CS on the stack
;and restore as ES
;ES:01 now points to 10 Bur
;clear high byte of the-counter
;get length of the string
;copy the length byte too
;copy the entire string
:restore DS

;-- determine PSP of the Turbo program ---------------------

mav
sub
mov

bx,cs
bx,10h
cs:t-psp,bx

;transfer CS to BX
;10h paragraphs = subtract 256 bytes
;save segment address

;-- save the parameters passed -----------------------------

mov
mov
mov
mov

aX,frame.prcptrO
cs:prc_adr,ax
ax,frame.keymaskO
cs:key_mask,ax

;get pointer to the TSR procedure
:and save
;get mask for the hotkey
:and save

;-- determine DTA address of the Turbo program -------------

mov
int
mov
mov

ah,2fh
21h
cs:t dta ofs,bx
cs:t::::dta::::seg,es

;ftn. no.: get OTA address
;call DOS interrupt
;store address in the appropriate
;variables

;-- determine the address of the 1NDOS flag ----------------

438

Abacus 8. Terminate and Stay Residenl Programs

rnov ah,34h ;ftn. no.: get adr of the INDOS flag
int 21h ;eall DOS interrupt
rnov es:daptr ofs,bx ;save address in the appropriate
mov cs:daptr=seg,es ; variables

;-- get the addresses of the interrupt handlers to ehange --

mov ax, 3509h ;get interrupt vector 9h
int 21h ;eall DOS interrupt
mov cs:int9_ofs,bx ;save address of the handler in the
mov cs:int9_seg,es ;appropriate variables

rnov ax,3513h ;get interrupt vector 13h
int 21h ;eall DOS interrupt
rnov cs:intI3_ofs,bx ;save address of the handler in the
rnov cs: int13_seg, es ;appropriate variables

rnov ax, 3528h ;get interrupt vector 28h
int 21h ;eall DOS interrupt
mov cs:int28_ofs,bx ;save addres of the handler in the
mov es:int28_seg,es ;appropriate variables

;-- install the new interupt handlers ----------------------

push ds ;save data segment
mov ax,es ;CS to AX and then load into OS
mov ds,ax

rnov ax, 2509h ; ftn. no.: set interrupt 9h
mov dx,offset int09 ;OS:OX stores the addr of the handler
int 21h ;eall DOS interrupt

rnov ax, 2513h ; ftn. no.: set interrupt 13h
mov dx,offset int13 ;OS:OX stores the addr of the handler
int 21h ;eall DOS interrupt

rnov ax, 2528h ;ftn. no.: set interrupt 28h
rnov dx,offset int28 ;OS:OX stores the addr of the handler
int 21h ;eall DOS interrupt

pop ds ;get OS baek from the stack

;-- End resident program -----------------------------------

mov ax,3100h ; ftn. no.: end resident program
mov dx,frame.resparaO ;get number of reserved paragraphs
int 21h ;eall DOS interrupt and thus end

;the program

tsrinit endp

;--
;-- ISINST: Determines if the program is already installed ------------
;-- Call from Turbo: function IsInst(IdString : IdsType) : boolean;
;-- Return value: 1, if the program was already installed,
;-- else 0 .

isinst proe near

sframel strue ;strueture for accessing the staek
bpI dw ;stores BP
ret adrl dw ? ;return address
idptri dd ? ;pointer to the 10 string
sframel ends lend of the structure

frame equ [bp - bpI I

push bp save BP on the stack

mov bp,sp transfer Sp to BP

push ds save OS on the stack

439

8. Terminate and Stay Resident Programs 	 PC System Programming

;-- determine segment address of the current int 9 handler -

II\OV ax,3509h ; get interrupt vbector 9h
int 2lh ;DOS interrupt gets seq addr in ES
II\OV di,offset id_buf ;ES:OI points to the installed 10 BUF
Ids si, frame. idptr1 ;OS;SI points to the IO_STRING passed

xor dl,dl i return code: not installed
II\OV cl, [si] ;get length of the string
II\OV ch,dl ;high byte of the counter to 0

isiO: 	 lodsb ;load character from string
cmp al,es: [di] ;compare with other string
jne not_inst ;not equal --> NOT_INST
inc di ;increment pointer to string 2
loop isiO ; compare the next characters

II\OV dl,l ;the strings are identical

not_inst: 	 II\OV al,dl ; put return code in AL
pop ds ; get OS back from stack
pop bp ; get BP back from stack
ret 4 ;back to the caller

isinst 	 endp ;end of the procedure

i--
;-- CALL_END: calls the end function when the TSR is reinstalled ------
;-- Input 01 - offset address of the routine to be called
;-- Info This function is not intended to be called by a Turbo
i-- program

call_end 	 proc far

call di ;call the end function
ret ;back to the caller

call end 	 endp

;--
;-- UNINST: removes the TSR program and releases the allocated --------
;-- memory.
;-- Call from Turbo procedure UnInst(EndPtr : word); external;
;-- Info If the value $FFFF is passed as the address,
;-- then no end function will be called.
;-- Note This function should be called only if a previous
;-- call to IS_INST() returned a value of 1.

uninst 	 proc near

sframe2 struc ;structure for accessing the stack
bp2 dw ;stores BP
ret adr2 dw ? ; return address
prcptr2 dw ? ;pointer to the end procedure
sframe2 ends ;end of the structure

frame 	 equ [bp - bp2)

push bp ;save BP on the stack
mov bp,sp ;transfer sp to BP
push ds ;save DS on the stack

;-- determine seg addr of the current int 9h handler --
II\OV aX,3509h ;get interrupt vector 9h
int 21h ;OOS interrupt puts seg addr in ES

mov di,frame.prcptr2 ;get address of the end procedure
cmp di,Offffh ;no end procedure called?
je no_endprc ;NO ---> NO_ENDPRC

440

AbaclU 	 8. Terminate and Stay Resident Programs

;-- Perform context change to the Turbo program and -----
;-- execute the specified end procedure

mov cs:ce_seg,es

mov cs:uprg_ss,ss
mov cs:uprg_sp,sp

cll
JIIOV 58, es:t_ss
JIIOV sp,es:t_sp

push es
mov ah,2fh
int 21h
mov cs:u dta_ofs,bx
mov cs:u_dta_seg,es
pop es

mov ah,SOh
JIIOV bx,es:tJlsp
int 21h

push ds
push es

mov ah,lah
mov dx,es:t_dta_ofs
mov ds,es:t_dta_seg
int 21h

mov ds,es:t ds
mov es,es:t es -

call cs: [ceJltrl

;save ES in the jump vector

;save current stack segment and stack
;pointer

;disable interrupts
;activate the stack of the TSR
; program

;save ES on the stack
;ftn. no.: get DTA address
; call DOS i nterrupt
;save DTA address of the interrupted
; program
;get ES from the stack

; ftn. no.: set address of the PSP
;get segment address of the PSP
;call DOS interrupt

;save ES and DS on the stack

;ftn. no.: set DTA address
;get offset address and segment
;address of the new DTA
;call DOS interrupt

;set segment register for the Turbo
iprograrn

; call the end procedure

;-- context change to the Turbo program -------------------

mov
mov
mov
int

pop
pop

mov
mov
sub
int

cli
mov
mov
sti

;-

no_endprc: 	cli
mov
JIIOV

mov
int

mov
JIIOV

mov
tnt

ah,lah
dx,cs:u dta ofs
ds, cs: u:::dta:::seg
21h

es
ds

ah,SOh
bx,cs
bx,lOh
21h

sS,cs:uprg_ss
sp,cs:uprg_sp

;ftn. no.: set DTA address
;load offset and segment addresses
;of the DTA of the interrupted program
;call DOS interrupt

;restore seg addr of the Turbo program
; from the stack

; ftn. no.: set address of the PSP
;put CS in BX
;calculate segment address of the PSP
;call DOS interrupt

;disable interrupts
;restore stack pointer and stack
; segment
;allow interrupts again

reinstall the interrupt handler of the TSR
program again

aX,2S09h
ds,es:int9_seg
dx,es:int9_ofs
21h

aX,2S13h
ds,es:int13_seg
dx,es:int13_ofs
21h

;disable interrupts
; ftn. no.: set handler for int 9
;segment address of the old handler
;offset address of the old handler
;reinstall the old handler

;ftn. no.: set handler for int 13
;segment address of the old handler
;offset address of the old handler
;reinstall the old handler

441

8. TermiMle and Stay Resident Programs PC System Programming

mov ax, 2528h ; ftn. no. set handler for int 28
mov ds,es:int28_seg ;segment address of the old handler
mov dx,es:int28_ofs ;offset address of the old handler
int 2lh ;reinstall the old handler

stl ;allow interrupts again

mov es,es:tJ>Sp ;save seg addr of the PSP of the
mov cx.,es ;Turbo program in ex
mov es,es: [02ch ;get seg addr of environ from PSP
mov ah,49h ;ftn. no.: release allocated memory
int 2lh ;call DOS interrupt
mov es,cx ;restore ES fram ex
mov ah,49h ;ftn. no.: release allocated memory
int 2lh ;call DOS interrupt

pop ds ;restore OS and BP from stack
pop bp
ret 2 ;return to the caller

uninst endp ;end of the procedure

;--
;-- The new interrupt handlers follow ---------------------------------
;--

;-- the new interrupt 09h handler -------------------------------------

int09 proc far

pushf ;simulate calling the handler via the
call cs:int9-ptr ; 1NT 9h instruction

cli ;suppress interrupts
cmp cs:recur,O ;is the TSR program already active?
jne ik end ;Yes, back to the caller of int 9

;-- test to see if the Bros disk int is being executed

cmp cs:in bios,O ;BIOS disk interrupt active?
jne ik end ;YES --> abck to caller

;-- Bros disk interrupt is not active, test for hotkey

push ax ;save ES and AX on the stack
push es
xor ax, ax ; set ES to the lowest memory segment
mov es,ax
mov ax,word ptr es:[4l7h] ;get BIOS keyboard flag
and ax,cs:key mask ;mask out the non-hotkey bits
cmp ax,cs:key=mask ;are only the hotkey bits left?
pop es ; restore ES and AX
pop
jne ;hotkey discovered? NO --> return

;-- the hotkey was pressed, test to see if DOS is active

push ds ;save OS and BX on the stack
push bx
Ids bX,cs:daptr ;OS:BX now point to the rNDOS flag
cmp byte ptr [bx],O ;DOS function active?
pop bx ;get BX and OS fram the stack
pop ds
jne ik_end ;DOS function active --> IK_END

;-- DOS is not active, activate TSR program ---~------------

; start the TSR program

442

Abacus 	 8. Terminate and Stay Resident Programs

iret ;back to the interrupted program

int09 endp

;-- the new interrupt 13h handler ------------------------------------

int13 proc far

mav cs:in_bios,l

pushf
call cs:intI3~tr
mav cs:in_bios, 0

;set flag and show that the BrOS disk
;interrupt is active
;simulate calling the old interrupt
;handler via int 13h
;BrOS disk interrupt no longer active

intI3

ret

endp

2 ;back to the caller, but don't get
;the flag reg from the stack first

;-- the new interrupt 28h handler ------------------------------------

int28 	 proc far

pushf ;simulate calling the old interrupt
call cs:int28~tr ;handler via int 28h

cli ;suppress further interrupts
c:mp cs:recur,O ;is the TSR program already active?
je idOl ;NO ---> IDOl
iret ;YES ---> back to the caller

;-- the TSR program is not yet active --------------------

idOl: 	 c:mp cs:in bios, 0 ;is BrOS disk interrupt active?
jne id_end ;YES --> back to the caller

;-- Bros disk interrupt not active, test for hotkey

push ax ;save ES and AX on the stack
push es
xor ax,ax ;set ES to the lowest memory segment
mov es,ax
mav aX,word ptr es:[4l7h] ;get Bros keyboard flag
and ax,cs:key_rnask ;rnask out the non-hotkey bits
c:mp ax,cs:key_rnask ;are only the hotkey bits left?
pop es ;restore ES and AX
pop ax
jne ik_end ;hotkey discovered? NO --> return

call start tsr ; start the TSR program
iret ;back to the interrupted program

int28 	 endp

;-- START_TSR: activate the TSR program ------------------------------
start_tsr 	 proc near

mov cs:recur,l ;set the TSR recursion flag

;-- perform context change to the TSR program -------------

mov cs:uprg_ss,ss ;save current stack segment and
mav cs:uprg_sp,sp ;stack pointer

mov ss,cs:t_ss ;activate the stack of the
mav sp,cs:t_sp ;Turbo program

push ax ;save the processor registers on the
push bx ; turbo stack
push ex

443

8. Terminate and Stay Resident Programs PC System Programming

push dx
push bp
push si
push di
push ds
push es

;-- save 64 words from the DOS stack ----------------------

tsrsl:

tsrs2:

mov ex, 64
mov ds,cs:uprq ss
mov si,cs:uprg'::-sp

push word ptr lsi]
inc si
inc si
loop tsrsl

mov ah,Slh
int 21h
rnov cs:uysp,bx

rnov ah,2fh
int 21h
mov cs:u_dta_ofs,bx
mov cs:u_dta_seg,es

rnov ah,SOh
mov bx,cs:t_psp
int 21h

mov ah,lah
rnov dx, cs:t dta ofs
mov ds, cs:(::dta::::seg
int 2lh

mov ds,cs:t_ds
mov es,cs:t_es

sti

call cs:prc_adr
cli

;loop counter
;set DS:S1 to the end of the DOS stack

;save word from the DOS stack on the
;C stack and set S1 to the next word

;process all 64 words

;ftn. no.: get addr of the PSP
;call DOS interrupt
;save seg addr of the PSP

;ftn. no.: get DTA address
;call DOS interrupt
;save address of the DTA of the
; interrupted program

; ftn. no.: set address of the PSP
;get seg addr of the Turbo prg PSP
;call DOS interrupt

;ftn. no.: set DTA address
;get offset address of the new DTA
;and segment address of the new DTA
;call DOS interrupt

;set segment register for the
;Turbo program

;allow interrupts again

;call the start function
;disable interrupts

;-- perform context change to the interrupted program -----

mov ah,lah ;ftn. no.: set DTA address
mov dx,cs:u dta ofs ;load offset and segment addresses
mov
int

ds,cs:u-dta-seg
2lh - -

;of the interrupted program's DTA
;call DOS interrupt

mov ah, SOh ;ftn. no.: set address of the PSP
mov bX,cs:uysP ;seg addr of the interrupted prg's PSP
int 2lh ;call DOS interrupt

;-- restore DOS stack again --------------------------------

mov ex, 64
mov ds,cs:uprg S5

rnov si,cs:uprg-sp
add si,128
dec si
dec si
pop word ptr [si]
loop tsrs2

pop es
pop ds
pop di
pop si

; loop counter
;load DS:S1 with the end address of
;the OOS stack
;set S1 to the start of the DOS stack
;Si to the previous stack word

;words from Turbo stack to DOS stack
;process all 64 words

;restore the saved registers from the
; Turbo stack

444

Abacus 	 8. Terminate and Stay Resident Programs

pop bp

pop dx

pop ex

pop bx

pop ax

moy ss,cs:uprg_ss ;set stack pointer and segment
moy sP,cs:uprg_sp ;of the interrupted program

may cs: recur, 0 ;resset TSR recursion flag
ret ;back to the caller

start tsr 	 endp

j--

CODE 	 ends :end of the code segment
end :end of the program

445

Chapter 9

Sound on the PC

Every PC has a built in speaker which beeps when some errors occur, or when the
keyboard buffer is full. The speaker can also generate other sounds. This chapter
demonstrates sound generation through software.

How the PC generates sound

Tones occur when the cone of a speaker oscillates (moves back and forth). A single
oscillation creates a click instead of a musical sound. If a group of oscillations
sounds in rapid succession, a tone occurs. The pitch (the note value) of a tone
depends on the number of cycles (oscillations) that occur per second. The pitch of a
tone in cycles per second is measured in Hertz. For example, if the speaker
oscillates at a rate of 440 times per second, it generates a tone with a frequency of
440 Hertz. Certain pitches have specific note names assigned to them, such as
A440 (the note that sounds at 440 Hertz). The following table shows the pitches
and frequencies of tones generated by the PC. This range covers 8 octaves (almost
the range of a full piano keyboard):

IOctave 0 1 2 3

C 16.35 C 32.70 C 65.41 C 130.81

ct 17.32 ct 34.65 ct 69.30 ct 138.59
D 18.35 D 36.71 D 73.42 D 146.83
Dt 19.45 Dt 38.89 Dt 77.78 Dt 155.56
E 20.60 E 41.20 E 82.41 E 164.81
F 21.83 F 43.65 F 87.31 F 174.61
FIt 23.12 FIt 46.25 Fil 92.50 FIt 185.00
G 24.50 G 49.00 G 98.00 G 196.00
Gil 25.96 Gt 51.91 Gil 103.83 Gil 207.65
A 27.50 A 55.00 A 110.00 A 220.00
Ail 29.14 Ail 58.27 Ail 116.54 Ail 233.08
B 30.87 B 61.74 B 123.47 B 246.94

447

9. Sound on the PC 	 PC System Programming

IOctave 4 5 6 7

C 261.63 C 523.25 C 1046.50 C 2093.00

C* 277.18 Cf 554.37 ct 1108.74 c* 2217.46
D 293.66 D 587.33 D 1174.66 D 2349.32

D* 311.13 D* 622.25 Df 1244.51 D* 2489.02
E 329.63 E 659.26 E 1328.51 E 2637.02

F 349.23 F 698.46 F 1396.91 F 2793.83

F* 369.99 F* 739.99 Ft 1479.98 Ff 2959.96
G 392.00 G 783.99 G 1567.98 G 3135.96
Gf 415.30 G* 830.61 G* 1661.22 G* 3322.44
A 440.00 A 880.00 A 1760.00 A 3520.00

Ai 466.16 Ai 923.33 Af 1864.66 Ai 3729.31
B 493.88 B 987.77 B 1975.53 B 3951. 07

The speaker in the PC can generate frequencies from 1 Hertz up to more than
1,000,000 Hertz. However, most human ears are only capable of hearing
frequencies between 20 and 20,000 Hertz. In addition, PC speakers don't reproduce
music very well since they play some tones louder than others. Since the speaker
has no volume control, this effect cannot be changed.

'~..
A sound program should oscillate the speaker according to the frequency of the
tones desired. Here is a rough outline of a possible sound generation program:

• 	 Invoke the instruction to move the cone forward, then undo the instruc
tion (move the cone back to its original position). Repeat these steps in a
loop so that it occurs as many times per second as required by the
frequency of the tone being generated.

,The above prdCedure has several disadvantages:

The execution speed of individual instructions depends on the processing
speed of the computer.

• 	 This program must be adjusted to the processing speed of individual
computers.

• 	 The tone becomes distorted when the tone production loop ends.

8253 timer

Every PC uses one particular chip for tone generation: The 8253 programmable
timer, which actually maintains control of the internal clock. The 8253 can
perform both timing and sound thanks to its ability to enable a certain action at a
certain point in time. It senses timing from oscillations it receives from the PC's
8284 oscillator, which generates 1,193,180 impulses per second. The 8253 can
then be instructed how many of these impulses it should wait before triggering a
certain action. In the case of tone generation, this action consists of sending an
impulse to the speaker. Before executing this action, the chip must be programmed
for the particular frequency it should generate. The frequency must be converted

448

Abacus 9. Sound on the PC

from cycles per second into the number of oscillations coming from the oscillator.
This is done with the help of the following formula:

counter = 1,193,180 / frequency

The result of this formula, the variable counter, passes to the chip. As the formula
demonstrates, the result for a high frequency is relatively low, and the result for a
low frequency is relatively high. This makes sense, since it tells the 8253 chip
how many of the 1,193,180 cycles per second it must wait until it can send
another signal to the speaker. The lower the value, the more often it sends a signal
to move the speaker cone back and forth, causing a higher tone.

Ports and PC sound

Communication between the CPU and the 8253 occurs through ports. First the
value 182 is sent to port 43H. This instructs the 8253 that it should start
generating a signal as soon as the interval between individual signals has been
passed. This interval is the value which was calculated with the formula above.
Since the 8253 stores this value internally as a 16-bit number (a value between 0
and 65,535), it limits the range of tones generated to frequencies between 18 and
1,193,180 Hertz. This number must be transmitted to port 42H. Since this is an
8-bit port, the 16 bits of this number cannot be transmitted simultaneously. First
the least significant eight bits are transmitted, then the most significant eight bits
are transmitted.

Now the second step occurs-the 8253 signal is sent to the speaker. The speaker
access occurs through port 61H, which is connected to a programmable peripheral
chip. The two lowest bits of this port must be set to 1 to transmit the 8253 signal
to the speaker. Since the remaining six bits are used for other purposes, they
cannot be changed. For this reason, the contents of port 61H must be read, the
lowest two bits must be set to 1 (an OR combination with 3) and the resulting
value must be returned to port 61H. A tone sounds, which ends only when the bits
just set to 1 are reset again to O.

449

9. Sound on the PC PC System Programming

Octave 3 Octave 4 Octave 5

_C Dr-r-F G AI"'"

CDEFGAB CDEFGAB CDEFGAB

C = 9121 Fit= 6449 C = 4560 FlI= 3224 C = 2280 FlI= 1612
ClI= 8609 G = 6087 ClI= 4304 G = 3043 ClI= 2152 G = 1521
D = 8126 GlI= 5746 D = 4063 GlI= 2873 D = 2031 Gf= 1436

DlI= 7670 A = 5423 Df= 3834 A = 2711 DlI= 1917 A = 1355

E = 7239 Ai=5119 E = 3619 Ai= 2559 E = 1809 Ai= 1292
F = 6833 B = 4831 F = 3416 B = 2415 F = 1715 B = 1207

Keyboard setup and timerfrequencies

Demonstration programs

GW-BASIC and Turbo Pascal have resident sound commands. The machine
language programmer and C programmer must create their own sound applications.

Demonstration programs follow for both these languages. They can be added to
your own C or assembly language programs.

How they work

Both programs produce tones for specific time periods. This is done with the help
of the timer interrupt lCH which is called by the timer interrupt 8H 18.2 times
per second. When the tone generation routine executes, it receives the frequency of
the tone and the tone's duration (length). The duration is measured in 18ths of a
second, so the value 18 corresponds to a second and the value 9 corresponds to a
half-second. This value is stored in a variable.

Immediately before activating the tone output, the interrupt routine of interrupt
lCH turns to a user-defined routine. This routine, called 18.2 times per second,
decrements the tone duration in the variable during every call. When it reaches the
value, the tone duration ends and the tone must be switched off. The routine
allocates a variable to notify the actual sound routine of this end. The sound
routine recognizes this immediately, since it has been in a constant wait loop since
switching on the tone. All this loop does is monitor the contents of this variable.
After recognizing the end of the tone, it stops the sound output and returns the
timer interrupt to its old routine.

450

Abacus 	 9. Sound ora the PC

The sound routine requires the number assigned to this tone, rather than the
frequency itself. This number is related to the table containing the frequencies of
octaves 3 to 5. The value 0 stands for C of the third octave, 1 stands for C-sharp, 2
for D, 3 for D-sharp, etc.

Note: 	 Both the C program and assembly language program demonstrate the
sound routine by playing a scale over the course of two octaves, with
each note sounding for a half a second each. The machine language
demo program and sound routine are stored in one file. The C
versions of these programs are split into two source code files. The C
demo program contains the sound function call only, and the machine
language program which creates the sound must be linked to the
demonstration program.

Assembler listing: SOUNDA.ASM

;**********•••*****************.*.****** ••••••******.**** ••••••••***.**;
;" SOUNDA 	 ";
;*--*;
;" Task : Plays a scale between octaves 3 and 5 of the ";
;" PC's musical range. This routine can be used ";
;" for other applications ";
;*--*;

; "Author : MICHAEL TISCHER ";
;" Developed on : 08/0611987 ";
;" Last update : OS/26/89 ";
;*--*;
;" Assembly : MASH SOUNDA; ";
;* LINK SOUNDA; ";
; * EXE2BIN SOUNDA SOUNDA. COM " ;
;*--*;
; " Call from DOS : SOUNDA 	 " ;
i*************·*··*****************************·****** ******.**********;

code 	 segment para 'CODE' ;Definition of CODE segments

org 100h 	 ;Starts at address 100H
;directly following PSP

assume cs:code, ds:code, es:code, ss:code

;-- Program ___====================__==___====-_______c==_=____-===-_===

sound 	 proc near

;-- Display message ---

rnov ah,9 ;Function number for displaying string
rnov dx,offset initm ;String's offset address
int 21h ;Call DOS interrupt 21H

;-- Play scale --

xor bl,bl ;Start at C of octave 3
rnov dl,9 ;for duration of 1/2 second

nextune: 	 call play tune ;Play note
inc bl - ;Next note
crnp bl,36 ;All notes in this octave played?
jne nextune ;NO --> Play next note

;-- Display end message -------------------------------------

rnov ah,9 	 ;Function number for string display

451

9. Sound on the PC 	 PC System Programming

moll dx,offset endmes
int 2lh

mov ax,4COOh
int 21h

sound 	 endp

;String's offset address
;Call DOS interrupt 2lH

;Program ends when call to a DOS
;function results in an error code
;of 0

;- Main program data --------------------=--------=
initm 	 db 13,lO,"SOUND (c) 1987 by Michael Tischer",13,lO,13,lO

db "Your PC should now be playing a chromatic scale in the"
db "3rd and 5th ",13,lO,"octaves of its range, if
db "your PC speaker works.",13,lO,"S"

endmes 	 db l3,lO,"End",13,lO,"$"

i-- PLAY_TUNE: Play a note ---
;-- Input
;
;-- OUtput
;-- Register
;-- Info
i-

BL - Note number (relative to C of the 3rd octave)
DL - Duration of note in 1/18 second increments
none
AX, ex, ES and FLAGS are changed
Immediately after the tones, control returns to the
calling routine

play_tune proc near

push dx ;Push DX and ax onto the stack
push bx

;-- Adapt timer interrupt to user program ------------------
push dx ;Push DX and ax onto stack
push bx
mov
int
mov
mov

mov
mov
int
pop
pop

mov
out
xor
shl
mov
out
mov
out
in
or
mov
mov
out

play: 	 anp
jne

in
and
out

ax, 351ch
21h
old time,bx
0Id:::time+2,es

dx,offset sound_ti
aX,25lch
2lh
bx
dx

al,182
43h,al
bh,bh
bx,l
ax, [note+bx]
42h,al
al,ah
42h,al
al,6lh
al,11b
s_ende, 1
s counter,dl
61h,al

s ende,O
play

al,61h
al,lllll100b
6lh,al

;Get address of time interrupt

;Call DOS interrupt

;Offset address of old interrupt

;and note segment address

;Offset address of new timer routine

;Set new timer routine

;Call DOS interrupt

;Pop ax and DX off of stack

;Prepare to play note

;Send value to time command register

;BH for addressing note table = °

;Double note number (fr. word table)

;Get tone value
;LO-byte on timer counter register
;Transfer HI-byte to AL
;and to timer counter register
;Read speaker control bit
;Lowest two bits enable speaker
;Note still has to be played
;Play note for duration
;Disable speaker

; Note finished?

;N) --> Wait

;Read speaker control bit

;Clear lowest two bits

;Disable speaker

;-- Reactivate old timer interrupt ------------------------

mov cX,ds ;Note DS
mov aX,25lch ;Set function no. for intrrpt vector

452

Abacus 	 9. Sound on the PC

Ids dx,dword ptr old time ;Load old address into OS:OX
int 21h - ;Call DOS interrupt
mov ds,ex ;Return OS

pop bx ;Pop ax and OX off of stack
pop dx
ret ;Return to calling program

play_tune endp

;-- new timer interrupt ---

sound ti 	proc far ;Call 18 times per second

dec cs: s counter ;Decrement counter
jne st ende ; If still >0, end
rnov cs:s ende,O ;Signal note end

st_ende: 	 jrnp dword ptr cs: [old_time] ;Goto old timer interrupt

sound t i 	 endp

;== Variable set needed by the routines --------==----------=-==-------
old time dw (1), (1) ;Address of old timer interrupt
s counter db (1) ;counter for note duration in 1/18

;second increments
s ende db (1) ;Displays whether note already played
note dw 9121,8609,8126,7670 ;Note values for octave 3

dw 7239,6833,6449,6087
dw 5746,5423,5119,4831
dw 4560,4304,4063,3834 ;Note values for octave 4
dw 3619,3416,3224,3043
dw 2873,2711,2559,2415
dw 2280,2152,2031,1917 ;Note values for octave 5
dw 1809,1715,1612,1521
dw 1436,1355,1292,1207

i== End -============~==--===========----==========-===---===---========

code 	 ends ;End of CODE seqrnent

end sound ;End of the Assembler-Program

Here's the C program to call the sound function and the assembly language listing
of the C sound function.

C listing: SOUNDC.C

/**.************** ••••••**.**********.**.**.***************************/
1* sou N D C *1
1*--*1
1* Task : Plays a scale between octaves 3 and 5 of the *1
1* PC musical range, using an assembler function *1
1*--*1
1* Author MICHAEL TISCHER *I
1* Developed on : 08/15/1987 */
1* Last update : 05/26/1989 *1
1*--*/
1* (MICROSOFT C) * /
1* Creation CL lAS SOUNDC.C *1
1* LINK SOUNDC SOUNDCA; *1
1* Call SOUNDC *1
1*--*1
1* (BORLl\ND TURBO C) *I
1* Creation Create a project file listing the following: *1
1* soundc *1
1* soundca.obj */
1* Options Before compiling and linking, select the *1
1* Options menu and Linker option. Under the *1

453

9. Sound on tM PC 	 PC System Programming

/* Linker options menu, make sure that the */
/* case sensitive link option is set to Off */
/******•••*************.*.**************** ••******.*.*•• ***************/

/*== Function declaration from the assembler module ----~----*/

extern void Sound(); /* Add the external assembler routine */

/** ••***************************•••***.***************.**************.*/
/** 	 MAIN PROGRAM **/
/*****.******.************.*************************.*••••*********•••• /

void mainO

int Note;

printf("\nSOUND (c) 1987 by Michael Tischer\n\n");

printf("Your PC should now be playing a musical scale in the 3rd & a);

printf(" 5th octaves of\nits range. If you aren't hearing the notes");

printf(" your PC's speaker may be damaged.\n\n");

for (Note - 0; Note < 35; Sound (Note++, 9» /* Playa note once each */
/* 112 second */

printf("End\n");
)

Assembler listing: SOUNDCA.ASM

,.***.***.******••••*.******,
;* 	 SOUNDCA *;
;*--*;
;* Task Creates a function suitable for inclusion in *;
;* C codes, which enables C to play notes in the *;
;* 3rd, 4th and 5th PC musical octave *;
;*--*;

;* Author MICHAEL TISCHER * ;
;* Developed on : 08/15/1987 * ;
;* Last update : OS/26/1989 *;
;*--*;
;* assembly : MASM SOUNDCA; 	 *;
,~*********************************.************.**************.********~,

IGROUP group text ;Merging of program segment
DGROUP group const,_bss, data ;Merging of data segment

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

public _Sound 	 ;Make function public (accessible to
;other programs)

CONST segment word public 'CONST';This segment denotes all read-only
CONST ends ; constants

SSS segment word public 'SSS' ;This segment denotes all static, non
SSS ends ;initialized variables

DATA segment word public 'DATA' 	 ;This segment contains all initialized
;global and static varibles

old time dw (?), (?) ;Address of old timer interrupt
s_counter db (?) ;Counts duration of notes in

;1/18 second increments

s endit db (1) ;Indicates whether note already played
tones 	 dw 9121,8609,8126,7670 ;Note values for octave 3

dw 7239,6833,6449,6087
dw 5746,5423,5119,4831
dw 4560,4304,4063,3834 ;Note values for octave 4
dw 3619,3416,3224,3043

454

Abacus 	 9. Sound on 1M PC

dw 2873,2711,2559,2415
dw 2280,2152,2031,1917 ;Note values for octave 5
dw 1809,1715,1612,1521
dw 1436,1355,1292,1207

_DATA ends

i- Program --====~=-c=:z:::==_=___~~'=::z__=:zz:=~~=-======-

TEXT segment byte public 'CODE' ;Program msegment

;-- SOUND: Plays a note ---
;-- Call from C Sound«int) Note, (int) Duration);
;-- OUtput none
;-- Info Note is the number of the note relative to 3rd octave
;-- c
;-- Duration-duration of the note in 1/18-sec. increments

proc near

push bp ;Push BP onto stack

mov bp,sp ;Transfer SP to BP

;-- Modify timer interrupt for user application -------------
mov word ptr cs:setds+1,ds ;Store DS for new timer interrupt
mov ax,351ch ;Get timer iryterrupt's address
int 21h ;Call DOS interrupt
mov old_time,bx ;Note offset address and segment
mov old time+2,es ;address of old interrupt
mov word ptr cs:stjump+1,bx ;Save for new timer interrupt
mov word ptr cs:stjump+3,es ;
mov bx, ds ; Place DS in BX
push cs ; Push CS onto stack
pop ds ;and pop off DS
mov dx,offset sound_ti ;Offset address of new timer routine
mov ax, 251ch ; Set new timer routine
int 21h ;Call DOS interrupt
mov ds,bx ;Restore DS

mov al,182 ;Get ready to generate tone
out 43h,al ;Send value to timer command register

mov bx, [bp+4] iGet note
xor bh,bh ;BH for addressing of note table = 0
shl bX,l ;Divide note number (for word table)
mov ax, [tones+bx] ;Get note value
out 42h,al ;Pass low byte to timer counter register
mov al,ah ;Pass high byte to AL
out 42h,al ;and to timer counter register
in al,61h ;Read speaker control bit
or aI, lIb ;Two lowest bits activate speaker
mov s_endit, 1 ;Still have to play note
mov dl, [bp+6] ;Get note duration

mov s counter,dl ; and store it

out 6lh,al ;Turn on speaker

play: 	 cmp s endit,O iNote ended?
jne play ;NO --> wait

in al,61h ;Read speaker control bit
and al,11111100b ;Clear two lowest bits to
out 61h,al ;disable speaker

;-- re-activate original timer interrupt --------------------
mov cx,ds ;Note DS
mov ax,251ch ;Set function no. for interrupt vector
Ids dx,dword ptr old time ;Load old address into DS:DX
int 21h - ;Call DOS interrupt
mov ds,cx ;Return DS

455

9. Sound on tlu! PC PC System Programming

mov sp,bp ;Restore stack pointer
pop bp ;Pop BP off of stack
ret ;Return to calling program

_Sound endp

;-- new timer interrupt ---

sound_ti proc

push
push

setds: mov
mov
dec
jne
mov

st_endit: pop
pop

stjump: db

ends
end

far

ax
ds
ax,OOOOh
ds,ax
s counter
st_endit
s_endit,O
ds

ax

OUb,a,O,a,o

;Call this 18 times per second

;Push AX and OS onto stack

;Transfer C to OS

;Decrememt time counter
;If still unequal to 0 then end
;Signal end of note duration
;Pop value off of OS (reset to old value)

;Get AX from stack again

;FAR-JUMP to old timer interrupt

;End of program segment
;End of assembler source

456

Chapter 10

Acc'essing and Programming
the Video Cards

This chapter explains methods of programming the most popular video cards on
the PC market. Even though the video cards mentioned here differ in their
capabilities, they are all based on the same basic principle. High level languages
such as BASIC, Pascal or C often have their own specific keywords and commands
for controlling screen display. However, many of these commands merely call
BIOS or DOS functions, which are both slow and inflexible in execution.

Direct access

Direct access to the video card is the alternative. Applications from Lotus 1-2-3®
to dBASE® use direct video access coding, to guarantee both speed and that
element of extra control over the video display. The main disadvantage:
Programming in assembly language is required, since the communication here
occurs at the system level. This chapter examines the programming needed for the
best known video cards on the market

Monochrome Display Adapter (MDA), also called a monochrome card

Color Graphics Adapter (CGA), also called a color card

Hercules Graphic Card (HGC)

Enhanced Graphic Adapter (EGA)

Video Graphics Array (VGA)

Most of the graphic cards on the market are compatible with one of the cards
mentioned in this chapter, and the descriptions stated here should apply to those
cards.

457

10. Accessing and ProgramnUng the Video Cards PC System Programming

Video Graphics Array (VGA)

This also applies to the newest generation of video cards, the VGA card. Designed
in conjunction with the IBM PS/2 system, the VGA card is now available to the
general public as an add-on card. This chapter demonstrates some general features
of the EGA and VGA, as well as a few programming techniques.

What's needed

Before a video card can display a character or graphic pixel on a monitor screen or
CRT (cathode ray tube), the card must know the following:

which character or graphic pixel to display

The color of the character or pixel

The location on the screen at which it should be displayed.

PC video cards include RAM which collects information about every CRT screen
pixel or screen location. This RAM memory is called video RAM and interfaces
with the PC's RAM, allowing direct access from the microprocessor.

Speed

Rapid screen changes are important in word processing programs and other PC
applications. For example, if you are paging through a word processing document
at high speed, a 25-line, SO-column screen requires the transmission of 2,000
characters through the video card at one time. Fast data transfer is even more
important for high-resolution graphics. For example, the 200x640-pixel ffiM
Color Graphics Adapter transmits 12S,OOO pixels of graphic information at a time.

Display modes

Each type of video card can have more than one display mode. Text and graphics
display may be very different from one another. The monitor cannot distinguish
between the two modes; it just processes the graphic information sent by the video
card (or video controller). For the programmer and the video card, the modes require
completely different programming techniques.

Graphic mode and text mode

Graphic mode stores the color of a screen pixel in one or more bits, then transmits
the contents of video RAM more or less directly to the screen. Text mode uses a
different method. The ASCII code of a character is stored in video RAM for each
screen location. When the video controller displays the screen, it obtains the
character pattern of the ASCII code from the ROM chip on the video card, then
converts the code into a character matrix of pixels. This pattern then passes to the
monitor and appears on the screen.

458

Abacus 10. Accessing and Programming the Video Cards

PC text mode uses the 256-character extended character set (see Appendix I). Since
these characters are numbered sequentially from 0 to 255, one byte is enough for
each screen position to display the character at the proper position.

Attribute bytes

Every screen position has an attribute byte which indicates the color or display
attribute of the character (underlined, blinking, inverse video, etc.). This means
that two bytes are needed for each position on the screen. Therefore, a total of 4000
bytes are required for a 25-line, SO-column screen. This appears to be a lot of
memory at first glance, but is fairly small when compared to the memory
requirements for bit-mapped graphic screen. In graphic mode, each dot is
represented by one or more bits. A resolution of 64Ox200 pixels requires 12S,OOO
bits (16K).

Another advantage of text mode is the simplicity in exchanging one character for
another on the screen. The bit-map mode has its own advantages. Besides graphic
displays, text can be displayed as individual dots whose pattern is derived from a
character table in RAM installed by the user. This means that the user can design
his own fonts (character sets).

459

10. Accessing and Programming the Video Cards PC System Programming

1O. 1 Anatomy of a Video Card

The figure below shows the individual hardware components of a video card. The
starting point for creating the picture is always the video RAM. This video RAM
contains information about the characters to be displayed, and their display
attributes (color, style, etc.).

Getting to the screen

The character generator first accesses video RAM, reading the characters one by
one, and uses a character pattern table to construct the bit-map that will later form
the character on the screen. The attribute controller also gets information about the
display attributes (color, underlining, reverse, etc.) of the character from the video
RAM. Both modules prepare this information and send it to the signal controller,
which converts it to appropriate signals to be sent to the monitor. The signal
controller itself is controlled by the CRT controller, which is the central point of
video card operations. Besides the monitor and the video RAM, this CRT
controller is one of the most important components of a video system. We will
examine all these components in greater detail.

----------------------------,

CRT

controller

~.

~
Signal

controller

t

,,
~D~

Character
pattern .. Character

generator
Attribute
controller

+ •
VIDEO RAM

,---------------------------
Block diagram of a video card

The monitor

The monitor is the device on which the video data is displayed. Unlike the video
card, the monitor is a "dumb" device. This means it has no memory and cannot be
programmed. All monitors used with PCs are raster-scan devices, in which the
picture is made up of many small dots arranged in a rectangular pattern or raster.

When forming the picture, the electron beam of the picture tube touches each
individual dot and illuminates it if it is supposed to be visible on the screen. This

460

Abacus 10.1 Anatomy of a Video Card

is done by switching on the electron beam as it passes over this dot, causing a
, phosphor particle on the picture tube to light up.

Color monitors

While monochrome monitors need only one electron beam to create a picture,
color monitors use three beams which scan the screen simultaneously. Here a
screen pixel consists of three phosphor particles in the basic colors of light: red,
green, and blue. Each color has a matching electron beam. Any color in the
spectrum can be created by combining these three colors and varying their
intensities.

But since an ionized phosphor particle emits light for only a very brief period of
time, the entire screen must be scanned many times per second to create the
illusion of a stationary picture. PC monitors perform this task between SO and 70
times per second. This repeated re-scanning is called the refresh rate. One rule of
thumb for this rate: The faster the refresh rate, the better quality the picture.

Each new screen image begins in the upper left comer of the screen. From there
the electron beam moves to the right along the first raster line. When it reaches the
end of this line, .the electron beam moves back to the start of the next line down,
similar to pressing the <Return> key on a typewriter. The electron beam then
scans the second raster line, at the end of which it moves to the start of the next
raster line, and so on. Once it reaches the bottom of the screen, the electron beam
returns to the upper left comer of the screen and the process starts over again. The
illustration below shows the path of the electron beam.

Remem ber that the movement of the electron beam is controlled by the video card,
not by the monitor itself.

Horizontal

ON:_ OFF:,/'

Electron beam scan movement

461

10. Accessing and Programming flu! Video Cards PC System Programming

The resolution of the monitor naturally controls the number of raster lines and
columns which the electron beam scans when creating a display. Thus, a monitor
which has only 200 raster lines of 640 raster columns each clearly cannot handle
the high resolutions of an EGA card at 640x350 pixels. The four monitor types
used with a PC generally have the following resolutions:

Resolutions of different monitors
Monitor Vertical Horizontal

Monochrome 350 720
Color 200 640

EGA 350 640
Multisync varies, up to 600 varies up to 800

The CRT controller

The CRT Controller or CRTC is the heart of a video card. It controls the operation
of the video card and generates the signals the monitor needs to create the picture.
Its tasks also include controlling light pens, generating the cursor and controlling
the video RAM.

To inform the monitor of the next raster line, the CRTC sends a display enable
signal at the start of each line, which activates the electron beam. While the beam
moves from left to right over each raster column of the line, the CRTC controls
the individual signals for the electron beam(s) so that the pixels appear on the
screen as desired. At the end of the line, the CRTC disables the display enable
signal so that the electron beam's return to the next raster line doesn't make a
visible line on the screen. The electron beam is directed to the left edge of the
following raster line by the output of a horizontal synchronization signal. The
display enable signal is again enabled at the start of the next raster line, and the
generation of the next line begins.

Overscan

Since the time that the electron beam needs to return to the start of the next line is
less than the time the CRTC needs to get and prepare new information from the
video RAM, there is a short pause. But the electron beam cannot be stopped, so
we get something called overscan, which is visible as the left and right borders of
the actual screen contents. Although this is an undesirable side effect in one sense,
it is useful because it prevents the edges of the screen contents from being hidden
by the edge of the monitor. If the electron beam is enabled while it is traveling
over this border, a color screen border can be created.

462

Abacus 10.1 Anatomy of a Video Card

, ,-r

/
~

hori'lontal

oversean

Y rScreen contents

~

l vertical overllcan , " .creen))ordltr

~-------'••X raater col~n.

Rasters and overscan on a screen

Once the electron beam reaches the end of the last raster line, the display enable
signal is disabled, and a vertical synchronization signal is sent. The electron beam
returns to the upper left comer of the screen. Again the display enable signal is re
enabled and scanning again begins.

Pause and overscan

As with the horizontal electron beam return, a pause results which is displayed in
the fonn of overscan, creating a vertical screen border.

Signal timing

The timing of individual signals varies from video mode to video mode. For this
reason, the CRTC has a number of registers which describe the signal outputs and
their timing. The structure of these registers and how they are programmed will be
discussed in the remainder of this section. Many of these registers come from the
registers of the 6845 video controller from Motorola. This controller is used in the
MDA, CGA, and Hercules graphics cards. The EGA and VGA cards use a special
VLSI (very large scale integration) chip as a CRTC, and its registers are somewhat
more complicated. The techniques described here are intended as general
descriptions for all video cards.

463

10. Accessing and Programming the Video Cards PC System Programming

Registers of the 6845 video controller from Motorola
Reg. Meaning Access
OOH Total horizontal character Write
OIH Display horizontal character Write
02H Horizontal synchronization signal after •.. char Write
03H Duration of horizontal synchronization siqnal in char. Write
04H Total vertical character Write
05H Adjust vertical character Write
06H Display vertical character Write
07H Vertical synchronization signal after •.. char Write
08H Interlace mode Write
09H Number of scan lines~r screen line Write
OAH Startinq line of screen cursor Write
OBH Endinq line of screen cursor Write

These registers, like all of the other registers on the video card, are accessed via I/O
ports with the assembly language instructions IN and OUT. The registers of the
CRTC are accessed through a special address register, rather than directly from the
address space of the processor. The number of the desired CRTC register is written
to the port corresponding to this address register. Then the contents of this register
can be read into a special data register with the IN assembly language instruction.
Ifa value is to be written to the addressed register, it must be transferred to the data
register with the OUT instruction. Then the CRTC automatically places it in the
desired register. These two registers are actually found at successive port addresses,
but these addresses vary from video card to video card.

We will include tables throughout the chapter to describe the contents of individual
CRTC registers under the various video modes. Here's an example which shows
how the contents of these registers are calculated and how the individual registers
are related to each other. If you try some of these calculations with your calculator
or pc, you will notice that some of them do not work out evenly. But since the
registers of the CRTC hold only integer values, they will be rounded up or down.

The basis for the various calculations are the bandwidth and the horizontal and
vertical scan rates of a monitor.

Bandwidth and scan rates of different video cards
Video system Resolution Bandwidth Vert. scan rate Horiz. scan

rate

MDA 720 x 350 16.257 MHz 50 Hz • 18.43 KHz·

eGA 640 x 200 14.318 MHz 60 Hz 15.75 KHz

HGC 640 x 200 14.318 MHz 50 Hz 18.43 KHz

EGA 640 x 350 16.257 MHz 60 Hz 21.85 KHz

640 x 200 14.318 MHz 60 Hz 15.75 KHz

720 x 350 16.257 MHz 50 Hz 18.43 KHz

(*MHz-Me~ahert z, KHz=Kilohertz, Hz-Hertz

The bandwidths in the figure above specify the number of points which the
electron beam scans per second, and is therefore also called the point or dot rate.
The vertical scan rate specifies the number of screen refreshes per second, while the
horizontal scan rate refers to the number of raster lines which the electron beam
scans per second

464

Abacus 10.1 ANltomy of a Video Card

Starting with these values. let's practice calculating the individual CRTC register
values for the 80x2S character text mode on a CGA card.

Dividing the bandwidth by the horizontal scan rate we get the number of pixels
(screen dots) per raster line.

Bandwidth 14.318 MHz
+ Horizontal scan rate 15.570 KHz

Pixels per line 919

Since the CRTC registers generally refer to the number of characters rather than
pixels. this value must be converted to the number of characters per line. This is
done by dividing the number of pixels per line by the width of the character
matrix. On the CGA card this is eight pixels.

Pixels per line 919
+ Pixels per character 8

Characters per line 114

This value. decremented by one. is placed in the ftrst register of the CRTC and
speciftes the total number of characters per line. In the second register we load the
number of characters that will actually be displayed per line. The 80x25 character
text mode usually offers 80 characters.

The difference between the total and the number of characters actually displayed per
line is the number of characters which can be displayed between the horizontal
return and the overscan. The difference in this case is 34 characters.

The duration of the horizontal beam return must be entered in the fourth register of
the CRTC. This register stores the number of characters which could be displayed
during this time. rather than the actual time duration. The monitor specifications
deftne this instead of the video card itself. As a rule this number is between 5% and
15% of the total number of characters per line. A color monitor uses exactly ten
characters.

This leaves 24 characters for the overscan (the horizontal screen border). The third
CRTC register specifies how these characters are divided between the left and right
screen borders. This register specifies the number of character positions which will
be scanned before the horizontal beam return occurs. The BIOS specifies the value
90 here. or after ten characters have been displayed for the screen borders. The
remaining 14 characters are placed at the start of the next line and form the left
screen border.

The calculations for the vertical data. the number of vertical lines. the position of
the vertical synchronization signal. etc.. follow a similar scheme. The first
calculation is the number of raster lines per screen. This results from the division

465

10. Accessing and Programming the Video Cards PC System Programming

of the number of lines displayed per second by the number of screen refreshes per
second:

Pixels per line 919
+ Pixels per character 8

Characters per line 114

Horizontal scan rate 15.750 KHz
+ Screen refreshes 60 Hz

Raster lines 262

Since the characters in CGA text mode are eight pixels high by eight pixels wide,
we again divide by eight to get the number of text lines per screen:

Raster lines 262
+ Pixels per character 8

Lines per screen 32

This result must be decremented by one and then loaded into the fifth register of
the CRTC. The number of displayed lines is loaded into the seventh register. Since
seven fewer lines are displayed than are actually available, these extra lines are used
for the vertical beam return and overscan, whereby the vertical beam return begins
after the 28th line.

The character height must be decremented by one and loaded into CR TC register
nine. The decrement results is 7 in this example. This value also determines the
range for the values loaded into register ten and eleven. They specify the first and
last raster lines of the screen cursor. The cursor position is determined by the
contents of registers 14 and 15. They refer to the distance of the character from the
upper left comer of the screen, instead of line and column. This value is calculated
by multiplying the cursor line by the number of columns per line and then adding
the cursor column. The high byte of the result must be loaded into register 14 and
the low byte in register 15.

The video RAM area

The contents of registers 12 and 13 determine the area of video RAM displayed on
the screen. To understand these registers, we first need to know something about
the way video RAM is organized.

The third component of the video system determines what will eventually be
displayed on the screen. In text mode, the video RAM contains the ASCII codes of
the characters to be displayed and their attributes. While the organization of video
RAM in this mode is identical for all of the video cards discussed here, the
organization for graphic mode varies from card to card. The description of each card
discusses the way video RAM organizes graphic modes (more on this later).

466

Abacus 10.1 AnIIlomy ofa Video Card

As the illustration below shows, each screen position occupies two bytes in video
RAM. The ASCII code of the character to be displayed is placed in the flISt of
these two bytes, the one with the even address. By using eight bits per character
code, a maximum of 256 different characters can be displayed.

RAM
ocmoooo-_...,

25 Charoact ••r.___

Attribute

Normal text mode structure in video RAM

After the ASCII code, and always at an odd offset address, follows the attribute
byte, which defmes the appearance of the character on the screen. The attribute
controller divides it into two nibbles, whereby the upper nibble (bits four to seven)
describes the character background, and the lower nibble (bits zero to three)
describes the character foreground. This results in two values between zero and
fifteen which are interpreted depending on the type of monitor attached. With a
color monitor (and a CGA or EGA card) both values select one of 16 possible
colors. Each character on the screen can thus have its own foreground and
background colors.

A monochrome monitor cannot display colors, regardless of the adapter. Here the
attribute controls whether the character is displayed at high or low intensity,
inverse, or underlined.

467

10. Accessing and Programming the Video Cards 	 PC System Programming

Character 	organization in video RAM

To access video RAM, you must know how the individual characters are organized
within this memory. This organization is similar to character display on the
screen.

The fIrst character on the screen (the character in the upper left comer) is also the
frrst character in video RAM, located at offset position OOOOR. The next character
to the right is located at offset position 0002R. All 80 characters of the frrst screen
line follow in this manner. Since each screen character takes two bytes of memory,
each line occupies 160 bytes of RAM. The fust character of the second screen line
follows the last character of the frrst line, and so on.

Finding character locations in video RAM

You can easily fInd the starting address of a line within video RAM by
multiplying the line number (starting with zero) by 160. To get from the
beginning of the line to a character within the line, the distance of the character
from the start of the line must be added to this value. Since each character takes
two bytes, this is done simply by multiplying the column number (also starting at
zero) by two. Adding both products together yields the offset position of the
character in the video RAM. These calculations can be combined into a single
formula:

Offset_position (row, column) = row * 160 + column * 2

Note: 	 Since only 40 characters per line are displayed in 40-column video
modes, the factor 80 must replace the original 160.

The RAM memory of the video card is integrated into the normal RAM of the PC
system, so you can use normal memory access commands to access video RAM.
You must know the segment address of video RAM, which is used together with
the formula above to fInd the offset position. Section 10.7 shows how this can be
done easily in assembly language, BASIC, Pascal, and C.

Now that we have discussed the most important similarities between the four video
cards, the following four sections describe the capabilities of these cards. In
addition, these sections explain how these capabilities can be used for optimal
screen output

468

Abacus 10.2 The IBM Monochrome Card

10.2 The IBM Monochrome Card

The IBM Monochrome Display Adapter, or MDA, is probably the oldest of the
video cards. This card is based on the Motorola 6845 video controller, which is an
intelligent peripheral chip. The 6845 controller constructs a display by generating
the proper signals for the monitor from video RAM.

This card is excellent for text display. This is achieved with a 9x14 character
matrix, which pennits high-resolution character display. The format of this matrix
is unusual since a character generator containing the bit pattern of each character
can only produce characters 8 pixels wide. Characters from the IBM character set
may not connect with each other (e.g., using box characters to draw a box). A
circuit on the graphics card sidesteps this disadvantage by copying the eighth pixel
of the line into the ninth pixel for any characters whose ASCn codes are between
BOH and DFH. This allows the horizontal box drawing characters to connect

~
Column 0 1 2 3 4 5 6 7 8

Row
0

1

2

3

4

5
6

7

8

9

10

11

12

13

Coding stored In ROM character set

Monochrome display adapter-9x14 character matrix

The character generator requires one byte for each screen line: one bit per pixel,
eight bits per line. Each character requires 14 bytes. The complete character set has
a memory requirement of almost 4K, stored in a ROM chip on the card. For some
reason the card has an 8K ROM, leaving the second bank of4K unused.

Video RAM on the MDA

The video RAM of the card starts at address BOOO:()()()() and extends over 4K (4,096
bytes). Since the screen display only has space for 2,000 characters and requires

469

10. Accessing and Programming the Video Cards PC System Programming

only 4,000 bytes of memory for those characters, the unused 96 bytes at the end of
video RAM are available for other applications.

The following figure shows the meanings of the different values representing the
attribute byte:

7 6 5 4 3 2 1

Character color

Character Intensity
I.-------/O=normal

1 =hlgh Intensity
Back round color

Blinking (or background
1....------------IO=off Intensity)

1=on

Attribute byte valuer-lBM monochrome display adapter

Any combination of bits can be loaded into this byte. However, the MDA only
accepts the following combinations:

7 6 5 3 2 1

? 0 0 0 ? 0 0 0 No character (black on black)

? 0 0 0 ? 0 0 1 underlined character (white on black)

? 0 0 0 ? 1 1 1 White character on black

? 1 1 1 ? 0 0 0 Black character on white (inverse)

? 1 1 1 ? 1 1 1 No character (white on white)

Byte combinationr-lBM monochrome display adapter

Besides these bit combinations, bits 3 and 7 of the attribute byte can be set or
unset. Bit 3 defines the intensity of the foreground display. When this bit is set,
the characters appear in higher intensity. Bit 7's purpose varies with the contents
of the control registers (more on this later). For now, all you need to know is that

470

Abacus 10.2 The IBM Monochrome Card

bit 7 can either enable blinking characters, or enable an intensity matching the
background color.

Monochrome cards have two more registers available: the control register and the
status register.

7 6 5 4 3 2 1 Obit

L Always 1

O=Screen off
1=Screen on

Bit 7 of the attribute
byte:
O=brlght background
1=bllnklng

Control register

MDA control register

The control register located at port 3B8H controls the monochrome display
adapter's different functions. As the figure below shows, only bits 0, 3 and 5 are of
importance. Bit °controls the resolution on the card. Although the card only
supports one resolution (8Ox25 characters), this bit must be set to 1 during system
initialization. Otherwise the computer goes into an infinite wait loop. Bit 3
controls the creation of a visible display on the monitor. If bit 3 is set to 0, the
screen is black and the blinking cursor disappears. If bit 3 is set to 1, the display
returns to the screen. Bit 5 has a similar function: If bit 7 in the attribute byte of
the character is set to 1, it enables blinking characters. If bit 7 contains the value
0, the character appears, unblinking, in front of a light background color. This
means that bit 7· of the attribute byte acts as an intensity bit for the background.
This register can only be written. This makes it impossible for a program to
determine whether the display is turned on or off. The normal value for this
register is 29H, meaning that all three relevant bits default to 1.

471

10. Accessing and Programming the Video Cards 	 PC System Programming

7 	 6 5 4 3 2 1 Obit

L 	 Horizontal
synchronization
signal: 0=01f, 1=on
O=Current pixel off
1=Current pixel on

Status registers (3BAH)

MDA status register

Only bits 0 and 3 are used in the status register; all the other bits must contain the
value 1. Unlike the control register, programs can read this register, but register
contents cannot be changed by program code.

Horizontal synchronization

Bit 0 indicates if a horizontal synchronization signal is being sent to the display
screen. The video card sends this signal after creating a screen line (not to be
confused with a text line, which consists of 14 screen lines) on the screen. This
signal informs the electron gun, which "draws" the picture on the screen, that it
should return to the left border of the current screen line. In this case the bit has
the value 1. Bit 3 contains the value of the pixel where the electron beam is
currently located. A 1 signals that the pixel is visible on the screen and 0 means
that the screen remains black at this location.

MDA internal registers

Besides the two registers directly connected to the hardware of the monochrome
display adapter, the 6845 video processor contains a series of internal registers.
These 18 registers are open to user access through the 6845 index register and data
register. The index register is connected to port address 3B4H, the data register at
port address 3B5H. You can only write to the 6845 registers-you cannot read data
from them.

When you enter a value into one of the 18 registers, the number of the. register (0
17) passes first into the index register. Then the value which is transmitted to the
register passes into the data register. The 6845 then transmits the indicated value to
the proper register. Most of these 18 registers should not be modified, since they
contain impottant data about the screen structure (e.g., synchronization signals)
and incorrect values in these registers can damage the monitor. The following table
shows the meanings of the individual registers and the values which ensure a
correct display.

472

Abacus 10.2 Tile IBM Monoclvome Card

Registers of the CRTC register in BOx2S text mode
on the Monochrome Display Adapter (MDA)
ReQ. Meaning Content
OOH Total horizontal character <fI
OlH Displav horizontal character 8J
02H Horizontal synchronization signal after ••• char 82
03H Duration of horizontal synchronization siernal in char. 15
04H Total vertical character 2i
OSH Adjust vertical character 6
06H Display vertical character 2i
07H Vertical synchronization siqnal after ••• char 2i
OBH Interlace mode 2
09H Number of scan lines per screen line 13

OAH Startil'l9' line of blinking screen cursor 11
OBH Ending line of blinking screen cursor 12
OCH Startinq address of displayed screen paqe (low byte) 0
ODH Startinq address of displayed screen paqe (high byte) 0
OEH Character address of blinking screen cursor (hig-h~te) 0
OFH Character address of blinking screen cursor (low byte) 0
lOH Light pen position (high byte) *
llH Light pen position (low byte) *

*not available on MDA

The following program makes full use of the monochrome display adapter's
capabilities. It was written in assembly language. The individual routines are fully
documented and require no additional explanation. The demonstration program built
into the listing shows practical application of the individual routines.

Assembler listing: VMONO.ASM

; •• **•••**.***••••••••******••••*** •••• *****••••••••••*····****··*****i
;* VMONO *;

;.----------------------~--*;
;* Task : makes some elementary functions available for *;
;* access to the monochrome display screen *;
;*---*;
;* Info : all functions subdivide the screen * ;
;* into columns 0 to 79 and lines 0 to 24 * ;
;*---*;
;* Author MICHAEL TISCHER * ;
;* Developed on : 8/11/87 * ;
;* Last Update : 6/14/89 * ;

;*---*;
;* assembly : MASK VMONO; *;
;* LINK VMONO; *;
;*---*;
;* Call : VMONO *;
; ••••*.*****.** ••**********************.*••••••***••••*•••************;

;=- Constants =======-------==-------======-===-----==~==============

CONTROL REG - 03B8h ;Control register port address
ADDRESS-6845 - 04B4h ;6845 address register
DATA 6845 - 03B5h ;6845 data register
VIO_SEG - OBOOOh ;Segment address of video RAM
CUR START - 10 ;Register • CRTC: Starting cursor line
CUR END -11 ;Register • CRTC: Ending cursor line
CURPOS HI ;Register • CRTC: CUrsor pos. hi byte- 14
CURPOs::)..o - 15 ;Register • CRTC: Cursor pos. 10 byte

DELAY - 20000 ;Counter for delay loop

473

10. Accessing and Programming the Video Cards 	 PC System Programming

i- Stack --------------------------------------

stack 	 segment para stack iDeflnltlon of stack segment

dw 256 dup (1) ; 256-word stack

stack 	 ends ;End of stack segment

;- Data ---------------------------------------

data 	 segment para 'DATA' ;Define data segment

;- the Data for the Demo-Proqram -----------------------

strl db -a" ,0
str2 db • >PC SYSTEM PROG~ING< ., °
str3 db· window 1 ·,0
str4 db· window 2 ·,0
str5 db • the program is stopped by •

db • pressing a Key.... ·,0

initm 	 db 13,10,·VHONO (c) 1987 by Michael Tischer·,13,10,13,10
db ·This demonstration proqram only runs with •
db • a monochrome·,13,10,·display card. If your PC •
db ·has another type of display card,·,13,10
db ·please enter <s> to stop the •
db • program.·,13,10,·Otherwise press any·
db ·key to start ·,13,10

db ·the proqram ••• ·,13,10,·$·

i-- Data -===--~---~-=-=-=------=---==------====----------==----------
linen 	 dw 0*160,1*160,2*160 iStart addresses of the lines as

dw 3*160,4*160,5*160 ioffset addresses in the video RAM
dw 6*160,7*160,8*160
dw 9*160,10*160,11*160,12*160,13*160,14*160,15*160,16*160
dw 17*160,18*160,19*160,20*160,21*160,22*160,23*160,24*16°

data 	 ends ;End of data segment

i-- Code ----=-------------==-==-----------------------
code 	 segment para 'CODE' iDefinition of the CODE segment

assume cs:code, ds:data, es:data, ss:stack

;= this is the Demo-Program -~=~------=-~-----=-==----=

demo 	 proc far

mov ax,data ;Get segment address of data segment
mav ds,ax ;and load into DS
mov es,ax i as we1l as ES

i-- Display initial msg./wait for input ---------------

mov ah,9 ;String output function
mov dX,offset initm ;Address of initial message
int 21h ;Call DOS interrupt 21H

xor ah,ah ;Get function number for key
int 16h iCall BIOS keyboard interrupt
cmp aI, ·s· ;was <s> entered?
je ende ;YES --> end program
cmp al,·S" iwas <S> entered?
jne startdemo iNO --> start demo

ende: 	 mov aX,4cOOh iFunction number for proqram end
int 21h ;Call DOS interrupt 21H

474

10.2 Tile IBM Monoclvome Card

startdemo label near
mov ex,OdOOh ;Enable full cursor
call cdef
call cIs ;Clear screen

;-- Fill screen with ASCII characters ------------

demo1:

derno2:

arrow:
arrowO:

arrow1:

xor di,di
mov si,offset str1
mov cx,2000
mov al,07h
call print
inc str1
jne demo2
inc str1
loop demo1

;Start in upper left corner
;Offset address of string1
;2,000 characters fit on the screen
;white letters on black background
; Display string
;Increment character in test string
;NUL code suppressed

;Repeat output

;-- Create window 1 and window 2 ---------

mov bx,0508h
mov dx,1316h
mov ah,07h
call clear
mov bX,3C02h
mov dx,4A10h
call clear
mov bX,0508h
call calo
mov si,offset str3
mov ah,70h
call print
mov bX,3C02h
call calo
mov si,offset str4
call print
xor di,di
mov si,offset str5
call print

;-- Display program logo

mov bx,lEOCh
call calo
mov si,offset str2
mov ah,OFOh
call print

;-- Fill window with

xor ch,ch
mov bl,l
push bx
mov di,offset
mov cl,15
sub cl,bl
shr cl,l
or cl,cl
je arrow1
mov al," ..
rep stosb
mov cI,bl
mov al,"·
rep stosb
mov cl,15
sub cI,bl
shr cl,l
or cl,cl
je arrow2
mov al,· ..

;Upper left comer of window 1
; Lower right corner of window 1
;White letters, black background
; Clear window 1
; Upper left comer of window 2
; Lower right corner window 2
;Clear window 2
; Upper left comer of window 1
;Convert to offset address
;Offset address string 3
;Black characters, white background
;Display string 3
;Upper left comer of window 2
;Convert to offset address
;Offset address string 4
;Display string 4
;Upper left display corner
;Offset address string 5
;Display string 5

;Column 30, line 12
;Convert offset address
;Offset address string 2
;Inverse blinking
;Display string 2

arrows

;Hi-byte of the counter to °
;Asterisk
;Push BX on the stack

str3 ;Draw arrow line in string 3
;Total of 15 characters in a
;Calculate number of spaces
;Divide by 2 (for left half)
;No blanks ?
; YES --> ARROW1

;Draw blanks in string 3

line

;Number of asterisks in counter

;Draw stars in string 3
;Total of 15 characters in a line
;Calculate number of blanks
;Divide by 2 (for right half)
;No blanks?
;YES --> ARROW2

475

10. Accessing and Programming the Video Cards 	 PC System Programming

rep stosb ;Draw blanks in string 3
arrow2: 	 mov bx,0509h ;below the first line of window I

call calo ;Convert to offset address
mov si,offset str3 ;Offset address string 3
mov ah,07h ;White characters, black background
call print ;Display string 3
mov bx,3CIOh ;into the lowest line of window 2
call calo ;Convert offset address
call print ;Display string 3

;-- Brief pause ---------------------------------------

mov ex, DELAY ;Loop counter
waitlp: loop waitlp ;Count loop to 0

;-- Scroll window 1 line down -------------------------

mov bx,OS09h ;Upper left corner of window
mov dx,1316h ;Lower right corner window 1
mav cl,l ; Scroll down
call scrolldn lone line

;-- Scroll window 2 one line up -----------------------

mov bx,3C03h ;Upper left corner window 2
mav dx,4AI0h ;Lower right corner window 2
call scrollup ;Scroll up

;-- Was a key pressed? (end program) ------------------

mov ah,l ;Function number for testing key
int 16h ;Call BIOS keyboard interrupt
jne end it ;Keypress -> goto end of program

;-- NO, display next arrow ----------------------------

pop bx ;Pop BX from stack again
add bl,2 ;2 more stars in next line
cmp bl,l? ; Reached 17 ?
jne arrowO ;NO --> next arrow
jrnp arrow ;No key --> next arrow

;-- Get ready to end program

xor ah,ah ;Get function number for key
int 16h ;Call Blos-keyboard-interrupt
mov ex,OOOCh ;Restore normal cursor
call cdef
call cls iClear screen
jmp ende ;Go to end of program

demo 	 endp

i== Functions ====--===---============-----==-====-===========-=

;-- SOFF: switches the display off ----------------------
;-- Input none
;-- OUtput none
;-- register AX and OX are changed

SOFF 	 proc near

mov dx, CONTROL REG ;Address of display control register
in al,dx - ; read its content
and al,11110111b ;bit 3 - 0: display off
out dx,al ;set new value (display off)

ret 	 ;back to caller

SOFF 	 endp

476

Abacus 10.2 The IBM Monochrome Card

;-- SON: switches the display on ------------------------
;-- Input none

;-- Output none

; -- register AX and OX are changed

SON proc near

mov dx, CONTROL REG ;Address of display control register
in al,dx - ; Read its content
or aI,S ;Bit 3 - 1: display on
out dx,al ;Set new value (display on)
ret ;Back to caller

SON endp

;-- COEF: sets the start and end line of the cursor ------------
;-- Input CL - Start line

;-- CH - End line

, Output none
;-- register : AX and OX are changed
cdef proc near

mov aI, CUR START ;Register 10: start line

mov ah,cl - ;Start line to AH

call setvk ;Transmit to video controller

mov aI, CUR END ;Register 11: end line

mov ah,ch ;End line to AH

jmp short setvk ;Transmit to video controller

cdef endp

i-- SETBLINK: sets the blinking display cursor -------------------
i-- Input 01 ~ offset address of the cursor
;-- OUtput none

register BX, AX and OX are changed

setblink proc near

mov bx,di ;Transmit offset to BX
mov al,CURPOS_HI ;Register 15:Hi-byte of cursor offset
mov ah,bh ;HI-byte of the offset
call setvk ;Transmit to video controller
mov al,CURPOS_La ;Register 15:Lo-byte of cursor offset
mov ah,bl ;Lo-byte of the offset

;-- SETVK is called automatically -----------------------

setblink endp

;-SETVK: sets a byte in one of the registers of the video controller -
;-- Input AL - number of the register
;-- AH - new content of the register
i-- Output none
;-- register : OX and AL are changed

setvk proc near

mov dx,ADDRESS 6845 ;Address of the index register
out dx,al ;Send number of the register

jmp short $+2 ;Small 110 pause

inc dx ;Address of the index register

mov al,ah ;Content to AL

out dx,al ; Set new content

ret ; Back to caller

setvk endp

;-- GETVK: reads a byte from one register of the video controllers
;-- Input : AL ~ number of the register

477

10. Accessing and Programming the Video Cards PC System Programming

;-- Output AL - content of the register
;-- register OX and AL are changed

getvk proc near

rnov
out
jmp
inc
in
ret

getvk endp

;-- SCROLLUP:
;-- Input
i-
;-
i-
;-

dx, ADDRESS 6845 ;Address of the index register
dx,al

short $+2
dx
al,dx

;Send number of the register

;Address of the index register
;Read content to AL
; Back to caller

scrolls a window up by N lines
BL - line upper left
BH - column upper left
OL - line lower right
OH - column lower right
CL = number of lines to scroll

i-- Output none
;-- register only FLAGS are changed
i-- Info

scrollup

supl:

the display lines released are erased

proc near

cld

push ax
push bx
push di
push si

push bx
push ex
push dx
sub dl,bl
inc dl
sub dl,cl
sub dh,bh
inc dh
call calo
mov si,di
add bl,cl
call calo
xchg si,di
push ds
push es
mov ax,VIO_SEG
mov ds,ax
rnov es,ax
rnov ax,di
mov bX,si
rnov cl, dh
rep movsw
rnov di,ax
rnov si,bx
add di,160
add si,160
dec dl
jne supl
pop es
pop ds
pop dx
pop ex
pop bx
rnov bl, dl
sub bl,cl
inc bl
rnov ah,07h

;Increment on string instructions

;Push all changed registers on the
;stack
iln this case the sequence
;must be observed!

;These three registers are restored
;from the stack before ending

;Calculate the number of lines

;Deduct number of lines scrolled
;Calculate number of columns

;COnvert upper left in offset
;Record Address in SI
;First line in scrolled window
;Convert first line to offset
;Exchange SI and DI
;Store segment register on
;the stack
;Segment address of the video RAM
ito OS
land ES
;Record DI in AX
;Record S1 in BX
;Number of column in counter
;Move a line
;Restore DI from AX
;Restore SI from BX
; Set next line

;Processed all lines?
iNO --> move another line
;Get segment register from
;stack
;Get lower right corner
;Read number of lines
;Get upper left corner
;Lower line to BL
;Deduct number of lines

;Color : black on white

478

Abacus 10.2 The IBM Monochrome Card

call clear ;Erase lines freed

pop si ;CX and OX have already

pop di ;been read

pop bx

pop ax

ret ;Back to caller

scrollup endp

;-- SCROLLDN: scrolls a window down N lines --------------
;- Input BL - line upper left
i- BH - column upper left
;- OL - line lower right
;-- OH - column lower right
;-- CL - number of lines to scroll
;-- Output none
;-- register only FLAGS are changed
;-- Info display lines released are erased

scrolldn proc near

cld ;Increment on string instructions

push ax ;Store all changed registers on the
push bx ; stack
push di ; In this case the sequence
push si ;must be observed

push bx ;These three registers are returned
push ex ;from the stack before the end
push dx ;of the routine

sub dh,bh ;Calculate the number of the column
inc dh
mov al,bl ;Record line uppsr left in AL
mav bl,dl ;Line uppsr right to line upper left
call calo ;Convert upper left into offset
mav si,di ;Record address in SI
sub bl,cl ;Deduct number of lines to scroll
call calo ;Convert uppsr left in offset
xchg si,di ;Exchange SI and OI
sub dl,al ;Calculate number of lines
inc dl ;Oeduct number
sub dl,cl ;of lines to be scrolled
push ds ;Push segment register onto stack
push es
mov ax,VIO_SEG ; Segment address of video RAM
mav ds,ax ;to OS
mov es,ax ;and ES

sdn1: mov ax,di ;Move OI to AX
mov bx,si ;Move SI to BX

mav cl,dh ;Number column in counter

rep movsw ;Scroll one line

mov di,ax ;Get OI from AX

mav si,bx ;Restore SI fran BX

sub di,160 ; Set next line

sub si,16O

dec dl ;All lines processed ?

jne sdn1 ;NO --> scroll another line

pop es ;Get segment register fran

pop ds ; stack

pop dx ;Retum lower right comer

pop ex ;Return number of lines

pop bx ;Return upper left comer

mav dl,bl ;Upper line to OL

add dl,cl ;Add number of lines

dec dl

mav ah,07h ;COlor : black on white

479

10. Accessing and Programming the Video Cards 	 PC System Programming

call clear ;Erase lines which were released

pop si ;CX and DX are
pop di ; already returned
pop bx
pop ax

ret 	 ;Back to caller

scrolldn 	 endp

;-- CLS: Clear the complete screen ------------------------------
;-- Input : none
; -- Output : none
;-- register : only FLAGS are changed

cIs proc near

mov
xor
mov

ah,07h
bx,bx
dx,4Fl8h

;Color is white on black
;Upper left is (0/0)
;Lower right is (79/24)

i-- Execute Clear

cls endp

;-- CLEAR: fills a designated display with space characters ---
;-- Input AH - Attribute/color
;-- BL = line upper left
;-- BH = column upper left
;-- DL - line lower right

DH ~ column lower right
output none
register : only FLAGS are changed

clear 	 proc near

cld ;Increment on string instructions
push cx ;Store all registes which
push dx ;are changed on the stack
push si
push di
push es
sub dl,bl ;Calculate number of lines
inc dl
sub dh,bh ;Calculate number of columns
inc dh
call calo ;Offset address of upper left corner
mov cx,V10_SEG ;Segment address of the video RAM
mov es,cx Ito ES
xor ch,ch ;Hi-bytes of the counter to 0
mav al,1IIII ; Space characterH

clear1: 	 mov si,di ;Move DI to S1
mov cl,dh ;Number of column in counter
rep stosw ;Store space character
mov di,si ;Restore DI from S1
add di,160 ;Set in next line
dec dl ;All lines processed
jne clearl ;NO --> erase another line

pop es ;Restore registers from
pop di ;stack
pop si
pop dx
pop ex
ret ;Back to caller

clear 	 endp

;-- PRINT: outputs a string on the Display -------------------

480

Abacus 	 10.2 The IBM Monochrome Card

, Input AH - Attribute/color
i-- DI - offset address of the first character
;- SI - offset address of the strinq to DS
i-- OUtput 01 points behind the last character output
;-- reqister AL, DI and FLAGS are chanqed
;- Info the strinq must be terminated with a NUL-character.
;-- other control characters are not recoqnized

print 	 proc near

cld ;Increment on strinq instructions
push si ;Store SI, DX and ES on the stack
push es
push dx
mov dx,VIO_SEG ;Segment address of the video RAM
mov es,dx ;First to OX and then to ES
jmp printl ;YES --> Output finished

printO: 	 stosw ;Store attribute and color in V-RAM
printl: 	 lodsb ;Get next character from the strinq

or al,al ;Is it NUL
jne printO ;NO --> output

printe: 	 pop dx ;Get SI, DX and ES back from stack
pop es
pop si
ret ; Back to caller

print 	 endp

;- CALC: converts line and column into offset address --------------
;-- Input BL = line
i-- BII - column
i-- Output DI - the offset address

Reqisters: 01 and FLAGS are chanqed

calo 	 proc near

push ax ;Store AX on the stack
push bx ;Store BX on the stack

shl bx,l ;Column and line times 2
mov al,bh ;Column to AL
xor bh,bh ;Get Hi-byte
mov di, [linen+bx] ;Offset address of the line
xor ah,ah ;HI-byte for column offset
add di,ax ;Add line- and column offset

pop bx ;Get BX from stack aqain
pop ax ;Get AX from stack aqain
ret ; Back to caller

calo 	 endp

;== End =========~--========--======---====================~

code 	 ends ;End of the CODE segment
end demo ;Start program execution w/ demo

481

10. Accessing and Programming the Video Cards PC System Programming

10.3 The Hercules Graphic Card

The Hercules display adapter displays text in both text mode and graphics mode,
with a graphic resolution of 72Ox348 pixels. This card contains enough RAM for
two display pages. Each display page is 32K, so video RAM can accept a 4K text
page and a graphic page. The frrst display page extends from address BOOO:OOOO to
BOOO:7FFF. The second screen page goes from BOOO:8000 to BOOO:FFFF.

Hercules video RAM

The Hercules card's video RAM in text mode has the same cursor character and port
addresses as the mM monochrome display adapter. With the graphic capabilities,
only a few bits in the status and control register are different from the monochrome
card. An additional configuration register can be addressed from 3BFH. You can
write to this register only. Only bits 0 and 1 are of interest to the programmer.
The former indicates whether the graphic mode can be switched on (1) or not (0).
Bit 1 determines whether the second display page can be used. Bit 1 contains the
value 1 if the second page is usable.

To avoid conflicts with other video cards (especially color cards), both bits are set
to 0 at the start of the system so that neither graphic mode nor the second display
page are accessible at first. Application programs must configure the Hercules
display adapter through the configuration register if the programs require graphic
mode or the second screen page.

The control register of the Hercules graphic card has some differences from that of
the MDA discussed in the preceding section.

7 6 5 4 3 2 1 Obit

'-............ O=text mode
hlc mode

O=screen off
......------11=screen on

O=bllnklng disabled
"---------11=bllnklng enabled

O=dlsplay screen
page 1

1 =dlsplay screen
2

The Hercules control register (3B8H)

482

Abacus 103 The Herclllu Graphic Card

Unlike the IBM monochrome dispJay adapter, bit 0 is unused and doesn't have to
be set to 1 during the system boot Bit 1 determines text or graphic mode: a 0 in
bit 1 enables text mode, while a 1 in bit 1 enables graphic mode. As you shall see
in the following examples, changing these bits isn't enough to switch between
text and graphic modes. The internal registers of the 6845 must be reset as well.
During this process,the screen display must be switched off to prevent the 6845
from creating gatbage during its reprogramming.

The Hercules card has a seventh bit in this register. Its contents determine which of
the two screen pages appear on the monitor screen. If this bit is 0, the first screen
page appears; a 1 calls the second screen page on the screen. Independent of each
other, the user can write to or read from either page at any time. You can only
write to this register; attempts to read this register return the value FFH. Because
of this, it is impossible to switch off the display simply by reading the contents of
the status register and erasing bit 3, regardless of the dispJay mode and the screen
page selected.

7 6 5 4 3 2 1 Obit

L Horizontal
synchronization
signal: O=off, 1=on
O=Current pixel off
1=Current pixel on

Vertical
synchronization
slgnal: O=on, 1 =off

Hercules status register (3BAH)

Only the significance of bit 7 makes this register different from the IBM
monochrome card. It's always set to 0 when the 6845 sends a vertical
synchronization signal to the display. This signal is always sent when the last
screen line has been constructed. The electron beam, which constructs the display,
then jumps to the fJrSt line of the screen to start constructing a new screen.

Since the Hercules card uses the same processor as the IBM card, the internal
registers of the 6845 and their meaning are identical to the IBM card. The index
register and data register are also located at the same address. The following values
must be assigned to the various registers in the text and graphic modes
respectively:

483

10. Accessing and ProgrOlll11ling ,11£ Video Cards PC System ProgrOlll11ling

No. Meaning Text Graphic
0 Horizontal character seeded fJ1 53
1 Horizontal character displayed 00 45
2 Horiz. synchronization signal after•.character 82 46
3 Horiz. ~chronization signal width 15 7
4 Vertical character seeded 25 91.
5 Vertical character justified 6 2
6 Vertical character displayed 25 ffI
7 Vert. synchronization signal after•.character 25 ffI
8 Interlace mode 2 2
9 Number of ccan-lines per line 13 3
10 Starting line of blinkinq cursor 11 0
11 Ending line of the blinking cursors 12 0
12 High byte of screen paqe startil'lg address 0 0
13 Low byte of screen page starting address 0 0
14 Hiqh byte of blinking cursor char. address 0 0
15 Low byte of blinking cursor char. address 0 0
16 Reserved
17 Reserved

As mentioned earlier, the Hercules card in graphic mode provides 348x720
resolution. Every pixel on the screen corresponds to one bit in the video RAM. If
the corresponding bit contains the value 1, the dot is visible on the display,
otherwise it remains dark. The following figure shows the construction of the
video RAM in the graphic mode.

484

Abacus 103 The Hercllles Graphic Card

+0000 (h) Line 0 (90 bytes)

+OOSA(h) Lin. 4 (90 byt••)

+0084 (h) Line' (90byt••)

+lD88 (h) Line 33' (90 byt••)

+lD1:2 (h) Line 340 (90 byt••)

+lJ:3c (h) Line 344 (90 byt••)

+U96(h) unuaed (362 byt••)

+2000 (h) Lifte 1 (90 byt••) RAM
+20SA(h) Line 5 (90 tea)

+2084 (h) Line 9 (90 bytes)

0000:0000

+3088 (h) Line 331 (90 byte.)

+3DE2 (h) Line 341 (90 bytes)

+3E1C(h) Line 345 (90 bytes)

+3E96 (h) unused (362 bytes) 1
+4000 (h) Line 2 (90 bytes)

+405A (h) Line' (90 byte.)

+4084 (h) Line 10 (90 bytes)

+SD88 (h) Line 33. (90 byt••)

+SDE2(h) Line 342 (to byt••)

+SE3C(h) Line 34' (90 byt••)

+SE96 (h) unused (362 byt••)

+6000 (h) Line 3 (90 byt••)

+60SA(h) Line 7 (90 byt••)

+6084 (h) Line 11 (90 byte.)

+7088 (h) Line 339 (90 byte.)

+1DE2 (h) Line 343 (90 bytes)

+7E3C (h) Line 347 (90 bytes)

+1£96 (h) unused (362 bytes)

+8000 (h)

Video RAM and the screen under construction

The bit patterns of the individual lines in the video RAM aren't arranged
sequentially, as you might have assumed. The 32K of video RAM is divided into
four 8K blocks. The fIrst block contains the bit pattern for any lines divisible by 4
(0,4,8, 12, etc.). The second block contains the bit patterns for lines 1,5,9, 13
etc. The third block contains the bit patterns for lines 2, 6, 10, 14, etc., while the
last block contains lines 3, 7, 11, 15 etc. When the 6845 generates a display, it
obtains information for screen line zero from the fIrst data block, screen line one
from the second data block, etc. Mter it has obtained the contents of the third
screen line from the fourth data block, it accesses the fIrst data block again for the
structure of the fourth line. Each line requires 90 bytes within the individual data
blocks-every pixel requires a bit, and 720 pixels divided by 8 bits (per byte)
equals 90. The fIrst 90 bytes in the first memory area provide the bit pattern for
screen line zero, and the 90 bytes following provide the bit pattern for the fourth
screen line. The zero byte of one of these 9O-byte sets represents the fIrst eight
columns of a screen line (columns 0-8). The first byte represents columns 8-15,

485

10. Accessing and Programming tM Video Cards 	 PC System Programming

etc. Within one of these bytes, bit 7 corresponds to the left screen pixel and bit 0
corresponds to the right screen pixel.

RAM

0000:0000

7 6 5 4 3 2 1 0 bit 7 6 5 4 3 2 1 0 bit

I I I I I I I I I I I I I I I I I I

Column 0 1 2 3 	 4 5 6 7 Column 712_......_ 719

Relationship between 9O-line bytes and screen display

If the screen pixels of a line (0 to 719) and the screen pixels of a column (0 to
347) are sequentially numbered, an equation indicates the address of the bytes
relative to the beginning of the screen page. This address contains the information
for a pixel with the coordinates X/Y.

To determine the bit within the byte which represents the pixel, the following
formula can be used:

Address = 2000H * (Y mod 4) + 90 * int(Y/4) + int(X/B)

The following program demonstrates the abilities of the Hercules display adapter.
The individual routines within this program have some differences from the
routines shown in the monochrome display adapter demo program from the
previous section. The routines here enable access to both screen pages, and support
the Hercules graphic mode.

Assembler listing: VHERC.ASM

.******************.****************•••***********·*·*·*········*i
V HER C 	 *;

---;
* 	 Task : makes a basic function available for *;

access to the HERCULES GRAPHICS CARD *;
---;

Info : 	 all functions partition the screen display *;
into columns 0-79 and lines 0-24 (text mode) *;
& columns 0-719 and lines 0-347 (graphic mode)*;

---;
Author : MICHAEL TISCHER * ;
developed on : 8/11/87 *;

486

Abacus 	 103 TIte Hercules Graphic Card

;* last update : 6/15/89 	 *;
;*---*i
;* assembly : MASM VHERC; *;
;* LINK VHERC: *;
;*---*i
,call : VHERC 	 *;
i***************·****·*********************····******* ****** •• **** ••• *:

CONTROL REG - 03B8h ;Control register port address
ADDRESS-6845 03B4h ;6845 address reqister
DATA 6845 - 03B5h ;6845 data reqister
CONFIG REG - 03BFh ;Confiquration register
VIO SEG OBOOOh ;Video RAM seqment address
CU(::START - 10 ;Reg. f for CRTC: Start cursor line
CUR END -11 ;Reg. f for CRTC: End cursor line
CURPOS HI - 14 ;Reg. f for CRTC: Cursor pos hi byte
CURPOS-LQ = 15 ;Reg. f for CRTC: CUrsor pos 10 byte

DELAY - 20000 ;Count for delay loop

;== Macros =====-========_____=-=-========-========___ss==

setmode 	 macro modus ;Set control register

mov dx, CONTROL_REG ;Screen control register address
mov al,modus ;Put new mode in AL register
out dx,al ;Send mode to control register

endm

setvk macro ;Write value to CRTC registers
;Input: AL - register number

AH = Value for register

mov dx,ADDRESS_6845 ;Index register address
out dX,ax ;Display register number and new value

endm

i== Stack 	=======--------==-----===-===============------=

stack 	 segment para stack ;Definition of stack segment

dw 256 dup (?) ;Stack is 256 words in size

stack 	 ends ;End of stack segment

;-- Data -====-=-~-=-========--==---=------=---------------==
data 	 segment para 'DATA' ;Define data segment

;=- Data needed for demo program -------==-==--------------=
initm 	 db 13,10,WVHERC (c) 1987 by Michael Tischer·,13,10,13,10

db "This demonstration program runs only with •
db • a HERCULES",13,10,"graphics card. If your PC "
db "has another type of display card, ·,13,10
db ·please input an >s< to stop the •
db • program.",13,10,·Otherwise please press any·
db ·key to start the ·,13,10
db ·program ••• ·,13,10,·$·

strl db 1,17,16,2,7,0
str2 db 2,16,17,1,7,0

domes 	 db 13,10
db -This program creates a short graphic demo -,13,10
db "and a text demo. Pressing a key during the-,13,10

487

10. Accessing and Programming the Video Cards 	 PC System Programming

db ·demo ends the program.·,13,10

db ·Press a key to start the program••• ·,13,10,·S·

;- Table of line offset addresses ---------------

lines 	 dw 0*160,1*160,2*160 ;Beginning addresses of the lines as
dw 3*160,4*160,5*160 ;offset addresses in video RAM
dw 6*160,7*160,8*160
dw 9*160,10*160,11*160,12*160,13*160,14*160,15*160,16*160
dw 17*160,18*160,19*160,20*160,21*160,22*160,23*160,24*160

grafikt 	 db 3Sh, 2Dh, 2Eh, 07h, SBh, 02h ;Reqister values for the
db S7h, S7h, 02h, 03h, OOh, OOh ;graphic mode

textt 	 db 61h, SOh, S2h, OFh, 19h, 06h ;Reqister values for the
db 19h, 19h, 02h, ODh, OBh, Och ;text mode

data 	 ends ;End of data segment

code 	 segment para 'CODE' ;Definition of the code segment

o/g lOOh

assume cs:code, ds:data, es:data, ss:stack

;- this is only the Demo-Program -------==-=-------
demo 	 proc far

mov ax, data ;Get segment address of data segment
mov ds,ax ;Load into OS
mov es,ax ;and ES

i-- Opening msq., wait for input -------------------

mov ah,9 ;Output function number for string
mov dx,offset initm ;address of the message
int 21h ;Call DOS interrupt

xor ah,ah ;Get function number for key
int l6h ;Call BIOS keyboard interrupt
cmp al,·8· ;Was <s> entered?
je ende ;YES--> End program
cmp al,·S· ;Was <S> entered?
jne startdemo ;NO --> Start demo

ende: 	 mov aX,4COOh ; Function number - end program
int 2lh ;Call DOS interrupt 21H

startdemo 	label near
mov ah,9 ;Output function number for string
mov dx,offset domes ;address of the message
int 21h ;Call DOS interrupt

xor ah,ah ;Get function number for key
int l6h ;Call BIOS keyboard interrupt

;-- Initialize graphic mode -------------------------

mov al,llb ;Graphic and page 2 possible
call config ; Configure
xor bp,bp ;Access display page 0
call grafik ;switch to graphic mode
xor al,al
call cgr ;Erase graphic page 0
xor bx,bx ;Begin in the upper left
xor dx,dx ;Display corner
mov ax,347 ;Vertical pixels

488

Abacus

grl:

gr2:

grl:

gr4 :

grS:

demol:

demo2:

demo3:

mov cx,7l9
push cx
mov cx,ax
push ax
call spix
inc dx
loop gr2
pop ax
sub ax,3
pop cx
push cx
push ax
call spix
inc bx
loop grl
pop ax
pop cx
sub cX,6
push cx
mov cx,ax
push ax
call splx
dec dx
loop gr4
pop ax
sub ax,3
pop cx
push cx
push ax
call splx
dec bx
loop grS
pop ax
pop cx
sub cx,6
crop ax,S
ja grl

xor ah,ah
int l6h

10.3 The Hercules Graphic Card

;Horizontal pixels
;Push horizontal pixels on stack
;Vertical pixels in counter
;Push vertical pixels on stack
;Set pixel
; Increment line
;Draw line
;Get vert. pixels from stack
;next line 3 pixels less
;Get horiz. pixels from stack
;Store horizontal pixels
;Push vertical pixels on stack
;Set pixel
;Increment column
;Draw line
;Get vertical pixels from stack
;Get horizontal pixels from stack
;Next line 6 pixels less
;Record horizontal pixels
;Vertical pixels in counter
;Note vertical pixels on stack
;Set pixel
;Decrement line
;Draw line
;Get vertical pixels from stack
;Next line 3 pixels less
;Get horizontal pixels from stack
;Record horizontal pixels
;Record vertical pixels on stack
;Set pixel
ilncrement column
;Draw line
;Get vertical pixels from stack
;Get horizontal pixels from stack
;Next line 6 pixels less
;Is the vertical line longer than 5
;YES --> continue

;Wait for function nr. for key
;Call BIOS keyboard interrupt

xor bx,bx
call calo
mov si,offset strl
mov cX,l6*25
call print
loop demol

;Start in upper left display corner
;Convert to offset address
;Offset address of stringl
;The string is 5 characters long
;Output string

Display strings in display page 1 -----------------

inc bp
xor bX,bx
call calo
mov si, offset str2
mov cX,l6*25
call print
loop demo2

setmode lOOOlOOOb

;-- Initialize text mode -----------------------------

call text ;Switch on text mode
mov ex,OdOOh ;Switch on full cursor
call cdef
call cls ;Clear screen

;-- Display strings in display page 0 -----------------

;Process display page 1
;Start in the upper left corner
;Convert to offset address
;Offset address of stringl
;string is 5 characters long
;Output string

;Display text page 1

;-- short Pause --

489

10. Accessing and Progrll11l/lUng the Video Cards PC System Progrll11l/lUng

mov cx, DELAY ;Load counter
pause: loop pause ;Count to 65,536

setmode OOOOlOOOb ;Display page 0

;-- short pause
mov cx, DELAY ;Load counter

pausel: loop pausel ;Count to 65,536

mov ah,l ;Test function nr. for key
int 16h ;Call BIOS-keyboard-Interrupt
je demo3 ;No key --> continue

xor ah,ah ;Get function number for key
int 16h ;Call BIOS-keyboard-Interrupt

mov bp,O ;Display page 1
call cIs iClear screen
mov cX,ODOch ;Restore normal cursor
call cdef
call cIs ;Clear screen
jmp ende ;End program

demo endp

;== The actual functions follow ==----=~=====-===-----==--=

;-- CONFIG: configures the HERCULES card -----------------------------
;-- Input : AL : bit 0 - 0 Only text presentation possible
;-- 1 also graphic presentation possible
;-- bit 1 = 0 RAM for display page 2 off
;-- 1 RAM for display page 2 on
;-- Output : none
;-- Register : AX and DX are changed

config proc near

mov dX,CONFIG REG ;Address of configuration register
out dx,al - ;Set new value
ret ; Back to ca ller

config endp

;-- TEXT: switches the text presentation on --------------------------
;-- Input : none
;-- Output : none
;-- Register : AX and DX are changed

text proc near

mov si, offset textt ;Offset address of the register-table
mov bl,OOlOOOOOb ;Display page O,text mode,blinking
jmp short vcprog ;Program video-controller again

text endp

;-- GRAFIK: switches on the graphic mode ------- ---------------------
i-- Input : none
;-- Output : none
;-- Register : AX and OX are changed

grafik proc near

mov si,offset grafikt ;Offset address of the register-table
mav bl,OOOOOOlOb ;Oisplay page 0, graphic mode

grafik endp

;-- VCPROG: programs the video controller ----------------------------
;-- Input SI - address of a register-table

490

Abacus 	 10.3 Tile Hercllles Graphic Card

;- B1 - value for display-control-register
;-- Output none
; -- register AX, SI, BH, OX and FLAGS are changed

vcproq 	 proc near

setmade bl ;Bit 3 - 0: display aus

mav cx,12 ;12 registers are set
xor bh,bh ;Start with register 0

vcp1: 	 lodsb ;Get register value from the table
mav ah,al ;Register value to AH
mav al,bh ;Number of the register to A1
setvk ;Transmit value to the controller
inc bh ;Address next register
loop vcp1 ;Set additional registers

or bl,8 ;Bit 3 - 1: display on
setmade bl ; Set new mode
ret ; Back to caller

vcprog 	 endp

;-- cOEF: sets the start and end line of the cursor-------------------
;-- Input c1 - start line
;-- cH & end line
;-- Output none

register AX and OX are changed

cdef 	 proc near

mav al,CUR START ;Register 10: start line
mov ah,cl ;Start line to AH
setvk ;Transmit to video-controller
mav aI, CUR END ;Register 11: Endline
mav ah,ch ;End line to AH
setvk ;Transmit to video-controller
ret

cdef 	 endp

;-- SETB1INK sets the blinking display cursor ----------------------
i-- Input 01 = offset address of the cursor
;-- Output none
;-- register BX, AX and OX are changed

setblink 	 proc near

mav bX,di ;Transmit offset to ax
mav al,CURPOS HI ;Register 15:Hi Byte of cursor offset
mav ah,bh - ;HI byte of the offset
setvk ;Transmit to video-controller
mav aI, CURPOS 10 ;Register 15:10-Byte of cursor offset
mav ah,bl - ;10 byte of the offset
setvk ;Transmit to CRTC
ret

setbl1nk 	 endp

;-- GETVK reads a byte from one register of the video-controller
i-- Input AL - number of the register
i-- Output AL - content of the register
i-- register OX and A1 are changed

getvk 	 proc near

mav
out

dX,ADDRESS 6845
dX,al -

;Address of the index register
;Send number of the register

jmp $+2 ;Short io pause
inc dx ;Address of the index register

491

10. Accessing and Programming the Video Cards 	 PC System Programming

in al,dx ;Read content to AL
ret ;Back to caller

getvk 	 endp

;-- SCROLLUp: scrolls a window by N lines upward ---------------------
;-- Input BL - line upper left
;-- BH - column upper left
;-- DL - line lower right
;-- DH - column lower right
;-- CL - number of the lines to be scrolled
;-- BF - number of the display page (0 or 1)
;-- OUtput none
;-- register only FLAGS are changed
;-- Info the display lines released are erased

scrollup 	 proc near

cld
push ax
push bx
push di
push si

push bx
push cx
push dx
sub dl,bl
inc dl
sub dl,cl
sub dh,bh
inc dh
call calo
mov si,di
add bl,cl
call calo
xchg si,di
push ds
push es
mov ax,VIO_SEG
mov ds,ax
mov es,ax

supl: 	 mov ax,di
mov bX,si
mov cl,dh
rep movsw
mov di,ax
mov si,bx
add di,160
add si,160
dec dl
jne sup1
pop es
pop ds
pop dx
pop cx
pop bx
mov bl,dl
sub bl,cl
inc bl
mov ah,07h
call clear

pop si
pop di
pop bx
pop ax

ret

;Increment for string instructions
;Store all changed registers
; on the stack
;In this case the sequence
;must be followed

;These three registers are returned
;from the stack before
;the end of the routine
;Calculate number of lines
;Deduct number
;of lines to be scrolled
;Calculate number of columns

;Convert upper left in offset
;Note address in SI
;First line in scrolled window
;Convert first line in offset
;Exchange S1 and D1
;Store segment register
; on the stack
;Segment address of the video RAM
Ito DS
land ES
;Note D1 in AX
; Note SI in BX
;Number of columns in counter
;Move a line
;Restore D1 from AX
;Restore S1 from BX
; Set next line

;Processed all lines ?
;NO --> move another line
;Get segment register from
; stack
;Get lower right corner
;Get number of lines
;Get upper left corner
;Lower line to BL
;Deduct number of lines

;Color : black on white
;Erase liberated lines

;CX and DX have been brought back
; already

;Back to caller

492

Abacus 	 10.3 TM Hercules Graphic Card

scrollup 	 endp

;-- SCROLLDN: scroll a Window by N lines upwards ---------------------
i-- Input BL - line upper left
i-- BH - column upper left
i-- DL - line lower riqht
i-- DH - column lower riqht
, CL - number of the lines to be scrolled
;-- BP - number of the display paqe (0 or 1)
;-- Output none
;-- reqister only FLAGS are chanqed
;-- Info released lines are deleted

scrolldn 	 proc near

cld 	 ;Increment on strinq instructions
\

push ax ;Secure all chanqed reqisters on the
push bx ; stack
push di ;In this case the sequence must
push si ;be followed!

push bx ;These three reqisters are
push cx ;returned from the stack before the
push dx ;end of the routine

sub dh,bh ;Calculate number of columns
inc dh
mov al,bl ;Record line upper left in AL
mov bl,dl ;Line lower riqht top lower left
call calo ;Convert upper left in offset
mov si,di ;Note address in SI
sub bl,cl ;Deduct number of chars to scroll
call calo ;Convert upper left in offset
xchq si,di ;Exchanqe S1 and 01
sub dl,al ;Calculate number of lines
inc dl
sub dl,cl ;Deduct number of lines to scroll
push ds ;Store seqrnent reqister on the
push es ; stack
mov aX,VIO SEG ;Seqrnent address of the video RAM
rnov ds,ax ito OS
mov es,ax ;and ES

sdnl: 	 mov ax,di ;Record 01 in AX
mov bx,si ;Record SI in BX
mav cl,dh ;Number of columns in counter
rep movsw ;Move a line
mov di,ax ;Restore 01 fr~ AX
mov si,bx ;Restore S1 from BX
sub di,160 ; Set next line
sub si,160
dec dl ;All lines processed
jne sdn! ;NO --> move another line
pop es ;Get seqment reqister from
pop ds ; stack
pop dx ;Get lower riqht corner
pop cx ;Get number of lines
pop bx iGet upper left corner
mov dl,bl ;Upper line to DL
add dl,cl ;Add number of lines
dec dl
mav ah,07h ;Color : black on white
call clear ;Erase liberated lines

pop si ;CX and DX have already
pop di ;been read
pop bx
pop ax

ret 	 ;Back to caller

493

10. Accessing and Programming the Video Cards 	 PC System Programming

scrolldn endp

;- cLS: clear the whole screen -------------------------------------
;-- Input BP - number of the display page (0 or 1)
i-- OUtput none
;-- register only FLAGS are changed

cIs 	 proc near

mov ah,07h ;Color is white on black
xor bx,bx ;Upper left is (0/0)
mov dx,4Fl8h ;Lower right is (79/24)

;-- perform clear --

cIs 	 endp

;-- CLEAR: fills a designated display area with space character ------
;-- Input AH - Attribute/color
;-- BL - line upper left
;-- BH - column upper left
;-- DL - line lower right
;-- DK - column lower right
;-- BP - number of the display page (0 or 1)
;-- Output none
; -- register only FLAGS are changed

clear 	 proc near

cld ;Increment on string instructions
push cx ;Secure all changed
push dx ;registers on the stack
push si
push di
push es
sub dl,bl ;Calculate number of lines
inc dl
sub dh,bh ;Calculate number of columns
inc dh
call calo ;Offset address of upper left corner
mov cx,VIO_SEG ;Segment address of the video RAM

mov es,cx Ito ES
xor ch,ch ;Hi byte of the counter to 0
mov al," ;Space characterN

clearl: 	 mov si,di ;Note DI in SI
rnov cl,dh ;Number of columns in counter
rep stosw ;Store space character
rnov di,si ;Restore DI from SI
add di,160 ; Set next line
dec dl ;All lines processed
jne clear1 ;NO --> erase another line

pop es ;Get secured registers
pop di ; from the stack
pop si
pop dx
pop cx
ret ; Back to caller

clear 	 endp

;-- PRINT: outputs a string on the display ---------------------------
;-- Input AH - attribute/color
;-- DI - offset address of the first character
;-- SI = offset address of the strings to DS
;-- BP = number of the display page (0 or 1)
;-- OUtput DI points behind the last character to be output

;-- register AL, DI and FLAGS are changed

;-- Info the string must ne terminated with NUL-character.

494

Abacus 	 103 TM Hercules Graphic Card

i-- other control characters are not recognized

print 	 proc near

cld ;1ncrement on string instructions
push si ;sr, OX and ES to the stack
push es
push dx
mov dX,V10 SEG ;First segment address of video RAM
mav es,dx ;to ox and then to ES
jmp print1 ;Get first character from string

printO: 	 stosw ;Store attribute and color in V-RAM
print1: 	 lodsb ;Get next character from the string

or al,al ;1s it NUL
jne printO ;NO --> output

printe: 	 pop dx ;Get sr, ox and ES from stack again
pop es
pop si
ret ; Back to caller

print 	 endp

;-- cALO: converts line and column into offset address ---------------
;-- Input BL = line
i- BH = column
;-- Bp - number of the display page (0 or 1)
;-- OUtput 01 offset address
; -- register 01 and FLAGS are changed

calo 	 proc near

push ax ;Record AX on the stack
push bx ;Record BX on the stack

shl bx,1 ;Column and line times 2
mov al,bh ;Column to AL
xor bh,bh ;Hi byte
mov di, [lines+bxj ;Get offset address of the line
xor ah,ah ;Hi byte for column offset
add di,ax ;Add lines- and column offset
or bp,bp ;Oisplay page 01
je caloe ;YES --> address ok

add di,BOOOh ;Add 32 KB for display page 1

caloe: 	 pop bx ;Get BX from stack again
pop ax ;Get AX from the stack again
ret ; Back to caller

calo 	 endp

i-- CGR: clear the complete graphic screen ---------------------------
;-- Input BP - number of the display page (0 or 1)
;-- AL - OOH erase all pixels
i-- FFH : set all pixels
;-- Output none
i-- register AH, BX, cX, 01 and FLAGS are changed

cgr 	 proc near

push es iRecord ES on the stack
cbw ; Expand AL to AH
xor di,di ;Offset address in video RAM
mov bx,V10_SEG ;Segment address display page 0
or bp,bp ;Erase page 11
je cgr1 ;NO --> erase page 0

add bX,OBOOh ; Segment address display paqe 1

495

10. Accessing t.md Programming the Video Cards 	 PC System Programming

cgr1:

cgr

;-- SPIX:
;-.... Input
i-
i-
;- Output

mav es,bx
mov cX,4000h
rep stosw
pop es
ret

endp

;Segment address to segment register
;A page is 16K-words
;Fill page
;Get ES from stack
; Back to caller

sets a pixel in the graphic display -------------------------

BP - number of the display page (0 or 1)

BX - column (0 to 719)

DX - line (0 to 347)

none

i-- register AX, DI and FLAGS

spix

spixl:

spix

proc near

push es
push bx
push ex
push dx

xor di,di
mov cX,VIO SEG
or bp,bp
je spixl

mov cX,OBOOh

mov es,cx
mov aX,dx
shr aX,1
shr ax,l
mov cl,90
mul cl
and dx,1lb
mav el,3
ror dx,cl
mov di,bx
mov cl,3
shr di,cl
add di,ax
add di,dx
mov cl,7
and bX,7
sub cl,bl
mov ah,l
shl ah,cl
mov al,es:[diJ
or al,ah
moves: [diJ ,al

pop dx
pop ex
pop bx
pop es
ret

endp

are changed

;Store ES on the stack

;Store ax on the stack

; Store eX on the stack

;Store DX on the stack

;Offset address in video RAM

;Segment address display page °

;Access page 1 ?

;NO --> access page 0

;Segment address display page 1

;Segment address in segment register
;Move line to AX
;Shift line right 2 times
,This divides by four
;The factor is 90
;Multiply line by 90
;AND all bits except for
;3 shifts
;Rotate right (* 2000H)
;Column to DI
;3 shifts
;divide by B
;+ 90 * int(line/4)
;+ 2000H * (line mod 4)
;Maximum of 7 moves
;Column mod B
;7 - column mod B

0 and 1

;Determine bit value of the pixels

; Get 8 pixels
; Set pixel
;Write B pixels

;Get DX from stack
;Get eX from stack
;Get ex from stack
;Get ES from stack
; Back to caller

;== End ===================-=-=====================----========-=======

code 	 ends ;End of the code segment
end demo

496

Abacus 10.4 The IBM Color Card

10.4 The IBM Color Card

The IBM Color/Graphics Adapter (CGA) supports two text modes and three
different graphic modes. Like the other two cards, the CGA is based on a 6845
video processor and is equipped with 16K of video RAM which begins at address
B800:0000.

Text modes

Besides the normal text mode of 25 lines and 80 columns, the CGA also has a text
mode consisting of 25 lines and 40 columns. This 40-column mode displays
characters twice as wide as normal 8O-column mode. CGA characters are displayed
in an 8x8 matrix, which results in a less distinct display than monochrome display
adapter text. The CGA's video RAM assignment is almost identical to that of the
monochrome card. The attribute byte is different from that of the monochrome
display adapter.

7 6 5 4 3 2 lObit

L...---t Character color

Character Intensity
L...-------IO=normal

1 =hlgh Intensity
L...-_______--I Back round color

Blinking
L...------------IO=off

1=on

Color/Graphics Adapter attribute byte

The lower four bits of the attribute byte indicate one of the 16 available colors.
The meanings of the upper four bits depend on whether blinking is active. If it is
active, bits 4 to 6 indicate the background color (taken from one of the first eight
colors of the color palette), while bit 7 determines whether or not the characters
blink. If blinking is disabled, bits 4 to 7 indicate the background color (taken from
one of the 16 available colors).

497

10. Accessing and Programming the Video Cards PC System Programming

Decimal Hexadecimal Binary Color

a a 0000 Black
1 1 0001 Blue
2 2 0010 Green
3 3 0011 Cyan
4 4 0100 Red
5 5 0101 Magenta
6 6 0110 Brown
7 7 0111 Light gray
8 8 1000 Dark gray
9 9 1001 Light blue

10 A 1010 Light green
11 B 1011 Light cyan
12 C 1100 Light red
13 D 1101 Light magenta
14 E 1110 Yellow
15 F 1111 White

Color/Graphics Adapter color palette

Each 80x25 text page requires 4,000 bytes of video RAM. 16K allows a total of
four text pages. The ftrst display page starts at address B800:()()()(), the second at
B800:1000, the third at B800:2000 and the last at B800:3000. The 4Ox25 mode
allows storage of eight display pages, because each display page only requires
2,000 bytes in this mode. The ftrst display page starts at address B800:0000, the
second at B800:0800, the third at B800:1000, etc.

Graphic modes

The eGA supports three different graphic modes, of which only two are usually
used. The color-suppressed mode displays 160xl00 pixels with 16 colors. The
6845 supports this resolution, but the rest of the hardware doesn't offer color
suppressed mode support. The remaining two graphic modes have resolutions of
32Ox200 and 640x200 respectively. The 32Ox200 resolution permits four-color
graphics, while 640x200 resolution only allows two colors.

320x200 resolution

The eGA uses up all 16K of its video RAM for displaying a graphic in 32Ox200
resolution with four colors. This limits the user to one graphic page at a time. Of
the four colors permitted, the background can be selected from the 16 available
colors. The other three colors originate from one of the two user-selected color
palettes, which contain three colors each.

498

Abacu 10.4 The IBM Color Card

Palette 1: Color 1: Cyan Palette 2: color 1: Green
Color 2: Violet Color 2: Red
Color 3: White Color 3: Yellow

Since a total of four colors are available, each screen pixel requires two bits. Four
bits can represent the color numbers (0 to 3). The following values correspond to
the various colors:

o OO(b) = freely selectable background color
1 01{b) = color 1 of the selected palette
2 1O(b) =color 2 of the selected palette
3 11(b) =color 3 of the selected palette

The video RAM assignment in this mode is similar to that of the Hercules card
during graphic display. The individual graphic lines are stored in two different
blocks of memory. The frrst block, which begins at address B800:0000, contains
the even lines (0, 2, 4 ...); the second block, which begins at B800:2000, contains
odd lines (1,3,5).

RAM
0000:0000

Video RAM assignment in graphic mode (blocking)

Each graphic line within the two blocks requires 80 bytes, since the 320 pixels in
a line are coded into four pixels to a byte. The first byte in a graphic line (an 80
byte series) corresponds to the frrst four dots of the graphic on the screen. Bits 7
and 8 contain the color information for the leftmost pixel, while bits 0 and 1
contain the color information for the rightmost pixel of the byte.

499

10. Accessing and Programming the Video Cards PC System Programming

bit 7 6 5 4 3 2 1 0

I : I I : I : Ii

Column 0 1 2 3
Column 316 317 318 319

Graphic line coding in 320x200 resolution

A formula can be derived with the help of this information to determine the byte in
video RAM, similar to the Hercules card. This byte is relative to the starting
address of the screen page, which contains the color information for a pixel. The
screen column (0---319) is designated as X and the screen line (0---199) as Y:

Address = 2000H * (Y mod 2) + 80 * int(Y/2) + int(X/4)

To detennine the number of the two bits within this byte which represents the
pixel, use the following fonnula:

Bit number = 6 - 2 * (X mod 4)

For example, if this fonnula returns 4, this means that the color information for
the dot is coded into bits 4 and 5.

500

Abac/lS 10.4 The IBM Color Card

0000:0000

bit 7
bit 7 6 5 4 3 2 1 0 ~I11r,-;,11~11""';''' 11111111'Column 0 1 2 3 4 5 6 7

Column 632 ••••••.••• 639

Graphic line coding in 640x200 resolution

640x200 resolution

High-resolution mode with a resolution of 64Ox200 dots only allows the use of
two colors. The video RAM assignment in this mode is similar to 320x200 mode.
Each line displays twice as many pixels, with one bit encoding the line instead of
2 bits. Because of this, one screen line requires 880 bytes. Therefore the formulas
for access to a screen pixel are similar.

Address = 2000H * (Y mod 2) + 80 * int(Y/2) + int(X/8)

Bit number = 7 - (X mod 8)

eGA registers

The eGA has a mode selection register at address 308H which is comparable with
the control register of the monochrome display adapter. You can write to this
register but not read it.

501

10. Accessing and Programming the Video Cards 	 PC System Programming

7 6 5 4 3 2 1 0 	 bit

I I I I J I 1- O.40x25 charactersI 1.80x25 characters
r I 	 O=text mode

1.graphlc mode (320x200)

O=color display
1 =monochrome display
O.screenoff

1.graphlc mode (640x200)

O.brlght background
1 =bllnklng background

unused

Mode selection register

Bit layout

Bit 0 of this register detennines the text mode display of 80 or 40 columns per
line. A 1 in bit 0 displays 80 columns, while a 0 in bit 0 displays 40 columns.

The status of bit 1 switches the eGA from text mode to the 32Ox200 bit-mapped
graphic mode. A 1 in this register selects graphic mode, while a 0 selects text
mode.

Bit 2 should be of interest to any users who want to operate their eGA with a
monochrome monitor. If this bit contains the value 1, the 6845 suppresses the
color signal, displaying monochrome mode only.

Bit 3 is responsible for creating screens. If it contains the value 0, the screen
remains black. This suppression is useful when changing between display modes;
it prevents sudden signals from reaching the monitor which could cause damage.

Bit 4 enables and disables 640x200 bitmapped graphic mode. A 1 in bit 4 enables
this mode, while a 0 disables iL

Bit 5 has the same significance as in the monochrome card. If it contains a 0,
blinking stops and bit 7 returns one of the 16 available background colors. This
bit contains a default value of 1, which causes blinking characters.

The various text or graphic modes and the color or monochrome display can be
selected in these modes with this register. Bits 0, 1, 2 and 4 are used for this. The
following table shows how these bits must be programmed to obtain certain
modes:

S02

Abacus 10.4 The IBM Color Card

Bit 4 Bit 2 Bit 1 Bit 0 Result
0 1 0 0 40x25 text monochrome
0 0 0 0 40x25 text color
0 1 0 1 80x25 text monochrome
0 0 0 1 80x25 text color
0 1 1 0 320x200 graphic monochrome
0 0 1 0 320x200 graphic color
1 1 1 0 640x200 graphic monochrome

The eGA also has a status register similar to the status register in the
monochrome display adapter. The following figure shows the conslIUction of this
register, which can be found at address 3DAH. It is a read-only register.

7 6 5 4 321 Obit--r-,..........,.-...,

1 =memory access possible
without disturbing
screen contents

1=vldeo access triggered

L...-_-I0=vldeo access on
1 =vldeo access off
1=electronlc signal

transmitted In
vertical direction

Status register structure

Bit 0 of this register always contains the value 1 when the 6845 sends a horizontal
synchronization signal to the monitor. This signal is transmitted when the creation
of a line ends and the CRTs electron beam reaches the end of the screen line. The
electron beam then jumps back to the left comer of the screen line. The bit gets its
significance from the condition that the eGA doesn't always allow data reading or
writing within video RAM.

Flickering and tbe eGA

This problem occurs because the 6845 must continuously access video RAM to
read its contents for screen display. If a program triCS'to transmit data to video
RAM, problems can arise when the 6845 accesses video RAM at the same time.
The result of this memory collision is· an occasional flickering on the screen.

To avoid this problem, you should only access video RAM when the 6845 is not
accessing it. This only occurs when a horizontal synchronization signal travels to
the screen, because it requires a moment of time until the electron beam has carried

503

10. Accessing and Programming the Video Cards PC System Programming
"

out this instruction. For this reason, the status register must be read before every
video RAM access on a CGA. This process must be repeated until bit 0 contains
the value 1. When this happens, a maximum of two bytes can then be transmitted
to video RAM.

Demonstration program

The program at the end of this section demonstrates how this process functions.
This delay in video RAM access doesn't occur with monochrome cards because
they are equipped with special hardware logic and fast RAM chips. This is also
true of most of the newer model color cards. Before waiting for the horizontal
synchronization signal, which results in an enormous delay of the display output,
the user should try direct access to video RAM to test his color card's reaction
time.

If many accesses to video RAM occur within a short period of time (e.g., scrolling
the screen), the electron beam doesn't respond fast enough. The screen should be
switched off using bit 3 of the mode selection register. This prevents the 6845
from accessing video RAM, permitting unlimited user access to video RAM.
When data transfer ends, the screen can be switched on again. BIOS uses this
method during scrolling. which results in the flickering "silent movie effect."

Color selection register

The color selection register is located at address 3D9H. This register is write-only
(cannot be read).

7

Background color •
320x200 graphic mode,
border color In 40x25
text mode

L...____~ =Intenslve background
color In text mode

Number of color palette
~-------Iused In 320x200 graphl

mode
~----------------~Unused

Color selection register

The meanings of individual bits in this register depend on the display mode. Text
mode uses the lowest four bits for assigning the background color from the 16
available colors. In 320x200 graphic mode, these four bits indicate the color of all
pixels represented by the bit combination 00{b) (background color).

504

Abacus 10.4 The IBM Color Card

Bit 5 selects the color palette for 320x200 mode. If this bit contains the value I,
the first color palette (cyan, violet, white) is selected. A value of 0 selects the
second color palette (green, yellow, red).

Internal registers

The 18 internal registers of the 6845 on this card are accessed exactly like the
monochrome card. The only difference is that the index and the data register are
located at 3D4H and 3D5H. The following table shows the contents which the
register must have for various display modes.

No. Meaning Text 1 Text2 Graphics
0 Horiz. characters seeded 56 113 56
1 Horiz .. characters displayed «J III 40
2 Horiz. synchronization signal to 45 !ll 45

._. Characters
3 Horiz. synchronization signal 10 10 10

in characters
4 Vert. characters seeded 31 31 127
5 Vert. characters justified 6 6 6
6 Vert. characters displayed ;;S 25 100
7 Vert. synchronization signal to 28 28 112

_. characters
8 Interlace mode 2 2 2
9 Number of scan-lines per line 7 7 1
10 Starting line of blinkin<;L cursor 6 6 6
11 Ending line of blinking cursor 7 7 7
12 Display paqe starting address (high byte) 0 0 0
13 Display page starting address (low byte) 0 0 0
14 CUsrsor character address (high byte) 0 0 0
15 Cursor character address (low byte) 0 0 0
16 Reserved
17 Reserved

These registers are of interest to the user since they define the position and
appearance of the cursor on the screen. Sec#on ;10.1 described programming these
registers. The eGA adds registers 12 and13. They indicate the start of the video
page which must be displayed on the screen, as offset of the beginning of the 16K
RAM on the card (B800:0000), divided by 2. Register 12 contains the most
significant 8 bits of this offset, while register 13 contains lite least significant 8
bits. Normally both registers contain the value 0, displaying the frrst screen page
(beginning at the address B800:00(0) on the screen. For display of the first screen
page, which begins at location B800:1000 in the 8Ox25 text mode, the value
l000H divided by 2 (8ooH) must be entered in both registers.

The last of the three programs in this chapter accesses the color/graphics adapter.
The only significant difference between the two preceding programs lies in the fact
that the video controller can synchronize video RAM access and screen
construction. This is necessary on all video cards where direct access to video
RAM causes a flickering on the screen. The WAIT constant, defmed directly after
the program header, switches synchronization on or off. Its contents decide during

505

10. Accessing and Programming the Video Cards PC System Programming

the assembly of the program, whether to assemble the program lines for
synchronization listed in the source listing. These lines would slow down the
screen considerably, and should only be included if it is absolutely necessary.

Assembler listing: VCOL.ASM

i··**********·*******··**···**·········*****************······********i
;" VCOL ";
:*------------ --*:
;* Task : Makes some basic functions available for *;
;* access to the Color Graphics Adapter (CGA) *;

;*---*j*.;" Info All functions subdivide the screen ,
;" into columns 0 to 79 and lines 0 to 24 ";
;* in text mode and into columns 0 to 719 and *;
;* the lines 0 to 347 in graphic mode. *;
;* the 40 column text mode is not supported I *;
;" A high resolution graphic screen should appear";
;" first, followed by a text screen. If the high ";
;* res screen doesn't appear, try running the *;
;* program a few times in succession. *;

i*---*:
;" Author MICHAEL TISCHER ";
;" Developed on : 8/13/87 ";
;* Last update : 6/16/89 ";
;*---*;
;" assembly MASH VCOL (program will assemble with one ";
;" warning - it WILL link & run) ";
;* LINK VeaL; *;
;*---*i
;* Call : VCOL *;
i**************************·**i

;-- Constants -====--==-~===-=,..==-------

CONTROL REG - 03D8h ;Control register port address
CCHOICE- REG - 03D9h ;Color select register port address
ADDRESS 6845 - 03D4h ;6845 address register
DATA 6845 - 03D5h ;6845 data register
VI03EG = OBSOOh ;Video RAM segment address
CUR START - 10 ;Reg f for CRTC: Cursor start line
CU()NO -11 ;Reg f for CTRC: cursor end line
CURPG_HI = 12 ;Page address (high byte)
CURPG LO - 13 ;Page address (low byte)
CURPOS_HI = 14 ;Reg f for CRTC: Cursor pos high byte
CURPOS_LO - 15 ;Reg f for CRTC: Cursor pos low byte
DELAY = 20000 ;Counter for delay loop

i-= Macros -===--===-===---==-==--~---=--

;-- SETMODE : Macro for configuring screen control register --------

setmode macro modus

mov <lx,CONTROL_REG ;Address of the display control register
mov aI, modus ;New mode into the AL register
out <lx,al ;Send mode to control register

endm

;-- WAITRET: waits until display is completed -----------------------

waitret macro

local wrl ; Local label

mov <lx,3DAh ;Address of the display status register
wrl: in al,<lx ;Get content

S06

Abacus 	 10.4 TIulIBM Color Card

local 	 wr1 ; Local label

mov dx,3DAh ;Address of the display status register
wr1: 	 in al,dx ; Get content

test al,8 ;Vertical retrace?
je wr1 ;NO --> wait

endm

;- Stack ----------------

stack 	 segment para stack ;Definition of stack segment

dw 256 dup (1) ;256-word stack

stack 	 ends ;End of stack segment

;- Data ---=----------------=------
data 	 segment para 'DATA' ;Definition of data segment

;- Data required for demo program ---~--~-=--------

initm 	 db 13,10
db ·VCOL (c) 1988,1989 by Michael Tischer·
db 13,10,13,10
db "This demo program only runs with a Color/Graphics",13,10
db ·Adapter (CGA). If your PC uses another type of·,13,10
db "video card press the <s> key to stop the program.",13,10
db ·Press any other key to start the program••• ·,13,10,·S·

str1 	 db 1,0

;~- Table of offset addresses of line beginnings -==---=--------==-==
lines 	 dw 0*160, 1*160, 2*160 ;start addresses of the lines as

dw 3*160, 4*160, 5*160 ;offset addresses in the video RAM
dw 6*160, 7*160, 8*160
dw 9*160,10*160,11*160,12*160,13*160,14*160,15*160,16*160

dw 17*160,18*160,19*160,20*160,21*160,22*160,23*160,24*160

graphict 	 db 38h, 28h, 2Dh, OAh, 7Fh, 06h ;register values for the
db 64h, 70h, 02h, 01h, 06h, 07h ; graphic-modes

textt 	 db ?lh, SOh, SAh, OAh, 1Fh, 06h ; register-values for the
db 19h, 1Ch, 02h, 07h, 06h, 07h ;graphic-modes

wait dbO 	 ;TRUE «>0) when caller uses the
;/F switch

data 	 ends ;End of data segment

code 	 segment para 'COOE' ;Definition of the COOK segment

assume cs:code, ds:data, es:data, 	ss:stack

;== This 1s only the Demo-Program =-==-====-===---===--~-------===--

demo 	 proc far

;-- Look for IF from DOS prompt -----------------------

mov cl,ds:128 ;Get number of bytes from prompt
or cl,cl ;No parameters given?
je switch1 ;NO --> Ignore
mov bX,129 ;BX points to first byte in prompt
mov ch,bh ;set loop high byte to 0

switch: 	 cmp [bx], "F/" ;Switch in this position?

507

10. Accessing and Progromming tlu! Video Cards 	 PC System Progromming

je switchl
cmp [bx], "fI"

je switchl
inc hl
loop switch

switchl: 	 mov ax, data
mov ds,ax
mov eS,ax

mov wait,cl

;YES --> switch found
;Switch in this position?
;YES --> Switch found
;Set BX to next character
;Check next character

;Get segment addr. of data segment
;and load into OS
;and ES

; Set WAIT 	 flag

;-- Display init message and wait for input ------------

mov ah,9
mov dX,offset
int 21h

xor ah,ah
int 16h
cmp alt"s"
je ende
cmp al/"S"
jne startdemo

ende: 	 mov aX,4COOh
int 21h

startdemo 	 label near
call grafhi
xor al,al
call cgr

xor bX,bx
xor dX,dx
mov aX,199
mov cx,639

grl: 	 push cx
mov ex, ax
push ax
mov al,l

gr2: 	 call pixhi
inc dx
loop gr2
pop ax
sub aX,3
pop cx
push cx
push ax
mov al,l

gr3: 	 call pixhi
inc bx
loop gr3
pop ax
pop cx
sub ex, 6
push cx
mov ex,ax
push ax
mov al,l

gr4: 	 call pixhi
dec dx
loop gr4
pop ax
sub ax,3
pop cx
push cx
push ax
mov al,l

gr5: 	 call pixhi

;Function number for string display
initm ;Address of intial message

;Call DOS interrupt 21H

;Function number: get key
;Call BIOS keyboard interrupt
;<s> key pressed?
;YES --> End program
;<S> key pressed?
;NO --> Start demo

;Function number: End program
;Call DOS interrupt 21H

;switch on 320*200 pixel graphic

;Clear graphic display

;Column 0
;Line 0
; Pixels-vertical
; Pixels-horizontal
;Record horizontal pixels
;Vertical pixels to counter
;Record vertical pixels on the stack

; Set pixel
; Increment line
;Draw line
;Get vertical pixels from the stack
;Next line 3 pixels less
;Get horizontal pixels from the stack
;Record horizontal pixels
;Record vertical pixels on the stack

;Set pixel
;Increment column
;Draw line
;Get vertical pixels from stack
;Get horizontal pixels from stack
;Next line 6 pixels less
;Record horizontal pixels
;Vertical pixels to counter
;Record vertical pixels on the stack

;Set pixel
; Decrement line
;Draw line
;Get vertical pixels from stack
;Next line 3 pixels less
;Get horizontal pixels from stack
;Record horizontal pixels
;Record vertical pixels on the stack

;Set pixel

508

AbacllS 10.4 The IBM Color Card

demol:

demo2:

demo

dec bx
loop grS
pop ax
pop ex
sub ex, 6
cmp ax,S
ja grl

xor ah,ah
int l6h

call text
xor bp,bp
mov al,30h
or ax,bp
mov strl,al
call setcol
call setpage
call cIs
xor bx,bx
call calo
mov cx,2000
xor ah,ah
mov si, offset 'strl
inc ah
call print
loop demo2

xor ah,ah
int l6h
inc bp
cmp bp,4
jne demol

xor bp,bp
call setpage
jmP ende
endp

;-- The actual functions follow

;Increment column
;Draw line
;Get vertical pixels from the stack
;Get horizontal pixels from the stack
;Next line 6 pixels less
;Is the vertical line longer than S
;YES--> continue

;Wait for function number of key wait
;Call BIOS keyboard interrupt

;Switch on 80x25 character text mode
;Process screen page 0 first
;ASCII code ·0·
;Convert page number to ASCII
;Store in string
;Set color
;Activate screen page in BP
;Clear screen page
;Begin in the upper left
;Screen corner with output
;A page contains 2,000 characters
;Start with color code 0
;Offset address of string 1
;Increment color value
;Output string 1
;Repeat until screen is full

;Wait for key

;Call BIOS-Keyboard-Interrupt

;Increment page number

;All 4 pages processed ?

;NO --> then next page

;Activate page 0 again

;Goto program end

=---=---====~~----

;-- TEXT: switches the text display on -------------------------------
; -- Input none
;-- Output none
;-- Register : AX, SI, BH, OX and FLAGS are changed

text proc near

mov si,offset textt ;Offset address of the register-table
mov bl,OOlOOOOlb ;80x25 text mode, blinking
jmP short vcprog ;Program video controller again

text endp

;-- GRAFHI: switches the 640"200 pixel graphic mode on -----------------
;-- Input : none
; -- Output : none
;-- Register : AX, SI, BH, OX and FLAGS are changed

grathi proc near

mov bl,OOOlOOlOb ;Graphic mode with 640"200 pixels
jmP short graphic ;Program video controller again

grafhi endp

;-- GRAFLO: switches the 320"200 pixel graphic mode on -----------------
;-- Input : none
;-- Output : none
;-- Register: AX, SI, BH, OX and FLAGS are changed

509

10. Accessing and Programming the Video Cards 	 PC System Programming

graflo 	 proc near

mov bl,00100010b ;Graphic mode with 320*200 pixels
graphic: mav si,offset graphict ;Offset address of the register table

graflo 	 endp

;-- VCPROG: programs the video controller ----------------------------
;-- Input SI - Address of a register table
;- BL - Value for display control register
;-- OUtput none
;-- Register AX, SI, BH, OX and FLAGS are changed

veprog 	 proc near

setmode bl ;Bit 3 - 0: screen off

mov cx,12 ;12 registers are set
xor bh,bh ;Start with register 0

vep1: 	 lodsb ;Get register value from table
mov ah,al ;Register value to AH
mov al,bh ;Number of the register to AL
call setvk ;Transmit value to controller
inc bh ;Address next register
loop vepl ;Set addition~l registers

or bl,S ;Bit 3 = 1: screen on
setmode bl ;Set new mode
ret ;Back to caller

veprog 	 endp

;-- SETCOL Sets the color of the display frame and Background ----
;-- Input AL = color value
;-- OUtput none
; -- register AX and OX are changed
;-- Info in text mode the lowest 4 bits indicate the frame color
;- in graphic mode the lowest 4 bits indicate the frame
;-- and background color, bit 5 selects the color palette

setcol 	 proc near

mov dx,CCHOICE REG ;Address of the color selection register
out dx,al - ;Output color value
ret ; Back to caller

setcol 	 endp

;-- COEF sets the start and end line of the cursor -------------
;-- Input CL = start line
i-- CH = end line
;-- OUtput none
;-- register AX and OX are changed

cdef 	 proc near

mov aI, CUR_START ;Register 10: start line
mov ah,cl ;Start line to AH
call setvk ;Transmit to video controller
mov aI, CUR_END ;Register 11: end line
mov ah,ch ;End line to AH
jmp short setvk ;Transmit to video controller

cdef 	 endp

;-- SETPAGE sets the screen page --------------------------------

;- Input BP - Number of the screen page (0 to 3)

i-- Output none

i-- register BX, AX, CX and DX are changed

510

Abacws 10.4 The IBM Color Card

;-- Info in the Graphic modes the first screen page has the
;-- number 0, the second the number 2

setpage proc near

mov bx,bp ;Screen page to BX
mov cl,5 ;Multiply by 2,048
ror bx,cl
mov al,CURPG HI ;Register 12: Hi byte page address
mov ah,bh - ; Hi byte of the screen page to AH
call setvk ;Transmit to video controller
mov al,CURPG LO ;Register 13: Lo byte page address
mov ah,bl - ; Lo byte of the screen page to AH
jmp short setvk ;Transmit to video controller

setpage endp

;-- SETBLINK sets the blinking cursor ------------------------------
i-- Input 01 = Offset address of the cursor
i-- Output none
i-- register ax, AX and OX are changed

setblink proc near

mov bx,di ;Move offset to ax
mov al,CURPOS HI ;Hi byte of the cursor offset
mov ah,bh - ;HI byte of the offset
call setvk ;Transmit to video controller
mov al,CURPOS LO ;Lo byte of the cursor offset
mov ah,bl - ;Lo byte of the offset

;-- SETVK is called automatically --------------------------

setblink endp

;-- SETVK sets a byte in one register of the video controller ---
;-- Input AL = Number of the register
j-- AH - new content of the register
;-- Output none
;-- register OX and AL are changed

setvk proc near

mov dx,ADORESS 6845 ;Address of the index register
out dx,al - ;Send number of the register
jmp short $+2 ;Short 1/0 pause
inc dx ;Address of the index register
mov al,ah ; Content to AL
out dx,al ; Set new content
ret ; Back to caller

setvk endp

j-- GETVK gets a byte from one register of the video controller
i-- Input AL = Number of the register
i-- Output AL - Contents of register
i-- register DX and AL are changed

getvk proc near

mov dx,ADORESS_6845 ;Address of the index register
out dx,al ;Send number of the register
inc dx ;Index register address
jrnp short $+2 ; Short io pause
in al,dx iSet new contents
ret ; Back to caller

getvk endp

;-- SCROLLUP: scrolls a window N lines upward ------------------------

SI1

10. Accessing and Programming the Video Cards 	 PC System Programming

i-- Input
;-
;
;-
;-
;-
;-- OUtput

BL - line upper left
BH - column upper left
DL - line below riqht
DH = column below riqht
CL - Number of lines, to be scrolled
BP - Number of the screen paqe (0 to 3)
none

;-- reqister only FLAGS are chanqed
;- Info the display lines liberated are cleared

scrollup 	 proc near

cld

push ax
push bx
push di
push si

push bx
push ex
push dx
sub dl,bl
inc dl
sub dl,cl
sub bh,dh
inc dh
call calo
mov si,di
add bl,cl
call calo
xchq si,di

anp wait, 0
je supO

waitret
setmode OOlOOlQlb

supO: 	 push ds
push es
mov ax,VIO_SEG
mov ds,ax
mov es,ax

supl: 	 mov ax,di
mov bx,si
mov cl,dh
rep movsw
mov di,ax
mov si,bx
add di,160
add si,160
dec dl
jne sup1

pop es
pop ds

anp wait,O
je sup2

setmode OOlOllOlb

sup2: 	 pop dx
pop ex
pop bx
mov bl,dl
sub bl,cl
inc bl

iOn strinq commands count up

;All chanqed reqisters to the
;Secure stack
;In this case the sequence
;must be observed

;These three reqisters are returned
;before the end of the routine
; From t he stack
;Calculate the number of lines

;Subtract number of lines to be scrolled
;Calculate number of columns

;Convert upper left in offset
;Record address in SI
;First line in scrolled window
;Convert first line in offset
;Exchanqe SI and DI

;Flicker suppressed?
;NO -> SUPO

;YES -->Wait for retrace
;Disable screen

;Store segment reqister
;Ot!,the stack
;Segment address of the video RAM
;To DS
;And ES

;Record DI in AX
; Record SI in BX
;Number of columns in counter
;Move a line
;Restore DI from AX
;Restore SI from BX
; Set next 11ne

;processed all lines ?
;NO --> move another line

;Get segment reqister from
; Stack

;Flickerinq suppressed?
;NO --> SUP2

;YES --> Enable screen

;Get lower riqht corner back
;Return number of lines
;Return upper left corner
; Lower line to BL
;Subtract number of lines

512

AbaclLf 	 10.4 The IBM Color Card

mav ah,07h
call clear

pop si
pop di
pop bx
pop ax

ret

scrollup 	 endp

;-- SCROLLDN: scrolls a

;Color : black on white
; Clear lines

;CX and DX have already been
jRestored

;Back to caller

window N lines down --------------------------
;-- Input BL - line upper left
;-- BH - column upper left
; -- DL - line below right
; -- DH - column below right
;-- CL - number of lines to be scrolled
;-- BP - number of the screen page (0 to 3)
;-- Output none
;-- register only FLAGS are changed
;-- Info the display lines liberated are cleared

scrolldn 	 proc near

cld

push ax
push bx
push di
push si

push bx
push ex
push dx

sub dh,bh
inc dh
mav al,bl
mov bl,dl
call calo
mov si,di
sub bl,cl
call calo
xchg si,di
sub dl,al
inc dl
sub dl,cl

crnp wait,O
je sdnO

waitret
setmode 00100l0lb

sdnO: 	 push ds
push es
mov ax,VIO_SEG
mov ds,ax
mov es,ax

sdnl: 	 mov ax,di
mav bx,si
mav cl,dh
rep movsw
mov di,ax
mov si,bx
sub di,160
sub si,160
dec dl

IOn string commands count up

;Record all changed registers
; On the stack
;In this case the sequence
;Must be observed

;These three registers are returned
;From the stack before the end
;Of the routine

;Calculate the number of columns

;Record line upper left in AL
;Line below right to line below left
;Convert upper left in offset
;Record address in 51
;Subtract number of characters to scroll
; Convert upper left in offset
;Exchange 51 and DI
;Calculate number of lines

;Subtract 	number of lines to be scrolled

;Flicker suppressed?
;NO --> SDNO

;YES --> Wait for retrace
iDisable screen

;Store segment register on the
;Stack
;Segment address of the video RAM
;To DS
land ES

;Record DI in AX
;Record 51 in BX
;Number of columns in counter
;Move a line
;Restore Dr from AX
;Restore SI from ax
;set into next line

;processed all lines

513

10. Accessing and Programming the Video Cards 	 PC System Programming

jne sdnI ;NO --> move another line

pop es ;RAlturn segment reqister from
pop ds ; stack

cmp wait,O ;Flicker suppressed?
je sdn2 ;NO --> SDN2

setmode OOlOllOlb ;YES --> Enable screen

sdn2: 	 pop dx ;Get lower right corner
pop ex ;Return number of lines
pop bx ;Return upper left corner
mav dl,bl ;upper line to DL
add dl,cl ;Add number of lines
dec dl
mav ah,07h ;Color : black on white
call clear ;Erase liberated lines

pop si ;CX and DX have already been
pop di ; Returned
pop bx
pop ax

ret 	 ;Back to caller

scrolldn 	 endp

;-- CLS: Clear the screen completely ---------------------------------

;-- Input : BP - number of the screen page (0 or 1)

;-- OUtput : none

;-- register : only FLAGS are changed

cls 	 proc near

mav ah,07h ;Color is white on black
xor bx,bx ;upper left is (0/0)
mov dx, 4F18h ;Lower right is (79/24)

;-- Execute Clear --

cIs 	 endp

;-- CLEAR: fills a designated display area with space characters -----
;-- Input AH - attribute/color
;-- BL - line upper left
;-- BH = column upper left
;-- DL ~ line below right
; -- DH = column below right
;-- BP = number of the screen page (0 to 3)
;-- Output none
; -- regi ster only FLAGS are changed

clear 	 proc near

cld iOn string commands count up
push ex ;Store all register which are
push dx ;Changed on the stack
push si
push di
push es
sub dl,bl ;Calculate number of lines
inc dl
sub dh,bh ;Calculate number of columns
inc dh
call calo ;Offset address of the upper left corner
mav cx,VIO_SEG ;Segment address of the video RAM
mov es,cx . ;To ES
xor ch,ch ;Hi bytes of the counter to 0

514

Abacus 	 10.4 The IBM Color Card

mov al,· • ;Space character

c::mp
je

wait, 0
ciearl

;Flickering suppressed?
;NO --> CLEAR!

push dx
waitret
setmode OOIOOIOlb
pop dx

;Store DX on the stack
;Retrace wait
;Switch screen off
;Return DX from the stack

clearl: mov si,di
mov cl,dh
rep stosw
mov di,si
add di,160
dec dl
jne ciearl

;Record DI in SI
;Number columns in counter
;Store space character
;Return 01 from SI
;Set in next line
;AII lines processed?
;NO --> erase another line

c::mp
je

wait,O
clear2

;Flicker suppressed?
;NO --> CLEAR2

setmode OOIOllOlb ;Enable screen

clear2: pop
pop
pop
pop
pop
ret

es
di
si
dx
ex

;Get registers from
; Stack again

; Back to caller

clear endp

;-- PRINT: outputs a string on the screen ----------------------------
;-- Input AH - attribute/color
; -- 01 - offset address of the first character
;-- SI - offset address of the strings to OS
;-- BP - nlllllbEir of the screen page (0 to 3)
;-- OUtput 01 points behind the last character output
;-- register AL, DI and FLAGS are changed

Info the string must be terminated by a NUL-character.
;-- other control characters are not recognized

print 	 proc near

cld ;On string commands count up
push si ;Store SI, DX and ES on the stack
push es
push ex
push dx
moy dx, VIO SEG ;Segment address of the video RAM
moy cl,wait ; Get WAIT flag
moy es,dx ;First to DX and then to ES

jmp short print3 ;Get character and display it

printl 	 label near

or cl,cl ;Flicker suppressed?
je print2 ; NO --> PRINT2

push ax ;Record characters and color
mov dx,3DAh ;Address of the display-status-reqister

hrl: 	 in al,dx ; Get content
test al,1 ;Horizontal retrace?
jne hri ;NO --> wait
cli ;permit no further interrupts

hr2: 	 in al,dx ; Get content
test al,1 ;Horizontal retrace?
je hr2 ;YES --> wait
pop ax ;Restore characters and color

515

10. Accessing and Programming tlu! Video Cards PC System Programming

sti ;Do not suppress Interrupts any more

print2: stosw ;Store attribute and'color in V-RAM
print3: lodsb ;Get next character from the string

or al,al ;Is it NUL
jne printl ;NO --> output

printe: pop dx ;Get SI, OX, CX and ES from stack
pop cx
pop es
pop si
ret ; Back to caller

print endp

;-- CALO: Converts line and column into offset address ---------------
;-- Input BL - line
;- BH - column
;-- BP - number of the screen page (0 to 3)
;-- Output 01 - the offset address
;-- register 01 and FLAGS are changed

calo proc near

push ax ;Secure AX on the stack
push bx ;Secure BX on the stack

shl bx,1 ;Column and line times 2
mav al,bh ;Column to AL
xor bh,bh ;Hi byte
mov di, [lines+bx] ;Get offset address of the line
xor ah,ah ;HI byte for column offset
add di,ax ;Add line and column offset
mav bX,bp ;Screen page to BX
mav cl,4 ;Multiply by 4,096
ror bx,cl
add di,bx ;Add beginning of screen page to offset
pop bx ;Restore BX from stack
pop ax ;Restore AX from stack
ret ; Back to caller

calo endp

;-- CGR: Erase the complete Graphic display --------------------------
;-- Input At = OOH erase all pixels
;-- FFH : set all pixels
;-- Output none
; -- register AH, BX, CX, 01 and FLAGS are changed
;-- Info this Function erases the Graphic display in both
i-- Graphic modes

cgr proc near

push es ;Store ES on the stack
cbw ; Expand At to AH
xor di,di ;Offset address in video RAM
mov bx,VIO_SEG ;Segment address screen page
mav es,bx ;Segment address into segment register
mav cx,2000h ;One page is 8KB words
rep stosw ;Fill page
pop es ;Return ES from stack
ret ; Back to caller

cgr endp

;-- PIXLO: sets a pixel in the 320*200 pixel graphic mode

;-- Input BP - number of the screen page (0 or 1)

; - BX - column (0 to 319)

;-- OX - line (0 to 199)

;-- AL - color of the pixels (0 to 3)

516

Abacus 10.4 The IBM Color Card

OUtput none

;-- register : AX, DI and FLAGS are chanqed

pixlo proc near

push ax ;Secure AX on the stack
push bx ;Note BX on the stack
push ex ; Store ex on the stack
mov cl,7
mov ah,bl ;Transmit column to AH
and ah,llb ;Column mod 4
shl ah,l ;Column * 2
sub cl,ah ;7 - 2 • (column mod 4)

mov ah,ll ;Bit value
shl ax,el ;Move to pixel position
not ah iReverse AM
shr bx,l ;Divide BX by 4 by shiftinq
shr bx,l ; Riqht twice
jrnp short spix ;Set pixel

pixlo endp

;-- PIXHI: sets a pixel in the 640*200 pixel qraphic mode

;-- Input BP = n~r of the screen paqe (0 or 1)

i- BX = column (0 to 639)

; DX - line (0 to 199)

i-- AL - color of the pixels (0 or 1)

;-- OUtput none

;-- reqister AX, DI and FLAGS are chanqed

pixhi proc near

push ax ;Store AX on the stack
push bx iNote BX on the stack
push ex ;Note ex on the stack
mov cl,7
mov ah,bl ;Transmit column to AH
and ah,l11b ;Column mod 8
sub cl,ah ; 7 - column mod 8
mov ah,l ;Bit value
shl ax,el ;Move pixel position
not ah ;Reverse AH
mov cl,3 ;3 shifts
shr bx,cl ;Divide BX by 8

;-- set pixel ---

pixhi endp

;-- SPIX: sets a pixel in the graphic display -----------------------
;-- Input BX = column offset
;-- DX - line (0 to 199)
;-- AH = Value to cancel old Bits
;-- AL - new Bit value

Output none
i-- register AX, DI and FLAGS are changed

spix proc near

push es ;Secure ES on the stack
push dx ;Secure DX on the stack
push ax ;Secure AX on the stack

xor di,di ;Offset address in video RAM
mov ex,VIO_SEG ;Seqrnent address screen paqe
mov es,cx ;Segment address into segment register
mov ax,dx ;Move line to AX
shr ax,l ;Divide line by 2
mav cl,80 ; The factor is 90
mul cl ;Multiply line by 80

517

10. Accessing and Programming the Video Cards 	 PC System Programming

and
mov
ror
moV
add
add
pop
mov
and
or
mov

pop
pop
pop
pop
pop

ret

dx,l
cl,3
dx,cl
di,ax
dl,dx
dl,bx
ax
bl,es:[di]
bl,ah
bl,al
es:[dij,bl

dx
es
cx
bx
ax

;Line mod 2
;3 shifts
; Rotate right (* 2000H)
;80 • int(line/2)
;+ 2000H • (line mod 4)
;Add column offset
;Return AX from stack
;Get pixel
;Erase Bits
;Add pixel
; write pixel back

; Return ox from stack
; Return ES from stack
; Return ex from stack
iReturn BX from stack
iReturn AX from stack

; Back to caller

splx endp

i=- end ==-=--~-----========--===-==-===~====---===----=====-=---=---==

code 	 ends ;End of the code segment
end demo

S18

Abacus 10.5 EGA and VGA Cards

10.5 EGA and VGA Cards

The EGA and VGA cards far exceed their predecessors in both graphics and in text
display capabilities. Other computers have had EGA and VGA capabilities for
some time (e.g., work stations, CAD/CAM applications), but these video cards are
now at prices where many home systems will soon have them.

The range of power of this new generation of video cards can be seen in their very
sharp resolutions and their ability to display almost any number of lines on the
screen. The EGA and VGA cards' greatest feature lies in their ability to emulate
other video cards.

These capabilities come with a price-more complicated hardware and
programming are required. One result of this is that the features of an EGA card or
a VGA card can no longer be realized with the traditional PC video controller (the
Motorola 6845). Instead, most EGA and VGA cards contain a VLSI chip developed
especially for use on an EGA card. At the heart of this component is a video
controller that controls the video signal generation. Its basic task is similar to that
of the 6845, but its registers differ from those of the 6845, both in number and
interaction between registers. Comparing the 6845 and VSLI is like comparing
BASIC and assembly language, where the increase of power is in proportion to the
degree of language complexity.

We recommend that you avoid programming the hardware registers directly unless
you absolutely must do so. Many tasks can be delegated to the BIOS without
wasting much time. Not only will this keep your program code more compact and
easier to read, it will greatly improve the compaubility of your code with other
video cards. Among the tasks which the various functions of the BIOS video
interrupt can perform are:

Initialization of the video mode

Selection of the display page

Cursor positioning

Defining the starting and ending line of the cursor

Palette and border color selection

Setting the size of the character matrix, and thereby the number of text
lines which can be displayed on the screen

Loading user-defined character sets

Reading configuration data

Detailed information about traditional BIOS video functions and the new functions
of the EGA/VGA BIOS can be found in Sections 7.4.

519

10. Accessing and Programming the Video Cards PC System Programming

If you need speed and maximum control over the screen, you should still perform
time-critical actions (e.g., manipulating video RAM) "by hand."

EGAlVGA and text mode

There is no difference between the EGA and MDA or CGA card in text mode. The
video RAM and attribute byte are organized the same way for the EGA card as for
the other two cards-even the location of the video RAM is the same. But since an
EGA card can emulate either a eGA card or an MDA card, depending on the
monitor to which it is connected, you should first determine what kind monitor is
in use. From this the EGA can determine which of the two systems to emulate
(routines presented in Section 10.7 show how this is done). The type of card being
emulated determines where the video RAM can be found in memory, how the bits
of the character attribute byte are interpreted, and how many screen pages are
available.

Remember that the EGA or VGA card does not contain a 6845 CRTC, despite the
fact that it can perfectly emulate its video predecessors. This means that the status
and control registers of the MDA and eGA cards are unavailable. However, since
the settings that are normally made with these registers can also be performed with
the BIOS, we don't really need these registers. You should also remember that
there are no restrictions to accessing the video RAM of an EGA card or a VGA
card when it is in eGA emulation. It is unnecessary to synchronize screen access
with the activity of the CRTe by reading the status register.

The para1lels between the organization of the video RAM in the eGA and MDA
cards also apply when the text mode is switched to 43 lines (which is impossible
in eGA emulation). As with any other number of displayed lines, this does not
change the basic structure of the video RAM at all. It is larger, but the formulas
for calculating the offset position of a character and its attribute byte within the
video RAM are still valid.

The VGA card is capable of 25, 43 and even 50 lines in text mode, depending on
the monitor in use.

These parallels also apply to the graphics modes already available to the eGA card
The position of the video RAM and its structure are identical to the those of the
CGAcard

EGA!VGA and graphic modes

The EGA card offers the following new graphics modes:

320x200 pixels, 16 colors (BIOS code: ODH)

640x200 pixels, 16 colors (BIOS code: OEH)

• 64Ox350 pixels. 2 colors (BIOS code: OFH)

520

Abacus 10.5 EGA andVGA Cards

• 640x350 pixels, 16 cobs (BIOS code: 10H)

The VGA card offers the following graphic modes:

• 640x480 pixels, 2 colors (BIOS code: IlH)

• 64Ox480 pixels, 16 colors (BIOS code: 12H)

• 320000 pixels, 256 colors (BIOS code: 13H)

Some EGA cards have even more modes with higher resolution or more colors,
but these modes are not part of the EGA standard and are supported by only a few
programs.

It is somewhat difficult to talk about a "standard", because almost every
manufacturer has their own modes. Let's look at the lowest common
denominator-the modes which practically all EGA/VGA cards support. These are
the modes supported by the original EGA card, the mM EGA.

These video modes, in which the video RAM can occupy more than lOOK, show a
structure quite different from those used by the MDA, eGA and Hercules cards.
The maximum of 256K of RAM is divided into four bit planes which are arranged
in a kind of a three-dimensional organization. From the processor's point of view
these bitplanes reside between segment addresses AOOOH and BOOOH.

Each bitplane contains one bit for each individual pixel. Ifyou place the bitplanes
on top of each other, each pixel is represented by a total of four bits, which
together make up the color value of the pixel. Bitplane zero contains bit zero of
the color value of each pixel, bitplane one contains bit one, and so on. This limits
the number of displayable colors to 16, since four bits (or bitplanes) can represent
~,or 16 different numbers.

The color value obtained from combining individual bitplanes does not correspond
directly to a color. It is actually used as an index into one of the 16 palette
registers of the EGA card, each of which designates a particular color. Since the
EGA card can display a total of 64 different colors, the palette registers allow you
to select 16 of these colors to be displayed on the screen simultaneously. The
individual palette registers can be loaded with the help of the extended EGA BIOS
functions, as described in Section 7.4.

The structure of each bitplane corresponds to the organization of the pixels on the
screen, and parallels that of video RAM in text mode. Since each pixel occupies
one bit in the bitplane, eight consecutive pixels are combined into a byte. The
pixels on each line are placed left to right in successive memory locations. The
length of each line can be determined using the fonnula:

horizontal_resolution / 8

521

10. Accessing and Programming the Video Cards PC System Programming

Since the individual screen lines follow each other in sequence starting from the
top of the screen, the starting address of each line is obtained by multiplying the
line number by this value. The byte within this line which contains the desired
pixel is calculated by dividing the column number by eight (bits per byte). Adding
this to the starting address of the line gives us the following formula, which
calculates the offset address of the byte containing the coordinates (X, Y):

Y * (horizontal_resolution / 8) + X / 8

X columns

AOOO:OOOO
Y lines

Vdeo Display Monitor

Bitplane arrangement on EGA card

The bit number at which the pixel is located in this byte results from the
remainder of the division of the column number by eight:

7 - (column_number MOD 8)

These two formulas can be used to localize a pixel within a bitplane and
implement graphics primitives.

However, the bitplanes cannot be accessed individually because they all lie at the
identical segment address. The EGA card has four latch registers, each of which
contains a complete byte from one of the four bilplanes. When the CPU performs
a read access from the EGA video RAM at segment address AOOOH, one byte is
frrst read from each of the four bitplanes at the specified offset address and loaded
into the four latch registers. This applies to instructions which access memory

522

AbacIU 10.5 EGAandVGACards

directly, such as MOY or LODS, as well as all insttuctions in which a byte from
the video RAM appears as an operand. This can be the case with arithmetic
insttuctions (ADD, SUB, OR, AND, etc.) and comparison instructions (CMP,
CMPS).

The process is similar for writing bytes to the video RAM. In this situation the
contents of the four latch registers are written back to the four bitpJanes.

bits 01234567
n ..

CPU
J

read
access LATCHES

BITPLANES

Video RAM access-loading the foUT latch registers

bitStO~1~~23§4~5~6~7~~~~~~~~~~~~~~~lIn
cPu~ }
write v _
access LATCHES

BITPLANES

Video RAM access-writing the foUT latch registers

Since the latch registers are not directly accessible to the processor, we must
alternate conversion between eight and 32 bits when reading and writing the video
RAM. When reading, 32 bits from the latch registers must be compressed into one
byte, while the eight bits from the CPU when writing must be divided among the
32 bits of the latch registers. The nine graphic controller registers in the EGA card
perform this conversion.

523

10. Accessing and Programming tlul Video Cards PC System Programming

EGA graphic controller registers and their default values
Registe! Meaning Default
OOH Set I Reset OOH
OlH Enable Set I Reset OOH
02H Color COlllpare OOH
03H Function Select OOH
04H Read Map Select OOH
OSH Mode OOH
06H Miscellaneous varies
07H Color Don't Care OFH
OSH Bit Mask FFH

Access to these registers is similar to CRTC register access on the Hercules
graphics card. Here too there is an address register at port address 3DEH, into
which we must fJrSt load the number of the register in the graphics controller that
we want to access. The value for this register can then be written to the data
register located at address 3CFH, immediately after the address register. These ports
do not have to be accessed separately: A 16-bit OUT instruction to the address
register performs the access in one move. The AX register, which will be sent to
this port, must contain the register number in the low-order byte (AL), and the
value for this register in the high-order byte (AH). Although values can be loaded
into the graphics controller registers in this manner, it is not possible to read data
from the EGA card.

The contents of register number five, the mode register, are responsible for the
behavior of the video RAM. This register controls the current read and write
modes and thereby the manner in which the data from the latch registers is
combined with the other registers in the graphics controller and the CPU data.

7 6 S 4 3 2 1 0 bit --.---,

Write mode
Possible modes:
0, 1 and 2
Read mode

'------.... Posslble modes:
o and 1

Mode register structure in EGA card graphics controller

There are a total of two different read modes and three write modes.

524

Abacus 10.5 EGA and VGA Cards

Read mode 0

Read mode 0 is the simpler of the two read modes. As usual, a read access in this
mode first loads the specified byte from the four bitplanes into the four latch
registers. Then the contents of the latch register specified by the lower two bits of
the read map select register (register four) are tramferred to the CPU.

bits

0
3 5

:0:
7 -1 ,

CPU 2
ead 3r 0 r

aecess LATCHES

BITPLANES"
XXXXXX 00
Read Map

Select Register
Video RAM read access in read mode 0

The following sequence of assembly language instructions fmt sets read mode 0,
then writes the value 2 into the Read Map Select register, and fmally reads a byte
from offset address 0003H in the video RAM. As a result, the AL register contains
the bit values for the pixels with coordinates (24, 0) to (31, 0) from bitplane 2.

mov dx,3CEh ;port address of the graphics oont. addr. reg.
mov aX,0005h ;write read mode 0 in the mode register
out dX,ax
mov aX,0204h ;write the value 2 (plane number) in the
out dx,ax ;read map select register
mov aX,OAOOOh ;segment address of the video RAM
mov ds,ax ;to DS
mov si,0003h ;offset address into the video RAM
lodsb ;read byte from plane 2

Read mode 1

Read mode 1 specifies which of the eight pixels in the specified byte of video
RAM is set to a certain color. This is determined by the individual bits in the read
byte which correspond to the one of the eight pixels from the specified byte in the
video RAM. If a pixel has the specified color (appropriate bit map), then the
corresponding bit will be I, else O. The bit pattern of the color to be compared
must be loaded into the lower four bits of the Color Compare register. The lower
four bits of the Color Don't Care register show which bitplanes will be taken into
consideration in the comparison. The value 1 includes the given plane in the
comparison, while the value 0 excludes it.

S2S

10. Accessing IJ1Id Programming tlu! Vicko Cards PC System Programming

BITPLANES

t3
tP

~--------------~ ~

1111
Color don't care

register
11

o
Color Compare

Register

To CPU~

Video RAM read access in read mode 1

The following program sequence determines which of the pixels between
coordinates (0, 0) and (7. 0) have color value five. First. read mode 1 is set by the
Mode register. Then the color value to be tested (five) is loaded into the Color
Compare register. We must also load the Color Don't Care register with the value
Illlb so that all four bitplanes will be included in the comparison. However. this
is the default value and we have not loaded any other value into this register, so we
can skip this step. After programming the registers of the graphics controller, we
load the segment and offset addresses of the pixels to be compared into the OS and
SI registers. Then the read is executed from the video RAM.

526

Abacus 10.5 EGA andVGA Cards

mov dx,3CEh ;port address of the graphics cant. addr. reg.
mov aX,080Sh ;write read mode 1 into the mode register
out dx,ax
mov ax,0502h ; write color value 15 into the
out dx,ax ;Color Compare register
mov ax, OAOOOh ;seqment address of the video RAM
mav ds,ax ito OS
xor si,si ;load offset address 0
lodsb ;read and compare pixels,

;return result in AL

Write mode 0

Writing to the video RAM in write mode 0 results in a number of operations, all
of which depend on the contents of several registers. The contents of the Bit Mask
register determine whether the value of a bit in the four latch registers will be
written unchanged to the found bitplanes or whether it will first be modified. The
individual bits in the Bit Mask register correspond to the individual bits in the four
latch registers. If a bit in the Bit Mask register is 0, the corresponding bits in the
latch registers will be written to the bitplanes unchanged. If this bit is I, a
modification will take place, dependent on the contents of the Function Select
register. As the following figure shows, the bits can be replaced or modified with
the logical operations AND, OR, and XOR.

1 6 5 4 3 2 1 Obit
-....,-

"-------tComparison modes
OOb = Replace
01 b =AND comparison
1Db =OR comparison
11 b =XOR comparison

Function Select Register structure in EGA card graphics controller

The contents of the Enable Set/Reset register determines from where the other
operand in these operations will come. If the lower four bits contain the value I,
the other operand will come from the lower four bits of the Set/Reset register.
Each of these bits is then combined with the bits from the latch registers as
described by the contents of the Function Select register. All of the bits to be
modified from latch register 0 will then be operated on with bit 0 of the Set/Reset
register. In the same manner, all of the bits to be modified from latch registers I,
2, and 3 are combined with bits 1,2, and 3 of the Set/Reset register, respectively.
The byte which is actually written to the graphics controller becomes irrelevant at
this point-the write access is reduced to a trigger, which cannot have any direct
influence on the contents of the latch register (and therefore the bitplanes).

527

10. Accessing and Programming the Video Cards PC System Programming

Latch to Latch n Latch t2 Latch .3

Bl.tmaskRJj[[:1(j(J(jo I .. : " " i" Oi ~ & l~ :]..
I

Dset/AeoeI: l1!Cj!.st.e<" liD~ W
J

lD-<:R caacarison

E\rdJm
sela::t
ra#er

Byte in: Bitplane #0 Bitplane ill Bitplane #2 Bitplane #3

Write access to video RAM (write mode 0) when Enable Set/Reset register
contains a value o/OOOOllll(b)

The following assembly language fragment assigns the pixels at coordinates (5, 0)
and (7, 0), found at offset address OOOOH in the video RAM, the color 1 011 (b).

Since we don't want to change the color of the other pixels, the contents of the
byte are flfSt read into the latch register with a read access to the video RAM. It is
not important which read mode is active because the byte transmitted to the CPU
is irrelevant; all we are interested in is loading the latch register. Since only bits 0
(coordinates (7,0» and 2 (coordinates (5, 0» will be changed, we load the value
00000101b (05h) into the bitmask register. In the Function Select register we
write the value 0 because we want to replace bits 0 and 2 with a new bit
combination. We write the color we want to give to the two bits (1OIIb = OBh) in
the Set/Reset register. We must also write the value I 111(b) (OFH) to the Enable
Set/Reset register of the graphics controller so that the color value will be taken
from the Set/Reset register. We can then execute the write access to video RAM.

mov ax,OAOOOh ;segment address of the video RAM

mov ds,ax Ito DS

xor bx,bx ;load offset address 0

mov aI, [bx] ;load byte 0 in the latch register

mov dx,3CEh ;port address of the graphic cont. addr. reg.

mov ax,0005h ;read mode 0, write more 0

out dx,ax ;write in the mode register

moval,03h ;write 0 in the Function Select register

out dx,ax

mov aX,050Bh ;write bit mask in the bitmask register

out dx,ax

mov ax,OBOOh ;write new color value in the Set/Reset register

out dx,ax

mov aX,OFOlh ;write Illlb in the Enable Set/Reset register

out dx,ax

mov [bx] ,al ;trigger latch register

Things are different when the Enable Set/Reset register contains the value zero. In
this case all of the bits to be modified from the four latch registers are combined
with the CPU byte latch by latch. Here again the type of operation perfonned

528

Abacus 10.5 EGA and VGA Cards

depends on the contents of the Function Select register. For example, if the OR
operation is selected and bits 1,2,4, and 6 are to be modified, than these bits of
all four latch registers will be individually ORed with bits 1,2,4, and 6 in the
CPU byte.

Latch to Latch i1 Latch t2 Latch #3

mifl~~'~;~M~i~J~~~Jlt~J'~p~U~~r-~~~ll~U~~~·~~~.~~

H J H H

Byte in: Bitplane j/.O Bitplane n Bitplane j/.2 Bitplane j/.3

Write mode 1

Write mode 1 is quite simple compared to the complex operations of write mode O.
The contents of the registers and the CPU byte are irrelevant because the contents
of the four latch registers are loaded unchanged into the specified offset address
within the four bitplanes. This is useful for copying the color values of eight
successive pixels to eight other pixels, for instance. The byte containing the eight
pixels can be read under one of the read modes, placing it in the latch registers.
Then a write access can be made to the byte in video RAM to which you want to
copy the color values. The graphics controller will automatically copy the contents
of the latch registers to the specified position within the four bitplanes.

To write these color values to other locations, you can use additional write
accesses. No more read accesses are necessary, since the latch registers already
contain the appropriate values and their contents are not changed by the write
access.

Write mode 2

Write mode 2 resembles a combination of the various modes of write mode O. As
in write mode 0, the bitmask register detennines which bits will be taken directly
from the latch registers and which will be modified. The manner in which these
bits are manipulated is again determined by the mode selected in the Function
Select register. The lower four bits of the CPU byte will be combined with the

529

10. Accessing and Programming the Video Cards PC System Programming

latch registers, independent of the Enable Set/Reset register. Bit zero of the CPU
byte is combined with all bits in latch register zero which are to be modified. The
same applies for CPU bits 1,2, and 3, which are combined with the bits of latch
registers 1,2, and 3, respectively.

Latch to Latch t1 Latch t2 Latch t3

Bibmsl<.
ICJaOOCi ... : ~ M·j

I
... :r~ . .1,,-.1.

0: 1 r~ '" .~ o! '" :]

I

CPU l!r1:e ~ll
II °lll W It

1O-<:R Ca'rIlarison

IJ<lJ<lJ 10
F\n:t.Im- (l){1

register

Byte in: Bitp1ane '0 Bitp1ane '1 Bitplane .2 Bitplane #3

Write access to video RAM in write mode 2

This mode is good for setting the colors of individual pixels, as we demonstrated
in the example in write mode O. In contrast to write mode 0, the assembly
language fragment is somewhat shorter because neither the Enable SetIReset nor
the Set/R.eset register has to be programmed. Here is the same example using write
mode 2:

mov aX,OAOOOh ;segment address of the video RAM
mov ds,ax ;in DS
xor bx,bx ;load offset address °
mov aI, [bx] ;load byte ° in the latch registers
mov dx,3CEh ;port address of the graphics cont. addr. reg.
mov aX,020Sh ;read mode 0, write mode 2
out dx,ax ;write into the mode register
mov ax,0003h ;write REPLACE mode (0) in the Function
out dx,ax ;Select register
mov ax,OS08h ;write the bit mask to the bitmask register
out dX,ax
mov al,OBh ;new color value in AL
mov [bx] , al ;and from there to the video RAM and

;into the latch regs and bitplanes

Demonstration program

The following program demonstrates the following basic graphics routines:

Calculating the position of a pixel within the video RAM

Setting the color of a pixel

Reading the color of a pixel

• Filling the entire video RAM with a color

SJO

Abac/lS 10.5 EGAandVGA Cards

If you have followed this section closely, especially the material on the read and
write modes, you won't have any problems following the logic of the various
functions. Since it contains detailed documentation, we won't say anything more
aboutiL

It should be noted that the program is intended for demonstration purposes only.
You can develop it further if you want to make a graphics library out of these
functions. For example, the function PIXPTR loads the segment address of the
video RAM into the ES register for calculating the position of a pixel within the
video RAM each time it is called. This can be eliminated by loading this address
into the register once at the beginning of the program and leaving it there, as long
as the other functions do not change this register.

The graphics controller register programming can also be improved. Here the
various registers are reloaded with the ROM-BIOS default values after the function
has completed. This can be eliminated as long as you do not use the BIOS
functions for character output (in the graphics mode) or the functions for setting
and testing points within the module or program. If you avoid these calls, then
these registers can be reset to their default values once at the end of the program
instead of at the end of each routine.

Assembler listing: VEGA.ASM

;*******************************.**************************************:
;* VEGA *:
:*--*:
;* Task : Creates elementary functions for accessinq the *;
;* qraphic modes on an EGA/VGA card *;
:*--*:
;* Author : MICHAEL TISCHER *;
;* Developed on : 10/3/1988 *;
; * Last update : 6/19/1989 *;
:*--*:
;* Assembly : MASH VEGA; *;
;* LINK VEGA; *;
:*--*;
;* Call : VEGA *;
;**;

;-- Constants ---=====-====---=========-------==-----------======--=====

VIC SEG = OAOOOh ;Seqrnent address of video RAM
;in qraphic mode

LINE LEN - 80 ;Every qraphi line in EGA/VGA qraphic
;modes require 80 bytes

BITMASK REG - 8 ;Bitmask reqister
MODE REG - 5 ;Mode reqister
FUNCSEL REG - 3 ;Functlon select register
MAPSEL REG - 4 ;Map-Select reqister
ENABLE-REG = 1 ;Enable Set/Reset reqister
SETRES REG = 0 ;Set/Reset reqister
GRAPH CONT = 3CEh ;Port addressd of qraphic controller
OP_MODE = 0 ;Comparison operator mode:

OOh - Replace
08h - AND comparison
10h ~ OR comparison
18h - EXCLUSIVE OR comparison

;BIOS code for 640x350-pixel

531

10. Accessing and Programming the Video Cards 	 PC System Programming

i16-color graphic mode
- 03h iBIOS code for 80*25-char.

itext mode

; == Stack ----==~==--------------------------------=--

stack 	 segment para stack ;Definition of stack segment

dw 256 dup (?) ; 256-word stack

stack 	 ends ;End of stack segment

; == Data ==--========-=....=-=---=---==-----===-----=-===
data 	 segment para 'DATA' ;Definition of data segment

;-- Data for the demo program -=====-~====-=-----------=----=--==-----

initm db 13,10
db "VEGA (c) 1988 by Michael Tischer"

db 13,10,13,10
db "This demonstration program operates only with an EGA/",13,10

db "card and a hi-res monitor. If your PC doesn't have this",13,10
db "configuration, please press the <s> key to abort the",13,10
db "program.",13,10

db "Press any other key to start the program.",13,10,"S"

data 	 ends ;End of data segment

;~= Code ======-=====--======-======-----------------=======-=-=----===

code 	 segment para 'CODE' ;Definition of code segment

assume cs:code, ds:data, es:data, ss:stack

i== Demo program ==========~-=======-=------==-==----==-=====-=--===----

demo 	 proc far

mov ax, data iGet segment addr. from data segment
mov ds,ax iand load into DS
mov es,ax iand ES

Display opening message and wait for input --------------

mov ah,9 ;Function number for string display
mov dX,offset initm ;Message address
int 21h ;Call DOS interrupt

xor ah,ah ;Get function number for key
int 16h ;Call BIOS keyboard interrupt
cmp al/"s" ;Was <s> entered?
je ende ;YES --> End program
cmp al,"S" ;Was <5> entered?
jne startdemo ;NO --> Start demo

ende: 	 mov ax,4COOh ;Function no. for end program
int 21h ;CaU DOS interrupt 21H

Initialize graphic mode ---------------------------------

startdemo label near

mov ax,GR_640_3S0 ;Initialize 64x3S0-pixel
int 10h ;16-color graphic mode

532

Abac/U 	 105 EGA and VGA Cards

mov ch,OOOIOOOOlb iCOIOr: Blue
mov ax,350 iNumber of raster lines: 350
call fillscr i Fill screen

i-- The program displays two squares on the screens (the
;-- second is really a copy of the first) until the user
;-- presses a key to end the program

xor ch,ch ; Set color to 0
dl: mov ax,IOO ;Starting line of first square

inc ch ; Increment color

and ch,15 ;AND bits 4 and 7

d2: 	 mov bx,245 iStarting column of first square
d3: 	 call setpix ;Set pixel

push cx ; Save -color
call getpix ;Get pixel color
push ax iPush coordinates onto stack
push bx
add bx,lOO ;Compute position of second
add ax,IOO ; square
call setpix ;Set pixel of copy
pop bx ;Return coordinates of first square
pop ax
pop cx iGet color
inc bx ;Increment column
cmp bX,295 ;Reached the last column?
jne d3 ;NO --> Set next pixel

inc ax iYES, Increment line
cmp ax,150 iReached the last line?
jne d2 ;NO --> Work with next line

mov ah,l ;Read keyboard
int 16h ;Call BIOS keyboard interrupt
je dl ;No key pressed --> Continue

mov ax, TX_BO_25 ;BOx25 text mode

int lOh ; Initialization

jmp short ende ; End programm

demo 	 endp

;== Functions used in the demo program =--------------==---=============

;-- PIXPTR: Computes the address of a pixel within video RAM for the
;-- new EGA/VGA graphic modes
;-- Input AX = Graphic line
;-- BX = Graphic column
;-- OUtput ES:BX - Pointer to the byte in video RAM containing pixel
;-- CL = Number of right shifts for the byte
;-- - Number of byte shifts in ES:BX needed to isolate

the pixel
;-- AH - Bitmask for combining with all other pixels
;-- Registers: ES, AX, BX and CL are change~.

pixptr 	 proc near

push dx ;Push DX onto stack

mov cl,bl ;Save low byte of graphic column
mov dx,LINE_LEN ;Number of bytes per line to DX
mul dx ;AX = graphic line * LINE_LEN
shr bx,l ;Shift graphic column three places to
shr bx,l ;the right, divide by B

533

10. Accessing and Programming the Video Cards PC System Programming

shr bx,l

add bx,ax ;Add line offset

mov ax,VIO_SEG ; Load segment address of video RAM
mov es,ax ; into ES

and cl,7 ;And bits 4 - 7 of graphic column
xor cl,7 ;Turn bits 0 - 3 then

;subtract 7 - CL
mav ah,l ;After shift, bit 0 should be

;left alone

pop dx ;Pop DX off of stack
ret ; Back to caller

pixptr endp

i-- SETPIX: Sets a graphic pixel in the new EGA/VGA graphic modes -----
i-- Input AX - graphic line
i-- BX - graphic column
i-- CH - pixel color
;-- OUtput none
;-- Registers: ES, DX and CL are changed

setpix proc near

push ax ;Push coordinates onto
push bx ;the stack

call pixptr ;computer pointer to the pixel

;Load port addr. of graphic controller

;-- Set bit position in bitmask register --------------------

shl ah,cl ;Mask for bit to be changed
mov al,BITMASK REG ;Move bitmask register from AL
out dx,ax - ;Write to register

;-- Set read mode 0 and write mode 2 -- ---------------------

mov ax, MODE_REG + (2 shl 8) ;Reg. no. and ,made value
out dx,ax ;Write in the register

;-- Define comparison mode between preceding latch ----------
;-- contents, and CPU byte ----------

mav aX,FUNCSEL REG + (OP MODE shl 8) ;Write register number
out dx,ax - land comparison operator

;-- Pixel control

mov al,es: [bxj ; Load latches
mav es:[bx],ch ;Move color into bitplanes

;-- Set altered registers to their default (BIOS)
;-- status

mov ax,BITMASK_REG + (OFFh shl 8) ;Set old bitmask
out dx,ax ;Write in the register
mov ax,MODEYEG ;Write old value for for mode register
out dx,ax ; into register
mov ah,FUNCSEL_REG ;Write old value for function select
out dx,ax ;register into register

534

Abacus 	 105 EGA andVGA Cards

pop bx ;Pop coordinates off of stack

pop ax ,

ret ; Back to caller

setpix 	 endp

;-- GETPIX: Places a pixel's color in one of the new EGA/VGA ----------
;-- graphic modes
;-- Input AX - graphic line
;-- BX = graphic column
;-- Output CH - graphic pixel color
;-- Registers: ES, OX , ex and 01 are changed

getpix 	 proc near

push ax ;Push coordinates onto

push bx ;the stack

call pixptr ;Computer pointer to pixel
mov ch,ah ;Move bitmask to CH
shl ch,cl ;Shift bitmask by bit positions

mov di,bx ;Move video RAM offset to 01
xor bl,bl ;Color value will be computed in BL

mav dx,GRAPH_CONT ;Load graphic controller port address
mov ax,MAPSEL_REG + (3 shl 8) ;Access bitplane f3

Go through each of the four bitplanes -------------------

gpl: 	 out dx,ax ;Activate bitplane fAH only
mav bh,es: [diJ ;Get byte from the bitplane
and bh,ch ;Omit uninteresting bits
neg bh ;Bit 7 - 1, when a pixel is set
rol bx,1 ;Shift bit 7 from BH to Bit 1 in BL

dec ah ;Oecrement bitplane number
jge gpl ;Not -1 yet? --> next bitplane

;-- The map select register must not be reset, since

;-- the EGA- and VGA-BIOS default to a value of 0

IIIOV ch,bl ;Get color from CH

pop bx ;Pop coordinates off

pop ax ;of stack

ret ; Back to caller

getpix 	 endp

;-- FILLSCR: Sets all screen pixels to one color ------ ---------------
;-- Input AX = number of graphic lines on the screen
;-- CH - pixel color
;-- Output none
;-- Registers: ES, AX, CX, 01, OX and BL are changed

fillscr 	 proc near

mov dx,GRAPH CONT ;Load graphic controller port address
mav al,SETRES REG ;Numbmer of Set-/Reset registers
mav ah,ch - ;Move bit combination to AL
out dx,ax ;Write to the register

mav aX,ENABLE REG + (OFh shl 8) ;Write OFH in the

out dX,ax - ;Enable Set-/Reset register

mav bX,LINE LEN / 2 ;Length of a graphic line / 2 into ax
mul bx - ;Multiply by number of graphic lines
mov cx,ax ;Move to CX as repeat counter
xor di,di ;Address first byte in video RAM
mav ax,VIO_SEG ;Segment address of video RAM

535

10. Accessing and Programming the Video Cards PC System Programming

mov
cld
rep

es,ax

stosw

;Load into ES
;Increment on string instructions
; Fill video RAM

;-- Return old contents of Enable Set-/Reset register

rnov
rnov
out

<lx, GRAPH CONT
ax, ENABLE_REG
dX,ax

;Load graphic controller port address
;Write OOH in Enable Set-/
;Reset register

ret ; Back to caller

fiUscr endp

; End -=---....-------'""--------------------=---------
code ends

end demo
;End of code segment
;Start program execution with DEMO

536

• • •

Abacus 10.6 Determining tlu! Video Card Type

10.6 Determining the Type of Video Card

Whenever you want to access video card hardware or use a BIOS function which is
only available in special versions of the BIOS, you should first ensure that the card
in question is actually installed in the system. If your program doesn't make such a
test, then the result may not be what you wanted to appear on the screen.

It is especially important for an application program to recognize the type of video
card installed, if your program is supposed to work the same on all types of cards
while still directly accessing video hardware. The output routines need this
information to make optimum use of the special properties of the given card

Remember that the PC can have both a monochrome video card (MOA, HOC or
EGA with a monochrome monitor) and a color video card (EGA, VGA, or CGA)
installed, although only one of the two cards may be active at one time.

Combinations allowable for PC video cards
VGA EGA HGC CGA MDA

VGA

• • •EGA
• •

HGC
CGA

• • •
MDA • • •

We need to find out what video cards are installed. There are no BIOS or DOS
functions for doing this, nor are there any variables we can read. We have to write
an assembly language routine which checks the existence of different video cards.
We can refer to the documentation for the various cards, since most manufacturers
include some procedure for determining if their card is in use. It is important to
keep the test specific (Le., it does not return a positive result if a certain type of
video card is not installed). This presents problems for EGA and VGA cards, which
can emulate CGA or MOA cards with the appropriate monitor, and are difficult to
distinguish from true CGA or MOA cards.

All of the tests described here are found at the end of this section in the fonn of
two assembly language programs intended for use with C and Pascal programs.
The functions place the type of video card installed and the type of monitor
connected to it into an array to which the function is passed a pointer. If two video
cards are installed, their order in the array indicates which one is active.

The following cards can be detected by the assembly language routine:

MDAcards

CGAcards

HGCcards

537

10. Accessing and Programming the Video Cards PC System Programming

EGA cards

VGAcards

Since the assembly language routine checks selectively for the existence of a
certain video card, there is a separate subroutine for each type of video card. It bears
the name of the video card for which it tests. These routines have names like
TEST_EGA, TEST_ VGA, etc. The tests could be called sequentially, but certain
tests can be excluded if we know they would return a negative result This is case
for the eGA test, for example, if an EGA or VGA card has already been detected
and is connected to a high-resolution color monitor. A eGA card cannot be
installed alongside such a card, so there is no point in testing for it.

There is a flag for each test which determines whether or not the test will be
performed. Before the ftrst test, the VGA test, all of the flags are set to 1 so that
all of the tests will be performed in order. During the testing, certain flags can be
set to 0 for reasons mentioned above, and the corresponding tests will not be made.

VGA test

The tests begin with the VGA test. It is very easy because there is a special
function in the VGA BIOS, sub-function OOH of function IAH, which returns
precisely the information that the assembly language routine needs. The
information is available only if a VGA card and hence a VGA BIOS is installed.
This is the case if the value lAH is found in the AL register after the call. If the
test routine encounters a different value there, the VGA test will be terminated and
the other tests will be performed. This indicates that a VGA card is lli21 installed.

After this function is called, the BL register contains a special device code for the
active video card and the BH register contains a code for the inactive card. The
following codes can occur:

Code MeaniJ!C.i
OOH No video card
OlH MDA card/monochrome monitor
02H CGA card/color monitor
03H Reserved
04H EGA card/h~h-resolution monitor
OSH EGA card/monochrome monitor
06H Reserved
07H VGA card/analog monochrome monitor
OSH VGA card/analo~color monitor

These codes are separated into values for the video card and the monitor connected
to it, and loaded into the array whose address is passed to the assembly language
routine. Since this routine already has information about both video cards, the
following tests do not have to be performed. The routine executes the monochrome
test, however, if the functions discover a monochrome card, since it cannot
distinguish between an MDA and HOC card.

538

Abacus 10.6 De~rmi1ling the Video Card Type

EGA test

After the VGA test comes the EGA test, which it performed only if the VGA test
was unsuccessful, and thus the EGA flag was not cleared. It uses a function which
is found only in the EGA BIOS: sub-function 10H of function 12H. If no EGA
card is installed and this function is not available, the value lOH will still be found
in the BL register after the function call. In this case the EGA test ends.

If an EGA card is installed, the CL register will contain the settings of the DIP
switches on the EGA card after the call. These switches indicate what type of
monitor is connected. They are converted to the monitor codes the assembly
language routine uses and placed in the array along with the code for the EGA card.
The CGA or monochrome test flag is cleared depending on the type of monitor
connected. The EGA routine ends.

CGA test

If the CGA flag has not been cleared by the previous tests, the CGA test follows
the EGA test. As with the monochrome test, there are no special BIOS functions
which can be used and we have to check for the presence of the appropriate
hardware. In both routines this is done by calling the routine TEST_6845, which
tests to see if the 6845 video controller found on these cards is at the specified port
address. On a CGA card this is port address 3D4H, which is passed to the routine
TEST_6845.

The only way to test the existence of the CRTC at a given port address is to write
some value (other than 0) to one of the CRTC registers and then read it back
immediately. If the value read matches the value written, then the CRTC and thus
the video card are present. But before writing a value into a CRTC register, we
should stop to consider that these registers have a major impact on the
construction of the video signals and careless access to them can not only
thoroughly confuse the CRTC, it can even harm the monitor. Registers 0 to 9 are
out of the question for this test, leaving us with registers 10 to 15, all of which
have an effect on the screen contents. The best we can do is registers 10 and 11,
which control the starting and ending lines of.the cursor.

'The assembly language routine fIrst reads the contents of register 10 before it loads
any value into this register. After a short pause so that the CRTC can react to the
output, the contents of this register are read back. Before the value read is compared
to the original value, the old value is fIrSt written back into the register so that the
test disturbs the screen as little as possible. If the comparison is positive, then a
CRTC is present and so is the video card (eGA in this case). The CGA routine
responds by loading the code for a color monitor into the array, since this is the
only type of monitor which can be used with a CGA card.

539

10. Accessing and Programming the Video Cards PC System Programming

Monochrome test

The last test is the monochrome test, which also checks for the existence of a
CRTC, this time at port address 3B4H. If it fmds a CRTC there, then a
monochrome card is installed and we have to figure out if it is an MDA or HOC
hard. The status registers of the two cards, at port address 3BAH, are used to
determine this. While bit 7 of this register has no significance on the MDA card
and its value is thus undefined, it contains a 1 on an HOC card whenever the
electron beam is returning across the screen. Since this is not permanent and
occurs only at intervals of about two milliseconds, the contents of this bit
constantly alternates between 0 and 1.

Hercules

The test routine frrst reads the contents of this register and masks out bits 0 to 6.
The resulting value is used in a maximum of 32768 loop passes, where the value
is read again and compared with the original value. If the value changes. meaning
that the state of bit 7 changes, then an HOC card is probably installed. If this bit
does not change over the course of 32768 loop passes, then an MDA card is in
use.

Here again we place the appropriate code for the video card in the array. The
monitor code is also set to monochrome, since this is the only monitor which can
be connected to an MDA or HOC card.

Primary and secondary video systems

The tests are now over. Now we have to figure out which card is active (primary)
and which is inactive (secondary). If the outcome of the VGA test was positive. we
can skip this because the VGA BIOS routine determines the active card
automatically.

In other cases we can determine the active video card from the current video mode.
which can be read with the help of function OFH of the BIOS video interrupt. If
the value seven is returned, then the 80x25 text mode of the monochrome card is
active. All of the other modes indicate that a CGA. EGA. or VGA card is active.
This information is used to exchange the order of the two entries in the array if it
does not match the actual situation.

The assembly language routine returns control to the calling program.

Here we include C and Pascal programs which call the function GetVIOS from the
assembly language module. and demonstrate how GetVIOS works.

540

AbaclLf 10.6 Ddermining tile Video Card Type

C listing: VIOSC.C

1*** *****************/
1* v I 0 S C *1
1*--*1
1* Task : Determines the type of video card and monitor *1
1* installed in the system. *I
1*--*1
1* Author MICHAEL TISCHER *1
1* Developed on : 10/02/1988 *1
1* Last update : 06/20/1988 *1
1*--*1
1* (MICROSOFT C) *I
1* Creation CL lAS Ic VIOSC.C *1
1* LINK VIOSC VIOSCA *1
1* Call VIOSC *1
1*--*1
1* (BORLAND TURBO C) *1
1* Creation Create project file made of the following: *1
1* VJOSC *1
1* VIOSCA.OBJ *1
1* Info Some cards may return errors or "unknown" *1
/****•••••••••••••••• *** ••• *** ••••••••••****•••••••••••••••••••••••••**/

1*-- Declarations of external functions --------------------*1

extern void get_vios (struct vios *);

1*-- Type defs ----=------------------------------==*1

typedef unsigned char BYTE; 1* Create a byte *1

1*-- Structures ---=-*1

struct vios 1* Describes video card and attached monitor *1
BYTE vcard,

monitor;
/;

1*-- Constants ------------=-----------=--=---------=---=-=---*1

1*-- Constants for the video card ------------------------------------*1

'define NO VIOS 0 1* No video card *1
'define VGA 1 1* VGA card *1
'define EGA 2 1* EGA card *1
'define MDA 3 1* Monochrome Display Adapter *1
'define HGC 4 1* Hercules Graphics Card *1
'define CGA 5 1* Color Graphics Adapter *1

1*-- Constants for monitor type --------------------------------------*1

'define NO MON 0 1* No monitor *1
'define MONO 1 1* Monochrome monitor *1
'define COLOR 2 1* Color monitor *1
'define EGA HIRES 3 1* High-res/multisync monitor *1
'define ANr.G MONO 4 1* Analog monochrome monitor *1
'define ANLG:COLOR 5 1* Analog color monitor *1

/****••••••** ••***************••••*.*.******••• **** •••****.*.*.*.*•••**/
1** MAIN PROGRAM **1
/.***•• **••••••***••********.**/

void mainO

static char *vcnames[] - 1* Pointer to the video card name *1

"VGA- ,

-EGA-,

541

10. Accessing and Programming the Video Cards PC System Programming

"MOA",
"HGC",
"CGA"

};

static char *monnames[j 1* Pointer to the monitor type's name *1
"monochrome monitor",
"color monitor",
"high-res/multisync monitor",
"analog monochrome monitor",
"analog color monitor"

} ;

struct vios vsys[2]; 1* Vector for GET_VIOS *1

get vios(vsys); 1* Determine video system *1

printf("\nVIOSC (c) 1988 by Michael Tischer\n\n");

printf("Primary Video System: \s cardl \s\n",

vcnames[vsys[O].vcard-lj, monnames[vsys[Oj .monitor-l]);
if (vsys[l].vcard !- NO VIas) 1* Is there secondary video system? *1

printf("Secondary Video System: \s cardl \s\n",
vcnames[vsys[l].vcard-1j, monnames[vsys[l].monitor-1]);

Assembler listing: VIOSCA.ASM

i*********·**·*****************i
;* VIOSCA *;
i*--*i
;*
;*

Task Creates a function for determining video
adapter and monitor type, when linked with

*;
*;

;* a C program. *;
i*--*;
;* Author MICHAEL TISCHER *;
;* Developed on : 10/02/1988 *;
;* Last update : 06/20/1989 *;
;*-----------------------~--*:
. * Assembly : MASM VIOSCA; *;
;* •.• link to a C program *;
;******************************.*************** •••**** ·****************i

i== Constants for VIOS structure =--=========================---=======

;Video card constants
NO_VIOS - 0 ;No video card
VGA a 1 ;VGA card
EGA = 2 ;EGA card
MDA - 3 ;Monochrome Display Adapter
HGC 4 ;Hercules Graphics Card
CGA = 5 ;Color Graphics Adapter

;Monitor constants
NO_MON 0 ;No monitor
MONO - 1 ;Monochrome monitor
COLOR 2 ;Color monitor
EGA HIRES 3 ;High-resolution or multisync monitor
ANLG MONO - 4 ;Analog monochrome monitor
ANLG COLOR - 5 ;Analog color monitor

;-- Segment declarations for the C program/--------==---======---=====-

IGROUP group text ;Addition to program segment
DGROUP group const, bss, _data ;Addition to data segment

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public 'CONST';This segment includes all read-only
CONST ends ; constants

segment word public 'BSS' ;This segment includes all

542

Abacus 10.6 Determining the Video Card Type

ends ;un-initialized static variables

_DATA segment word public 'DATA' ;Data segment

vios tab equ this byte

;-- Conversion table for return values of function lAH,
;-- sub-function OOH of the VGA-BIOS

db NO VIOS, NO MON ;No video card
db MDA , MONO ;MDA card and monochrome monitor
db CGA , COLOR ;CGA card and color monitor
db ? , ? ;Code 3 unused
db EGA , EGA_HIRES ;EGA card and hi-res monitor
db EGA , MONO ;EGA card and monochrome monitor
db ? , ? ;Code 6 unused
db VGA , ANLG MONO ;VGA card and analog mono monitor
db VGA , ANLG::::COLOR ;VGA card and analog color monitor

equ this byte

;-- Conversion table for EGA card DIP switch settings ------

db COLOR, EGA HIRES, MONO

db COLOR, EGA::::HIRES, MONO

DATA ends

;-= Program --=========--==========-----------==-=-------------------==
TEXT segment byte public 'CODE' ;Program segment

;--
;-- GET VIOS: Determines types of installed video cards ---------------

;-- Call from C : void get vios(struct vios ·vp);

;-- Declaration: struct vios (BYTE vcard, monitor;);

;-- Return value: none
;-- Info This example uses function in SMALL memory model

sframe struc ; Stack access structure
cga possi db ? ;Local variable
ega-possi db ? ; Local variable
monoyossi db ? ; Local variable
bptr dw ;Take BP
ret adr dw ;Return address to caller
vp dw ;Pointer to first VIOS structure
sframe ends ;End of structure

frame equ [bp - cgayossi I ;Address elements of the structure

push bp ; Push BP onto stack
sub sp,3 ;Allocate space for local variables
mov bp,sp ;Transfer SP to BP
push di iPush 01 onto stack

mov frame.cga possi,l ;Could be CGA

mov frame.ega~ssi,l ;Could be EGA

mov frame.mono_possi,l;Could be MDA or HGC

mov di,frame.vp ;Get offset address of structure
mov word ptr [di],NO VIOS ;Still no video
mov word ptr [di+21,NO_VIOS ;system found

call test vga ;Test for VGA card

cmp frame.egayossi,O ;EGA card still possible?

je gvl ;NO --> Test for CGA

543

http:di,frame.vp

10. Accessing and Programming the Video Cards 	 PC System Programming

gvl:
call test ega ;Test for EGA card
cmp frame.cgaJ'Ossi,o ;CGA card still possible
je gv2 ;NO --> Test for MDA/HGC

gv2:
call test cga ; Test for CGA card
cmp frame.monoJ'Ossi,O;MDA or HGC card still possibleh?
je gv3 ;NO --> End tests

call test mono ;Test for MDA/HGC cards

;-- Determine active video card ----------------------------

gv3: 	 cmp byte ptr [di],VGA ;VGA card active?
je gvi end ;YES, active card already determined
cmp byte ptr [di+2],VGA ;VGA card as secondary system?
je gvi_end ;YES, active card already determined

mov ah,OFh ;Determine active video mode using the
int lOh ;BIOS video interrupt

and al,7 ;Only modes 0-7 are of interest
cmp al,7 iMonochrome card active?
jne gv4 iNO, in CGA or EGA mode

;-- MDA, HGC, or EGA card (mono) is active -----------------

cmp byte ptr [di+l],MONO ;MonQ monitor in first structure?

je gvi end ;YES, Sequence o.k.

jmp short switch ;NO, Change sequence

;-- CGA or EGA card currently active -----------------------

gv4: 	 cmp byte ptr [di+l],MONO ;Mono monitor in first structure?
jne gvi_end iNO, Sequence o.k.

switch: 	 mov ax, [di] ;Get contents of first structure
xchg ax, [di+2] ;Exchange with second structure
mov [di],ax

gvi_end: 	 pop di ; Get DI from stack
add sp,3 ; Get local variables from stack
pop bp ; Get BP from stack
ret ;Return to C program

_get_vios 	 endp

;-------------------------------------~---------------------------------
;-- TEST_VGA: Determines whether a VGA card is installed

test_vga 	 proc near

mov ax, laOOh ;Function lAH, sub-function OOH
int 10h ;calls VGA-BIOS
cmp al,lah ;Is this function supported?
jne tvga_end ;NO --> End routine

;-- If function is supported, BH contains the active video
;-- system code; BH contains the inactive video sys. code

mov cx,bx :Move result to ex
xor bh,bh ;Set BH to 0
or ch,ch ;Just one video system?
je tvga_l ;YES --> Convey first system's code

;-- Convert code of second system --------------------------

mov bl, ch ;Move second system code to BL
add bl,bl ;Add offset to table
mov ax, offset DGROUP:vios_tab[bx] ;Get code from table and

544

Abacus 10.6 Determining the Video Card Type

mov [d1+21,ax ;place in caller'. structure
mov bl,cl ;Move first system's codes to BL

;-- Convert code of first system ---------------------------

add bl,bl ;Add offset to table
mov ax,offset DGROUP:vios tab[bxl ;Get code from table and
mov [dil,ax ;pl;ce in caller's structure

mov frame.cqa-POssi,O ;CGA test failed

mov frame.aga-POssi,O ;EGA test failed

mov frame.mono_possi,O ;MONO still needs testing

mov bx,di ;Address of active structure
cmp bYte ptr [bxl,MDA ;Monochrome system available?
je do tmono ;YES --> Execute MDA/HGC test

add bx,2 ;Address of inactive structure
cmp bYte ptr [bxl,MDA ;Monochrome system available?
jne tvga_end ;NO --> End routine

do_tmono: mov word ptr [bxl,O ;Pretend that this system
lis still unavailable

mov frame.mono-POssi,l;Execute monochrome test

tvga_end: ret ;Back to caller

endp

;--
;-- TEST_EGA: Determines whether an EGA card is installed

proc near

mov ah,12h ; Function 12H

mov bl,10h ;Sub-function 10H

int 10h ; Call EGA-BIOS

cmp bl,10h ;Is the function supported?

je tega_end ;NO --> End routine

;-- When this function is supported, CL contains the EGA
;-- card's DIP switch settings

mov al,cl ;Move DIP switch settings to AL
shr al,l ;Shift one position to the right
mov bx,offset·DGROUP:ega dips ;Offset address of table
xlat ;Move element AL from table to AL
mov ah,al ;Move monitor type to AM
mov al,EGA ;It's an EGA card
call found it ;Move data to vector

cmp ah,MONO ;Connected to monochrome monitor?
je is mono ;YES --> not MDA or HGC

mov frame.cqa-POssi,O ;Cannot be a CGA card

jmp short tega_end ;End routine

is_mono: mov frame.mono-POssi,O;If EGA card is connected to a mono
;monitor, it can be installed as
;either an HGC or MDA

taga_end: ret ;Back to callerr

endp

;--
;-- TEST_CGA: Determines whether a CGA card is installed

proc near

S4S

10. Accessing and ProgrQII'IIPUng the Video Cards 	 PC System Progrl111l1lling

mov dx,304h iCGA tests port addr. of CRTC addr.
call test 6845 ireg., to see if 6845 is installed
jc tega_end iNO --> End test

mov al,CGA iYES --> CGA is installed
mov ah,COLOR iCGA has color monitor attached
jmp found_it iTransfer data to vector

;--
i-- TEST_MONO: Checks for the existence of an MDA or HGC card

test_mono 	 proc near

mov dx,3B4h 	 iCheck port address of CRTC addr. reg.
call test 6845 	 iwith MONO to see if there's a 6845

i installed
iNO --> End test

i-- If there is a monochrome video card installed, the
i-- following determines whether it's an MDA or an HGC

mov dl,OBAh ;Read MONO status port using 3BAH
in al,dx
and al,80h ;Check bit 7 only and
mov ah,al imove to AH

;-- If contents of bit 7 change during one of the following
i-- readings, the card is handled as an HGC

mov ex,BOOOh 	 ;Maximum of 32768 loop executionse
test_hgc: 	 in al,dx ;Read status port

and al,80h iCheck bit 7 only
cmp al,ah ;Contents changed?
jne is_hgc ;Bit 7 = I --> HGC
loop test_hgc ;Continue loop

mov al,MDA ;Bit 7 <> 1 --> MDA
jmp set_mono iSet parameters

is_hgc: mov al,HGC ;Bit 7 - 1 --> 1st HGC
set_mono: mov ah,MONO ;MDA!HGC on mono monitor

jmp found it ;Set parameters

test mono 	 endp

;--
i-- TEST_6845: Sets carry flag if no 6845 exists in port address of OX

test 6845 	 proc near

mov al,OAh iRegister 10
out dx,al iRegister number of CRTC address reg.
inc dx ;OX now in CRTC data register

in al,dx iGet contents of register 10
mov ah,al land move to AH

mov al,4Fh ;Any value
out dx,al ;Write to register 10

mov ex, 100 ;Short delay loop--gives 6845 time
wait: loop wait ito react

in al,dx ;Read contents of register 10
xchg al,ah ;Exchange AH and AL
out dx,al ;Send old valuen

cmp ah,4Fh 	 iWritten value read?

546

Abacus 	 10.6 Determining the Video Card Type

je t6845 end ;YES --> End test

stc 	 ;NO --> Set carry flag

t6845_end: 	ret ; Back fran caller

;--
;- FOOND_IT: Transfers video card type to AL and monitor type to

;- AH in the video vector

found it 	 proc near

mov bx,di ;Address of active structure
cmp word ptr [bx),O ;Video system already onboard?
je set_data ;NO -> Data in active structure

add bx,2 ;YES, Address of inactive structure

set data: 	 mov [bx),ax ;Place data in structure

ret ;Back to caller

found it 	 endp

;--

text 	 ends ;End of code segment

end ;End of program

Pascal 	 listing: VIOSP.PAS
{.....•...._... }

{* 	 VIOSP *1
{*---*1
{* 	 Task : Returns the type of video card installed. *1
{*---*1
{* Author MICHAEL TISCHER * 1
{* Developed on 10/02/1988 * 1
{* Last update 06/19/1989 * 1
{*---*1
{* Info Sane of the values given here may not coincide *1
{* with some video cards (e.g., some CGA cards *1
{* may return "Unknown card") • * 1
{..._............................ }

program VIOSP;

{SL c:\masm\viospal { Link assembler module
Change path to suit your DOS needs

const 	NO VIas 0; { No video card
VGA - 1; { VGA card
EGA 2; { EGA card
MDA 3; Monochrome Display Adapter
HGC 4; Hercules Graphics card
CGA = 5; { Color Graphics Adapter

NO_MaN 0; { No monitor
MONO "'" 1; Monochrome monitor
COLOR 2; { Color monitor
EGA HIRES 3; High-resolution monitor
ANLG_MONO 4; Monochrome analog monitor
ANLG_COLOR = 5; { Color analog monitor

type Vios - record Describes video card and attached monitor
Vcard,
Monitor byte;

end;

547

10. Accessing and Programming the Video Cards PC System Programming

Viosptr ~ AVios; I Pointer to a VIOS structure /

procedure GetVios(vp : ViosPtr) external;

var VidSys : arraYI1 •. 2] of Vios; (Array containing video structures /

(******************************••**************************************}
(* PrintSys: Gives information about a video system *)
(* Input - VCARD: Code number of the video card */
(* - MON : Code number of the attached monitor * /
I* Output none * /
{***.****************************}

procedure PrintSys (VCard, Mon : byte);

begin
write (' ');
case VCard of

NO_VIOS : write('Unknown'); (For ·other" code /

VGA write ('VGA');

EGA write ('EGA');

MDA write ('MDA');

CGA write('CGA');

HGC write('HGC');

end;
write (' card/ ');
case Mon of

NO MON write ('unknown monitor'); I For ·other" monitors /
MONO writeln('monochrome monitor');
COLOR writeln('color monitor');
EGA HIRES writeln('high-resolution monitor');
ANLG_MONO writeln('monochrome analog monitor');
ANLG_COLOR writeln('color analog monitor');

end;
end;

{****.**************************************•••************************}
(** MAIN PROGRAM **)
{*.**••• **********************.}

begin
GetVios(@VidSys); (Check installed video card /
writeln ('VIOSP (c) 1988 by MICHAEL TISCHER');
write ('Primary video system: ');
PrintSys(VidSys[l].VCard, VidSys[l].Monitor);
writeln('13flO);
if VidSys[2].VCard <> NO VIOS then Second video system installed?

begin - I YES
write('Secondary video system:');
PrintSys(VidSys[2] .VCard, VidSys[2].Monitor);
writeln(.13.10);

endi
end.

Assembler listing: VIOSPA.ASM

i***·****************i
;* v I 0 SPA *;
;*--*;
;* Task Creates a function for determining the type * ;
;* of video card installed on a system. This * ;
;* routine must be assembled into an OBJ file, *;
;* then linked to a Turbo Pascal (4.0) program. *;
i*--*i
;* Author MICHAEL TISCHER *;
;* Developed on : 10/02/1988 * ;
;* Last update : 06/19/1989 * ;
i*--*i
; * assembly : MASM VIOSPA; *;

548

http:writeln(.13.10

Abacus 10.6 Determining the Video Card Type

; * • •• Link to a Turbo Pascal program *;
;* using the {$L VIOSPA} canpiler directive *;
i******·********···**··******····***·········**·*****·•••••••••••••***.;

;-- Constants for the VIOS structure ----------------------------------

;Video card constants
NO VIOS = 0 ;No video card/unrecognized card
VGA - 1 ;VGA card
EGA - 2 ;EGA card
MDA - 3 ;Monochrome Display Adapter
HGC - 4 ;Hercules Graphics Card
CGA 5 ;Color Graphics Adapter

;Monitor constants
NO MON - 0 ;No monitor/unrecognized code
MONO - 1 ;Monochrome monitor
COLOR ~ 2 ;Color Monitor
EGA_HIRES - 3 ;High-resolution/multisync monitor
ANLG MONO - 4 ;Monochrorne analog monitor
ANLG:::COLOR - 5 ;Analog color monitor

;=- Data segment

DATA segment word public ;Turbo data segment

DATA ends

;"""= Code segment -~=-==:-=---=====--------=--==---==-----...--==-""'===

CODE segment byte public ;Turbo code segment

assume cs:CODE, ds:DATA

public getvios

;-- Initialized global variables must be placed in the code segment ---

vios tab equ this word

;-- Conversion table for supplying return values of VGA
;-- BIOS function lA(h} , sub-function OO(hl

db NO VIOS, NO MON ;No video card
db MnA ,MONO ;MDA card/monochrome monitor
db CGA ,COLOR ;CGA card/color monitor
db , ? ; Code 3 unused
db EGA , EGA_HIRES ;EGA card/hi-res monitor
db EGA , MONO ;EGA card/monochrome monitor
db? , ? ;Code 6 unused
db VGA , ANLG MONO ;VGA card/analog mono monitor
db VGA , ANLG::::COLOR ;VGA card/analog color monitor

equ this byte

;-- Conversion table for EGA card DIP switches ----

db COLOR, EGA_HIRES, MONO
db COLOR, EGA_HIRES, MONO

;--
;-- GETVIOS: Determines type(sl of installed video card(s) ------------

Pascal call : GetVios (vp : Viosptr I; external;
;-- Declaration : Type Vios - record VCard, Monitor: byte;
;-- Return Value: None

getvios proc near

sframe st ruc iStack access structure
egaJlOssi db? ;local variables

549

10. Accessing and Programming the Video Cards PC System Programming

egaJlOssi db ; local variables
monoJlOssi db ; local variables
bptr dw ;BPTR
ret_adr dw ;Return address of calling program
vp dd ? ;Pointer to first VIOS structure
sframe ends ;End of structure

frame equ [bp - egaJlOssi] ;Address elements of structure

push bp ;Push BP onto stack
sub sp,3 ;Allocate memory for local variables
mov bp,sp ;Transfer SP to BP

mov frame. egaJlOssi, 1 ; Is ita CGA?
mov frame.egaJlOssi,l ;Is it an EGA?
mav frame.monoJlOssi,l;IS it an MIlA or HGC?

mov di,word ptr frame.vp ;Get offset addr. of structure
mov word ptr [di],NO VIOS ;No video system or unknown
mov word ptr [di+2],NO_VIOS ; system found

call test vga ;Test for VGA card
crop frame.ega~ossi,O ;Or is it an EGA card?
je gvl ;NO -->Go to CGA test

call test_ega ;Test for EGA card
gvl: crop frame.cgaJlOssi,O ;Or is it a CGA card?

je gv2 ;NO --> Go to MDA/HGC test

call test cga ; Test for CGA card

gv2: crop frame.monoJlOssi,O;Or is it an MDA or HGC card?

je gv3 ; NO --> End tests

;Test for MDAlHGC card

;-- Determine video configuration --------------------------

gv3: crop
je
crop
je

byte ptr
gvi end
byte ptr
gvi_end

[di],VGA ;VGA card?
;YES --> Active card already indicated

[di+2],VGA;VGA card part of secondary system?
;YES -~> Active card already indicated

mov
int

ah,OFh
lOh

;Determine video mode using BIOS video
; interrupt

and
crop
jne

al,7
al,7
gv4

;only modes 0-7 are of interest
;Mono card active?
;NO --> CGA or EGA mode

;-- MIlA, HGC or EGA card (mono) currently active -----------

crop
je
jmp

byte ptr [di+l],MONO ;Mono monitor in first structure?
gvi end ;YES, Sequence o.k.
short switch ;NO, switch sequence

;-- CGA or EGA card currently active -----------------------

gv4: crop
jne

byte ptr [di+l],MONO ;Mono monitor in first structure?
gvi_end ;NO -->Sequence o.k.

switch: mov ax, [di]
xchg ax, [d1+2]
mov [di],ax

;Get contents of first structure
;Switch with second structure

getvios

add sp,3
pop bp
ret 4

endp

;Add local variables from stack
; Pop BP off of stack
;Clear variables off of stack;
;Return to Turbo

550

http:frame.vp

Abac/lS 10.6 Determining the Video Card Type

;--
;-- TEST_VGA: Determines whether a VGA card is installed

proc near

mov ax,laOOh ;Function lA(h), sub-function OO(h)

int lOh ;Call VGA-BIOS

cmp al,lah ;Function supported?

jne tvga_end ;NO --> End routine

;-- If function is supported, BL contains the code of the

;-- active video system, while BH contains the code of

;-- the inactive video system

mov cx,bx ;Move result in CX

xor bh,bh ;Set BH to 0

or ch,ch ;Only one video system?

je tvga_l ;YES --> Display first system's code

;-- Convert code of second system --------------------------

mov bl,ch ;Move second system's code to BL
add bl,bl ;Add offset to table
mov ax, vios tab [bx] ;Get code from table and move into
mov [di+2] ,ax ;caller's structure
mov bl,cl ;Move first system's code into BL

;-- Convert code of second system --------------------------

add bl,bl ;Add offset to table
mov ax,vios tab[bx] ;Get code from table
mov [di] , ax- land move into caller's structure

mov frame.cga-PQssi,O ;CGA test fail?

mov frame.ega-PQssi,O ;CGA test fail?

mov frame.mono-PQssi, a ;Test for mono

mov bx,di ;Address of active structure

cmp byte ptr [bx] ,MDA ;Monochrome system online?

je do_tmono ;YES --> Execute MDA/HGC test

add bx,2 ;Address of inactive structure
cmp byte ptr [bx],MDA ;Monochrome system online?
jne tvga_end ;NO --> End routine

do tmono: mov word ptr [bx],O ;Emulate if this system
;isn't available

mov frame.mono-PQssi,l;Execute monochrome test

; Return to caller

;--
;-- TEST_EGA: Determine whether an EGA card is installed

test_ega proc near

mov ah,l2h ;Function 12(h)

mov bl,lOh ;Sub-function lOCh)

int lOh ;Call EGA-BIOS

cmp bl,lOh ;Is this function supported?

je tega_end ;NO --> End routine

;-- If the function IS supported, CL contains the

;-- EGA card DIP switch settings

mov bl,cl ;Move DIP switches to BL
shr bl,l ;Shift one position to the right
xor bh,bh ;Index high byte to a

551

10. Accessing and Programming 1M Video Cards 	 PC System Programming

mov ah, ega_dips [bxj ;Get element from table
mov al,EGA ;Is it an EGA card?
call found it ;Transfer data to the vector

anp ah,MONO ;Mono monitor connected?
je is_mono ;YES --> Not MDA or HGC

mov frame.cga~ssi,O ;No CGA card possible
jmp short tega_end ;End routine

is_mono: mov frame.mono~ssi,O;EGA can either emulate MDA or HGC,
; if mono monitor is attached

;Back to caller

;--
;-- TEST_CGA: Determines whether a CGA card is installed

test_ega 	 proc near

mov dx,3D4h ;Port addr. of CGA's CRTC addr. reg.
call test 6845 ;Test for installed 6845 CRTC
jc tega:::end ;NO --> End test

mov al,CGA ;YES, CGA installed
mov ah,COLOR ;CGA uses color monitor
jmp found_it ;Transfer data to vector

i--
;-- TEST_MONO: Checks for MDA or HGC card

test_mono 	 proc near

mov dx,3B4h ;Port addr. of MONO's CRTC addr. reg.
call test 6845 ;Test for installed 6845 CRTC
jc tega:::end ;NO --> End test

;-- Monochrome video card installed
;-
mov dl,OBAh ;MONO status port at 3BA(h)
in al,dx ;Read status port
and al,BOh ;Separate bit 7 and
mov ah,al ;move to AH

If the contents of bit 7 in the status port change
;-- during the following readings, it is handled as an
;-- HGC

mov cx,8000h ;maximum 32768 loop executions
test_hgc: 	 in al,dx ; Read status port

and al,80h ;Isolate bit 7
anp al,ah ;Contents changed?
jne is hgc ;Bit 7 = 1 --> HGC
loop test_hgc ; Continue

inov al,MDA ;Bit 7 <> 1 --> MDA
jmp set mono iset parameters

is_hgc: mov al,HGC ;Bit 7 - 1 --> HGC
set_mono: mov ah,MONO ;MDA and HGC set as mono screen

jmp found_it ;Set parameters

test mono 	 endp

i--
;--'TEST_6845: Returns set carry flag if 6845 doesn't lie in the

552

AbacllS 	 10.6 Determining tlu! Video Card Type

;-- port address in DX

test 6845 proc near

mov al,OAh ; Register 10
out dx,al ;Register number in CRTC address reg.
inc dx ;DX now in CRTC data register

in al,dx ;Get contents of register 10
mov ah,al ;and move to AH

mav al,4Fh ;Any value
out dx,al ;Write to register 10

mov ex,lOO ;Short wait loop to which
wait: 	 loop wait ;6845 can react

in al,dx ;Read contents of register 10
xchg al,ah ; Exchange Ah and AL
out dx,al ;Send value

cmp ah,4Fh ; Written value been read?
je t6845_end ;YES --> End test

stc ;NO --> Set carry flag

t6845_end: ret ; Back to caller

test 6845 endp

;--
;-- FOUND_IT: Transfers type of video card to AL and type of
;-- monitor in AH in the video vector

found_it 	 proc near

mov bx,di ;Address of active structure
cmp word ptr [bx],O ;Video system already onboard?
je set_data ;NO --> Data in active structure

add bx,2 ;YES --> Address of inactive structure

set_data: mov [bx] ,ax ;Place data in structure
ret ;Back to caller

found_it endp

;--

code 	 ends ;End of code segment
end ; End of program

553

10. Accessing and Programming the Video Cards PC System Programming

10.7 Accessing Video RAM from High Level Languages

The beginning of this chapter mentioned the option of video RAM access from
high level languages. This would allow the developer to write screen output
routines for high level languages that would execute faster than output commands
available to the languages, BIOS functions, or DOS functions. This option would
be particularly attractive if it meant that we could write these routines without
assembly language programming.

The demonstration programs below implement direct video RAM access routines
which display a string on the screen. Althrough there are some major differences
between the three programs as a result of the differences between the respective
languages (BASIC, Pascal and C), all three programs contain the same elements.

Initialization

Each program includes an initialization routine which determines the segment
address of the video RAM. The routine has a variable which contains the address of
the CRTC address register. There is a direct relationship between the video RAM
and this address register: just as this register is always at port address 3B4H, the
video RAM on a monochrome card is always found at segment address BOOOH.
This combination also applies to color cards, where the address register is at port
address 3D4H and the video RAM is at segment address B800H. If we know the
port address of the CRTC address register, we can determine the segment address of
the video RAM. Once we have determined this address, we can place it in a global
variable and execute the initialization routine.

Output

All three programs have an output routine which uses the segment address we
determined above. Each time the routine displays something, it determines the
starting address of the video page currently displayed on the screen. This ensures
that the output appears on the visible screen, and not on an undisplayed video
page. We can find this from the CRT_START BIOS variable. This variable is
located at address 0040:OO4E, and specifies the offset address of the displayed video
page relative to the video page found at offset address OOOOH.

After this address is determined, we can access the video RAM. The method used in
the program depends on the given programming language. Let's look at each
program in more detail.

The C implementation

From a programming point of view, this is the cleanest of the three
implementations because the video RAM can be treated as a normal variable in C.
We first define the structure VELB, which describes the ASCII/attribute pair as it
appears in the video RAM. We create a new data type, VP, to act as a pointer to
this structure. It is important that this pointer be of type FAR because these

554

Abacus 10.7 Accessing Video RAM from High Level Languages

structures are in the video RAM and therefore outside the C data segment. Smaller
memory models in C require the declaration of this pointer as a FAR pointer.

The global variable VPTR is initialized to be a pointer to the fIrst ASCII/attribute
pair in page 0 of the video RAM. This occurs in the INIT_DPRINT routine. It is
used within the DPRINT function (the function used for display) as the basis for
addressing the characters within the video RAM.

The DPRINT function loads the LPTR pointer with the address of the screen
output position passed to the routine. LPTR is fIrst loaded with the contents of the
global variable VPTR, and then with the offset address of the active video page, as
found in the CRT_START BIOS variable, LP1R must be cast as a BYTE pointer
because the contents of the BIOS variable refers to bytes, and not to VELB
structures. If the cast operator were missing, the C compiler would generate code
which would fIrst multiply the contents of the BIOS variable by the length of the
VELB structure before adding it, resulting in the wrong value.

We can now add the display position to this pointer. The output position is passed
to DPRINT as row and column coordinates. The video RAM is treated as an array
of 2000 components, each of which is a VELB structure. Since we have computed
the base address of the array in LP1R, all we need is to index into it. We multiply
the row coordinate by 80 (columns per line) and then add the column coordinate.
Finally we have a pointer to the output position in video RAM, which we can
treat like any other C pointer.

Each time through, the loop increments the pointer to the next VELB structure.
We write the ASCII code of the character and the color passed to DPRINT to the
specifIed address. This repeats until the program reaches the end of the string.

C listing: DVIC.C

/******.***** ••*****••*****••• ** •••**** ••••****.***.**************•••• */
1* D v I C *1
1*--*1
1* Task : Demonstrates direct access to video RAM. *I
1*--*1
1* Author : MICHAEL TISCHER *I
1* Developed on : 10101/1988 *1
1* Last update : 06/2111989 *I
1*--*1
1* (MICROSOFT C) *1
1* Creation : CL lAS DVIC.C *1
1* Call : DVIC *I
1*--*1
1* (BORLAND TURBO C) *1
1* Creat ion : RUN menu cOJliMnd (no project file needed) *I
/* •• ***••**************************************.******•• ***************/

I*~- Include files -~~~==~~~~~--~==-=-====---~=~-----------==========*I

'include <dos.h>
'include <stdlib.h>
'include <string.h>
'include <stdarg.h>
.include <bios.h>

555

10. Accessing and Programming the Video Cards 	 PC System Programming

/*-- Type definitions ~=--=---~-*/

typedef unsigned char BYTE; /* Create a byte */
typedef struct velb far * VP; /* VP - FAR pointer in video RAM * /
typedef BYTE BOOL; /* similar to BOOLEAN in Pascal */

/*-- Structures ---------- --*/

struct velb { /* Describes a 2-byte position on the screen */

BYTE character, /* ASCII code */

attribute; /* Character attribute */

I;

/-!II<'. Macros ______________*/

/*-- MK_FP creates a FAR pointer to an object from a segment -------*/
/*-- address and offset address -------*/

Hfndef MK FP /* MK FP not defined yet? */
'define MK- FP (seq, ofs) ((void far *) ((unsigned long) (seg) «161 (ofs»)
.endit

'define COLOR(VG, HG) 	 (fVG« 3) + HG)

/*-== Constants 	 _____----====* /_~_===---=:r;-==-=-

'define TRUE 1 /* Constants for use with BOOL ./
'define FALSE 0

/*-- The following constants return pointers to variables from the ---./
/*-- BIOS variable segment at segment address Ox40 ---./

'define CRT START «unsigned far *) MK FP(Ox40, Ox4E»
.define ADDR_6845 «unsigned far .) MK=FP(Ox40, Ox63»

'define NORMAL OxO? /* Character attribute definition */
'define BRIGHT OxOf /. Based on monochrome video card·/
'define INVERSE Ox?O
'define UNDERSCORED Ox01
.define BLINKING Ox80

'define BlACK OxOO /* Color attributes for color card */
'define BLUE Ox01
'define GREEN Ox02
'define COBALTBLUE Ox03
'define RED Ox04
'define VIOLET Ox05
'define BROWN Ox06
'define LIGHTGRAY OxO?
'define DARKGRAY Ox01
'define LIGHTBLUE Ox09
.define LIGHTGREEN OxOA
'define LIGHTCOBALT OxOB
fdefine LIGHTRED OxOC
fdefine LIGHTVIOLET OxOD
'define YEr..LOW OxOE
fdefine WHITE OxOF

/*-= Global variables -~~------=--./

VP vptr; /* pointer to first character in video RAM */

, ••••••••••••••***.**.***.**••••••••••••••••••••• ***••*******••••*.*.*••
Function : 0 P R I N T

--
* Task Writes a string directly to video RAM •
• Input parameters 	 - COLUMN - Output column * • 	 - LINES - Output row •

- COLOR = Character attribute

556

Abacus 10.7 Accessing Video RAM from High Level LanglUlges

* - STRING - Pointer ~o string
Return value None *.*•••••****.*•••***••••**.*************••*****.*.**********************/

void dprint(BYTE column, BYTE lines, BYTE color, char * string)

register VP lptr; 1* Floating pointer in video RAM *1
register BYTE i; 1* Points to number of characters *1

1*-- Set pointer to output position in video RAM --------------------*1
lptr - (VP) «BYTE far *) vptr + *CRT START) + lines * 80 + column;
for (i-o ; *string ; ++1ptr, ++i) - 1* Execute string *1

(
lptr->character - * (string++); 1* Character in video RAM *1
lptr->attribute - color; 1*'Set character attribute *1

)

/****************.* ••***********************.*****.******••*•••• ***.*.**
Function : I NIT D P R I N T

----------------------------=---------------------------------------
Task Determines video RAM segment address for DPRINT

* Input parameters None *
Return value None *
Info Allocates segment address of video RAM in VPTR

* global variable
..**.*.**••••********.* ••*.*****.****••••********.*.*****.*****.*****/

void init_dprint()

vptr - (VP) MKJP((*ADDR_6845 - Ox3B4) ? OxBOOO OxB800, 0);

J

/.* * * ***.** ** *••** **** ••********.* * *••*•• *••******* ** *.* **'* *** •• ***. ** * *
Function : C L S *

--
Task Clears the screen with the help of DPRINT

*
Input parameters - COLOR - Character attribute
Return value None

******••********** •••**********************.******************••*******/

void cls(BYTE color)

static char blankline [81] = ,{ ,, ,, ,, , , , , , , , , , , , , , , ,. . ,. . , .., . . , . ,1'01I

J;

register BYTE i; 1* Loop counter *1

for (i-O; 1<24; ++i) 1* Execute each line *1
dprint(O, i, color, blankline); 1* Display blank line *1

/ •• *.**.*******.***••••*.******.*•••********••***.*********.********.*••
* Function : N 0 KEY *
**--*.

Task Tests for a keypress
* Input parameters : None
* Return value : TRUE if a key is pressed, otherwise FALSE
.••••*••*****•••**••• ***••••••***********************.*****•••***••/

557

10. Accessing and Programming the Video Cards 	 PC System Programming

BOOL nokey ()

(
tifdef TURBOC /* Compiling this with TURBO C? */
return(biosk..y(1) - 0); /* YES, read keyboard from BIOS */

'else /* Using Microsoft C */
return (bios keybrd (KEYBRD READY) -- 0); /* Read from BIOS *1

.endit - - -

}

/*****************.********•••******.*••••***.*•••••*.***••••••**•••***/
1** 	 MAIN PROGRAM **1
/ •••**************•••** ••••*.***••*********•••*.****•••••******•••***.*/

void main ()
(
BYTE 	 first col, 1* Color of first square on the screen *1

color, 1* Color of current square *1
column, /* Current output position *1
lines;

init dprint(); 1* Determine segment address of video RAM */

cIs (-COLOR (BLACK, GREEN)); 1* Clear screen *1

dprint(22, 0, WHITE, "DVIC - (c) 1988 by Michael Tischer");

firstcol - BLACK ; 1* Start with black *1

while(nokey()) 1* Repeat until the user presses a key */

{
if (++firstcol > WHITE) 1* Reached last color? *1
first co I = BWE; 1* YES, continue with blue *1

color = firstcol; 1* Set first color on the screen */

/*-- Fill screen with squares -------------------------------------*1

for (column=O; column < 80; column += 4)

for (lines-I; lines < 24; lines +- 2)

(
dprint(column, lines, color, -_");1* Block characters can */
dprint(column, lines+1, color, __");1* be created by press- *1
color = ++color & 15; 1* ing <Alt><2><1><9> */

}

The Pascal implementation

By using the keyword ABSOLUlE or by linking in a small assemblyJanguage
routine it would also be possible to treat the video RAM as a normal variable in
Turbo Pascal. But there's an easier way.

Turbo Pascal offers the arrays MEMW and MEM for accessing memory which is
outside of the data segment of the Turbo Pascal program. The array MEM consists
of bytes and the array MEMW of words. The two arrays don't actually exist and are
just mapped to the address space, but that doesn't affect their usefulness.

We can write values into the array as well as read from it. This is done with the
following statement:

MEMW[segment address offset address 1 .= expression

or

variable := MEMW[segment address offset address 1

558

Abacus 	 10.7 Accessing Video RAM from High Level Languages

The MEM array might be easier to use for this particular application since we will
be alternating between ASCII characters and a constant attribute. However, the
output procedure DPrint uses the MEMW array instead, because 16-bit accesses are
performed faster than two successive 8-bit accesses on 16-bit machines.

When accessing the MEMW array, DPrint takes the segment address of the video
RAM from the variable VSeg, which is initialized at the start of the program in
the procedure InitDPrint. As described before, this is done by examining the BIOS
variable which contains the port address of the CRTC address register. This and the
other BIOS variables are declared using the ABSOLUTE keyword, allowing them
to be used in the program like any other global variables.

The offset within the MEMW array is computed from the starting address of the
screen page. The coordinates are passed to DPrint, in which the row coordinate is
multiplied by 160 and the column coordinate by two. When running through the
string to be printed, the memory offset is incremented by two on each pass,
moving it one ASCII/attribute pair to the right.

Pascal listing: DVIP.P

(*.* ••• **********••****************••*****••••*.*.****••••••••*********)
{* DVIP 	 *)
{*--*){* Task : Demonstrates direct access to video RAM from *)
{* Turbo Pascal *)

{*--*)
{* Author : MICHAEL TISCHER *)
{* Developed on : 10/02/1987 *)
{* Last update : 06/20/1989 *)
{.****.** ••••••****•••••• ***••••••• **********•••***••••••••••**********}

program DVIP;

Uses Crt, Dos; 	 { Use CRT and DOS units)

const 	NORMAL = $07; Define character attributes in)
LIGHT = $Of; conjunction with monochrome }
INVERSE - $70; { video card }
UNDERSCORED - $01;
BLINKING = $80;

BIJ\CK - $00; { Color attributes for color card }

BLUE = $01;

GREEN - $02;

COBALTBWE = $03;

RED = $04;

VIOLET - $05;

BROWN = $06;

LIGHTGRAY = $07;

DARKGRAY - $01;

LIGHTBLUE = $09;

LIGHTGREEN - $OA;

LIGHTCOBALT - SOB;

LIGHTRED = SOC;

LIGHTVIOLET - $00;

YELLCM = $OE;

WHITE = $OF;

type TextTyp - string[80]i

var VSeg : word; 	 { Segment address of video RAM }

559

10. Accessing and Programming the Video Cards 	 PC System Programming

i·**··*******···***····**··**···***········**·········.....***.*.*•••**}
{* InitDPrint: Determines segment address of video RAM for DPrint *1
{* Input : none *1
{* Output : none *1
{*•••****.**•••**.****.**•••••*****•••••*****••••••***•• ***.** •••••••**}

procedure InitDPrint;

var CRTC_PORT : word absolute S0040:0063; {Variable in BIOS var.seg. 1

begin
if CRTC PORT - S3B4 then { Monochrome card connected?

VSeg :- S8000 { YES, video RAM at 8000:0000
else { NO, must be a color card

vSeg :- SB800; { video RAM at 8800:0000
end;

{******************•••*** ••*****.*****••***.*.******•• ********** ••*****}
{* DPrint: Writes a string direct into video RAM *1
{* Input COLUMN: Output column *1
{* - LINES : Output line * 1
{* - COLOR: Color (attribute) for individual characters *1
{* - STROUT: String to be displayed *)
{* Output none * 1
{*••*** ••••••••******••••••******••••*****.**.**••••••*****••• ** •••****}

procedure DPrint(Column, Lines, Color: byte; StrOut: TextTyp);

var 	PAGE ors word absolute S0040:S004E; {Variable in BIOS var.seg.
Offset word; { Pointer to current output position
i, j byte; (Loop counter
Attribute : word; (Attribute for output

begin
Offset :- Lines * 160 + Column * 2 + PAGE ors;
Attribute :- Color shl 8; (High byte for word access to video RAM
i :- length { StrOut); { Determine string length
for j :-1 to i do I Execute string

begin { Put character & attribute directly into video RAM
memw[VSeg:Offsetl :- Attribute or ord(StrOut[j]);
Offset :- Offset + 2; {Set offset to next ASCII/attribute pair

end;
end;

{**.*.********.*•••****.*••••*.*****.***•••*****.****.***••*****••*****}
[* Demo: Demonstrates application of DPrint *1
[* Input : none *1
{* Output : none *1
{*.****•••••••••••****•• ** ••• }

procedure demo;

var Column, 	 { Current output position 1
Lines,
Color integer;

begin
TextBackGround (BLACK); { Turn background black
ClrScr; [Clear screen
DPrint(22, 0, WHITE, 'DVIP - (c) 1988 by Michael Tischer');
Randomize; [Enable random number generator
while not KeyPressed do { Repeat until user presses a key

begin
Column :- Random(76); Select column, row and
Lines :~ Random(22) + 1; color at random
Color :- Random(14) + 1;
DPrint(Column, Lines, Color, '[[[[');(Block character can be

560

AbaclLf 10.7 Accessing Video RAM from Higla Level Languages

DPrint(Column, Lines+1, Color, '[[[[');! created by pressing
end; (<Alt><2><1><9>

ClrScr; (Clear screen
end;

{****••** •••*******••******.********.*************.***._.***-*._••••••• }
{ ** MAIN PROGRAM ** I{...._.•...•....._._._._.......__....._...._-_._-_._.---_.-._._.._..._.}

beqin
InitDPrint; Initialize output using DPrint
Demo; { Demonstrate DPrint

end.

The BASIC implementation

This version doesn't really fulfill its goal, since it is slower than the already slow
PRINT command. But we have included it for the sake of completeness, and
because it is a good example of how you can access the entire address space of the
8088 from within BASIC,

The commands DEF SEG, PEEK, and POKE are the heart of memory access in
BASIC. DEF SEG sets the segment address of the "current" 64K segment. PEEK
and POKE can then be used to read and write bytes from or to this segment. This
technique is used in the initialization routine at line number 50000, which flrst
dermes the BIOS variable segment as the current segment From there two PEEK
commands read the port address of the CRTC address register and the variable VR
is loaded with the segment address of the video RAM.

This address is used in the output routine at line number 51000 in combination
with the DEF SEG command, which defines the video RAM as the current
segment But flrst we calculate the offset address in the video RAM by reading the
start address of the current screen page from the BIOS variable area and then adding
the offset address of the output position within the video RAM. As in the Pascal
version, this is calculated by adding the product of the row coordinate (variable
CLINE%) by 160 and the column coordinate (COLUMN%) by 2.

BASIC listing: DVIB.B

100 ,._._--_._*---_._..._-*-._-_._-*************.********************•• '
110 D V I B
120 ,*--*,
130 Task : Demonstrates direct access to video RAM
150 '. Author : MICHAEL TISCHER
160 ,. Developed on : 10/01/1988
170 0. last update : 06/21/1989 .'
180 ,**'
190
200 CLS : KEY OFF
210 GOSUB 50000 'Determine seqrnent address of video RAM
220 COLUMN'-22 : CLINE'-O : COL' - 15
230 T$ = "DIVB - (c) 1988 by MICHAEL TISCHER" : GOSUB 51000
240 FCOL% = 0 : T$ = "[[[[" 'Define string and starting color
250 A$ = INKEY$: IF A$<>.... THEN 400 'Repeat until user presses a key
260 FCOL' = FCOL' + 1 'Increment starting color
270 IF FCOU > 15 THEN FCOU = 1 'When FCOL\=16 make FCOL%-l
280 COL% = FCOU 'Set color for first square
290 FOR COLUMN'=O TO 76 STEP 4 'Execute for each column
300 FOR Z%=l TO 24 STEP 2 'Execute for each line

561

10. Accessing and Programming the Video Cards PC System Programming

310 CLlNEt - U: GOSUB 51000 'Display first line of square
320 CLINEt - Zt+1 GOSUB 51000 'Display second line
330 COLt - COLt + 1 AND 15 'Set next color
340 NEXT
350 NEXT
360 GOTO 250
370 '
400 CLS 'Clear screen
410 END
460 '
50000 1*_••••••_••••__ •••••• _--•••• __ ••••••••_--••••• _-_ ••••***********.
50010 '* Determine segment address of video RAM *'
50020 ,*--"
50030 '* Input : none "
50040 " Output: VR is the segment address of video RAM
50050 .•••••••_••••••••••••••••••_••••••••••••••••••••••••••*.-......_.'
50060 '
50070 DEF SEC - GH40 'Segment address of BIOS variable range
50080 VR - PEEK(&H63) + PEEK(&H64) * 256 'Get CRTC port
50090 IF VR - GH3B4 THEN VR = 'HBOOO ELSE VR - &HB800
50100 RETURN 'Back to caller
50120 '
51000 ••••••••••••••••••••••_••••_-_••••••••••••••••••••••••***._.__._.'
51010 " Write string direct into video RAM "

51020 "--"
51030 ,* Input - COLUMNt - the output column
51040 - CLlNEt - the output line *,
51050 - COLt - string color
51060 - TS - the string to be displayed
51070 Output: none
51080 1***.**••••••* ••••••••••••••••••••••••***** •••*••••••••••••••••••.
51090 '
51100 DEF SEC - GH40 'Segment address of BIOS variable range
51110 OFt = PEEK(&H4E) + PEEK(&H4F) , 256 'Starting address of page
51120 OFt = OFt + COLUMN' * 2 + CLlNEt * 160 'Offset of first character
51130 DEF SEC - VR 'Set segment address of video RAM
51140 FOR It-1 TO LEN(TS) 'Execute string
51150 POKE OF', ASC(MIDS(TS,n,1)) 'ASCII code in video RAM
51160 POKE OFt+1, COLt 'Color in video RAM
51170 OFt = OFt + 2 'Set offset to next character
51180 NEXT
51190 RETURN 'Back to caller
51200 '

562

Chapter 11

Accessing and Programming
the AT Realtime Clock

The AT has a battery operated realtime clock on the main circuit board. The clock
is part of the Motorola MC-146818 processor. This processor also contains 64
bytes of battery backup RAM. This RAM accepts clock data and system
configuration data. It can be accessed through port addresses 70H to 7FH.
However, only ports 70H and 7lH are of interest to the user.

Realtime clock registers

As the following table shows, the clock has thirteen memory registers of interest

Register Meaning
0 Current second
1 Alarm second
2 Current minute
3 Alarm minute
4 Current hour
5 Alarm hour
6 Day of the week
7 Number of day
8 Month
9 Year
10 Clock status reqister A
11 Clock status register B
12 Clock status register C
13 Clock status register D

Every time field (second, minute, hour) has a similar alarm field. These alarm
fields allow the programmer to set the clock to trigger an interrupt at a particular
time of the current day (more on this later).

563

11. Accessing and Programming the AT Realtime Clock PC System Programming

Weekday

The day of the week provides the number of the current weekday: The value I
represents Sunday, the value 2 stands for Monday, 3 for Tuesday, etc.

Year

The year is counted relative to the century (the system assumes 1900). The value
87 in this field represents the year 1987.

The four status registers allow user programming of the clock.

.......-------t Time frequency

VIP
.......----------IO=Tlme not actualized

1=Tlme actualized

Status register A of the clock

The ROM-BIOS set the two lower fields of these registers during the system boot
The interrupt frequency field has a default value of 011O(b). This value results in
an interrupt frequency of 1024 interrupts per second (an interrupt every 976,562
microseconds).

The contents of the time frequency field is 01O(b). This field triggers a time
frequency of 32,768 kiloHertz.

Bit 7 of the status register is of interest to the programmer in conjunction with
these two fields. It indicates whether a second has just elapsed, and increments the
time fields (seconds, minutes, hour). If a second hasn't elapsed, this bit contains a
1. This bit is interesting because you can only read the individual time fields when
the time is not being updated. Otherwise a minute could pass and the second
counter reset to 0 before the minute counter could be incremented. This could cause
a time jump from 13:59:59 to 13:59:00, then the correct display of 14:00:01 one
second later.

Accessing status register A

Since status register A is a part of the 64-byte RAM, you can access it like any
other memory location. First you load the number of the memory location to be
accessed into the AL register (in this case, the value 10). Then you pass this value
to port 70H using the OUT instruction. The chip recognizes that an access to one

564

Abacus 11. Accessirag and Progrtlll'lnting the AT ReoltitM Clock

of its memory locations occurred. Either an OUT instruction then writes to port
71H or an IN insbUCtion reads the memory contents from port 71H.

TIle following instructions read or write a memory location in the realtime clock:

RBAD: WRI:rE:
mov aI, Memory_location mov aI, Memory_location
out 70h,al out 70h,al
in al,7lh mov aI, New_contents

out 7lh,al

Status register B

Some clock settings can be programmed through status register B. Bit 0 of status
register B controls daylight savings time status. When this bit is set to I, it
indicates that daylight savings time is in effect. A value of 0 (the default value for
this bit) shows that standard time is in effect.

Bit 1 decides whether the clock should operate in 12-hour or 24-hour mode. In 12
hour mode it switches after every 12 hours (midnight and noon) to 1 o'clock again.
The 24-hour mode switches to 1 o'clock after 24 hours. 24-hour mode is active
when you boot the system.

7 6 5 4 3 2 1 0 bit ~~~--:--~....,I I I I I I I I I ~a~~~ht saving. time

11:no
24-/12-hour formatl I
O=12-hour
1=24-hour

ITlme ana aate torlNlt
O=BCD

h=blnary
IBi0ck generator

~~Off
=on

Call Interrupt atter
time actualization
O=no
1=ye.

Call alarm Interrupt
O=no
1=ye.

Call periodic Interrup
O=no
1=ye.

Actualize time
~--------------------~O=ye.

1=no

Clock status register B

565

11. Accessing and Programming the AT Realtime Clock PC System Programming

Bit 2 defines the fonnat in which the time and date fields are stored. If this bit
contains a I, the various dates are stored in binary notation. The year (19)87 is
coded as 0101011 1 (b) in BCD fonnat, which is switched on by the value 0 in bit
2. Two numbers are stored in every byte. The higher half is stored in the most
significant four bits and the lower half in the least significant four bits.

Bit value27 2 6 2 5 24 23 22 21 20
76543210

Binary 	 10111011101111111
o +64+ 0 +16 + 0 + 4 + 2 + 1 = 87

2 3 22 21 2° 2 3 22 21 20 Bit value
7 6 5 4 3 2 1 °

BCD 111010101 101111111
8+0+0+0=8 0+4+2+1

8*10 + 7

(8*10) + 7 87

The number 87 in binary and in BCD (Binary Coded Decimal) format

Nonnally this bit contains a 0 and the numbers are stored in BCD fonnat

Note: 	 BIOS assumes BCD representation when performing the date
function with interrupt lAH. Application programs which call these
functions and obtain the infonnation in binary fonnat instead of the
expected BCD may crash. The same applies to the 12-hour/24-hour
time measurement, although a change to the 12-hour cycle wouldn't
result in as serious consequences as the change in the date.

Bit 4 detennines whether an interrupt should be called after the time (and date)
update. This bit must contain a 1 if an interrupt should be called. The system
suppresses this interrupt by setting this bit to 0 during the booting process.

Bit 5 can trigger an alann. The clock reads the alann time from locations 1, 3 and
5 (seconds, minutes and hours) of clock RAM. When the alann time is reached, an
interrupt executes when bit 5 is set to 1. The system suppresses this interrupt
when it sets bit 5 to 0 during the booting process.

Bit 6 controls periodic interrupt calls when it is set to 1. The frequency of the
interrupt calls depends on the interrupt frequency coded into bits 0-3 of status
register A. Since the default value on bootup is a frequency of 1,024 kiloHertz. the
interrupt triggers every 967,562 microseconds. Since bit 6 is set to 0 at the system

566

Abacus 11. Accus;,.g and ProgrQIItIf'U"ll tlte AT Remtime Clock

start. an application program must set it to I before periodic interrupt calls can
execute.

Bit 7 controls the periodic updating of the time and date. once every second. This
bit is set to 0 when you boot the system so that the time constantly increments.
Before entering a new date and time in the various memory locations. this bit
should be ftrSt set to I to prevent the clock from changing the time immediately.
Once you have entered all the data necessary. this bit can be reset and the time can
continue updating.

Calling the correct interrupt

We've used the phrase "calling the interrupt" many times in this section, without
really telling you ~ interrupt should be called. Even though there are several
reasons for the clock to call an interrupt (alarm time, periodic interrupts, etc.),
interrupt 70H is the interrupt consistently called. This interrupt contains a BIOS
routine which controls the two time functions in interrupt 15H, among other
things.

The routine uses status register C of the clock to determine the reason for the call.
Only bits 4,5 and 6 of this register are of interest to us here. They correspond to
the bits in status register B. For example, when you trigger the alarm interrupt
(which can only occur if bit 5 in status register B was set) then bit 5 in status
register C is also set to indicate that the alarm time has been reached.

7 6 5 4 3 2 1 Obit

.......------11=close time actualization

I....-------~ 1 =perlodlc Interrupt call
L.-________~ 1 =alarm time reached

Status register C

The fIrst task of the routine which intercepts interrupt 70H is to read status register
C. The routine then determines the reason for the itlterrupt call and reacts
accordingly.

567

11. Accessing and Programming the AT Realtime Clock PC System Programming

Status register D

Status register 0 only has one bit of interest: bit 7. It indicates the stallls of the
battery which maintains the storage of data, even when the PC's power supply is
turned off. If this bit has the value 0, you should replace the battery because the
present battery is dead or near death.

Some configuration information follows status register D.

~te Meaning
14 Diagnostic ~te ,

15 Status on termination of the system
~

16 Disk descr-hEtion
17 reserved
18 Hard Disk description
19 reserved
20 Configuration
21 Low byte of the main memory in kilobytes
22 High byte of the main memory in kilobytes
23 Low byte of the additional memory in kilobytes
24 High ~te of the additional memory in kilobytes
25-45 reserved
46 High ~te of the checksum for memory locations 16-32
47 Low ~te of the checksum for memory locations 16-32
48 Low byte of the additional memory in kilobytes
49 High byte of the additional memo~ in kilobytes
50 the first two numbers of the centu~ as BCD number
51 Boot information
52-63 reserved

Diagnostic byte (address 14)

Bit Mean il!']_

0-2 reserved

3 0 = Hard disk and controller o.k.

1 = Hard disk not present or not functional
4 0 = Memory size in memory locations 21-24

1 = other memo~ size determined during bootil}.q
5 0 = Configuration in memory location 20 o.k.

1 = another configuration found during booting
6 0 = Checksum in memory location 46 and 47 o.k.

1 = Checksum in memory location 46 and 47 is false
7 0 = Battery is o.k.

1 = BatterL dead or almost dead

568

Abacus 	 11. Accessing arut Programming the AT Realtime Clock

Disk description (address 16)

bit meaning
0-3 Type of second installed drive (DOS desiJination: BI

0000 (bl = no second disk drive
OOOl(b) = 320/360K drive
OOlO(b) - 1.2 m~a~te drive

4-7 T~ of first installed drive (DOS designation: A)
OOOO(b) = no disk drive
OOOl(b) = 320/360K drive

Note: 	 If you program the clock for generating time-dependent interrupts,
and you point interrupt vector 70H to a user routine, remember that
if the user routine's end doesn't return to the BIOS, you must send an
EOI instruction to the AT's two interrupt controllers, since interrupt
70H is a hardware interrupt triggered by one of these controllers.

Demonstration programs

The three programs listed below show how you can access the realtime clock from
BASIC, Pascal or C. Three routines in particular perform most of the functions.
The fIrst routine reads a value from one of the clock's memory locations. The
second routine places a value there. The third routine checks whether the clock is
operating in binary mode or BCD mode, then reads a memory location in the
clock, converting the contents of this location from BCD into binary if necessary.
This routine is important for access to all memory locations containing
information on date and time which could be coded in BCD or in binary format

The main program checks the battery on the clock. If there's power in the battery,
the program calls two routines which read the contents of the memory locations
for the current date and current time from the clock, among other things. This data
appears on the screen.

The main program doesn't access the routine for description of memory locations.
It should be easy to convert the program so that the routine for the description of
memory locations writes to the clock instead of reading date and time. This is just
a suggestion; feel free to experiment.

BASIC listing: RTC.BAS

100 ,** •••*•••*****.******.**••**••*.*****.** ••••****.*••••*****.*.***,
110 •• 	 R T C .,120 1* ___ *.

130 Task : makes two Subroutines available ••
140 	 for reading and writing data ••
150 •• from the RTC of the AT 	 ••
160 •• Author : MICHAEL TISCHER 	 ••
170 •• developed on : 7.24.87 	 ••
180 last Update : 9.21.87
190 ••••••*•• *** •• **** ••*******.*******••••***•••***••••**************.
200 •
210 CLS 	 'Clear Screen
230 PRINT"RTC (c) 1987 by Michael Tischer" : PRINT

569

11. Accessing and ProgrQJffllUng the AT Realtime Clock PC System Programming

240 PRINT· Information from the battery buffered real time clock •
250 _______•PRINT·---~--

260 PRINT
270 ADR% - 14 : GOSUB 50000 'read diagnostic-byte from the RTC

280 IF (CON% AND 128) - 0 THEN 310 'bit 8 - 1 --> battery o.k.

290 PRINT· WARNING! The battery of the clock is low'·

300 END

310 ADR% - 11 : GOSUB 50000 'read status-register B of the RTC

320 PRINT·- the clock is operated in ": (CON% AND 2) * 6 + 12:"hour-mode •

330 PRINT"- the time: .:

340 ADR% - 4 : GOSUB 52000 'read the hour and convert to decimal

350 PRINT USING ·":·:CON%:

360 ADR% - 2 : GOSUB 52000 'read the minutes and convert to decimal

370 PRINT USING ·":·;CON%:

380 ADR% - 0 : GOSUB 52000 'read the seconds and convert to decimal

390 PRINT USING •••·;CON%

400 PRINT·- the date: .;

410 ADR% - 6 : GOSUB 52000 'read day of week and convert to decimal

420 RESTORE 540

430 FOR I' - 1 TO CON' : READ DAYS: NEXT 'read name of the day

440 PRINT DAYS;·, the .;

450 ADR' = 7 : GOSUB 52000 'read day of month and convert to decimal

460 PRINT USING • ••• ·;CON';

470 ADRt - 8 : GOSUB 52000 'read month and convert to decimal

480 PRINT USING ·".·;CON%;

490 ADR' - 9 : GOSUB 520QO 'read year and convert to decimal

500 PRINT USING •••••·;CON'+1900

510 PRINT

520 END

530 •

540 DATA ·Sunday·,"MondaY·,·Tuesday·,-Nednesday·

550 DATA "Thursday", "Friday", ·Saturday·

560 •

50000 ••• ****.****•••••***••••••**•••****••* ••••••*******••••***•• *••••
50010 •• read the content of a memory location of the RTC
50020 .*---*.
50030 •• Input: ADR\ - the number of the memory location (0 to 63) ••
50040 •• Output: CON' - the content of this storage location ••
50050 .••********.*** ••*****.*.*****.*.***•••*.*.*.***••****.*.****.*.'
50060 •
50070 OUT &H70,ADR\ 'number of memory location to RTC-address-register
50080 CON' - INP(&H71) 'read Content from RTC-data-register
50090 RETURN • back to caller
50100 •
51000 •••** •••••••*******•••*******•• ****.** •••••**** ••••••• **.**•••••.
51010 •• write a memory location in the RTC ••
51020 '*---*'
51030 Input: ADR' - the number of the memory location (0 to 63) *...51040 •• CON' - the new content of this memory location
51050 •• Output: none ••
51060 ' •••••*****••••*••••*••••***.* •••••••••****•••••*••************.1
51070 •
51080 OUT &H70,ADR' 'number of memory location to RTC-address-register
51090 OUT &H71,CON' 'write new content into RTC-data-register
51100 RETURN 'back to the caller
51110 •
52000 ••*** ••**••**••••••••••••••*.**••*.****************.* ••• ********.
52010 •• read the content of a date or time memory location ••
52020 •• from the RTC and convert to decimal ••
52030 ••----------------~---*.
52040 •• Input : ADR' - the number of the memory location (0 to 63)
52050 .* Output: CON% - the new content of this memory location
52060 •• Info : ADR' is changed by this subroutine ••
52070 1*•••***.**** ••*.**.****.****.**••••**.*****.*********••***.** •• 1
52080 •
52090 GOSUB 50000 'read content of the memory location
52100 BCD' - CON' •record content of the memory location
52110 ADR' = 11 'Address of the Status registers B of the RTC
52120 GOSUB 50000 •read its content
52130 IF (CON' AND 2) - 0 THEN 52150 ·test if BCD-mode

570

Abacus 	 11. Accessing and Programming the AT Realtime Clock

52140 BCD' - (BCD, AND 15) + INT(BCD' I 16) * 10 'convert BCD to decimal
52150 CON' = scot 'set return value
52160 RETURN 'back to caller

Pascal listing: RTC.PAS

{***********••***********.*******.************••******.***************}
{* 	 RTC *)

{*---*)
{* Task : makes two Functions available for reading and *)
{* writing data in the RTC *)
{*---*)
{* Author MICHAEL TISCHER *)
{* developed on : 7.10.87 *)
{* last Update : 9.21.87 *)
{******* ••• **••******************•••*************••••*.*****•••*******}

program RTCP;

Uses {Turbo 4.0 only)
Crt;

const 	RTCAdrPort $70; Address-Register of the RTC
RTCDtaPort - $71; { Data-Register of the RTC

SECONDS 0; { Addresses of some memory locations of RTC

MINUTE 2',

HOUR 4;

DAYOFWEEK 6;

DAY 7;
MONTH 8;
YEAR 9',
STATUSA = 10;
STATUSB - 11;
STATUSC 12;
STATUSD - 13;
DIAGNOSIS - 14;
YEARHUNDRED 50;

t***·*****************}
{* RTCREAD: reads the content of a memory location of the RTC *)
{* Input the address of the memory location in the RTC *)
{* Output the content of this memory location *)
{* Info if the Address is outside the permitted area *)
{* (0 to 63), the value -1 is returned *)
{*****************************••••************************************)

function RTCRead(Address : integer) : integer;

begin
if {Address < 0) or (Address > 63) { is the Address o.k.?
then RTCRead '= -1 { NO!
else
begin
port [RTCAdrPort] := Address; { transmit Address to the RTC
RTCRead := port [RTCOtaPort] { read its Content

end
end;

{********************••••********.*.**********•••••• **•••*************}
{* RTCDT read a memory location for date or time from the *)
{* RTC and convert the result into a binary value *)
{* if the RTC works in BCD-Fonnat *)
{* Input the address of the memory location in the RTC *}
{* OUtput the content of this memory location as binary value *}
{* Info if the address is outside the permitted area (0 - 63) *)
{* the value -1 is returned *)

571

11. Accessing and Programming the AT Realtime Clock PC System Programming

{•••••••• ****** ••• **.*****•••• **********.*******.***••****************}

function RTCDT(Address integer) : integer;

var Value : integer; (for memory of a value which was read)

begin
if (RTCRead(STATUSB) and 2 = 0) BCD- or Binary-Mode?
then RTCDT := RTCRead(Address) { is Binary-Mode
else (is BCD-Mode
begin
Value ' RTCRead(Address); {get Content of the memory location
RTCDT (Value shr 4) * 10 + Value and lSI convert BCD to binary

end
end;

{***}
1* RTCWRITE: write a value into one of the memory locations of RTC *}
(* Input see below *)
(* Output none *)
1* Info the address can be between 0 to 63 *)
{**•• *************************.*}

procedure RTCWrite(Address : integer; I the address of the location
Content : byte); { the new content

begin
port [RTCAdrPort] := Address; { transmit address to the RTC
port [RTCDtaPort] '= Content I write new value

end;

{**.******}
(* MAIN PROGRAM *)
{***}

begin
clrscr; (Clear Screen)

writeln('RTC Ie) 1987 by Michael Tischer'tI3'10);

writeln('Information from the real time clock ');

writeln('=====--=======================--==========-==--======"13'10);

if RTCRead(Diagnosis) and 128 = 0 then (is the Battery o.k.?)

begin (the Battery is o.k.)
writeln('-the clock is being operated in " (RTCRead(STATUSB) and 2)*6+12,

I hour-mode');
writeln('- the time: " RTCDT(HOUR), ':', RTCDT(MINUTE):2,

':', RTCDT(SECONDS):2);
write('- the date: ');
case RTCDT(DAYOFWEEK) of (Read Day of the Week)

1 write('Sunday'};
2 write ('Monday');
3 write('Tuesday');
4 write('Wednesday');
5 write('Thursday');
6 write('Friday');
7 write ('Saturday')

end;
writeln (', the ',RTCDT (DAY) , RTCDT (MONTH) ,

RTCDT(YEARHUNDRED), RTCDT(YEAR»;
end

else (the Battery of the RTC is exhausted!
write (' WARNING! The Battery of the clock is low! ')

end.

572

Abacus 11. Accessing and ProgrfJlMling the AT Realtime Clock

C listing: RTC.C

;** ••••••••••**** ••••••***.**** •••••••**.**** ••••** •••*.*.******.*••**/
/* R T C */
/*---*//* Task : provides two Functions for reading and writing */
/* Data in the Real Time clock */
/*---*/
/* Author MICHAEL TISCHER */
/* developed on : 8.15.87 */
/* last Update : 9.21.87 */
/*---*/
/* (MICROSOFT C) */
/* Creation MSC RTCC; */
/* LINK RTCC; */
/* Call RTCC */
/*---*/
/* (BORLAND TURBO C) */
/* Creation : Through the RUN command in the command line */
/****.*****.*****•••*********•••****.*****••**••***************•••****/

tinclude <dos.h> /* Include header-files */
tinclude <conio.h>

'define byte unsigned char

'define RTCAdrPort Ox70 /* address-register of the RTC */
'define RTCDtaPort Ox71 /* data-register of the RTC */

'define SECONDS 0 /* addresses of some memory locations of RTC */
'define MINUTE 2
'define HOUR 4
'define DAYOFWEEK 6
• define DAY 7
• define MONTH 8

'define YEAR 9

• define STATUSA 10
'define STATUSB 11
'define STATUSC 12
'define STATUSD 13
'define DIAGNOSE 14
'define YEARHUNDRED 50

/*****************.*.****************.********* ••***** ••*********•••**/
/* RTCREAD: reads the content of a memory location of the RTC */
/* Input : the address of the memory location in the RTC */
/* Output : the Content of this memory location */
,*.*************••••• *****************•••**********************.******,

byte RTCRead(Address)

byte Address; /* the memory location of the RTC */

outp(RTCAdrPort, Address); /* transmit address to the RTC */
return(inp(RTCDtaPort»; /* read content and transmit to caller */

}

/****************** ••• ****•••**********.******.*.*****••••••**.*******/
1* RTCDT reads date or time from one of the memory locations *1
1* and converts the result into a Binary value *1
1* if the clock works in BCD-Format *1
/* Input the address of the memory location in the RTC */
/* Output the content of this memory location as Binary Value */
/* Info :if the address is outside the permitted area */
1* (0 to 63) the Value -1 is returned *1
/************************* ••*****.************************************/

byte RTCDt(Address)

byte Address; /* the memory location in the RTC *1

573

11. Accessing and Programming llu! AT Realtiml! Clock PC System Programming

{

if (RTCRead(STATUSB) & 2) /* BCD- or binary mode? */
return«RTCRead(Address) » 4) * 10 + (RTCRead(Address) & 15»;

else return(RTCRead(Address»; /* is binary mode */
}

/ •••••••******************•••*************************************.*.*,
/* RTCWRITE: write a value into one of the memory locations of RTC */
/* Input see below * /
/* Output none * /
/* Info the address must be between 0 to 63 */
/********************* ••• ****••*********** ••••************************'

void RTCWrite(Address, Content)

byte Address; /* address of the memory location */

outP(RTCAdrPort, Address); /* transmit address to the RTC */
qutp(RTCDtaPort, Content); /* write new value */

}

/*********************** ••***********************•• *************.*.***/
/** MAIN PROGRAM **/
/* •• *************•• ***.************************************•••• *** •••• /

void mainO

static char *Weekdays[} = /* Names of the weekdays */

"Sunday", "Monday", "Tuesday", ·Wednesday", "Thursday", "Friday", "Saturday"
};

printf("\nRTC (c) 1987 by Michael Tischer\n\n");

printf("Information from the real time clock\n");

printf("===-====---=====$-======================----=========\n\n");

if (! (RTCRead(DIAGNOSE) & 128» /* is the Battery o.k.? */

{ /* the Battery is o.k. */
printf("- The clock is operated in \d hour mode \n",

(RTCRead(STATUSB) & 2)*6+12);
printf ("- the time: \2d:\2d:%2d\n",

RTCDt(HOUR), RTCDt(MINUTE), RTCDt(SECONDS»;

printf ("- the date: ");

printf ("\s, der \d.\d.\d\d\n", Weekdays [RTCDt (DAYOFWEEK) -1].

RTCDt(DAY), RTCDt(MONTH), RTCDt(YEARHUNDRED), RTCDt(YEAR»;

else printf (" WARNING! The battery of the clock is low!\n");

574

Chapter 12

Keyboard Programming

The keyboard is an independent umt ill the PC system, and has its own
microprocessor and memory. The processor informs the system when a key is
pressed or released. It does this by sending the system something called a scan code
when a key is pressed or released. In both cases the key is indicated by a code
which depends on the position of the key. These scan codes have nothing to do
with the ASCII or extended keyboard codes to which the system later converts the
keypresses.

Communication with the system is performed over two bidirectional lines using a
synchronous serial communications protocol. In addition to the actual data line
used to transfer the individual bits, the clock line synchronizes the periodic
transmission of signals. Transfers are made in one-byte increments, whereby a stop
bit is transmitted first (with the value 0), followed by the eight data bits,
beginning with the least significant bit. A parity bit, calculated using odd parity,
follows the eighth data bit. The transfer of a byte then concludes with a stop bit,
which forms the eleventh bit of the transfer. At both ends of the communications
line (Le., in the PC and in the keyboard itself) are devices which convert the
signals on the data line to bytes and back again.

Although all types of PCs use this form of communication, we must distinguish
between PCIXT and AT models. These systems use different processors as
keyboard controllers. The Intel 8048 used in the keyboards of Pes and XTs is a
relatively "dumb" device, which can only send the scan codes to the system.
However, the 8042 processor used in AT and 80386 keyboards can do much more.
Here the communication between the system and the keyboard becomes relatively
complex, and the system can even control parts of the keyboard.

The heart of this communication at the keyboard end is represented by a status
register and input and output buffers. The buffers transfer:

Keyboard codes which correspond to pressing or releasing a key

Data which the system requests from the keyboard

575

12. Keybomd Programming PC System Programming

These buffers can be accessed at port 60H on the AT.

The input buffer can be written at port 60H as well as port 64H. The port which is
used depends on the type of information to be transferred. If the system wants to
send a command code to the keyboard, it must be sent to port 6OH, while the
corresponding data byte is sent to port 64H. Both end up in the keyboard input
buffer, but a flag in the status register indicates whether a command byte (port
64H) or a data byte (port 6OH) is involved.

In addition to this flag, bits 0 and 1 of the keyboard status register are especially
important for communication with the keyboard. Bit 0 indicates the status of the
output buffer. If this bit is I, then the output buffer of the keyboard contains
information which has not yet been read from port 6OH. Reading from this port
will automatically set this bit back to 0, indicating that there is no longer a
character in the output buffer.

Bit 1 of the stams register is always set whenever the system has placed a character
in the input buffer, before this character is processed by the keyboard. Nothing
should be written to the keyboard input buffer unless this bit is equal to 0,
signalling that the input buffer is empty.

7 6 5 4 3 2 Obit

I I I I I Itll11jl111 I I 1 =Output buffer full

1 =Input buffer full

Command/data
1 =Output from port 64(h)
o =Output from port 60(h)

1 =Keyboard active

1 =Time out error (output)

1 =lime out error (Input)

1 =Parity error

ATkeyboard controller status registers

Of the various commands that a system can send to the keyboard, two are of
interest for applications programs because they also playa roll outside a keyboard
interrupt handler. The ftrst of these commands sets the typematic or repeat rate of
the keyboard. This is the number of make codes per second which the keyboard
will send to the system when a key is pressed and held down. It can be between
two and 30 codes per second. To prevent the keys from repeating unintentionally,
this repeat function does not begin until after a certain delay. This delay time can
be set by the user and is encoded in binary as follows:

576

Abacus 12. Keyboard Programming

CodiIl9' for AT k~board del~ rate

Code Dela~ rate
00 (b) 1/4-second
01 (b) 1/2-second
10 (b) 1/4-second
11 (b) 1 second

The keyboard will observe these times with a tolerance of ±20%.

The repeat rate, also called the typematic rate by IBM, is also encoded in binary.
The following table shows the relationship between the repeat (typematic) rate and
the number of repetitions per second.

'!'Y£ematic rate codes for the AT keyboard
Code RPS* Code RPS Code RPS Code RPS
11111 (b) 2.0 10111 (b) 4.0 01111 (b) 8.0 00111 (b) 16.0
11110 (b) 2.1 10110 (b) 4.3 01110 (b) 8.6 00110 (b) 17.1
11101 (b) 2.3 10101 (b) 4.6 01101 (b) 9.2 00101(b) 18.5
11100 (b) 2.5 10100 (b) 5.0 01100 (b) 1l'>.0 00100(b) 20.0
11011 (b) 2.7 10011 (b) 5.5 01011 (b) 10.9 00011 (b) 21.8
11010 (b) 3.0 10010 (b) 6.0 01010 (b) 12.0 00010(b) 24.0
11001 (b) 3.3 10001(b) 6.7 01001 (b) 13.3 00001(b) 26.7
11000 (b) 3.7 10000 (b) 7.5 01000 (b) 15.0 00000 (b) 30.0
*R~etitions Rer second

This relationship may seem somewhat arbitrary at ftrst, but it does follow a
mathematical formula. The binary value of bits 0, 1, and 2 of the repeat rate form
variable A, and the binary value of bits 3 and 4 form variable B:

(8 + A) * 2B * 0.00417 * l/second

The delay and repeat rate values are combined into a byte by placing the ftve bits
of the repeat rate in front of the delay value. However, we can't just send this value
straight to the keyboard. We must ftrst send the appropriate command code (34H)
and then the repeat parameters. Both bytes must be sent to port 6OH, but we
cannot just send them with an OUT instruction. We have to use a transmission
protocol which includes reading the keyboard status, and which also accounts for
the possibility that the transfer might not work the frrst time. Since we have to do
this for both bytes, we should write a subroutine to do it. The structure of this
subroutine is shown in the following flowchart.

577

12. Keyboard Programming PC System Programming

Program jlowcharl----byte transfer via keyboard

578

Abacus 12. Keyboard ProgrtJ1ll1tling

We first load an error counter which allows the routine to try to send the byte three
times before an error is returned. Then the keyboard status port is read in a loop
until bit 0 is cleared and the input buffer of the keyboard is empty. Then we can
send the character to port 6OH. To make sure that the character got tht"A'e all right (a
parity error might have occurred, for example), the keyboard sends back a reply
code. This has been received when bit 1 of the ~yboard status port is set.

This register is again read from port 64H in a loop until this condition is met.
Now we can read the reply to our transmission from the keyboard data port. If it is
the code OFAH, which stands for "acknowledge," the transmission was successful.
Any other code indicates an error, which tells the subroutine to decrement the error
counter and repeat the whole process, provided the counter has not reached zero. In
this case the subroutine ends and signals an error to the caller.

Demonstration programs

To give you an example of how this works, the following pages contain programs
in BASIC, Pascal, and C which you can use to set the key repeat parameters on
your keyboard. The heart of these programs is an assembly language routine which
sends the parameters to the keyboard. Within this routine is the subroutine we just
discussed, which is first called to send the Set Typematic instruction to the
keyboard. Another call is used to send the parameters themselves.

In the Pascal and C versions, the key repeat rate and the delay values are specified
as separate parameters following the program name entered at the DOS prompt.
Naturally this is not possible in GW-BASIC, so the two parameters are read
within the program with the INPUT command.

We also included the listing of the assembly routines for the various programs.
The BASIC and Pascal programs include these with DATA or INLINE statements;
the linker links these statements to the C version of the program.

To see the effect of the key repeat rate, first try setting the smallest repeat rate (0)
and then the highest rate (30). Try pressing and holding a key at each of these
settings to see the results.

BASIC listing: TYPMB.BAS

100 ,******•••**************.**.******.******** ••••******.************••
110 •* T Y P M B *.
120 '*--*'
130 .* Description : Sets the key repeat rate of the AT keyboard. *.
150 • * Author : MICHAEL TISCHER ••
160 •• developed on : 09/08/1988 *.
170" last update : 09/08/1988
180 '.*••**************.******••**********.*.*.************.***•••••••••
190 •
200 CLS : KEY OFF
210 PRINT "Note: This program may be run only if GWBASIC has been started":
220 PRINT "from the DOS level·
230 PRINT "with the command <GWBASIC Im:60000> and the computer is an AT."
260 PRINT: PRINT·If this is not the case, then please enter <s> for Stop.·
280 PRINT ·Otherwise press any other key ••• ·;

579

- -

12. Keyboard Programming PC System Programming

290 A$ = INKEY$: IF A$ z "s" THEN END
300 IF A$ - ." THEN 290
310 CLS 'clear screen
320 GOSUB 60000 'install assembler routine
330 PRINT "TYPMB - (c) 1988 by MICHAEL TISCHER"
340 PRINT "Sets the repeat rate of the AT keyboard." : PRINT
350 INPUT "Delay before repeat (O-minimum, 3-maximum) ";'1\
360 IF '1\<0 OR '1\>3 THEN 350
370 INPUT ·Key repeat rate (30:minimum, O=maximum) .;W\
380 IF wt<O OR w\>30 THEN 370
390 TYPRATEt - '1\ • 32 + W\
400 CALL TR(TYPRATEt, OKt) 'set key repeat rate
410 IF NOT OK' THEN 440
420 PRINT "The key repeat rate has been set."
430 END
440 PRINT "Error accessing the keyboard controller."
450 END
460 '
60000 ,***•••*********.*****•••••****•••••**••••••••••••••••••••••••••• '
60010 ,. Install the routine for setting the key repeat rate.
60020 '*_____---*'.'
60030 Input: none
60040 ,. Output: TR is the start address of the assembler routine
60050 ,. Calling the routine: CALL TR(TYPRATEt, OKt) .'60060 ,*****.**********************************•••********.************'
60070 '
60080 TR-60000! 'start addr of the routine in the BASIC segment
60090 DEF SEG 'set BASIC segment
60100 RESTORE 60140
60110 FOR 1\ - 0 TO 71 READ xt POKE TR+It,xt NEXT 'poke routine
60120 RETURN 'back to the caller
60130 '
60140 DATA 85,139,236, 51,210,180,243,250,232, 23, 0,117, 11,139, 94
60150 DATA 8,138, 39,232, 13, 0,117, 1, 74,251,139, 94, 6,137, 23
60160 DATA 93,202, 4, 0, 81, 83,179, 3, 51,201,228,100,168, 2,224
60170 DATA 250,138,196,230, 96,228,100,168, 1,225,250,228, 96, 60,250
60180 DATA 116, 7,254,203,117,230,128,203, 1, 91, 89,195

Assembler listing: TYPMBA.ASM

,-*************.**••••****••••***********••*****************••********••.,
;' TYPMBA *;

;*--*;
;' Description Assembler routine for use with a GWBASIC ';
;' program, which sets the key repeat rate of the *;
;' AT keyboard. ';
;*--*;
;' Author MICHAEL TISCHER ·;
;' developed on : 27.08.1988 ·;
;' last update : 27.08.1988 ';
;*--*;
;' to assemble MASM TYPMBP.; ·;
;' LINK TYPMBP. ·;
;' EXE2BIN TYPMBP. TYPMBP..BIN *;
;' ••. convert to DATA statements and insert in ';
; * a BASIC program *;
;**;

;=:z: Constants -========---====__=~====~_===-=---

KB STATUS P equ 64h ;status port of the keyboard
KB DATA P equ 60h ;keyboard data port

OB FULL equ 1 ;Bit 0 in the keyboard status port
;one character in the output buffer

IB FULL equ ;Bit 1 in the keyboard status port
lone character in the input buffer

ACK_SIGNAL equ Ofah ;keyboard acknowledge signal

580

Abacus 	 12. Keyboard Programming

equ Of3h ;set-key-repeat code

equ 3 ;number of retries

;==- Program code ---======--=======::.:-=--------==

code segment para 'CODE' ;definition of the CODE segment

org 100h

assume cs:oode, ds:code, ss:code, es:code

i--
;-- SET_TYPH: Determines the key repeat rate to be sent to the -------
;-- keyboard controller
;-- Call CALL Adresse(TYPRATE', OK')
;-- Info If the key repeat rate can be set, the value will be
; -- placed in TYPRATE, else 0

set_typm 	 proc far ;GW expects FAR procedures

sframe struc ;structure for accessing the stack
bptr dw ? ;stores BP
ret_adr dd ;return address to the caller

; (FAR address)
ok adr dw ? ;address of the OK variable
tr-adr dw ? ;address of the var with the rep rate
slrame ends ;end of the structure

frame 	 equ [bp - bptr J ;addresses the elements of the structure

push bp ;save BP on the stack
mov bp,sp ;transfer SP to BP

xor dx,dx ;assume transfer failed
mov ah,SET_TYPEM ;set command code for key rep rate
cli ;disable interrupts
call send_kb ;send to the controller
jne error ;error? yes --> Error

mov bx,frame.tr_adr ;get address of the TYPRATE variable
mov ah, [bxJ ;get key repeat rate
call send kb ;send to the controller
jne error ierror? yes --> Error

dec dx ;everything OK, return -1

error: 	 sti ;allow interrupts again
mov bx,frame.ok_adr ;get address of the OK variable
mov [bxJ ,dx ;put error static there
pop bp ;get BP back from stack
ret 4 ;back to GW-BASIC and remove the

;variables from the stack
endp

;--
;-- SEND KB: send a byte to the keyboard controller -------------------
;-- Input AH - the byte to be sent
;-- OUtput zero flag: O-error, 1-QK
;-- Registers: AX and the flag register are used
;-- Info this routine is intended for use only within this
;-- module

send kb proc near

push ex ;save all registers used in this
push bx ;routine on the stack

;maximum of MAX_TRY retries

581

12. Keyboard Programming 	 PC System Programming

;-- wait until the controller is ready to receive data

xor cx,cx :rnaximum of 65536 loop passes
in al,KB STATUS P ;read contents of the status port
test ai, IS-FULL :still a character in the input buffer?
loopne skb::) :yes --> SKB_2

;-- send character to the controller ------------------------

mav al,ah :get character in AL
out KB DATA P,al :send character to the data port
in al;KB STATUS P ; read contents of the status port
test al,OS-FULL - ;answer in the output buffer?
loope skb_3 :no --> SKB_3

;-- get reply from controller and evaluate ------------------

in al,KB DATA P :read reply from data port
crop al,ACK SIGNAL :was the character accepted?
je skb_enct ;YES --> everything OK

the character was not accepted

dec bl idecrement error counter
jne skb 2 :retries left?

:YES --> SKB 2

or bl,l 	 iNO, set zero flag to 0, indicating
;an error

skb_end: 	 pop bx ; restore the registers from the stack
pop ex
ret :back to the caller

send kb 	 endp

;== Ende ============-======================-~=====--=--================

code 	 :end of the code segment

Pascal 	 listing: TYPMP.PAS

{**.*****************}

{* 	 TYPMP *'
{*--*'
{* Description : Sets the key repeat rate of the AT keyboard. *'

{.--*'
(* Author MICHAEL TISCHER * ,
{* developed on : 08/27/1988 *'
{* last update : 08/27/1988 *'
{**}

program TYPMP:

{**.*************************}
(* SetTypm: Sends the key repeat rate to the keyboard controller *'
{* Input RATE: the repeat rate to be set *'
(* Output TRUE, if the value was set, FALSE if an error occurred *'
{* accessing the controller *'
(* Info This function can be bound into a UNIT *'
{** •••••••••••••••••••••• }

{$F+, 	 (this function uses the FAR call model ,

function SetTypm{ Rate byte) : boolean;

begin
inl1ne {

582

Abacus 12. Keyboard Programming

$32/$D2/$B4/$F3/$FA/$ES/$13/$00/$75/$0A/$8A/$66/S06/SES/
SOB/SOO/S75/S02/SFE/SC2/$FB/S8S/S56/SFF/SEB/S27/S90/$51/
S53/SB3/S03/S33/SC9/$E4/$64/$AS/$02/SEO/SFA/S8A/SC4/$E6/
$60/$E4/$64/$A8/$01/$E1/$FA/$E4/$60/$3C/$FA/S74/$07/SFE/
SCB/S75/$E6/$SO/$CB/$01/$5B/$59/$C3

);
end;

{SF-I

{****************.**.******************.**********•••••• ***************}
{ * * MAIN PROGRAM **1
{**.*.************** ••***************•••*******.******.*******.******•• }

var Delay, { stores the delay
Speed, stores the key repeat rate
Fpos1,
FPos2 : integer; error position in string conversion
ParErr : boolean; I error in parameter passing

begin
writeln('13'10, 'TYPMP - (c) 1988 by MICHAEL TISCHER');
ParErr :- true; I assume error in parameters
if ParamCount = 2 then { were 2 parameters passed?

begin { YES
val(Paramstr(I), Delay, FPos1); (first parameter to integer
val(Paramstr(2), Speed, FPos2); { second parameter to integer
if «FPos1=0) and (FPos2=01) then { error in conversion?

if «Delay < 4) and (Speed <32» then (no, value OK?
ParErr := false; I yes, then parameters are OK

end;
if (ParErr) then { are parameters OK?

begin { no

writeln (Call TYPMP delay key repeat rate');

writeln(' ','30,' - - ','30);

writeln(' 1 h;

1* Vertical line can be created using <Alt><179>; *1
writeln(' r 1.---1 r-------J.---------l');

1* Upper left corner can be created using <Alt><218>; *1
{* Horizontal line can be created using <Alt><196>: *1
1* Brace pointing 'up' can be created using <Alt><193>; *J
(* Upper right corner can be created using <Alt><191> *1

writeln(' 1 0: 1/4 second 1 1 0 : 30.0 rep./s. h;

{* Vertical line can be created using <Alt><179>; *J

writeln(' 1 1 1/2 second 1 I 1 26.7 rep./s. h:

writeln(' 1 2: 3/4 second I I 2 24.0 rep./s. I'):

writeln(' 1 3 : 1 second 1 I 3 21.S rep./s. h;

writeln (' ~ ---------------------~ I');

1* Left brace can be created using <Alt><195>; *J
{* Horizontal line can be created using <Alt><196>; *1
1* Right brace can be created using <Alt><180>: *J

writeln (' 1all values q20\ 1 I !oJ:

writeln (' l-----------------J I I'):

(* Lower left corner can be created using <Alt><192>; *1
{* Horizontal line can be created using <Alt><196>; *J
(* Lower right corner can be created using <Alt><217>: *J

writeln(' 128: 2.5 rep./s. I');

1* Vertical line can be created using <Alt><179>; *J

writeln(' 129 2.3 rep./s. h;

writeln(' 130: 2.1 rep./s. h;

writeln(' 131: 2.0 rep./s. h;

writeln(' l-----------------J');

{* Lower left corner can be created using <Alt><192>; *1
{* Horizontal line can be created using <Alt><196>; *1
{* Lower right corner can be created using <Alt><217>; *J

end

583

12. Keyboard Programming PC System Programming

else the parameters are OK
begin

if (SetTypm((Delay shl 5) + Speed » then I set key repeat rate
writeln('The keboard repeat rate was set.')

else
write1n('ERROR accessing the keyboard controller.');

end:
end.

Assembler listing: TYPMPA.ASM

;************••**************************************.*****************:
;* T Y P M P A *;
;*--*:
;* Description Assembler routine for use with a Turbo Pascal *;
;* program, which sets the key repeat rate of the *;
;* AT keyboard. *;
i*--*;
;* Author MICHAEL TISCHER .;
;* developed on : 27.08.1988 .;
;. last update : 27.08.1988 *;
;*--*;
;* to assemble MASM TYPMPA; *;
; * LINK TYPMPA * ;
;* EXE2BIN TYPMPA TYPMPA.BIN *;
;* .•• convert to INLINE statements ,
,.*.*.*************************************.************************.***,

KB_STATUS] equ 64h ;status port of the keyboard

KB_DATA] equ 60h ;keyboard data port

OB FULL equ 1 ;Bit o in the keyboard status port
ione character in the output buffer

IB FULL equ 2 ;Bit 1 in the keyboard status port
;one character in the input buffer

ACK SIGNAL equ Ofah ;keyboard acknowledge signal

SET-TYPEM cqu Of3h ;set-key-repeat code

MAX TRY equ 3 inumber of retries

;== Program code ========-==========================s===c==~============

code segment para 'CODE' ;definition of the CODE segment

org 100h

assume cs:code, ds:code, ss:code, es:code

;--
Determines the key repeat rate to be sent to the

;-- keyboard controller

:-- Info Set up as a NEAR call

proc near ;GW expects FAR procedures

sframeO struc ;structure for accessing the stack
bpO dw ;stores BP
ret adrO dd ? ;return address to the caller

; (FAR addreSS)
trateO dw ? ;address of the var with the rep rate
sframeO ends ;end of the structure

frame equ [bp - bpO 1 ;addresses the elements of the structure

;The following instructions are executed by Turbo
push bp ;save BP on the stack

584

Abacus 	 12. Keyboard Programming

mov bp,sp ;transfer sp to BP

xor dl,dl ;assume transfer failed
rnov ah,SET_TYPEM ;set command code for key rep rate
c11 ;disable interrupts
call send_kb ;send to the controller
jne error ierror? yes --> Error

rnov ah,byte ptr frame.trateO ;get address of the TYPRATE variable
call send_kb ;send to the controller
jne error ;error? yes --> Error

inc dl ;everythinq OK, return TRUE

error: 	 stl ;allow interrupts again
rnov [bp-IJ ,dl ;put error static there
pop bp ;get SP back fran stack
jmp ende ;back to Turbo Pascal

set_typtl 	 endp

:--
:-- send a byte to the keyboard controller -------------------
i-- Input AH = the byte to be sent
:-- OUtput zero flag: O-error, I-DK

Registers: AX and the flag register are used
:-- Info this routine is intended for use only within this
;-- module

send kb 	 proc near

push ex ;save all registers used in this
push bx ;routine on the stack

;maximum of MAX_TRY retries

;-- wait until the controller is ready to receive data

xar cx,cx ;maximum of 65536 loop passes
in al,KB STATUS P ;read contents of the status port
test aI, IS-FULL ;still a character in the input buffer?
loopne Skb~) ;yes --> SKB_2

;-- send character to the controller ------------------------

mov al,ah ;get character in AL
out KB DATA P,al ;send character to the data port
in al,KB STATUS P ;read contents of the status port
test aI, OS-FULL - ;answer in the output buffer?
loope skb_3 ;no --> SKB_3

;-- get reply from controller and evaluate ------------------

in al,KB DATA P ;read reply from data port
crop al,ACK SIGNAL ;was the character accepted?
je skb_end ;YES --> everything OK

:-- the character was not accepted --------------------------

dec bl :decrement error counter

jne skb 2 ; retries left?

;YES --> SKB_2

or bl,l 	 iNO, set zero flag to 0, indicating
ian error

skb_end: 	 pop bx : restore the registers from the stack
pop ex
ret ;back to the caller

send_kb 	 endp

585

12. Keyboard Programming 	 PC System Programming

;---
ende label near;-= End ________~===__===z_==_______=_=__...

code 	 ends lend of the code segment

end set_typn

C 	 listing: TYPMC.C

/***./
1* T Y P M C 	 *1
1*--*1
1* Description : sets the key repeat rate on the AT keyboard *1
1* 	 according to the preferences of the user. *1
1*--*1
1* Author MICHAEL TISCHER 	 *1
1* developed on : 08/28/1988 	 *1
1* last update : 08/28/1988 	 *1
1*--*1
1* (MICROSOFT C) 	 *1
1* creation CL lAS Ic TYPMC.C 	 *1
1* LINK TYPMC TYPMCA; 	 *1
1* call TYPMC 	 *1
1*--*1
1* (BORLAND TURBO C) 	 *1
1* creation via project file with following contents: *1
1* TYPMC 	 *1
1* TYPMCA.OBJ 	 *1
,*****************************.*******.*******************************./

1*=- Include files =====~~==~~~==~=-~~=====~-==*I

.include <stdlib.h>

1*-= Typedefs ==~=-==========-=-~==--=--==--===*I

typedef unsigned char byte; 1* build ourselves a byte *1
typedef byte bool; 1* always TRUE or FALSE *1

1*== Constants ~==================~~===-=-==========-====* I

'define TRUE 1 1* needed for working with BOOL *1
'define FALSE 0

1*== Declaration of external functions in the assembler module ===-===*1

extern bool set_typn(byte trate); 1* sets the key repeat rate *1

/****••••****.****•••••••• *** •• *****•••*****.**.**.**••• **** •••••*** ••• /
1** 	 MAIN PROGRAM **1
/***.**••• **•••••** ••***••••••••••••••••• ** •••••••••••• ********••******/

void main (int argc, char *argv[])
(

int 	delay, 1* stores the specified delay *1
speed; 1* stores the specified repeat rate *1

printf ("\nTYPMC (c) 1988 by MICHAEL TISCHER\n");
if (arge! -3 I I ((delay = atoi (argv [1])) <0 I I delay>3) I I

((speed = atoi(argv[2]»<0 I I speed>31 »
1* illegal parameters were passed *1

printf ("call: TYPMC delay key repeat rate\n");
printf (" \x1e - \xle\n");

printf(" ~n·);
1* Vertical line can be created using <Alt><179>; *I

printf (" r 1.---1 r-------.l-----------l- \n");
1* Upper left corner can be created using <Alt><218>; *1

586

Abacus 12. Keyboard Programming

1* Horizontal line can be created using <Alt><196>; *1
1* Brace pointing 'up' can be created using <Alt><193>; *1
1* Upper right corner can be created using <Alt><191> *1

printf (" I 0 : 1/4 second I I 0 : 30.0 rep.ls. I\nO);

1* Vertical line can be created using <Alt><179>; *1
printf (M 1 112 second I I 1 26.7 rep./s. I\nO);

printf (" 2 : 3/4 second I I 2 24.0 rep.ls. I\n");
printf(" I 3 : 1 second I I 3 21.8 rep./s. I\n");

printf (" ~ --------------------~ I\nM);
1* Left brace can be created using <Alt><195>; *1
1* Horizontal line can be created using <Alt><196>; *1
1* Right brace can be created using <Alt><180>; *1

printf (" I all values q20' I I I\n");
printf(" l------------------J I I\nO);

1* Lower left corner can be created using <Alt>.C192>; *1
1* Horizontal line can be created using <Alt><196>; *1
1* Lower right corner can be created using <Alt><217>; *1

printf (00 I 28: 2.5 rep.ls. I\n");
1* Vertical line can be created using <Alt><179>; * I

printf(" I 29 2.3 rep.ls. I\n");
printf (" I 30: 2.1 rep. Is. I\n");
printf (00 I 31: 2.0 rep. Is. I\n");
printf (" l-------------------l\nOO);

1* Lower left corner can be created using <Alt><192>; *1
1* Horizontal line can be created using <Alt><196>; *1
1* Lower right corner can be created using <Alt><217>; *1

)
else 1* the parametes are OK */

{
if {set typn((delay « 5) + speed» 1* set repeat rate *1
printfC"The keyboard repeat rate was set. \n");

else
printf("ERROR accessing the keyboard controller.\n");

Assembler listing: TYPMCA.ASM

i*************·*****************************···*******··***··**********i
;* T Y P M C A *;
;*--*:
;* Description Assembler routine for setting the key repeat * ;
;* rate on an AT keyboard. For linking with a * ;
;* C program. * ;
;*--*i
;* Author MICHAEL TISCHER *;
;* developed on : 08/27/1988 *;
;* last update : 08/2711988 *;
;*--*:
;* to assembler : MASM TYPMCA; *;
;* ..• link with a C program ,
;************•••**************••****•••*.****************••**•••••*****;

;== Constants ==-====-=========-============~=================~~====-===

KB_STATUS_P equ 64h ;keyboard status port

KB DATA P equ 60h ;keyboard data port

OB_FULL equ 1 ;bit 0 in keyboard status port
;a character in the output buffer

IB_FULL equ 2 ;bit 1 in the keyboard status port
;a character in the input buffer

ACK SIGNAL equ Ofah ;keyboard acknowledge signal

SET TYPEM equ Of3h ;set-repeat-rate code

587

12. Keyboard Programming 	 PC System Programming

equ 3 ;number of retries allowed

;-- Segment declarations for the C program -----~~

IGROUP group text ;combination of the program segments
DGROUP group eonst, bss, data ;combination of the data segments

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public 'CONST';this segment stores all of the
CONST ends ; read-only constants

SSS segment word public 'SSS' ;this segment stores all of the
:::BSS ends ;uninitialized static variables

DATA segment word public 'DATA' ;all initialized global and static
;variables are stored in this segment

_DATA ends

; -- Program =---============-====--==...------------=--=
TEXT segment byte public 'CODE' ;the program segment

;--
;-- SET TYPM: sends the key repeat rate to the keyboard controller ----

;-- Call from C : bool set typem(byte trate);

;-- Return value: TRUE, if-the repeat rate was set

;-- FALSE, if an error occurred

sframeO struc ;structure for accessing the stack

bpO dw ;stores BP

ret adrO dw ? ;return address to caller

trateO dw ? ;repeat rate to be set

sframeO ends lend of the structure

frame 	 equ[bp-bpO] ;addresses the elements of the structure

push bp ;save SP on the stack
mov bp,sp ;transfer SP to BP

xor dx,dx ;assume transfer fails
mov ah,SET_TYPEM ;set command code for rep rate
cli ;disable interrupts
call send_kb ;send to the controller
jne error ;error? YES --> Error

mov ah,byte ptr frame.trateO ;get key repeat rate
call send_kb ;send to the controller
jne error ;error? YES --> Error

inc dl ;everything OK, return TRUE

error: 	 sti ;allow interrupts again
mov ax,dx ;return value to AX
pop bp ;get BP back from stack
ret ; back to the C program

_set_typ!\ 	 endp

;--
;-- SEND KB: send a byte to the keyboard controller -------------------
;-- Input All = the byte to be sent

;-- Output zero flag: O=error, laCK

;-- Registers: AX and the flag register are changed

;-- Info This routine is to be called only within the module

send kb proc near

588

Abacus 	 12. Keyboard Programming

push cx ;save all registers which are changed
push bx ;in this routine on the stack

;maximum of MAX_TRY retries

;-- wait until the controller is ready to receive data ---

xor ex, ex. ;maximum of 65536 loop passes
in al,KB 3TATUS P ;read contents of status port
test al,IB-FULL - ;still a char in the input buffer?
loopne skb:::2 ;YES -> SKB_2

;-- send character to the controller -----------------------

mov al,ah ;get character in AL
out KB DATA P,al ;send character to the data port
in al~KB STATUS P ;read contents of the status port
test al,OB-FULL - ;reply in output buffer?
loope Skb_3 ;NO --> SKB_3

;-- get and evaluate relpy from controller -----------------

in al,KB DATA P ;read reply from data port

cmp al,ACK SIGNAL ;was the character accepted?

je skb_end ;YES --> everything OK

;-- the character was not accepted --------------------------

dec bl ;decrement error counter

jne skb_2 ;still retries left?

;YES -> SKB_2

or bl,l 	 ;NO, set zero flag to 0 to indicate
;the error

skb end: 	 pop bx ;restore the registers from the stack
pop ex
ret ;return to caller

send_kb 	 endp

;--

text 	 ends ;end of the code segment

end ; end of the program

We can use this same method to tum the LEOs on the AT keyboard on and off.
The corresponding instruction code is number OEDH, and is called the Set/Reset
Mode Indicators instruction.

After this command code has been successfully transmitted, the keyboard waits for
a byte which reflects the status of the three LEDs. One bit in this byte stands for
one of the three LEOs, which is turned on when the corresponding bit is set.

Bit it LED

0 Scroll Lock

1 Num Lock

2 Caps Lock

Bits 3-7 unused

589

12. Keyboard Programming PC System Programming

Setting and resetting these bits make sense only when the keyboard mode which
they indicate is enabled or disabled.

These modes are managed in the BIOS, not the keyboard. For example, the
keyboard doesn't automatically convert all of the letters to uppercase in Caps Lock
mode. The keyboard can only associate a key with a virtual key number, rather
than a specific character. This key number is then converted to an ASCII or
extended keyboard code by the BIOS. Naturally this also applies to the Caps Lock
key, which simply sends a scan code to the computer when it is pressed. The BIOS
assigns the Caps Lock function to this key by setting an internal flag which marks
this mode as active, then sends the Set/Reset Mode Indicators instruction to the
keyboard to light the appropriate LED.

Although these keyboard modes are normally enabled and disabled by the user
pressing the corresponding keys, it may be useful to set a mode from within a
program. This is the case for keyboards which have separate cursor keys and a
numerical keypad, for example. Since most keyboards can only enter numbers
when Num Lock mode is on, it makes sense to set this mode automatically when
the system is started.

To do this we just set the appropriate BIOS flag and then tum on the
corresponding LED on the keyboard to inform the user that this mode has been
activated.

In practice, a program just has to set the appropriate BIOS mode, since the BIOS
automatically controls the keyboard LEDs. Whenever one of the functions of the
BIOS keyboard interrupt is called. the BIOS checks to see if the status of the LEDs
matches the keyboard status, as indicated in an internal variable. If a discrepancy
arises, the BIOS automatically sets the LEDs to the status given in the keyboard
status flag.

Since the position of this flag in the BIOS variable segment and the meaning of
the individual bits is completely documented (see also Section 7.14), we can easily
change these modes.

The following programs in BASIC, Pascal, and C offer routines which can enable
or disable the individual modes. It should be noted that although PCs and XTs
have corresponding LEDs, these programs will not work or change the modes
without changing the status of the LEDs on a PC or XT keyboard. This is because
these keyboards are equipped with an 8048 processor, which does not offer the
ability to manage the LEDs. The fact that these LEDs do tum on and off according
to the modes has nothing to do with the BIOS, and is handled directly by the
keyboard.

590

Abacus 12. Keyboard Progrtullllling

BASIC listing: LEDB.BAS

100 ,******••*******.*.*•••••************•••****.*****.* •• ***** ••******,
110 '* LED B *' 120 1* ___---------*,
130 ,* Description Sets the various bits in the BIOS keyboard * ,

* ,140 flag, causing the LED's on the AT keyboard
150 '* to flash. *'
160 '* Author MICHAEL TISCHER *,

* ,170 developed on 09/10/1988

180 last update 09/10/1988

190 '.*.**********.*********.********.*****•••••*.*.******•••• *****•• **,
200 '

210 CLS : KEY OFF

220 PRINT "NOTE: This program can be run only if GWBASIC was started from"

230 PRINT "the DOS level with the command <GWBASIC /m:600000> and the"

240 PRINT "computer is an AT."

250 PRINT

260 PRINT "If this is not the case, please enter <s> for STOP."

270 PRINT "Otherwise press any other key••• ·;

300 AS - INKEY$: IF A$ - "s" THEN END

310 IF AS = "" THEN 300

320 CLS

330 GOSUB 60000 'install routine for the interrupt call

340 PRINT "LEDB - (c) 1988 by MICHAEL TISCHER"

350 PRINT PRINT "Watch the LEOs on your keyboard!"

360 SCRL% - 16 'the SCROLL LOCK flag

370 NUML\ - 32 'the NUM LOCK flag

380 CAPL% 64 'the CAPS LOCK flag

390 FOR X\ = 1 TO 10 'run through the loop 10 times

400 FLAGS' = CAPL\ : GOSUB 50000 'set CAPS LOCK

410 FOR Y' = 1 TO 100 : NEXT 'delay loop

420 GOSUB 51000 'CAPS LOCK off again

430 FLAGS' - NUML\ : GOSUB 50000 'set NUM LOCK

440 FOR Y' = 1 TO 100 : NEXT 'delay loop

450 GOSUB 51000 'NUM LOCK off again

460 FLAGS% = SCRL% : GOSUB 50000 'set SCROLL LOCK

470 FOR Y% = 1 TO 100 : NEXT 'delay loop

480 GOSUB 51000 'SCROLL LOCK off again

490 NEXT

500 FLAGS% = SCRL\ OR NUML% OR CAPL\ 'manipulate all three flags

510 FOR X% = 1 TO 10 'run through loop 10 times

520 GOSUB 50000 'set all three flags

530 FOR Y% = 1 TO 400 NEXT 'delay loop

540 GOSUB 51000 'clear all flags again

550 FOR Y\ = 1 TO 400 NEXT 'delay loop

560 NEXT

570 PRINT "That's all."

580 END

590 '

50000 ' ••**••* ••••• *****••* ••******** ••••*****.****.********.*•••••*.*•.
50010 '* set one or more of the flags in the BIOS keyboard status
50020 ,*--*,
50030 Input FLAGS\ - the flags to be set *'
50040 '* Output: none *'
50050 '* Info : the variable Z% is used as'a dummy variable
50060 ,*.* •• *** ••• *••••***••**************.****************************1
50070 '
50080 DEF SEG - &H40 'set BIOS variable segment
50090 POKE &H17, PEEK (&H17) OR FLAGS\ 'set the flags
50100 INTR% - &H16 'call BIOS keyboard interrupt
50110 AH\ - 1 'function 1: character ready?
50120 DEF SEG 'switch back to the GW segment
50130 CALL IA(INTR%,AH%,Z%,Z\,Z\,Z\,Z\,Z%,Z%,Z%,Z\,Z%,Z\)
50140 RETURN 'back to the caller
50150 '
51000 1****************•• *.*••••• *••**.*.***••••• *••***************.***,
51010 '* clear one or more the flags in the BIOS keyboard status
51020 ,*--*,

591

12. Keyboard Programming 	 PC System Programming

51030 	 ,* Input FLAGS' - the flags to be cleared *.
51040 Output none 	 *.
51050 Info the variable Zt is used as a dummy variable
51060 	 ,**••• *** ••••••••••••••••••• ** •••••••••* •• ***** ••••••••*.*•••****
51070 	 '
51080 DEF SEG - &H40 	 'set BIOS variable segment
51090 POKE &H17, PEEK(&H17) AND NOT(FLAGSt) 'clear the flags
51100 	 INTR' - &H16 'call the BIOS keyboard interrupt
51110 AH' - 1 	 'function 1: character ready?
51120 DEF SEG 	 'switch back to the GW segment
51130 CALL IA(INTRt,AH',Z%,Z',Z%,Z',Z',Z\,zt,Z%,Z',zt,Z%)
51140 RETURN 	 'back to the caller
51150 	 '
60000 	 .*.**********.******•••*.*****.*.* •••*.*** •••*•• ** ••**•••••••• ***,
60010 	 '* initialize the routine for the interrupt call
60020 	 ,*--*,
60030 '* Input : none * ,
60040 '* Output: IA is the start address of the interupt routine
60050 ••**.**** ••••••••*****••••• **•••****.***.**•••*•••••••*******••••.
60060 '
60070 IA-60000! 'start address of the routine in the BASIC segment
60080 DEF SEG 'set BASIC segment
60090 RESTORE 60130
60100 FOR It = 0 TO 160 READ X, POKE IA+H,X' NEXT 'poke routine
60110 RETURN 'back to the caller
60120 '
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255

Pascal listing: LEDP.PAS

{****•• ** ••••••• *****••***** •••••••••***.**•• ****••••••*.*.******••****}

t* LEDP 	 *J
t*--*J
* Description sets the various bits in the BIOS keyboard *J
* status byte causing the LEOs on the AT *J
t* keyboard to turn on. *J
{*--*J
{* Author MICHAEL TISCHER *J
{* developed on : 08/16/1988 *1
\ * last update : 08/17/1988 * 1
{***•• ****** •••••**********.*********••• ** ••******••••************.****}

program LEOP;

uses 	CRT, bind in the CRT unit
DOS; bind in the DOS unit

const 	SCRL 16; Scroll Lock bit
NUML 32; \ Nurn Lock bit
CAPL ~ 64; { caps Lock bit
INS - 128; { Insert bit

{ •• **••*** •• *••••** •••••••••*****.****•••**** ••******.*****••********.*)
{* SETFLAG: sets one the flags in the BIOS keyboard status byte *1
{* Input : the flag to be set (see constants) *J
{* Output : none * J
{ ••••• * •••*.****•••****••*************.********************************}

procedure SetFlag(Flag : byte);

592

Abacus 	 12. Keyboard Programmmg

var 	BiosTSByte byte absolute $0040:$0017;{ BIOS keyboard status byte
Regs Registers; {processor registers for interrupt call

begin
BiosTsByte :- BiosTSByte or Flag; mask out the corresponding bit
Regs.A11 :- 1; function no.: character ready?
intr ($16, Regs); { call BIOS keyboard interrupt

end;

{_._--*....... __ .-_......................................*_._........._}

{* CLRFLAG: clears one of the flags in the BIOS keyboard status byte *)
{* Input : the flag to be cleared (see constants) *1
{* Output : none * 1
{..••...•••....•••.._...._............_----•••.•.•_..._}

procedure ClrFlag(Flag : byte);

var 	BiosTSByte byte absolute $0040:$0017; {BIOS keyb. status byte
Regs Registers; {processor registers for interrupt call

begin
BiosTSByte :- BiosTSByte and (not Flag); { mask out bit
Regs.A11 :- 1; { function no.: character ready?
intr($16, Regs); { call BIOS keyboard interrupt

end;

{a_*._. __ ._._••_._•••••••••_._. __ ••••_. ___ ._••••_._. __ •• __ ._._•••••••_.}
{** MAIN PROGRAM 	 **1
{*•••_•••••_•• - •••••_._.- •• _._._-._••••••••• _••••- ••• -._*_......_. __..-}
var counter : integer;

begin
writeln('LEDP (c) 1988 by Michael Tischer');
writeln(f13,f10, 'Watch the LEOs on your keyboard!');

for counter:-1 to 10 do { run through the loop 10 times
begin

SetFlag (CAPL); { turn on CAPS
Delay (100); wait 100 milliseconds
ClrFlag(CAPL); { turn CAPS off again
SetFlag (NUML); { turn on NUM
Delay (100); wait 100 milliseconds
ClrFlag(NUML); { turn NUM off again
SetFlag(SCRL); { turn SCROLL LOCK off
Delay (100); { wait 100 milliseconds
ClrFlag (SCRL); turn SCROLL LOCK off again

end;

for counter:-l to 10 do { run through loop 10 times
begin

SetFlag{CAPL or SCRL or NUML); { all three flags on
Delay { 200); wait 200 milliseconds
ClrFlag{CAPL or SCRL or NUML); { all flags off again
Delay (200); wait 200 milliseconds

end;
end.

593

12. Keyboard Programming PC System Programming

C listing: LEDC.C

,.**...****.****•• ****.***•••**•••••••** •••******.**•• ** •••••• **••••***/
1* LED C *1
1*--*1
1* Description Sets the various bits in the BIOS keyboard *1
1* flag, causing the LEDs on the AT keyboard to *1
1* flash. *1
1*--*1
f* Author MICHAEL TISCHER *f
1* developed on : 22.08.1988 *1
1* last update : 22.08.1988 *1
f*--*1
1* (MICROSOFT C) *1
1* creation : CL lAS LEDC.C *1
f* call : LEDC * I
1*--*1
f* (BORLAND TURBO C) * f
1* creation : via the command CCMPILE I MAKE *1
1*·-·_·_·····-··_·_····_·····__ ·_··_··-·_·_·_·_·_·__·-*.***••• ***•• ****,

1*-= Include files ==---==-=====-----=--==---====-=-------==---==---==-*1

'include <dos.h>

/*-- Macros ==--===-=========~-====-=====-=-=~--=====-===-===---=-=--=./

Ufndef MK FP 1* was MK FP already defined? *1
'define MK:::FP (seg, ofs) ((void far *) ((unsigned long) (seg) «161 (ofs»)
.endif

/*~= Constants ===~=-===-======================-====-===-=====---==-==*/

'define SCRL 16 1* Scroll Lock bit *1
'define NUML 32 1* Num Lock bit *1
'define CAPL 64 1* Caps Lock bit *1
'define INS 128 1* Insert bit *1

1*-- BIOS_KBF creates a pointer to the BIOS keyboard flag ------------*1

'define BIOS_KBF ((unsigned far *) M~FP(Ox40, Ox17»

j******.**********************.*********** ••********* • • *.********.*.*.**
* Function : DEL A Y *
--

Description Waits a certain length of time.
* Input parameters PAUSE = the number of milliseconds to wait. *

Return value none
* Info Since this function uses the BIOS timer for time *
* measurement, the accuracy is limited to about

1/60 of a second.
******••** ••***.*•••*.*••••••* •••••••••••••••••••***•••••• *••* ••****••*,
void delay(unsigned pause)
(
long timer; 1* stores the timer value to be reached *1
union REGS inregs, 1* stores the processor registers *1

outregs; 1* INREGS before, OUTREGS after the intr call *1

inregs.h.ah = 0; I' ftn. no.: read timer *1
int86 (Oxla, &inregs, &outregs); 1* call Bros timer interrupt *1

1*- calculate the target time value and check to see if this ----*1
1*- value has been reached. ----*1

timer outregs.x.dx + ((long) outregs.x.cx « 16) +
(pause * 18 + ((pause « 1) I 10» 1 1000;

do 1* polling loop *1
int86(Oxla, &inregs, &outregs); 1* read timer again *1

594

http:outregs.x.cx
http:outregs.x.dx
http:inregs.h.ah

Abacus 12. Keyboard Programming

while «outregs.x.dx + «long) outregs.x.cx « 16» <- timer);
)
/***••• ***** ••• *****•• *******•• **•••• ****•••••**** ••***.*••••*****•••***

Function : SET F LAG *
•• _-------------------------=---*.

Description Sets individual bits or flags in the BIOS *
* keyboard flag. *
* Input parameters FLAG - the bits or flags to be set

Return value none
••••****.*** ••••••••• **•••••••••***•••••****.***••••••****•••********.*/

void set flag(unsigned flag)
{
union REGS regs; /* stores the processor registers */

BIOS KBF 1= flag; / set the specified bits in the keyboard flag */
regs.h.ah - 1; /* ftn. no.: character present? */
int86 (Ox16, ®s, ®s); /* call BIOS keyboard interrupt */

1
/**.**.** ••• ****** ••• **** •••**••••••••***.***•••••••***.*.****.*.***.***
* Function : C L R F LAG *
--------------------------=---
* Description Clears individual bits or flags in the BIOS

keyboard flag.

Input parameters FLAG = the bits or flags to be cleared
 *

* Return value none *
.*****•••*.*****.******.****.*.**.************.*.*******••******••••••*,
void clr flag(unsigned flag)
{
union REGS regs; /* stores the processor registers */

BIOS_KBF &= ~flag; / mask out bits in the BIOS keyb. flag */
regs.h.ah - 1; /* ftn. no.: character present? */
intB6(Oxl6, ®s, ®s); /* call BIOS keyboard interrupt */

1

/******.*.***************.*.*************** ••••***.*****.********.**.*.,
/*. MAIN PROGRAM *. /
, •••••••••••••••••***•••• *••••••••••••••••••••*****.*********.**••*****,
void mainO
{
unsigned i; /* loop counter·/

printf("LEDP (c) 1988 by Michael Tischer\n\n");
printf("Watch the LEOs on your keyboard!\n");

for (1-0; 1<10; ++il /* run through the loop 10 times */
{

set flag(CAPL); /* turn CAPS on */
delay (100); /* wait 100 milliseconds */
clr flag(CAPL); /* turn CAPS off again */
set-flag(NUML); /. turn on NUM */
delay (100); /* wait 100 milliseconds */
clr flag(NUML); /* turn NOM off again */
set-flag (SCRL); /* turn on SCROLL LOCK */
delay (100); /. wait 100 milliseconds ./
clr_flag(SCRL); /* turn SCROLL LOCK off again */

1

for (i=O; i<10; ++1) /* run through the loop 10 times */
(
set_flag(CAPL 1 SCRL NUHL); /* all three flags on */
delay(200); /. wait 200 milliseconds */
clr flag(CAPL SCRL NUML); /* all flags off again */
delay (200); /* wait 200 milliseconds */

1

595

http:regs.h.ah
http:regs.h.ah
http:outregs.x.cx
http:outregs.x.dx

Chapter 13

Expanded Memory
Specification

When the mM PC was being developed in 1980 its capabilities were quite
advanced for its time. This was also true of the size of its main memory. The
maximum size of 640K seemed so large at the time that no one could imagine
what a user would do with so much memory. Thus the frrst PCs were equipped
with 64K, then 128K, and later 256K of memory. But today memory requirements
are much greater and the standard amount of RAM for PCs, and especially ATs,
has grown to the full 640K.

As we enter the age of the 80386 microprocessor, with the introduction of graphic
user interfaces and multitasking operating systems (Windows®, OS/2®), 640K
will soon no longer be enough to make full use of the capabilities of the PC. But
we have reached a boundary that cannot be crossed by just adding more memory
chips to the computer. A normal PC or XT is limited to 640K and an AT to 16
megabytes. The 16 meg is only available in the protected mode of the 80286
processor. and is inaccessible to normal DOS applications.

Adding memory

To provide a way around this problem. some leading PC fIrmS got together several
years ago and devised a way to add more memory to PCs, XTs and ATs that could
also be accessed under DOS. These companies were Lotus (the developers of Lotus
1-2-3), Intel (manufacturer of PC processors) and Microsoft (developers of MS
DOS and OS/2). They developed a standard known as the LIM standard. after the
frrst letters of the company names.

This standard allows up to 8 megabytes to be added to a PC on an expansion card.
Only 64K of this 8 megabytes is visible in the I megabyte address range of the
8088 prc.-;essor. in a window called the page frame. Memory installed in this
manner is called expanded memory. and should not be confused with the extended

597

13. ExparuUd Memory Specification PC System Programming

memory which ranges beyond 1 megabyte on an AT. The whole system is referred
to as the expanded memory system, or EMS for short.

1 megabyte

Main memory EMS memo

FFFF

BIOS

Video RAM

Extra video RAM

16K pages

Working RAM

0000

EMS memory access (LIM standard) using a window

There is always at least 64K in the 1 megabyte address space of the PC which is
not used for main memory, BIOS, video RAM, or other system expansions, so the
EMS developers decided to use this as a window into the EMS memory. Usually
this window is at segment address DOOOH, but the EMS hardware allows it to be
changed.

Since this window is under the 1 megabyte memory limit, it can be accessed with
normal assembly language instructions, similar to the way the video RAM is
accessed. Both read and write accesses are possible. We will look at concrete
examples of these accesses later on in this chapter.

598

Abacus 	 13. Expanded Memory Specification

Page frame division

The whole procedure is -somewhat refined by the fact that the page frame is further
divided into 16K pages. This allows the programmer to access four completely
different, and perhaps widely separated, pages from the EMS memory.

The registers on the EMS card allow the programmer to set which pages of the
EMS memory will be visible in the page frame. The address lines on the EMS
card are programmed so that the EMS pages are mapped into the page frame and
appear in the 8088's address space. This process is known as bank-switching.

In addition to the hardware, the EMS also includes a software interface which
handles programming the EMS registers and other memory management tasks. It
is called the EMM (Expanded Memory Manager) and gives you a standard interface
which you can use to access the EMS cards of different manufacturers. This also
applies for the extended EMS standard (EEMS) developed by AST Research,
Quadram, and Ashton-Tate, which goes far beyond the LIM standanl.

The EMM

Similar to the DOS interrupt 21H, which provides a standard interface to the
operating system functions, the EMM functions can be called through interrupt
67H. Before a program tries to use EMS memory and the corresponding EMM, it
should fltSt check to make sure that an EMS is installed. If it does not do this and
there is no EMM, the results of a call to interrupt 67H are completely
unpredictable. Maybe it just won't work; maybe the system will crash.

To prevent this, a program which uses the EMS should fltSt check to make sure it
exists. To do this we can use the fact that the EMM is bound into the system as a
normal device driver when the computer is booted. As such, it naturally has ~
driver header which precedes it in memory and defmes its structure for DOS. The
name of the driver is found at address 10 in the driver header. The LIM standard
prescribes that this name must be EMMXXXXO. The example programs at the end
of this chapter test for this name by first determining the segment address of the
interrupt handler for interrupt 67H. If the EMM is installed, the segment address
points to the segment into which the EMMXXXXO device driver was loaded.
Since the driver header is at offset address 0 relative to the start of this segment, we
just compare the memory locations starting at 10 with the name EMMXXXXO to
see if the EMS memory and the corresponding EMM are installed.

Once this is verified, access to this memory requires just three steps:

1.) 	 Just as conventional memory must be allocated with a DOS function, a
program must fltSt allocate a certain number of EMS pages for itself from
the EMM. The number of pages to be allocated depends on both the
memory requirements of the program and how much EMS memory is
available.

599

13. Expantkd Memory SpecifICation. 	 PC System Programming

2.) 	 If the desired number of pages were successfully allocated. the specified
pages must frrst be loaded into one of the four pages of the page frame so
that data can be written into them or read from them. This results in a
mapping between one of the allocated pages and one of the four physical
pages within the page frame.

3.) 	 When the program is ended or it is done using the EMS storage, the
allocated pages should be released again. If this is not done, the allocated
pages will still be owned by the program (even after it ends) and cannot
be given to other programs.

As with OOS interrupt 2lH, the function number of an EMM call must be loaded
into the AH register before the interrupt call. In contrast to the OOS functions, the
function number does not correspond directly to the value in the AH register and
you must add 3FH to the function number. Thus for a call to function 2H you
would have to load the value 3FH + 2H or 4lH into the AH register. After the
function call this register contains the error status of the function. The value 0
signals that the function was executed successfully, while values greater than or
equal to SOH indicate an error.

About 	errors

You can get the error codes from the error descriptions in the Appendices, but you
should be aware of one particular error; If the value 84H is in the AH register after
a call to EMM interrupt 67H, it means that an invalid function number was passed
in the AH register.

The following functions are required for a transient program to access the EMS
memory:

Function Task
OIH Get EMM status
02H Get segment address of the page frame
03H Get number of pages
04H Allocate EMS pages
OSH Set mapping
06H Release EMS pages

To guarantee proper operation of the EMS hardware and the EMM, you should
check the EMM status before allocating EMS memory. This is done with function
OIH, which requires no parameters beside the function number in the AH register.
If it returns the value 0 in the AH register, then everything is OK and you can start
working with the EMS memory.

Limits 	to EMS allocation

Naturally the number of allocatable EMS pages is limited by the number of free
pages. Thus you should ensure that the memory requirements of the program do
not exceed the available memory. Here we can use function 03H, which returns the

600

Abacus 13. Expanded MDIfOry Specification

number of free EMS pages. This function requires no parameters beside the
function number and returns the number of unallocated pages in the BX register. It
also returns the total number of installed EMS pages in the DX register.

If enough EMS memory exists for our program, or if the memory requirements are
adapted to the available memory, we can then allocate the memory. Function O4H
must be passed the number of pages to be allocated in the BX register. If the
requested number of pages were successfully allocated (AH register contains 0 after
the function call), the caller will find a handle to the allocated pages in the BX
register. This handle must be used to access the allocated pages and identifies the
caller to the EMM. This handle must be saved by the caller and losing it means
not only that the allocated pages cannot be accessed, they can also no longer be
released. This function can be called multiple times by a program to allocate
multiple logical page blocks.

Once we have the page handle we can start accessing the pages. The handle is
passed to the appropriate functions in the DX register. This also applies to
function OSH, which maps a logical page to one of the four physical pages of the
page frame. The number of the logical page is passed in the BX register and the
physical page number in the AL register. Note that both specifications start at
zero. If you have allocated 15 pages, then the numbers of the logical pages run
from zero to 14.

Once the appropriate page is in the page frame, it can be accessed just like normal
memory. The offset address of the start-of-page is calculated from the physical page
number, but the corresponding segment address must be determined with an EMM
function. Since this address does not change while working with the EMS
memory, you can read it once at the beginning of the program and then save it in a
variable. Function 02H returns the segment address of the page frame in the BX
register.

When you are done using the EMS, be sure to return the allocated pages to the
EMM. All you have to do is pass the page handle to function 06H.

In addition to these six functions, which a normal program can use to access EMS
memory, there are six more functions which can be useful under certain
circumstances. These are the following:

Function Task
07H Get EMM version number
08H Save current mappinq
09H Reset saved mappinq
OCH Get number of EMM handles
ODH Get the number of paqes allocated to a handle
OEH Get all handles and numbers of allocated Qaqes

601

13. Expanded Memory Specification PC System Progrtllllllling

Version numbers

Reading the EMM version number is of interest because the LIM standard has
changed somewhat since it was introduced. Some functions are no longer supported
and new functions have been added. The functions presented here are from Version
3.2. which has now been superseded by version 4.0. Version 3.2 represents a good
compromise not only because is it very widely used, but because it is also
completely compatible with Version 4.0. If you don't want to support earlier or
later EMS versions in your program. you should check the version number at the
start of the program. The version number will be returned in the AL register after a
call to function 07H. It is encoded as a BCD number.

Functions 08H and 09H are important for TSR programs which want to use the
EMS memory for their own purposes. When a TSR program interrupts a transient
program and places itself in the foreground, it must take into account the fact that
the interrupted program may have been using EMS memory and had created a
certain mapping. Since this mapping must not be changed when returning to the
interrupted program. it must be saved when the TSR is activated and then restored
when the TSR exits. Function OSH saves the current EMM mapping and function
09H resets the saved status. Both functions must be passed the handle of the
function. In this case it is the handle of the TSR program. not the handle of the
interrupted program.

The last three functions are only important for the memory manager and will not
be discussed here. More information can be found in the appendix in the EMM
function descriptions.

Demonstration programs

The following pages contain two programs, one written in Pascal and one in C,
which illustrate how to use EMS memory. There is no assembly language
program since. in principle, calls to the EMM functions involve just loading
variables and constants into registers and calling the EMM interrupt 67H. Using
the information in the Appendices, it should be easy to write an assembly
language program which uses the EMS. There is no BASIC program because
EMS memory is intended to be used with complex and memory-intensive
applications for which BASIC (or at least OW-BASIC) is not suited.

The two programs are almost identical, so we will limit ourselves to a discussion
of the basic program structure. The programs offer a number of functions and
procedures which can be used to access the various EMM functions. Both
programs also contain a function called EMS_INST (or EmsInst) which determines
if an EMM is installed. In Pascal we have a problem because a pointer has to be
loaded with an address which consists of separate segment and offset addresses.
Since this is not possible in Pascal. there is an INLINE procedure called MK_FP
which (like the C macro of the same name) combines a segment and an offset
address into a (FAR) pointer. The fact that this is a FAR pointer is important
because the page frame is not in the program's data segment and thus cannot be

602

Abacus 13. Expantkd Memory SpecificaJion

addressed via the DS register. This is not a problem in Turbo Pascal because the
code is generated to work with FAR data pointers. In C we have to make sure that
the program is compiled in a memory model which uses FAR pointers for data.
This occurs in compact, large, and huge models.

The main program frrsts tests to see if EMM is present and then uses various
functions to obtain status information about the EMS memory, which it displays
on the screen. Then a page is allocated and mapped to the first page (page 0) of the
page frame. The current contents of the video RAM are copied into this page and
the video RAM is then erased.

After the copy procedure, a message is displayed for the user and the program waits
for a key to be pressed. Then it copies the old screen contents back to video RAM
from page 0 of the page frame and the program ends.

This program shows that the contents of a page in the page frame can be treated
just like ordinary data. After you have created a pointer to the corresponding page
you can manipulate the data on this page, including complex objects like
structures and arrays, just like any other data. It is important to make sure that
your objects fit on one page or that you do not forget to change pages or load a
new page into the page frame to access larger objects.

C listing: EMMC.C

/**/
1* EMMC *1
1*--*1
1* Description : a collection of functions for using EMS *1
1* storage (expanded memory) • *1
1*--*1
1* Author : MICHAEL TISCHER *1
1* developed on : 08/30/1988 *1
1* last update : 08/30/1988 *1
1*--*1
1* (MICROSOFT C) *1
1* creation : CL lAC EMMC.C *1
1* call : EMMC *I
1*--*1
1* (BORLAND TURBO C) *1
1* creation : via the RUN command in the menu line *1
/* (no project file) * I
1* Info : Note that the Compact memory model must be *1
1* selected via the compiler model menu option. *1
/************.*******************.*********.***************************/

1*== Include files ---------------=-=======-=========-===------=------*/
.include <dos.h>
'include <stdlib.h>
'include <string.h>

1*-- Typedefs ---==------==-------------==-====----===-=---====---====*1

typedef unsigned char BYTE; 1* build ourselves a byte *1
typedef unsigned int WORD;
typedef BYTE BOOL; 1* like BOOLEAN in Pascal *1

/*-- Macros ---------=---==--==----=-~------=-------------------------*I

603

13. Expanded Memory Specification PC System Programming

1*-- MK_FP creates a FAR pointer out of segment and offset addresses -*1

fifndef MK FP 1* is MK FP defined yet? *1
fdefine MK-FP(seg, ofs) «void far *) «unsigned long) (seg) «161 (ofs»)
fendif

1*-- PAGE ADR returns a pointer to the physical page X within the ----*1
1*-- page-frame of the EMS memory. ---*1

fdefine PAGE_ADR(x) «void *) MK_FP(ems_frame segO + «x) «10),0»

1*-- Constants -------------------------------------* I

fdefine TRUE 1 /* constants for working with BOOL *1
fdefine FALSE 0

fdefine EMS INT Ox67 1* interrupt number for access to the EMH *1
fdefine EMS:ERR -1 1* returned on error */

/*-- Global variables --*1

1* the EMM error codes are placed here *1

, ••*****.**.*.

* Function : EMS INS T
.*--**
* Description Determines if EMS memory and the associated
* EMS driver (EMH) are installed.

Input parameters none

Return value TRUE, if EMS memory installed, else FALSE

•••••** •••••••••••••* •••** ••••• /

BOOL ems inst 0
{
static char emm name[] = { 'E', 1M', 'M', 'X', 'X', 'X', 'X', '0' };
union REGS regs; /* processor registers for interrupt call *1
struct SREGS sregs; 1* segment registers for the interrupt call *1
BYTE i; 1* loop counter *1
char *emm_inspect; 1* pointer to the name in the interrupt handler *1

1*-- construct pointer to name in the header of a switch driver ----*1

regs.x.ax = Ox3567; 1* ftn. no.: get interrupt vector Ox67 *1
intdosx(®s, ®s, &sregs); /* call DOS interrupt Ox21 *1
emm_inspect = (char *) MK_FP(sregs.es, 10); 1* construct pointer *1

1*-- search for the name of the EMS driver -------------------------*1

for(i=O; i<sizeof emm_name && * (emm_inspect++)--emm name[i++];)

return (i == sizeof emm name); 1* TRUE if name found *1
I

, ••••••••• *** ••••••••••••••••••••• ** ••••••• ***** ••••••••• ** •••••• *****•• ,
Function : EMS NUM P AGE *

•• _-------------------------=--_ ••
Output Determines the total number of EMS pages

Input parameters : none

* Return value : EMS ERR on error, else the number of EMS pages
•••••••••••• * ••,

int ems num page ()
{ -
union REGS regs; 1* processor registers for interrupt call *1

regs.h.ah = Ox42; 1* ftn. no.: get number of pages */
int86(EMS INT, ®s, ®s); 1* call EMH *1
if (emm ec - regs.h.ah) 1* did an error occur? */

return(EMS ERR); 1* yes, display error *1
else - /* no error */

604

http:regs.h.ah
http:regs.h.ah
http:MK_FP(sregs.es
http:regs.x.ax

Abacus 	 13. Expanded. Memory Specification

return(regs.x.dx); 1* return total number of pages *1

/******.*••**•••*****.**.*******•••• *****.**••••••****••***••••*****.***
* 	 Function : EMS F R E EPA G E
**--------------------------=--------~------------------------------_••

Description Returns the number of free EMS pages,
* Input parameters none *

Return value EMS_ERR on error, else the number of free EMS

*

* 	 *
pages.* 	 *

.*****.***.*.***********.*************.*******.*******************./

int ems_free-page()
(
union REGS regs; 1* processor registers for interrupt call *1

regs.h.ah - Ox42; 1* ftn. no.: get number of pages *1
int86 (EMS_INT, 'regs, 'regs); 1* call DIM *1
if (emm_ec - regs.h.ah) 1* did an error occur? *1

return(EMS_ERR); 1* yes, display error *1
else 1* no error *1
return(regs.x.bx) ; 1* return number of free pages *1

,*************.*****************************••********•••••••** ••*******
* 	 Function : EMS F RAM ESE G
.*--------------------------=-----------=-----------------------------**
* Description Determines the segment address of the EMS page
* *frames.

Input parameters none
* *
* Return value EMS_ERR on error, else the segment address of
* 	 the page frame.
*****.**************************************.*************•• *******••**/

WORD ems frame seq ()
(-
union REGS regs; 1* processor registers for interrupt call *1

regs.h.ah - Ox41; 1* ftn. no.: get segment addr page frame *1
int86(EMS INT, 'regs, ,regs); 1* call DIM *1
if (emm_ec - regs.h.ah) 1* did an error occur? *1
return(EMS ERR); 1* yes, display error *1

else - 1* no error *1
return(reqs.x.bx); 1* return seqtment address *1

/*****•••*****••*********************************.*.*.*••••*************
* 	 Function : EMS ALL 0 C *
.*--------------------------=---**

* Description Allocates the specified number of paqes and *
* returns a handle for accessing these pages. *
* Input parameters PAGES : the number of paqes to be allocated *
* 	 (each 16 KByte)

Retum-Wert EMS ERR on error, else the EMS handle.
*****************.*.****************.******.********.***••*****.****.**/

int ems alloc(int pages)
(
union REGS regs; 1* processor registers for interrupt call *1

regs.h.ah - Ox43; 1* ftn. no.: allocate pages *1
regs.x.bx - pages; 1* set number of pages to be allocated *1
int86(EMS_INT, ,regs, 'regs); 1* call DIM *1
if (emm ec - regs.h.ah) 1* did an error occur? *1
return(EMS ERR); 1* yes, display error *1

else - 1* no error *1
return(reqs.x.dx); 1* return EMS handle *1

/*.*.*••*.***.*.*.**********.********•••**•••••••••*••••••••**.**.******

605

http:reqs.x.dx
http:regs.h.ah
http:regs.x.bx
http:regs.h.ah
http:reqs.x.bx
http:regs.h.ah
http:regs.h.ah
http:regs.x.bx
http:regs.h.ah
http:regs.h.ah
http:regs.x.dx

13. Expanded Memory Specification 	 PC System Programming

Function : 	 EMS MAP *
.*--------------------------=---**
* Description Maps one of the allocated pages specified *
* 	 by the given handle onto a physical page in the *
* page frame.

* Input parameters HANDLE: the handle returned by EMS_ALLOC *

* LOGP : the logical page (0 to n-l) *

* PHYSP : the physical page (0 to 3) *

* Return-Wert FALSE on error, else TRUE. *

•••••••••••••••••••••••••••••••••••••••••••••••••** •••••••• **•••• ,

BOOL ems map(int handle, int logp, BYTE physp)
(
union REGS regs; /* processor registers for interrupt call */

regs.h.ah - Ox44; /* ftn. no.: set mapping */
regs.h.al - physp; /* set physical page */
regs.x.bx - logp; /* set logical page */
regs.x.dx - handle; /* set EMS handle */
int86(EMS INT, 'regs, 'regs); /* call EMM */
return (!(emm_ec - regs.h.ah»;

I

, ••••****.**••** ••••**••••** ••••••••••*****•••** •••••• ***** •••• ******.*.
* Function : EMS F R E E
.*--------------------------=---*.
* Description Releases the memory specified by the handle. *
* Input parameters : HANDLE: the handle returned by EMS_ALLOC
* Return value : FALSE on error, else TRUE •
••••••• ****•••***** •••••••• **** ••••••••*****••• ***•••• ** ••• **••••••••••,

BOOL ems free(int handle)
(
union REGS regs; /* processor registers for interrupt call */

regs.h.ah - Ox45; /* ftn. no.: release pages */
regs.x.dx - handle; /* set EMS handle */
int86 (EMS_INT, 'regs, 'regs); /* call EMM * /
return (!(emm_ec - regs.h.ah»;/* if AH contains 0, everything's OK */

, ••••• **••••••••••••• **** •••••••••••••••••• *********••••• *•••• *.*.*•••**
Function : 	 EMS V E R S ION *

--------------------------=---

* Description Determines the EMM version number.
* Input parameters none

* Return value 	 EMS ERR on error, else the EMM version number
Info 	 In the version number, 10 stands for 1.0, 11 for *

1.1, 34 for 3.4, etc.
*

*****************•• ** ••••**/

BYTE ems_version ()
(
union REGS regs; /* processor registers for interrupt call */

regs.h.ah - Ox46; /* ftn. no.: get EMH version num. */
int86{EMS INT, 'regs, 'regs); /* call EMM */
if (emm_ec - regs.h.ah) /* did an error occur? */
return (EMS ERR); /* yes, display error */

else - /* no error, calculate version number from BCD number */
return ((regs.h.al & 15) + (regs.h.al » 4) * 10);

/*********************************.*******.*****.*.**************.******
* Function : EMS S A V E MAP 	 *
--------------------------=---------=-------------------------------

Description 	 Saves the mapping between the logical and*
physical pages.*

Input parameters HANDLE: the handle returned by EMS_ALLOC.
*
*

Return value 	 FALSE on error, else TRUE.

606

http:regs.h.al
http:regs.h.al
http:regs.h.ah
http:regs.h.ah
http:regs.h.ah
http:regs.x.dx
http:regs.h.ah
http:regs.h.ah
http:regs.x.dx
http:regs.x.bx
http:regs.h.al
http:regs.h.ah

Abacus 	 13. Expanded Memory Specification

•••••******.**••••• ** ••••••••********.**••••***************************1

BOOL ems save map(int handle)
(-
union REGS regs; 1* processor registers for interrupt call *1

regs.h.ah - Ox47; 1* ftn. no.: save mapping *1
regs.x.dx - handle; 1* set EMS handle *1
intB6{EMS INT, 'regs, ®s); 1* call EMM *1
return (11emm ec - regs.h.ah»;I* if AH contains 0, everything's OK *1

}

/*.*******•••*.********•••** •• ***.*.****************.*******************
Function : 	 EMS RES TOR E MAP *

--------------------------=--------------~-------------------------
Description Restores a mapping between logical and physical*

pages saved with EMS SAVE MAP.* 	 *
Input parameters 	 IfANDLE: the handle returned by EMS ALLOC* 	 *
Return value 	 FALSE on error, else TRUE. * 	 *

**************.**************************.*.***************.*****••••*./
BOOL ems restore map (int handle)

(-
union REGS regs; 1* processor registers for interrupt call *1

regs.h.ah - Ox48; 1* ftn. no.: restore mapping *1
regs.x.dx - handle; 1* set EMS handle *1
intB6(EMS INT, 'regs, ®s); 1* call EMM *I
return (!lemm_ec - regs.h.ah»;I* if AH contains 0, wverything's OK *1

/*******••••••****•••*******************•••*****************************
* Function : P R I N T ERR 	 *
------------------------------=-------------------------------------

Description Prints an EMS error message on the screen and *
* ends the program.

Input parameters 	 none
Return value 	 none

* 	 *
*

* 	 *Info 	 This function may only be called if an error
occurred on a prior call to the EMM.

.** •••••*****.*********••••••••••••**********••••***.***•••****••**/

void print err ()
(
static char nid!) - ·unidentifiable";

static char *err vec!)

{ "Error in the-EMS driver (EMM destroyed)",
"Error in the EMS hardware",
nid,
"Illegal EMM handle",
"EMS function called does not exist",
"No more EMS handles available",
"Error while saving or restoring the mapping",
"More pages requested than physically present",
"More pages requested than are still free",
"Zero pages requestedN ,

"Logical page does not belong to handle",

"Illegal physical page number",

"Mapping storage is full",

"The mapping has already been saved",

"Restored mapping without saving first"

};

printf ("\nError
printf("

exit (1);
}

in access to EMS memory!\n");
.'. %s\n", (emm ec<OxBO I I emm ec>OxBE) ?

nid-: err vec!emm ec-OxBO);
1* End program with error

1* OxBO *1
1* OxB1 *1
1* Ox82 *1
1* OxB3 *1
1* Ox84 *1
1* Ox85 *1
1* OxB6 *1
1* OxB7 *1
1* OxBB *1
1* OxB9 *1
1* OxBA *1
1* OxBB *1
1* OxBC *1
1* OxBD *1

code *1

/*******••******•••*****.***
Function 	 V R A D R

607

http:regs.x.dx
http:regs.h.ah
http:regs.x.dx
http:regs.h.ah

13. Expanded Mel'llDry SpecifICation 	 PC System Programming

--
Description Returns a pointer to the video RAM.

Input parameters none

Return value VOID pointer to the video RAM•

•••**** ••••• **••••••••••**.*******.**•••••• *••••••••••**********•••****/

void *vr adr 0
I
union REGS regs; '* processor registers for interrupt call *'

regs.h.ah - OxOf; '* ftn. no.: get video mode *'
int8610x10, 'regs, ,regs); '* call BIOS video interrupt *'
return I MK_FP I (regs.h.al--7) ? OxbOOO : OxbSOO, 0));

I

/************•••**•••••• *** ••••••• ** ••***•••*****.****•• **••••••••••**.,
'** 	 MAIN PROGRAM **'
, ••••••••*** ••***••••••***.**.*****••••••••••••• ***.** ••**•• ****•••••••,

void mainO
{
int 	 numpage, '* number of EMS pages *'

handle, '* handle to access to the EMS memory *'
i; '* loop counter *'

WORD pageseg '* segment address of the page frame *'
BYTE emmver; '* EMM version number *'

printf("EHMC (c) 1988 by MICHAEL TISCHER\n\n");
if (ems instIl) '* is EMS memory installed? *'

{ - '* yes *'
'*-- output information about the EMS memory ----------------------*'

if ((emmver - ems version(» -= EMS_ERR) '* get version num. *'
print err () ; - '* error: output error message and end program *'

else - '* no error *'
printf("EHM version number : \d.\d\n",

emmver' 10 , emmver%lO);

if { (numpage - ems_numyageO) .- EMS ERR) '* get number of pages *'
print_err(); '* error: output error message and end program *'

printf("Number of EMS pages : %d (%d KBYle)\n",
numpage, numpage « 4);

if ((numpage ems_free""page 0) = EMS ERR)
print err 0 ; '* Error: output error message and end program *'

printf'" ••. free : %d (%d KByte)\n",
numpage, numpage « 4);

if ((int) (pageseg - ems frame seg 0) - EMS ERR)
print err(); '* Error: output error message and end program *'

printf,"Segment address of the page frame: %X\n", pageseg);

printf("'nNowa page will be allocated from the EMS memory and\n");

printf("the screen contents will be copied from the video RAM\n");

printf("to this page.\n");

printf (" press any key\n");

getchO; '* wait for a key *'

'*-- allocate a page and map it to the first logical page in ---*'
'*-- page frame. ---*'
if ((handle - ems alloc(1» EMS ERR)
print err(); - '* Error:.output error message and end program *'

if (lams map {handle, 0, 0)) '* set mapping *'
print_err(); '* Error: output error message and end program *'

'*-- copy 4000 bytes from the video RAM to the EMS memory ---------*'

memcpy(PAGE_ADR(O), vr_adr(), 4000);

608

http:regs.h.ah

Abacus 	 13. Expanded Memory SpeciflCaJion

for (i-O; i<24; ++i) 1* clear the screen *1
printf ("\n");

printf("The old screen contents will now be cleared and will be\n");
printf("lost. But since it was stored in the EMS memory, they\n");
printf("can be copied from there back into the video RAM.\n");
printf(" ••• press any key\n");
getch () ; 1* wait for a key *1

1*-- copy the contents of the video RAM from the EMS memory ----*1
1*-- and release the allocated EMS memory again. ----*1

memcpy(vr adr() , PAGE ADR(O) , (000); /* copy VRAM back *1
if (!ems-free(handle) 1* release memory *1
print err(); 1* Error: output error message and end program */

printf("END") ;
)

else 1* the EMS driver was not detected *1
printf("No EMS memory installed.\n");

Pascal listing: 	 EMMP.PAS

(*********************** ••• ************.*.**************************••• }
(* EMMP 	 *)

(*--*)
(* Task : Implement certain functions to demonstrate *)
(* access to EMS memory using EMM. *)

(*--~---------------------*)
(* Author MICHAEL TISCHER *)
(* Developed on : 08/30/1988 *)
(* Last update : 06/21/1989 *)
{******••• *******•••• ********•••******** ••••*.********••••••••••••••***}

program EMMP;

Uses Dos, CRT; 	 Add DOS and CRT units

type 	 ByteBuf - array[O •• lOOO] of byte; One memory range as bytes
CharBuf = array[O •• lOOO] of char; One memory range as chars
BytePtr = AByteBuf; Pointer to a byte range
CharPtr - ACharBuf·; (Pointer to a char range

const 	EMS INT - $67; Interrupt f for access to EMM
EMS-ERR - -1: { Error if this occurs
W_EMS_ERR - $FFFF; (Error code in WORD form
EJmIName array[0 •• 7] of char I EMMXXXXO' ; { Name of EMM

var 	 EnlnEC, { Allocation of EMM error codes
i byte; { Loop counter
Handle, Handle for access to EMS memory
EnlnVer integer; (Version number of EMM
NumPage, { Number of EMS pages
PageSeg word; Segment address of page frame
Keypress : char;

{••• ** •• ***.** •••• ******* •••**********.**•••••••••**•• ***** •••••••*****}
(* MK FP: Creates a byte pointer from the given segment and offset *)
(* addresses. *1
(* Input - Seq - Segment to which the pointer should point * I
(* - Ofs - Offset addr. to which the pointer should point *)
(* Output Entire pointer *1
{* Info The returned pointer can be recast toward any other *1
(* pointer. *1
{••••• **** ••**•••**** •••••• *** ••••••••••••••••****••••******•••********.

($F+] 	 This routine is intended for a FAR model, and
should therefore be treated as one UNIT

609

13. Expanded Memory Specification 	 PC System Programming

function MK_FP(Seg, Ofs word) Byteptr;

begin
inUne 	 $88 / $46 / $08 / mov ax, [bp+8] (Get segment address)

$89 / $46 / $FE / mov [bp-2],ax (and place in pointer)

$88 / $46 / $06 / mov ax, [bp+6] (Get offset address)

$89/ $46 / $FC); mov [bp-4) ,ax (and place in pointer)

end;

($F-I 	 (Re-enable NEAR routines 1

(******••**************************************••• ***********.*********}
(* Emslnst: Determines the existence of EMS and corresponding EMM *1
(* Input : none *)
(* Output : TRUE if EMS is available, otherwise FALSE *)
{*****************************.************************•••*************}

function Emslnst : boolean;

var 	Regs Registers; Processor register for the interrupt call
Name CharPtr; (Pointer to the EHM names
i integer; (Loop counter

begin
(*-- Move pointer to name in device driver header ------------------*1

Regs.ax :- $3567; (Function f: Get interrupt vector $67)
MsDos (Regs); (Call DOS interrupt $21)
Name :- CharPtr(MK_FP(Regs.es, 10»; (Move pointer)

(*-------- Search for EMS driver ---*1
i :- 0; (Start comparison with first character
while «i<sizeof(EmmName» and (NameA[i]-EmmName[i]» do

Inc(i); (Increment loop counter
Emslnst :- (i - sizeof(EmmName»; (TRUE if name is found

end;

{***** ••••••*****.*.*********•••••*.***********••• ********.*.*••• ***••*}
(* EmsNumPage: Determines the total number of EMS pages *1
(* Input : none * 1
(* Output : EMS ERR if error occurs, otherwise number of EMS pages *)
{*••*.********* •••************ ••********.**************.****.********.*}

function EmsNumPage : integer;

var Regs 	 : Registers; (Processor register for the interrupt call 1

begin
Regs.ah :- $42; (Function f: Determine number of pages
Intr(EMS INT, Regs); (Call EHM
if (Regs~ah <>0) then Error occurred?

begin (YES
EmmEC := Regs.ah; (Get error code
EmsNumPage := EMS ERR; (Display error

end
else No error

EmsNumPage .= Regs.dx; (Return total number of pages
end;

{•••••****••**•••••••****.**.***••****••••••••• ***••*******•••***.*•••• }
(* EmsFreePage: Determines the number of free EMS pages *J
{* Input none *1
(* Output : EMS ERR if error occurs, otherwise the number of un- *J
(* used EMS pages *J
{*•••** ••••• **.*****.**•• *** •• **••••••*••**.*•••**.*********.**********}

function EmsFreePage : integer;

var Regs 	 : Registers; (Processor register for the interrupt call J

610

http:CharPtr(MK_FP(Regs.es

Abacus 13. Expanded Memory Specification

begin
Regs.ah :- $42; I Function f: Determine no. of pages
Intr(EMS INT, Regs); I Call EHM
if (Regs~ah <>0) then Error occurred?

begin I YES
ElmlEC :- Regs.ah; Mark error code
EmsFreePage :- EMS_ERR; I Display error

end
else I No error

EmsFreePage :- Regs.bx; I Return number of free pages
end;

{** •••••• *****.************.*•••*****************.****.*****••***.*****}
{* EmsFrameSeg: Determines the segment address of the page frame *1
{* Input : none *1
{* Output : EMS ERR if error occurs, otherwise the segment address *)
{****.*.**** •••**••*******•••******************•••****.**********••****}

function EmsFrameSeg : word;

var Regs : Registers; Processor register for the interrupt call I

begin
Regs.ah :- $41; { Function .: Get segment addr. page frame
Intr(EMS INT, Regs); { Call EHM
if (Regs:ah <>0) then Error occurred?

begin { YES
ElmlEC :- Regs .ah; Mark error code
EmsFrameSeg : - W EMS ERR; Display error

e~ -
else I No error

EmsFrameSeg :- Regs.bx; { Return segment addr. of page frame
end;

{********••****************.*•••**********.******************••********}
{* ErnsAlloc: Allocates the specified number of pages and returns a *1
{* handle for access to these pages *1
{* Input PAGES: Number of allocated pages *1
{* Output EMS ERR returns error, otherwise the handle *1
{•••••••• **•••• *** •••••***.*****•••****.*** ••••• ***** •••• * ••••*********}

function ErnsAlloc(Pages integer) : integer;

var Regs : Registers; I Processor register for the interrupt calli

begin
Regs.ah := $43; Function .: Alocate pages
Regs.bx :- Pages; Set number of allocated pages
Intr(EMS INT, Regs); I Call EHM
if (Regs:ah <>0) then Error occurred?

begin { YES
ElmlEC :- Regs.ah; Mark error code
EmsAIIoc :- EMS_ERR; Display error

end
else { No error

EmsAlloc := Regs.dx; Return handle
end;

t········**·····**········***···**··****·***····***···.*.* ..••.•• ****•• }
{* EmsMap Creates an allocated logical page from a physical page in*1
{ * the page frame *1
{* Input HANDLE: Handle received from ErnsAlloc *1
{* LOGP : Logical page about to be created *1
(* PHYSP : The physical page in page frame *1
(* Output FALSE if error, otherwise TRUE *1
(*•••••••••••••*****.******•••••••••••••*•••••********•• ***••**••••**.*)

function EmsMap(Handle, LogP : integer; PhysP : byte) : boolean;

var Regs : Registers; Processor register for the interrupt call I

611

13. Exponded Memory Speci[lCalion PC System Programming

begin
Regs.ah '- $44; Function t: Set mapping
Regs.al :- PhysP; I Set physical page
Regs.bx :- LogP; (Set logical page
Regs.dx :- Handle; I Set EMS handle
Intr(EMS_INT, Regs); (Call EMM
EmmEC :- Regs.ah; (Mark error code
EmsMap :- (Regs.ah - 0) (TRUE is returned if no error

end;

{*••••••••••••••••••••••• _•••••••_ ••••••••••••• - •••••• **•••• ***** •••*••)
(* EmsFree Frees memory when given with an allocated handle *)
(* Input : IlANDLE: Handle received by AllocEms *)
(* Output : FALSE if an error, otherwise TRUE *)
{••••••••••••••••••••••••••••_- ••••••••••- ••••_•••••••••••** •••••••** •• }

function EmsFree(Handle integer) : boolean;

var Regs : Registers; (Processor register for the interrupt call)

begin
Regs.ah :- $45; Function t: Release page
Regs.dx :- handle; (Set EMS handle
Intr(EMS_INT, Regs); (Call EMM
EmmEC :- Regs.ah; (Mark error code
EmsFree :- (Regs.ah - 0) (TRUE is returned if no error

end;

(••••••••••••••••••••••••••• -•••_.__••••••••••••••••••••••***••***••***)

(* EmsVersion: Determines the version number of EMM *)
(* Input none *)
(* Output : EMS_ERR if error occurs, otherwise the version number *)
(* (11-1.1, 40-4.0, etc.) *}
{*_ •••••• _••••_._._.- •••••__ ._ •• _•••••---------_._•••• *********••• *** •• }

function EmsVersion : integer;

var Regs : Registers; (Processor register for the interrupt call)

begin
Regs.ah :- $46; { Function .: Determine EMH version
Intr(EMS INT, Regs); { Call EMM
if (Regs~ah <>0) then Error occurred?

begin (YES
EmmEC :- Regs.ah; Mark error code
EmsVersion :- EMS_ERR; (Display error

end
else { No error, compute version number from BCD number

EmsVersion : (Regs.al and 15) + (Regs.al shr 4) * 10;
end;

(*_ ••__ •••••_•••••••••_---_ •• _._._._ •••••• _._--_ ••••_.**••** •••••••••••)
{* EmsSaveMap: Saves dispay between logical and physical pages of the *}
{* given handle *}

(* Input : HANDLE: Handle assigned by EmsAlloc *)
(* Output : FALSE if error occurs, otherwise TRUE *)
i*···················*······*·*······***************··*****************}

function EmsSaveMap(Handle: integer) : boolean;

var Regs : Registers; (Processor register for the interrupt call)

begin
Regs.ah :- $47; Function .: Map save
Regs.dx :- handle; { Set EMS handle
Intr(EMS INT, Regs); { Call EMM
SmmEC :--Regs.ah; (Mark error code
EmsSaveMap '- (Regs.ah 0) Return TRUE if no error

end;

612

Abacus 13. Expanded Memory Specification

{*********************.*.*** ••*******.***•••*****.*.*••••••••**.**** ••• }
C* EmsRestoreMap: Returns display between logical and physical pages, *'
C* from the page saved by EmsSaveMap *j
C* Input : HANDLE: Handle assigned bY EmsAlloc * j
C* Output : FALSE if an error occurs, otherwise TRUE *j
{****••••* ••••*.***************************•••* ••••******** ••***.*.*.**}

function EmsRestoreMapC Handle: integer) : boolean;

var Regs : Registers; C Processor register for the interrupt call j

begin
Regs.ah :- $48; Function f: Restore map
Regs.dx :- handle; C Set EMS handle
IntrCEMS_INT, Regs); C Call EMM
EmmEC :- Regs.ah; C Mark error code
EmsRestoreMap '. CRegs.ah - 0) C TRUE returned if no error

end:

{** •••••• **.******••**.** •••••••**.*********••••••••••*********••• *****}
(* PrintErr: Displays an error message and ends the program *j
C* Input none *j
C* Output none *'
C* Info This function is called only if an error occurs during a *j
C* function call within this module *j{*._._.... __ .-._._._-_._._••......_•..-•..._._-_..•..-•..***••••• *** ••• }

procedure PrintErr;

begin
writelnC'ATTENTION! Error during EMS memory access');
write C' ••• ');
if CCEmmEC<$80) or CEmmEC>$8E) or CEmmEc-$82» then

writelnC 'Unidentifiable error')

else

case EmmEC of

S80 writelnC'EMS driver e~ror CEMM trouble) 'I;

S81 writeln('EMS hardware error');

S83 writelnC'Illegal EMM handle');

$84 writelnC'Called EMS function does not exist');

$85 writelnC'No more free EMS handles available');

$86 writelnC'Error while saving or restoring mapping 'I;

$87 writelnC'More pages requested than are actually',

'available') ;

$88 writelnC'More pages requested than are free');

$89 writelnC'No pages requested');

S8A writelnC'Logical page does not belong to handle');

$8B writelnC'Illegal physical page number');

S8C writelnC'Mapping memory range is full');

S8D writelnC'Map save has already been done');

$8E writelnC'Mapping must be saved before it can',

'be restored');
end;

Halt; C Program end j
end;

{ •••*******.**•••**•••• ***•••••••••• **•••****.*** ••••••••••• ** ••• ** •••*)
C* VrAdr: Returns a pointer to video RAM *'
C* Input : none *'
C* OUtput : Pointer to video RAM *'
{.*****•••**********•••** ••••***************•••••****.**************.**}

function VrAdr : BytePtr;

var Regs : Registers; C Processor register for the interrupt call ,

begin
Regs.ah :- SOf; Function t: Determine video mode
Intr C$10, Regs); C Call BIOS video interrupt

613

http:CRegs.ah

13. Expanded Memory Specification PC System Progranuning

if (Regs.al - 7) then Monochrome video card?
VrAdr .- MK_FP($BOOO, 0) YES, video RAM at BOOO:OOOO

else { Color, EGA or VGA card
VrAdr .- MK_FP($B800, 0); (Video RAM at B800:0000

end;

{***.***•••**************.*.*********.*********••••**** •••**********••*}
{* PaqeAdr: Returns address of a physical paqe in paqe frame *'
(* Input : PAGE: Physical paqe number (0-3) *)
{* Output : Pointer to the physical paqe *)
{*************•• *********•••**********.*••••******•••• ****••****.****.*}

function PaqeAdr(Paqe : integer) : BytePtr;

begin
PaqeAdr :- MK_FPI EmsFrameSeq + (Paqe shl 10), 0);

end;

{************.*****.*********.*.****•••********••**•••***************•• }
(** MAIN PROGRAM **)
{•••••• *******••***.****.*********************••****** ••* ••••••****.**.}

beqin
ClrScr; { Clear screen
writeln (' EMHP (c) 1988 by MICHAEL TISCHER','13'10);
if EmsInst then { Is EMS memory installed?

beqin { YES
(*-- Display EMS memory information --------------*)

EmmVer :z EmsVersion; { Determine EMM version number
if EmmVer - EMS_ERR then { Error occurred?

PrintErr; { YES, Display error messaqe and end proqram
writeln{'EMM Version number : ',EmmVer div 10,

EmmVer mod 10);

NumPaqe :- EmsNumPaqe; { Determine total number of paqes
if NumPaqe - EMS ERR then { Error occurred?

PrintErr; - (YES, Display error messaqe and end proqram
writelnl'Number of EMS Paqes : " NumPaqe, , I',

NumPaqe shl 4, ' KByte) 'I;

NumPaqe := EmsFreePaqe; { Determine number of free paqes
if NumPaqe = EMS_ERR then { Error occurred?

PrintErr; { YES, Display error messaqe and end proqram
writelnl' ••• free EMS paqes remaininq : " NumPaqe, ' (',

NumPaqe shl 4, , KByte)');

PaqeSeq := EmsFrameSeq; Segment address of paqe frame
if PaqeSeq - W EMS ERR then { Error occurred?

PrintErr; - - { YES, Display error messaqe and end proqram
writelnl'Seqment address of paqe frame: " PAqeSeg);

writeln;

writeln('Now a paqe from EMS memory can be allocated, and the');

writeln('screen contents can be copied from video RAM into this');

writeln('paqe.');

writelnl' Please press a key');

Keypress :- ReadKey; Wait for a keypress)

(*-- Paqe is allocated, and the data is passed to the first-----*)

(*-- loqical paqe in the paqe frame -----*)

Handle :- EmsAlloc(1); { Allocate one paqe
if Handle - EMS_ERR then { Error occurred?

PrintErr; (YES, Display error messaqe and end proqram
if not (EmsMap(Handle, 0, 0» then { Set mappinq

PrintErr; { Error: Display error messaqe and end proqram

{*-- Copy 4000 bytes from video RAM into EMS memory --*'

614

Abacus 13. Expanded Memory SpecijiCalion

ClrScr; { Clear screen
while KeyPressed do (Read keyboard buffer

Keypress :- ReadKey;
writeln('Old screen contents are cleared. However, the data .) ;
writeln('from the screen is in EMS, and can be re-copied onto f) ;

writeln('the screen. ') ;
writeln(' ••• Please press a key');
Keypress :- ReadKey; I Wait for a keypress •

(*-- Copy contents of video RAM from EMS memory and release --*)
(*-- the allocated EMS memory --*.

Move(PageAdr(O)A, VrAdrA, 4000); (Copy over video RAM
if not (EmsFree(Handle)) then { Release memory

PrintErr; I Error: Display error message and end program
GotoXY (1, 15);
writeln('END')

end
else (EMS driver not available •

writeln('ATTENTION! No EMS memory installed.');
end.

615

I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I

I
I
I

I
I

I

I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Chapter 14

Mouse Programming

A few years ago mice were considered luxuries for PC applications. Today most
PCs have mice connected to them. Part of the mouse's popularity stems from the
development of new and more powerful video standards such as EGA and VGA.
These graphic cards helped advance the graphic user interfaces such as GEM® and
Microsoft Windows®, which are almost unusable without a mouse.

Applications and operating systems alike benefit from mouse support. Ventura
Publisher® and Microsoft Works® both make intensive use of the mouse. In
addition, DOS Version 4.0 accepts mouse as well as keyboard input

A software interface acts as the connection between a program and the mouse.
Microsoft Corporation designed this interface for its own mice, but other mouse
manufacturers accept this interface as a standard. TIle interface was made available
to the industry as a minimum standard to retain compatibility with the Microsoft
mouse.

This function interface is usually installed either through a device driver which is
loaded during system boot, or through a terminate and stay resident (TSR) program
such as MOUSE.COM, included with the Microsoft mouse package.

Mouse functions

Mouse functions may be accessed in the same way as DOS and BIOS functions
(you may wish to review the techniques used for addressing DOS and BIOS
functions-see Chapters 6 and 7 for more information). The individual functions
can be called through interrupt 33H. The identification number of the function
must be passed to the AX register. The other processor registers are used in various
combinations for passing information to a function.

A total of 34 different functions can be called in this manner, but most
applications use only a few of these functions. Before we examine each function,
let's look at the concepts behind the mouse interface. This will help you to
understand the way individual functions work. We deliberately concentrated here on

617

http:MOUSE.COM

14. Mouse Programming PC System Programming

text oriented mouse control. Pixel oriented applications should use a graphic
interface such as Windows or GEM from the start, because they provide friendlier
functions for mouse input than the programming interface offered in this chapter.

About mouse buttons

Unlike the keyboard, which has many keys and keyboard codes for each key, a PC
mouse usually has two or even three mouse buttons. These mouse buttons permit
the user to select data in an application program. Another important piece of
infonnation is the actual position of the mouse's pointer (cursor) on the screen.
The word pointer stems from the pointer'S usual shape: an arrow or a pointing
fmger.

The mouse driver software always interprets the pointer's location on the screen
relative to a virtual graphic screen. This virtual screen's resolution depends on the
video mode and video card currently in use. Since this virtual graphic display
screen is also used within the text modes to determine the mouse's position and
forms the basis for communication with the mouse interface, a conversion occurs
between the graphic coordinates and the mouse pointer's line/column position.
Since every column or line corresponds to eight pixels, the graphic coordinates
must be either divided by eight or left shifted by three places in binary mode,
which mathematically produces the same result The processor executes the
shifting much faster than it can execute the actual division.

More about the mouse pointer

The pointer shows the mouse's relative location on the screen. Its shape can vary
from application to application, and it can even change appearance within an
application. Word processors often display the mouse pointer as a block, similar to
the text cursor. In text mode the application can only determine the starting and
ending line of the pointer. The pointer's size depends on the current character
matrix and video mode. The options for creating a software pointer are more
complex, since two 16-bit values called the screen mask and cursor mask govern
the pointer's appearance.

The mouse driver must determine the appearance of the pointer every time the
pointer changes position on the screen. The cursor mask and screen mask values
are linked with the two bytes which describe the character code and the character
color within video RAM. This linkage occurs in two steps. First the character code
and the attribute byte are linked with screen mask through a binary AND. The
result of this connection is then linked with the cursor mask through an exclusive
OR. The result then appears on the screen.

618

Abacus 	 14. Moue Progrfll1lming

This type of linkage allows a number of options for changing the pointer's
appearance. Four of the most common pointer options are:

Pointer appears as one specifIC character in one specific color

• 	 Pointer appears as one specific character, but color changes when the
pointer overlaps a character (e.g., inverse video)

• 	 Pointer appears as one specific character, but the character color changes
when the pointer overlaps a character

• 	 Pointer appears as one specific character, but character color changes to a
variant of the character color when the pointer overlaps a character

The standard measurement unit in the mouse interface is the miclcey, named after
Mickey Mouse® (1 mickey = 1/200"). The mouse hardware measures all distances
in multiples of mickeys. We will use this as the measurement standard throughout
the rest of this chapter.

Function OOH: Reset mouse driver

A program should call the function OOH before calling any of the mouse functions.
This resets the mouse driver. It can also determine whether a mouse and mouse
driver exist, by examining the content of the AX register after the function call. If
the AX register contains the value OOOOH after the function call, no mouse driver
was installed. Even if a mouse is connected. the mouse driver no longer exists. If a
mouse driver and mouse exist. function OOH returns the value FFFFH in the AX
register. The BX register contains the number of buttons on the mouse. As
mentioned above. PC mice usually have two mouse buttons. although some mice
have three buttons. Since very few applications need or use three buttons. two
buttons will be all you'll need in most cases.

Function OOH resets the numerous mouse parameters to their default values. The
mouse pointer moves to the center of the screen. The cursor mask and screen mask
are defmed in such a manner that the cursor appears as an inverse video rectangle.
Video page 0 is selected as the default page on which the pointer appears. The
pointer disappears from the screen immediately.

Function 01 H: Display mouse pointer

Function 01H displays the pointer on the screen. Load the function number into
the AX register; no other parameters are needed. Since the mouse driver follows the
movement of the mouse even when the mouse pointer has been disabled. it may
not necessarily reappear at the position where it was when it disappeared.

619

14. Mouse Progrtunming PC System Programming

Function 02H: Remove mouse pointer

Function 02H removes the mouse pointer from the screen. Load the function
number into the AX register; no other parameters are needed. The calls between
functions 01H and 02H must be called in proper proportions to be effective. For
example, calling function 02H twice in succession means that you must also call
function 01H twice in succession to return the pointer to the screen.

Functions 01H and 02H aren't used very much. Often, all youll need to do is call
function OOH and function 01H at the beginning of a program, and call function
02H at the end of the program. These functions corne into play more frequently if
the application program writes characters directly into video RAM, bypassing the
slow DOS and BIOS display routines. Avoid writing characters over the mouse
pointer, or two things will happen:

1) The mouse pointer disappears ifoverwritten by another character.

2) The mouse driver produces the wrong character on the screen when the
user moves the mouse pointer. Before the pointer appears at a certain
position on the screen, it records the character which occupied this
position until now. This character is restored to the old position as soon
as the pointer moves to another position on the screen. During a direct
write access to video RAM, the driver does not record that a new character
was output at the position of the pointer. Therefore, the old (and
incorrect) character is displayed on the screen during the movement of the
pointer.

You can avoid this potential source of errors by removing the pointer before
character output, and returning the old character to the screen. The new character
will be stored when the pointer is restored to the screen. This action should not be
done for every character output, since it slows the system down and negates the
advantages of direct access to video RAM. We recommend that you remove the
pointer once from the screen before extensive output such as construction of a
screen window. Mter the operation the pointer can be restored on the screen.

Even though the DOS and BIOS character output functions write their output
directly to video RAM, you shouldn't worry about programming the pointer when
working with these functions The reason is that during installation, the mouse
driver moved interrupt vector IOH, which handles BIOS and DOS screen output, to
its own routine. The driver can then display or disable the pointer as needed.

Function 04H: Move mouse pOinter

Function 04H allows movement of the pointer to a specific location on the screen,
without moving the mouse. Pass the function number to the AX register, the new
horizontal coordinate (column) to the ex register, and the new vertical coordinate
(line) to the DX register. Please note that these coordinates, like all other
functions, must be relative to the virtual screen. Text coordinates must be

620

Abac/lS 14. MO/lSe Programming

multiplied by eight (or shifted left three binary places) before they can be passed to
function 04H. The coordinates must be located inside a screen area designated as
the mouse's range of movement

Function OOH sets the complete range of the mouse's movement to the entire
screen area. Functions 07H and 08H limit this range to a smaller area.

Function 07H & 08H: Set range of movement

Function 07H specifies the horizontal range of movement Pass the function
number to the AX register, the minimum X-coordinate to the ex register and the
maximum X-coordinate to the OX register.

Function OSH specifies the vertical range of movement Pass the function number
to the AX register, the minimum Y -coordinate to the ex register and the
maximum Y-coordinate to the OX register.

After calling these functions the mouse driver automatically moves the pointer
within the range, unless it is already within the indicated borders. The user cannot
move the pointer outside this range.

Function 10H: Exclusion area

In addition to the area of movement allotted to the pointer, the mouse driver also
supplies an exclusion area. This exclusion area is a section of the screen which
renders the mouse pointer invisible when the user moves the pointer into this
section. The mouse pointer becomes visible again as soon as the user moves the
pointer away from the exclusion area. This area is undeimed after the call of
function OOH. It can be defined at any time by calling function IOH, but the
mouse driver can control only one exclusion area at a time. The coordinates of the
exclusion area are passed to function IOH in the ex:OX and SI:DI register pairs.
These register pairs specify the upper left corner and lower right corner
respectively. ex and SI accept the X-coordinate, OX and DI the Y-coordinate.

The exclusion area and function 02H play special roles during direct access to video
RAM. Although function 02H removes the pointer from the screen, this can occur
in conjunction with function IOH only if the pointer is already within the
exclusion area, or if the user moves the pointer within the exclusion area. This
makes function IOH practical for situations involving the creation of a larger
display area (e.g., a window). This allows the pointer to remain on the screen as
long as it is not within this exclusion area.

The exclusion area can be removed by calling function OlH or function OOH.
Function OlH makes tIie pointer visible automatically if it is already within the
exclusion area.

621

14. Mouse Programming PC System Programming

Function 1DH: Set display page

Function 10H sets the dispJay page on which the pointer appears. This function is
required only if the program switches a display page other than the current one to
the foreground through direct video card programming. Pass the number of the
display page to the BX register. When BIOS interrupt 10H activates a dispJay
page, this function can be omitted, since the mouse driver will automatically adapt
to the change.

Function OFH: Set pointer speed

Two parameters determine the speed at which the mouse pointer moves on the
display screen. They specify the reJationship between the distance of a pointer
movement and the pixels traversed in the virtual mouse display screen. Function
OFH allows the user to set these parameters for horizontal and vertical movement
The parameters are passed in the ex and OX registers (horizontal and vertical,
respectively). These numbers indicate the number of mickeys, which correspond to
eight pixels in the virtual mouse display screen. These eight pixels correspond to
one line or column in the text mode display screen.

The default values after calling function OOH are 8 horizontal mickeys and 16
vertical mickeys. In text mode the pointer moves one column after the pointer is
moved 8 mickeys (about .04") horizontally. A jump to the next line occurs only
after the pointer is moved 16 mickeys (about .08") vertically.

These settings normally can be set at default values, since they wode well with all
resolutions in text mode. This function allows changes if you want faster or
slower pointer movement

Function OAH: Set pointer shape

Function OAH determines the appearance of the pointer in text mode. The cursor
mask and screen mask mentioned above are determining factors of the pointer's
appearance in text mode. Pass OAH to the AX register and the value determining
the cursor's shape to the BX register.

Software-specific pointer

If the BX register contains the value 0, the mouse driver selects the pointer as
specified by the software. The screen mask number must be loaded into the ex
register, and the cursor mask number must be loaded into the OX register. These
numbers indicate the addresses from which the mouse driver can access pointer
shape parameters.

622

AbacMS 14. MolISe Programming

Hardware-specific pointer

If the BX register contains the value l,the mouse driver selects the pointer as
specified by the hardware. Starting line of the hardware pointer must be loaded into
to the ex register, and the ending line must be loaded into the DX register.

Video mode and pointer size

Remember that the allowable values for starting line and ending line depends on
the video mode currently in use:

• The monochrome display adapter allows values from 0 to 13.

The color graphics adapter only allows values from 0 to 7.

• EGA and VGA cards accept values from 0 to 7. The EGA/VGA BIOS
automatically adapts the number selected to the size of the character
matrix currently in use.

The functions listed up until now set the various parameters which control the
mouse driver. The mouse driver also supports a group of functions which read the
mouse's position as well as the status of the mouse buttons. These functions can
be divided into two categories for reading external devices such as the mouse,
keyboard, printer or disk drives. These categories are the polling method and the
interrupt method. The mouse driver supports both methods.

Polling method

The polling method constantly reads a device within a loop. This loop terminates
only when the desired event occurs. Since the execution of this loop requires the
full capabilities of the CPU, no time normally remains to perform other tasks.

Interrupt method

The interrupt method has an advantage over the polling method, since the interrupt
system allows the CPU to execute other tasks until the desired event occurs. Once
this happens, the mouse driver calls an interrupt routine which reacts to the event
and executes further instructions.

Function 03H: Get pointer position/button status

The polling method offers four functions which operate in conjunction with the
mouse interface. These functions can be accessed through function 03H, which
return the current pointer position and mouse button status. Function 03H passes
the horizontal pointer position to the CX register and the vertical pointer position
to the DX register. Since these coordinates also refer to the virtual mouse screen,
they must be converted to the text screen's coordinate system by dividing the
components by eight, or by shifting the bits right by three binary places.

623

14. Mouse Programming PC System Programming

The following table shows how the mouse button status is returned to the BX
register. Only the three lowest bits represent the status of one of the two or three
mouse buttons. The bit for the corresponding mouse button contains the value 1
when the user presses that mouse button during the function call.

Mouse button status retumed in the BX register after calling
function 03H
5 4 3 2 1 0 987 6 5 432 1 0 .. Bits
XXXXXXXXXXXXX .. Dis~ard these bits

1 - left mouse button activated
1 - right mouse button activated

1 - center mouse button activated

Function OCH: Set event handler

Function OCH sets the address of a mouse event handler (interrupt routine). The
function number must be passed to the AX register. The segment and offset address
of the event handler must be passed to the ES:DX register pair. The event mask
must be passed to the ex register. The individual bits of this flag determine the
conditions under which the event handler should be called. The following table
shows the ex register coding:

Event mask coding in ex register durinq function OCR call
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 _ Bits
XXXXXXXXX .. Disregard these bits

1 - Mouse movement
1 - Left mouse button activated

1 - Left mouse button released
1 - Right mouse button activated

1 - Ri~ht mouse button released
1 - Center mouse button activated

1 - Center mouse button released

The mouse driver calls the event handler after executing the function, as soon as at
least one of the specified events occurs. The call is made using the FAR call,
rather than the !NT instruction. This difference is important to remember when
developing an event handler, since the handler must be ended with a FAR RET
instruction rather than an !RET instruction. Similar to an interrupt routine, none
of the various processor registers can be changed when they are returned to the
caller. For this reason the registers must be stored on the stack immediately after
the call, and the register contents must be restored at the end of the routine.

Information is passed to the event handler from the mouse driver through
individual processor registers. The information concerning the event can be found
in the AX register, where each bit has the same significance as in the event mask:
during the call of function OCH (see above table). Individual bits may be set which
have no meaning for the event handler. For example, if the event handler should
only be called when the left mouse button is activated (bit 1), bits 0 and 4 may

624

Abacus 14. Mouse Programming

also be set during the event handler call, because the mouse was moved and the
right mouse button had been released at the same time.

The event handler can obtain the current button status from the contents of the CX
register. The coding is identical during the call to the function 03H. Bits 0 to 2
represent the different mouse buttons. The current pointer position can be found in
the CX and DX registers, representing the horizontal and vertical positions,
respectively. The position can only be set after conversion to the text screen's
coordinate system.

During the development of an event handler, the DS register should point to the
data segment of the mouse driver during the handler call, instead of the interrupted
program. If the event handler accesses its own data segment, it must fIrst load its
address into the DS register.

Function 18H: Install alternate event handler

Function I8H allows the installation of an event handler which reacts to limited
range keyboard events as well as mouse events. This function signals an event if
the <Ctrl>, <Alt> or <Shift> keys are pressed when a mouse button is pressed or
released.

This function is almost identical in register assignments as function OCH. The
event mask in the CX register has been extended by the three events, as shown in
the following table:

Event mask codinq in ex register durinq function ISH call
5 4 3 2 1 0 9 S 7 6 5 4 3 2 1 0 ~ Bits
XXXXXXXX ~ Disreqard these bits

1 - Mouse movement
1 - Left mouse button activated

1 - Left mouse button released
1 - Riqht mouse button activated

1 - Right mouse button released
1 - Shift key pressed during

mouse button event
1 - Ctrl key pressed during mouse

button event
1 = Alt key pressed during mouse

button event

Even during the call of such an alternative event handler, little changes in
comparison with the event handlers which were installed by calling function OCH.
Only the content of the AX register must be interpreted a little differently, since its
construction corresponds to the event mask shown above.

Up to three alternative event handlers can be installed by calling function I8H.
During the function OCH call, the event handler indicated replaces the previously

625

14. Mouse Progromming 	 PC System Progromming

installed handler. Three different event handlers can be installed by calling fimction
I8H three times. This is only valid if the three event handlers are equipped with
different event masks. If an event mask passes to function ISH which is already
equipped with a handler, the new handler replaces the existing handler.

Demonstration programs

This chapter lists programs in C and Turbo Pascal which demonstrate mouse
access functions. These programs show the techniques of developing and installing
an event handler, which is the most complicated part of mouse reading. Both
programs include functions or procedures which call various mouse functions.
These routines require little programming-tbey load the processor registers with
the necessary values, then call interrupt 33H. Since the event handler needs the
most programming, the text here will focus on that subject

Installing an event handler in a higher level language program is somewhat
difficult, since it must meet certain requirements. These requirements are normally
beyond the control of a programmer in a higher level language. The requirements
are as follows:

The event handler must be a FAR procedure, and must be terminated with
a FAR RET instruction.

The event handler must store the various processor registers during the
call and restore them before completion.

• 	 The event handler must load the segment address of the higher level
language data segment into the DS register to provide access to global
variables of the program.

These requirements can be met in some versions of Turbo Pascal, Turbo C and
Microsoft C, although some very complex programming would be required. The
traditional solution (write a routine in assembly language) is easier and faster to
implement Therefore, we wrote the event handler itself in assembler, assembled
the program and linked the resulting object module to the higher level language
program.

This assembler routine is named AssmHand. It stores the various processor
registers on the stack after the call, then calls a C function or Pascal procedure
named MouEventHandler. The AssmHand routine passes arguments provided by
the mouse driver to the MouEventHandier routine. These arguments include:

The event flag, which describes the event that caused the handler call.

The current mouse button status.

The current position of the mouse pointer.

626

Abac", 14. Mouse ProgrfJlllltling

This infonnation is converted from virtual graphic screen coordinates into text
screen coordinates (25 lines x 80 columns).

The stack handles parameter passing. The C vcnion of AssmHand must pass the
arguments onto the stack in the reverse order of their declamtion. After loading the
DS register and calling the higher level language routine, these arguments must be
taken from the stack again by incrementing the stack pointer by the memory
requirements of the arguments (8 bytes). This is only required fex the C version of
the routine. The Turbo Pascal version performs this taslc on its own.

After calling this routine, the AssmHand routine returns the processor registers to
the stack and passes control to the caller using a FAR RET instruction.

The AssmHand instructions execute very quickly, but the handler itself may require
more execution time than expected. This introduces the problem of recursion, since
an event in connection with the mouse may recur during the handler execution.
The AssmHand driver then must be recalled before the previOUS call terminated.

To avoid this situation and the complications which can occur, AssmHand
maintains a variable named active in its code segment During execution this
variable contains the value 1. Before setting this variable, the program tests if
active already contains the value 1. This indicates that the last call was not yet
completed. If this situation occurs, the handler execution terminates immediately,
thus avoiding recursion.

Even if this method avoids recursion problems, remember that it can produce its
own problems. The suppression of the higher level language handler does not take
note of the event, because the handler was not called by the mouse driver.
Although we offer the recursion trap as an option, we recommend that you
program the higher level language handler as efficiently as possible to avoid using
processor time. This will keep call suppression to a minimum.

AssmHand must first be installed through function OCH, using the
MouISetEventHandler procedure/function. MouISetEventHandler is called by the
MouInit procedure/function, which initializes the mouse module. This should be
called by any application program as the first procedure/function of this module.
The number of lines and columns of the display screen must be passed to it as
arguments, to detennine the size of an internal buffer needed for the various
procedure/functions within the module.

This buffer allows division of the screen into individual mouse ranges, each
equipped with its own code, cursor mask and screen mask. These mouse regions
are very important in mouse access. They permit the defmition of objects such as
slidcn, O.K. buttons or menu items. As soon as the user moves the pointer to and
object and presses a mouse button, the object executes a particular step in the
program.

627

14. Mous~ Programming 	 PC System Programming

MouDefRange defmes these regions. The registration of these regions occurs
through the procedure/function MouDetRange, which must receive a pointer to a
vector or array, and the number of elements stored there. These elements of the
type RANGE describe a screen area and the cursor or screen mask assigned to the
pointer as soon as it reaches this area. An area can comprise a single character or
the total screen. The user can define the array with individual area descriptors. The
area code depends on the position of the descriptor within the array, and is provided
automatically by the procedure/function MouDetRange. The first area has the value
0, the second the value I, etc. The screen areas not covered by an area descriptor are
assigned the code NO_RANGE.

During the creation of this array, especially during the definition of the cursor and
screenmask in the PtrMask array, the C implementation provides helpful macros
and constants. The Pascal program has functions and constants available for this
purpose. The creation of a variable of the type PfRVIEW, stored in the PtrMask
field within an area descriptor, is handled by the macro or function MouPtrMask.
The cursor and screen mask for the character must be passed to MouPtrMask to
define the pointer's appearance on the screen.

IfPtrSameChar is indicated, the pointer appears as the character which it covers. If
another pointer is desired, the pointer can be defined with PtrDifChar. When the
call occurs, enter the ASCII code of the desired character for PtrDifChar.

As a second parameter MouPtrMask gets the pointer's color from the cursor mask
and screen mask. Many options for color are possible:

PtrSameCol ensures that the pointer assumes the color of the character
currently overlapped by the pointer.

PtrSameColB creates a pointer which assumes the color of the character
currently overlapped. However, bit 7 of the attribute byte is set to 1 so
that the character either blinks or appears with a high-intensity
background color.

PtrInvCol makes the pointer appear in the inverse color of the character
currently overlapped by the pointer.

• 	 PtrDifCol displays the pointer on the screen in the color indicated by the
code following PtrDifCol.

In addition to the different mouse areas specified through MouDetRange, a pointer
can be assigned to the remaining screen, which is the area carrying the code
NO_RANGE. A program can use MouSetDefaultPtr to obtain the cursor and
screen mask of the pointer as a parameter of type PfRVIEW. The constants and
macros or functions described above can be used to create this parameter.

The MouEventHandler changes the cursor and screen mask for each area. Since it is
called for every mouse event (including mouse movement). it can determine the

628

14. MOlUe ProgrQllUlling

mouse area where the pointer is currently located. To make this happen as fast as
possible, it tests if the mouse area contains the position of the pointer.

MouEventHandier uses the internal region buffer which was created by MouInit
during the call. It reflects exactly the video RAM structure, and contains one byte
for eVerJ screen position. Each byte contains the code of the area to which the
screen position was assigned. The event handler can use the cmrent position of the
pointer as an index to this area buffer. A single memory access is enough to
determine the mouse area in which the pointer is located. The area code found is
stored in the global variable MouRng, and is used as an index to the array of the
mouse descriptor from which it determines the cursor and screen mask for this area.

The higher level language event handler has another assignment which may be
even more important It controls the variable MouEvent, in which the current
mouse events are stored. This task cannot be performed by simply copying the
mouse events which were passed through AssmHand from the mouse driver. This
only shows the current event, but no preceding events. If the user presses and holds
the left mouse button, then presses the right mouse button, this results in two
event handler calls. This signals each case of an active mouse button. The
preceding call (the active left mouse button) is no longer recognized by the call,
since it reports only the current event (the depressed right mouse button).

The event handler must isolate the various events which are reflected in the
EvFlags variable, and accept only new events in the MouEvent variable. This
variable reflects the current status of the mouse buttons, and the pointer's current
movement or position. MouEvent can handle the most important mouse sensing
tasks, waiting for the occurrence of a certain event (usually a pressed mouse
button).

MouEventWait waits for the occurrence of an event which was specified by the
bitmask that was passed earlier. This bitmask can be dermed through the logical
OR function with the following constants:

EV_MOU_MOVE Mouse movement

EV_LEFf_PRESS Left mouse button pressed

EV_LEFf_REL Left mouse button released

EV_RIGHT_PRESS Right mouse button pressed

EV_RIGHCREL Right mouse button released

The procedurelfunction can be instructed to wait for one or more of these events to
occur. The AND or OR correspond to the logical comparisons of the same names.
Which events occur can be sensed through the results of a bitmask in which the
individual bits represent the various events, and through which the constants
described above can be sensed.

629

14. Mouse Programming PC System Programming

Pascal listing: MOUSEP.PAS

{****************.*.***************************.****.*******.********•••
(* M °USE P . PAS *)
(*--*)
(* Task : Demonstrate the different functions available *)
{* in mouse proqral!llling *)

{*--*)
{* Author MICHAEL TISCHER *1
{ * Developed on : 04/21/1989 *1
{* Last update : 06/01/1989 *1
{*****•••*************.********************************••**•••***.*****}

uses Dos; { Add DOS unit

{SL c:\tp\mousepal Link assembler module 1
adjust path to your system needs 1

{= Declaration of external functions -----1
{$F+I { FAR function I
procedure AssmHand external (Assembler event handler)
{$F-I FAR functions no longer accessible I

{-- Constants -=~~~~-==-~=----=~I

const

{-- Event-Codes ---1
FN MOU HOVE 1; { Mouse movement
FN-LEFT PRESS 2; { Left mouse button pressed
FN::::LEFT::::REL 4; { Left mouse button released
FN RIGHT PRESS 8; { Right mouse button pressed
FN-RIGHT-REL = 16; { Right mouse button released
FN:::MOU_ALr. 31; { All mouse events

LBITS 6; EV LEFT PRESS or EV LEFT REL
RBITS = 24; EV::::RIGHT_PRESS or EV_RIGHT_REL

NO_RANGE = 255; Mouse pointer not in xy range

ptrSameChar = SOOff; Same character
PtrSameCol = SOOff; Same color
PtrInVCol - S7777; Inverse color
PtrSameCoIB = S807f; Same color, blinking
PtrInVColB - SF777; Inverse color, blinking

EAND 0; { Event comparisons for MouEventWait
FNOR = 1;

CRLF = 113110; { CR/LF I

{- Type declarations =~-~~~=~--~I

type FNCTPTR = longint; { Address of a FAR function
PTRVIEN = longint; { Mask for mouse pointer
RANGE - record Describes a mouse range

xl, { Upper left and lower
y1, { right coordinates for the
x2, { specified range
y2 bYte;
PtLMask PTRVIEN; { Mask for mouse pointer

end;
RNGARRAY = array [0 •. 1001 of RANGE;
RNGPTR = ARNGARRAY;
PTRREC - record Allows access to any

Ofs word: mouse pointer record
Seg word: { existing

end;

630

Abacus 	 14. Mouse Programming

PTRVREC - record { Allows access to ,

ScreenHask word; { PTRVIEW ,

CursoIMask word;

end;

RNGBUF - array [0 •• 10000J of byte; Range buffer

BBPTR - ARNGBUFi { Pointer to a range buffer

{- global variables -------------,--,

var 	 NumRanges, { Number of ranges
TLine, { Number of text lines
TCoI byte; { Number of text columns
MouAvail boolean; TRUE if mouse is available
OldPtr, { Old mouse pointer appearances
StdPtr PTRVIEW; { Mask for standard mouse pointer
BufPtr BBPTR; Pointer to range recognition buffer
ActRngPtr: RNGPTR; { Pointer to current range vector
BLen integer; { Range buffer length in bytes
ExitOld pointer; { Pointer to old exit procedure

{-- Variables which are loaded into mouse handler on every call --I

MouRng, { Current mouse range

MouCol, Mouse column (text screen)

MouRow byte; { Mouse line (text screen)

MouEvent integer; { Event mask

(-- Variables which load with any oecurrence of expected events -)

EvRng, { Range in which the mouse can be found

Evcol, { Mouse column

EvRow : byte; { Mouse line

{******••**••••**••********•••*********•••••**••••••**************.****)
{* MouPtrMask: Executes Cursor-Mask and Screen-Mask from a bitmap *)
{* containing character and color *)

(**--**)
{* Input Chars - Bitmask of character as found in Cursor-Hask *'
{* and Screen-Mask *'
{* Color - Bitmask of character color as found in *'
{* Cursor-Mask and Screen-Mask *'
{* Output Cursor-Hask and Screen-Hask as a value of typ Ptrview *'
{* Info: The constants PtrSameChar, PtrSameCol, PtrSamecolB, *'
{* PtrInvCoI, PtrlnvColB, and the results of the ptrDifChar *'
{* and PtrDifCol functions also control character' color *'
{********************************* •••***••*************************•••*}

function MouPtIMask (Chars, Color : word) : PTRVIEW;

var Mask : PTRVIEW; { For creating Cursor-Mask and Screen-Mask ,

begin
PTRVREC(Mask) .ScreenHask '- ((Color and $ff) shl 8) +

(Chars and $ff);

PTRVREC(Mask '.CursoIMask :- (Color and SffOO) + (Chars shr 8);

MouPtIMask :- Mask; { Return mask to caller

end;

{**********************************••******************.*.***••• *******}
{* PtrDifChar: Defines character structure of cursor and screen *'

{* mask in conjunction with character *'

{**--**'
{* Input ASCII code of the character on which pointer is based *'
{* OUtput Cursor and screen mask for this cursor *)
{* Info: Function result should be computed with the help of the *'
{* MouPtIMask function *)
{••******•••••••***•••**************.****.*.*******••••****************}

function PtrDifChar (Chars : byte) : word;

631

14. Mouse Programming PC System ProgrtllfUtling

beqin
PtrDifChar :- Chars shl B;

end;

f······**·**·········****·······**·**············**··· •••••............ }
{* PtrOifCol: Creates the character segment of the cursor and screen *'
{* mask in conjunction with the mouse pointer color *'
{**--**'

(*•••***•••••••••••** ••••••••••••••••••**•••••••••••••••••••••••••••••••

{* Input Character color on which the mouse pointer will be based *'
{* OUtput cursor and screen mask for this color *'
{* Info: The function's result should be computed with the help *'
{* of the MouPtzMask function *'

function ptrOifColl Color: byte) : word;

begin
PtrOifCol .- Color shl 8;

end;

{*••••*****•••***** •• ***••***••••*.**** •••**••**•••••••*.*************.)
1* MoUOefinePtr: Assigns the mouse driver the cursor mask and *}
{* screen mask, from which the driver can create the *}
(* mouse pointer *)
(**--**)
(* Input Mask - The cursor and screen mask as a parameter of *)
(* type PTRVIEW *)
1* Info: - The mask parameter should be created with the help of *)
(* the MouPtrMask function *)
{* - The most significant 16 bits represent the screen mask,*'
{* the least significant 16 bits represent cursor mask *'
{************.****************••••••**************••**.******•••*******}

procedure MouDefinePtr I Mask : PTRVIEW);

var Regs : Registers; { Processor regs for interrupt call ,

begin
if OldPtr <> Mask then { Mask change since last call?

begin { YES
Regs.AX . $OOOa; 1 Funct. no. for ·Set text pointer type"
Regs.BX : 0; { Create software pointer
Regs.CX •• PTRVREC I Mask). ScreenMask; { Low-word is AND mask
Regs.OX .= PTRVREC(Mask).CursorMask; High-word ist XOR mask
Intrl $33, Regs); { Call mouse driver
OldPtr .= Mask; (Reserve new bitmask

end;
end;

{**********••*****************••••**********••***************••********}
1* MouEventHandler: Called by the assembler routine AssmHand as soon *}
{* as a mouse event occurs *}
{**--**'
{* Input EvFlags = The event mask *'
(* ButState Current mouse button status *'
(* X, Y Current coordinates of the mouse pointer on *)
(* the text screen *)
{**.****••**.*******.*•••••**}

procedure MouEventHandlerl EvFlags, ButState, x, y : integer) ;

var NewRng : byte; Number of new range)

begin

MouEvent :- MouEvent and not 11); Bit 0 excluded
MouEvent :- MouEvent or (EvFlags and 1); (Bit o copied

if I EvFlags and LBITS) <> 0 then { Lft button released or pressed?
begin { YES

632

Abacus 	 14. Mouse Programming

MouEvent :- MouEvent and not (LBITS I; {Remove previous status
MouEvent :- MouEvent or (EvFlags and LBITS I; { Add status

end;
if (EvFlags and RBITS I <> 0 then {Rgt button released or pressed?)

begin . (YES)
MouEvent :- MouEvent and not (RBITS I; 1 Remove previous status)
MouEvent :- MouEvent or (EvFlags and RBITS I; 1 Add status,

end;

MouCol :- X; Convert. colmnns to text columns
MouRow :- y; 1 Convert lines to text lines

1-- Determine range in which the mouse should be found and ---I
{-- determine whether range has changes since the previous call --I
(-- of the handler. If so, the cursor image must be redefined. --,

NewRng : - BufptrA [MouRow * TCol + MouCol I; { Get range
if NewRng <> MouRng then { New range?

begin 1 YES
if NewRng - NO RANGE then OUtside of a range?

MouDefineptr"(StdPtr I YES, standard pointer
else { NO, range recognized

MouDefinePtr (ActRngPtr [NewRng I . PtrMask I;
end;

MouRnq :- NewRnq; { Reserve range number in global variable ,
end;

{**}
{* MouIBufFill: Store the code for a mouse range within the *'
1 * modulare range memory * ,
1**--**'
1 * Input xl, yl - Upper left corner of the mouse range *'
{* x2, y2 - Lower right corner of the mouse range *'
1 * Code - Range code * ,
{*****••*** ••******** •••************.*.***************•••**************}

procedure MouIBufFill(Xl, yl, x2, y2, Code: byte I;

var 	Index : integer; Points to array
Column, { Loop counter
Line : byte;

begin
for Line:=yl to y2 do Count individual lines

begin
Index :- Line * TCol + xl; First line index
for Column:-xl to x2 do {Go through the columns in this line

begin
BufPtr [Index -. Code; { Save code
inc (Index I; 1 set index to next array

end;
end;

end;

{******************•••************•••******•••**********************.**}
{* MouDefRange: Allows the registration of different screen ranges,*,
{* which the mouse recognizes as different ranges. *'
{* The mouse pointer's appearance changes when it *'
{ * senses each range *'
{**--**'
{* Input Number - Number of screen ranges *'
{* BPtr - Pointer to the array in which the individual *'
{* ranges are written as a structure of type *'*'{*
{* Info:

RANGE
- The free areas of the screen are assigned the code *'

{* NO RANGE *'
{* - When the mouse pointer enters one of the ranges, *'
1* the mouse range calls the event handler *'
{***••••*********••***.************************.*************.** ••••***}

633

14. Mou.se Programming 	 PC System Programming

procedure MouDefRange (Number byte; BPtr : RNGPTR);

var 	ActRng, Number of the current range
Range byte; (Loop counter

begin
ActRngPtr :- BPtr; Reserve pointer to vector
NurnRanges :- Number; { and number of ranges
FillChar (BufPtrA , BLen, NO RANGE); { All elements-NO RANGE
for Range:-O to Number-l do- Check out different ranges
with BPtrA [Range J do

MouIBufFill(xl, yl, x2, y2, Range);

(-- Redefine mouse pointer --/
ActRng :- BufPtrA [MouRow *TCol + MouCol 1; { Get range
if ActRng - NO RANGE then OUtside a range?

MouDefinePtr(StdPtr) YES, standard pointer
else { NO, range recognized

MouDefinePtr (BPtrA [ActRng 1.PtrMask);
end;

{***************************************.*.***********************••***}
{* 	 MouEventWait: Waits for a specific mouse event */
{**--**/
{* Input TYP - Type of comparison between different events */
{* WAIT EVENT = Bitmask which specifies the awaited event *1
{* OUtput Bitmask of the occurring event * /
{* Info: - WAIT EVENT can be used in conjunction with OR for other*/
{* constants like FN MOO MOVE, FN LEFT PRESS etc. */
{* - Comparison types Can be given as AND or OR. If AND is */
1* selected, the function returns to the caller if all */
1* anticipated events occur. OR returns the function to *}
1* the caller if at least one of the events occurs. */
{***.****************}

function MouEventWait(Typ : BYTE; WaitEvent : integer) : integer;

var 	Act Event integer;
Line,
Column byte;
CEnd boolean;

begin
Column := MouCol; { Reserve current mouse position /
Line := MouRow;
CEnd : - fal se;

repeat
1-- Wait for one of the events to occur ---------------------------/

if Typ - EAND then I AND comparison?
repeat I YES, all events must occur

Act Event := MouEvent; I Get current event
until ActEvent = WaitEvent

else OR comparison
repeat I At least one event must occur

Act Event :- MouEvent; I Get current event
until (ActEvent and WaitEvent <> 0;

ActEvent := ActEvent and WaitEvent; I Check event bits only

{-- While waiting for moUse movement, the event is accepted }
{-- nonly if the mouse pointer moves to another line and/or /
{-- column in the text screen - /

if (((WaitEvent and FN MOU MOVE) <> 0) and

(Column - MouCol) and (Line = MouRow)) then

begin { Mouse moved, but still at the same screen position
Act Event := Act Event and not (FN MOU MOVE); I Move bit out
CEnd :- (ActEvent <> 0); - I-Still waiting for events?

634

AbaclAS 14. MOlASe Programming

end
else 1 Event occurs ,

CEnd :- TRUE;
until CEnd;

EVCol .- MauCol; 1 Determine current mouse position
EvRow .- MouRow; 1 and range in global
EvRnq :- MauRnq; 1 variables

MouEventWait :- ActEvent;
end;

{*••••••** •••••***.****.******•••••** •••••***.***••••••••••••••••**.***}'* MouISetEventHandler: Installs an event handler which is called *'
1* when a particular mouse event occurs. *'
1**--**'
{* Input EVENT - Bitmask which describes the event, called *'
{* through an event handler *'
{* FPTR - Pointer to the event handler of type FNCTPTR *'
'* Info: - EVENT can be used through OR comparisons in conjunc- *'
(* lion with constants like EV MOl) MOVE, EV LEFT PRESS etc*,
{* - The event handler must be a-fAR-procedure, and change *'
(* none of the given processor registers *)
{*•••••••_•••••••••••••_•••••••••••••_--_ •••_•••••••••***•••***••••**.*}

procedure MouISetEventHandler(Event: integer; FPtr : FNCTPTR);

var Regs : Registers; Processor regs for interrupt call ,

begin
Regs.AX : - $OOOC; { Funct. no. for ·Set Mouse Handler"
Regs.CX :- event; { Load event mask
Regs.DX := PTRREC(FPtr).Ofs; { Offset address of handler
Regs.ES :- PTRREC(FPtr).Seg; { Segment address of handler
Intr{ $33, Regs); { Call mouse driver

end;

{*••*********••••****•••************.******•••••••***.****•••••****.***}
'* MouIGetX: Returns the text column in which the mouse pointer can *'
{* be found *'
{**--**'
(* OUtput: Mouse column converted to text screen *)
{••••••••••••••_--_•••_••••••__ •••••••••- ••••••••••••••••••••*•••***••*}

function MouIGetX : byte;

var Regs : Registers; { Processor regs for interrupt call ,

begin
Regs.AX : = $0003; Funct. no. for "Get mouse position"
Intr ($33, Regs) ; { Call mouse driver
MouIGetX .= Regs.CX shr 3; Convert column and return new value

end;

{** •••••••••**.*****••••••••••••••••••**.*** ••••••**••••••••••••**•••**}
(* MoulGetY: Returns the text line in which the mouse pointer can *)
{* be found *'
(**--**)
(* Output: Mouse line converted to text screen *)
{*•••*••••*}

function MouIGetY : byte;

var Regs : Registers; { Processor regs for interrupt call ,

begin
Regs.AX := $0003; Funct. no. for "Get mouse position"
Intr($33, Regs); { call mouse driver
MouIGetY :- Regs.DX shr 3; { Convert line and return new value

end;

635

14. Mouse Programming PC System Programming

{***•••••****.*.*.***•••*.*•••***.*******•••*** ••••••••••********•••*.*)
{* MouShowMouse: Show mouse pointer on the screen *}
{**--**}
{* Info: Calls between MouShowMouse and MouHideMouse must be evenly *}
{* balanced * }
•••••********••*****.**••••••••••••****•••************.****.**••••*****}

procedure MouShowMouse;

var Regs : Registers; { Processor regs for interrupt call }

begin
Regs.AX . - $0001; I Funct. no. for "Show Mouse"
Intr ($33, Regs); I Call mouse driver

end;

(••••**•••**.****••••••••••••***.**•••••••••••••**••••• *•••••**********)
1* MouHideMouse: Hide mouse pointer from the screen *}

1**--**}1* Info: Calls between MouShowMouse and MouHideMouse must be evenly *}
1* balanced *}
{••••**.**•••• **•••••••***••••**•••***••• ***.**•••**••••••••••••••••••• }

procedure MouHideMouse;

var Regs : Registers; I Processor regs for interrupt call }

begin
Regs.AX .- $0002; I Funct. no. for "Hide Mouse"
Intr($33, Regs); I call mouse driver

end;

{**.****.*.*********************** •• *****.************••***••••• **••**.}
1* MouSetMoveArea: Specify movement range for mouse pointer *}
(**--**)
(* Input xl, yl = Coordinates of range's upper left corner *)
(* x2, y2 - Coordinates of range's lower right corner *)
1* Info: - The coordinates indicate the text screen coordinates, *}
1* and not the virtual graphic screen used by the mouse *}
1* driver *}
{*********************••***•••••***********.****.*.***•••***•••• ***•••*}

procedure MouSetMoveArea (xl, yl, x2, y2 : byte);

var Regs : Registers; (Processor regs for interrupt call)

begin
Regs.AX .= $0008; Funct. no. for "Set vertical limits"
Regs.CX :- integer(yl shl 3; (Conversion to virtual
Regs.OX :- integer(y2 shl 3; I mouse screen
Intr($33, Regs); I call mouse driver
Regs.AX .- $0007; I Funct. no. for "Set horizontal limits"
Regs.CX :- integer(xl shl 3; I Conversion to virtual
Regs.OX :- integer(x2 shl 3; I mouse screen
Intr ($33, Regs); I Call mouse driver

end;

{************************************* ••• ****** ••••••••••******* ••••••*}
1* MouSetSpeed: Configures movement speed of mouse pointer *}

1**--**}
(* Input XSpeed - Speed in X-direction *)
(* YSpeed = Speed in Y-direction *)
(* Info: - Parameters are measured in units of *)
1* mickeys (8 per pixel) *}
(••**.**••••••••• **•••**** •••****•••••••••**.****•••**•••****••••••••••)

procedure MouSetSpeed (XSpeed, YSpeed : integer);

var Regs : Registers; (Processor regs for interrupt call)

636

AbacllS 	 14. MOlISe Programming

begin
Regs.AX :- $OOOf; 1 Funct. no. for "Set mickeys to pixel ratio· 1
Regs.CX :- XSpeed;
Regs.OX :- YSpeed;
Intr($33, Regs); { Call mouse driver 1

end;

{*.***•••••••••••••••••**••••****••••••••**•••*** •••***••••***•••***••• }
1* MouMoveptr: Moves mouse pointer to a specific position on the *1
1* screen *1
{**--**1
(* Input COL - New screen column for mouse pointer *)
(* R~ - New s=een line for mouse pointer * 1
1* Info: - The coordinates indicate the text screen, and not the *)
(* virtual graphic screen used by the mouse driver *)
{*.***••••**•••***.**•••***••••••••••**.**•••••••**••••••****** •••••••• }

procedure MouMovePtr(Col, Row : byte);

var 	Regs Registers; (Processor regs for interrupt call
NewRng byte; Range into which the mouse is moved

begin
Regs.AX := $0004; (Funct. no. for "set mouse pointer position"
MouCol := col; { Store coordinates in
MouRow :- row; { global variables
Regs.CX :- integer(col shl 3; Convert coordinates and store
Regs.OX :- integer(row shl 3; { in global variables
Intr($33, Regs); (Call mouse driver

NewRng :- BufPtrA [Row * TCol + Col]; { Get range
if NewRng <> MouRng then { New range?

begin { YES
if NewRng - NO RANGE then OUtside of a range?

MouDefinePtr(StdPtr) YES, standard pointer
else (NO, range recognized

MouDefinePtr (Act RngPtrA [NewRng) .PtrMask);
end;

MouRng NewRng; (Place range number in global variable)
end;

{••• ********•••****••••••••••****.***•••••••••**••••••••••*.*••••******}
{* MouSetOefaultPtr: Defines default pointer appearance for screen *1
{* ranges not assigned as special ranges *1
(**--**)

{***••••••••**••••******•••••***** •••••••••***•• ****••********••••*.*.*}

{* Input Standard - Cursor and screen mask for mouse pointer *1
(* Info: - The parameters should be created with the help of the *)
(* MouPtrMask function *)

procedure MouSetDefaultPtr (Standard : PTRVIEW);

begin
StdPtr :- Standard; { Reserve bitmask in global variable 1

(-- If the pointer isn't currently in a range, convert to default ---I

if MouRng - NO RANGE then { No range?
MouDefinePtr(-Standard); { NO

end;

{*******•••**••********.***•••••****•••••••***.************************}
(* 	 MouEnd: End the mouse module functions and procedures *)
{**--**}
1* Info: - This procedure doesn't have to be called direct from the*1
(* application, since the MouInlt function defines this *)
(* as the exit procedure *)
{******•••••*********.*.*.***••*.* ••********************•••••••********}

637

14. Mouse Programming PC System Programming

{$F+) { must be FAR to allow call as exit procedure)

procedure MouEnd;

var Regs Registers; { Processor regs for interrupt call)

begin

MouHideMouse; Hide mouse from screen
Regs.AX :- 0; { Reset mouse driver
Intr($33, Regs); { Call mouse driver

FreeMem(BufPtr, BLen); Release allocated memory

ExitProc ExitOld; Restore old exit procedure
end;

{$F-) { No more FAR procedures)

{*.**••••••••••••••••*** ••••••••********••••••••••••••• *.*••••*********)
{* MouInit: Initializes mouse functions and procedures as well as *)
{* variables *)
{**--**)

{** •••***** ••******•••**** •••**••********************.*.*************•• }

{* Input Columns - Number of screen columns *)
{* Lines - Number of screen lines *)
{* OUtput TRUE if a mouse driver is installed, else FALSE *)
{* Info: - This function must be the first called from an *)
{* application program, before other procedures and *)
{* functions can be called *)

function MouInit(Columns, Lines: byte) : boolean;

var Regs : Registers; { Processor regs for interrupt call)

begin
TLine Lines; { Store number of lines and
TCol Columns; columns in global variables

ExitOld := ExitProc; Set address of exit procedure
ExitProc :- @MouEnd; Define MouEnd as exit procedure

{-- Allocate and fill mouse range -----------------------------------)

BLen := TLine * TCol; { Number of characters in screen
GetMem(BufPtr, BLen); { Allocate internal range buffer
MouIBufFill(0, 0, TCol-l, TLine-l, NO_RANGE);

Regs.AX := 0; Initialize mouse driver
Intr($33, Regs); { Call mouse driver
MouInit :- (Regs.AX <> °); Mouse driver installed?

MouSetMoveArea(0, 0, TCol-l, TLine-1); { Set move area

MouCol := MouIGetX; Load current mouse position
MouRow :- MouIGetY; { into global variables
MouRng := NO_RANGE; { Pointer in no set range
MouEvent :- EV_LEFT_REL or EV RIGHT REL; {No mouse button pressed
StdPtr := MouPtrMask (PTRSAMECHAR, PTRINVCOL); { Std. pointer
OldPtr := PTRVIEW(°);

{-- Install assembler event handler "AssmHand" ------------------------}
MouISetEventHandler(EV_MOU_ALL, FNCTPTR(@AssmHand));

end;

{***.**********•••• ***
MAIN PROGRAM

** ••••••••• *****************************.*********.********************}

const Ranges: array[0 •• 4J of RANGE - { The mouse range)

638

Abacus 14. Mouse Programming

(
(xl: 0; y1: 0; x2: 79; y2: 0) , Top line
(xl: 0; y1: 1; x2: 0; y2: 23) , Left column
(xl: 0; y1: 24; x2: 78; y2: 24) , Bottom line
(xl: 79; y1: 1; x2: 79; y2: 23), Right column
(xl: 79; y1: 24; x2: 79; y2: 24) Lower right corner

) ;

var DUINlty integer; (Get result from MouEventWait)

begin
(-- Configure mouse pointer for the different mouse ranges ----------)
Ranges! °].PtrMask := MouPtrMask(PtrDifChar($18) , PtrInVCol);
Ranges! 1 j.PtrMask := MouPtrMask(PtrDifChar($lb), PtrInVCol);
Ranges! 2 j.ptrMask :- MouPtrMask(ptrDifChar($19), PtrInVCol);
Ranges! 3 j.PtrMask :- MouFtrMask(ptrDifChar($la), PtrInVCol);
Ranges! 4 j.PtrMask :- MouPtrMask(PtrDifChar($58), ptrDifCol($40»;

writeln(t13t10,'MOUSEP - (c) 1989 by MICHAEL TISCHER·t13t10);
if MouInit(80, 25) then (Initialize mouse module I
begin (OK, there's an installed mouse driver)
writeln ('Move the mouse pointer around the screen. As you move ',CRLF,

'it around the edge of the screen, you will see the mouse',CRLF,
'pointer change its appearance. The pointer shape changes ',CRLF,
'as you move the mouse from edge to edge. ',CRLF,CRLF,
'To end this program, move the mouse pointer to the ',CRLF,
'lower right corner of the screen, and press both the ',CRLF,
'left and right mouse buttons at the same time. ');

MouSetDefaultptr (MouPtrMask (PtrDifChar ($DB), ptrDifCol (3)));
MouDefRange(5, @Ranges); (Range definition
MouShowMouse; Display mouse pointer on the screen)

(-- Wait until the user presses both the left and right mouse -----)
(-- buttons simultaneously while the pointer is in range 4 -----}

repeat (Read loop
DUlIIllY := MouEventWait(EAND, EV_LEFT_PRESS or EV_RIGHT_PRESS);

until EvRng = 4;
end

else { No mouse installed OR no mouse driver installed }
writeln('SOrry, no mouse driver currently installed.');

end.

Assembler listing: MOUSEPA.ASM

i**·*****************************;
;* M 0 USE P A *;

;*------------------------~---*;
;. Task : Create mouse called event handler for use with *;
;. a Turbo Pascal program. *;
;*--*;
; * Author MICHAEL TISCHER *;
;* Developed on : 04/24/1989 *;
;* Last update : 04/24/1989 *;
;*--*;
;* assembly MASH /MX HOUSEPA; or *:
;. TASM -MX MOUSEPA; *;
; * . •. add to MOUSEP program code *;
i**********************·***i

;= Data segment ===~==-=---=~-=---==~~--=--

DATA segment word public
DATA ends ;note--no variables in this program

i- Program ----=:::--=----=--=--=----===-~~

CODE segment byte public ;Program segment

639

14. MOlUe Programming 	 PC System Programming

assume CS:CODE 	 ;CS points to the code segment whose
;contents are unknown to DS, SS , ES

public AssmHand ;Allows the TP proqram to read
;the address of the assembler handlers

extm MouEventHandler near ;TP event handler to be called

active db 0 	 ;points to whether a call can occur

;--
;-- AssmHand : The event handler which first calls the mouse driver, then
;-- calls the TP MouEventHandler procedure
;-- Direct call from TP not allowed

AssmHand proc far

;-- First save all processor registers on stack --

cmp active, 0 ; Ca11 done yet?
jne ende ;NO --> Don't exit call

mov active,1 ;No more calls, please

push ax

push bx

push ex

push dx

push di

push si

push bp

push es

push ds

;-- Push arguments for TP function call onto stack

;-- Call:

;-- MOuEventHandler (EvFlags, ButStatus, x , y : integer I;

push ax ;Push event flags onto stack

push bx ;Push mouse button status onto stack

mov di,ex ;Move horizontal ordinate onto D1

mov el,3 ;Counter for coordinate number

shr di, el ;Divide D1 (horizontal ord.1 by 8 and

push di ;push onto stack

shr dx,cl ;Divide DX (vertical ord.1 by 8 and
push dx ;push onto stack

mov ax,DATA ; Segment address of data segment AX
mav ds,ax ;Move data from AX to DS register

call MouEventHandler ;Call TP procedure

;-- Get reserved registers from stack ----------------------

pop ds

pop es

pop bp

pop si

pop di

pop dx

pop ex

pop bx

pop ax

mov active, 0 ; Re-enable call

640

Abacus 	 14. Mouse Programming

ende: 	 ret ;Return to mouse driver

AssmHand endp

;--
COOE 	 ends ;End of code seqment

end ;End of program

C listing: MOUSEC.C

/**/
1* M 0 USE C • C "I
1*--"1
1* Task : Demonstrates mouse access from the C language *1
1*--*1
1* Author MICHAEL TISCHER *1
1* Developed on : 04/20/1989 *1
1* Last update : 06/14/1989 *1
1*--*1
1* Microsoft C *I
I' Creation : CL lAS MOUSEC.C MOUSECA.OBJ *1
I" Call : MOUSEC *1
1*--*1
I" Turbo C (integrated system) *1
I" Creation Create a project file containing the following:"1
I" MOUSEC "I
I" MOUSECA.OBJ *1
I" Make sure that memory model is set to small. "I
I" If you didn't assemble the MOUSECA.ASM file *1
I" using the IMX option in MASH, make sure that *1
I" Case-Sensitive Link on Linker options is OFF. *1
I" Disable stack checking before compilation. "I
1* »NOTE: One warning will occur (about the *1
I" ButState in the MouEventHandler function). *1
1* The program will run. Do NOT remove "I
1* the ButState declaration - the AssmHand routine*1
I" needs it« *1
I' Call MOUSEC *1
/*.*************.***.*.********.*.******.*.*.**************************/

I'~~ Add include files ~~===-----------====-~--=~=~==---~==-====-===--*I

tinclude <dos.h>

'include <stdlib.h>

extern void far AssmHand(void); I" External declaration "I
I" of assembler handler *1

1"-- Typedefs =--==-==~-~~=~--=~~~~~~~=-===---==-----------=-===------"I

typedef unsigned char BYTE; I" Create a byte *1
typedef unsigned long PTRVIEW; I" Mouse pointer mask *1
typedef struct (1* Describe a mouse range "I

BYTE xl, 1* Upper left coordinates of the "I
yl, 1* specified range "I
x2, 1* Lower right corner of the *1
y2; 1* specified range *1

PTRVIEW ptr_mask; 1* Mouse pointer mask *1
) RANGE;

typedef void (far * MOUHAPTR) (void) ; 1* Pointer to event handler *1

/*== Constants ===*/

fdefine TRUE 1 1

fdefine FALSE 1 o

1*-- Event codes ---*1

1 1* Move mouse *1

641

14. Mouse Programming 	 PC System Programming

'define EV_LEFT_PRESS 2 /* Left mouse button pressed */
'define EV_LEFT_REL 4 /* Left mouse button released */
tdefine EV RIGHT PRESS 8 /* Right mouse button pressed */
'define EV=RIGHT=REL 16 /* Right mouse button released */
'define EV_MOO_ALL 31 /* all mouse events */

'define NO_RANGE 255 /* mouse pointer not in range xy */

/*-- Macros --*/
'define MouGetCol() (ev col) /* Return mouse position & */
'define MouGetRow() (ev-row) /* range the manent the */
'define MouGetRange() (ev-mg) /* event occurs */
'define MouAvail () (mavail /* Available mouse - TRUE */
'define MouGetCurCol () (moucol /* Returns current mouse */
'define MouGetCurRow() (mourow /* position and current */
'define MouGetCurRng () (mourng /* mouse range * /
'define MouIsLeftPress() (mouevent & EV LEFT PRESS)
'define MouIsLeftRel() (mouevent , EV- LEFT- REL)
'define MoulsRightPress() (mouevent , EV-RIGHT PRESS)
'define MouIsRightRel() (mouevent , EV-RIGHT-REL)
'define MouSetMoveAreaAll() MouSetMoveArea(-O, O,-tcol-1, tline-1);

'define ELVEC(x) (sizeof(x) / sizeof(x[O])) /* No. of elements in X */

/*-- Bitmask creation macros defining mouse pointer's appearance. ---*/
/*-- Syntax for calling MouPtrMask (sample): ---*/
/*-- MouPtrMask(PTRDIFCHAR('x'), PTRINVCOL) ---*/
/*-- When the pointer is represented as a lowercase x, the inverse ---*/
/*-- character color takes effect. ---*/

'define MouPtrMask(z, f)\
(« (PTRVIEW) f) » 8 « 24) + « (PTRVIEW) z) » 8 « 16) +\

« (f) , 255) « 8) + «z) , 255)

'define PTRSAMECHAR (OxOOff) /* Same cahracter */
'define PTRDIFCHAR(z) ((z) « 8 /* other characters */
'define PTRSlIMECOL (OxOOff) /* Same color */
tdefine PTRINVCOL (Ox7777) /* Inverse color */
tdefine PTRSAMECOLB (OlC80?f) /* Same color (blinking) */
'define PTRINVCOLB (OxF77?) /* Inverse color (blinking) */
'define PTRDIFCOL(f) ((f) « 8) /* other color */
'define PTRDIFCOLB (f) («f) IOx80) « 8) /* other color (blinking) */

'define EANO 0 /* Event comparisons for MouEventWait() */
'define EVOR 1

'define MOUINT(rin, rout) int86 (0x33, 'rin, 'rout)
'define MOOINTX(rin, rout, srI int86x(Ox33, 'rin, 'rout, &sr)

/*-- Macros for converting mouse coordinates between virtual mouse */
/*-- screen and text screen ----*/

'define XTOCOL(x) (x) » 3 /* X v 8 */
'define YTOROW(y) (y) » 3 /* Row v 8 */
'define COLTOX(c) (c) « 3 /* C x 8 */
'define ROWTOY(r) (r) « 3 /* Row x 8 */

/*.. global variables =~--===-------*/

BYTE 	 tline, /* No. of text lines */
tcol, /* No. of text columns */
mavail - FALSE; /* TRUE when mouse is available */

/*-- Mask for standard mouse pointer ---------------------------------*/
PTRVIEW stdptr = MouPtrMask (PTRSlIMECHAR, PTRINVCOL);

BYTE * bbuf, /* Ptr to range recognition buffer */
num_range ... 0; /* No range defined until now */

642

AbaclLf 	 14. MOlLfe Programming

RANGE * cur range; 1* Pointer to current range vector *1
int blen; 1* Length of BOOF in bytes *1

1*-- Variables which load every time the mouse handler is called -----*1

BYTE 	 mourng - NO_RANGE, 1* Current mouse range *1
moucol, 1* Mouse column (text screen) *1
mouroWi 1* Mouse row (text screen) *1

int 	 mouevent - EV_LEFT_REL + EV_RIGHT_REL; 1* Event mask *1

1*-- Variables which load every time an event anticipated by the ---*1
1*-- mouse handler occurs ---*1

BYTE 	 ev rng, 1* Range in which the mouse can be found *1
ev:::col, 1* Mouse column *1
ev_row; 1* Mouse row * I

/*********.****************.*.**************************************.*.*
Function : 	M 0 u D e fin e P t r

--
* Task Defines the cursor mask and screen mask which *

determines the mouse pointer's appearance *
* Input parameters MASK - Both bitmasks, made into a 32-bit value *
* of type UNSIGNED LONG *

Return value ~M *
* Info Most significant 16 bits of MASK - screen mask
* least significant 16 bits of mask - cursor mask *
********••******************.*.*.******.*****.***************.*********/

'pragma check_stack(off) 	 1* No stack checking here *1

void MOuDefinePtr(PTRVIEW mask
{
static PTRVIEW oldercursor - (PTRVIEW) 0; 1* Last value for MASK *1
union REGS regs; 1* Processor regs for interrupt call *1

if { oldercursor !- mask 1* Changes since last call? *1
{ 1* YES *1
regs.x.ax - OxOOOa; 1* Funct. no. for "Set text pointer type" *1
regs.x.bx - 0; 1* Create software pointer *1
reqs.x.cx - mask; 1* Low word is AND-mask *1
regs.x.dx - mask » 16; 1* High word is XOR-mask *1
MOUINT(regs, regs); 1* Call mouse driver *1
oldercursor = mask; 1* Note old bitmask *1

)

/***** ••***************** •• *************************************.****.**
* Function : M 0 u Eve ntH and 1 e r
**---_ ••

Task 	 Calls AssmHand routine from mouse driver, when *
a mouse related event occurs. *

Input parameters EvFlags - Event's event mask *
* *ButState = Mouse button status

x, Y Current pointer position, converted* *
* into text screen coordinates
* Return value None
* Info - This function ise only operational through a
* mouse driver call, 	and shouldn't be called

from another function.* 	 *
•••••••••••••••• *•••****••••••••••*.**.*.*•••••••••••••*.*•••• *••••••••,

void MouEventHandler(int EvFlags, int ButState, int x, int y)
{

'define LBITS EV LEFT PRESS I EV LEFT REL)

fdefine RBITS EV:::RIGHT_PRESS I EV_RIGHT_REL

unsigned newrng; 	 1* New range number *1

643

http:regs.x.dx
http:reqs.x.cx
http:regs.x.bx
http:regs.x.ax

14. Mouse Programming 	 PC System Programming

mouevent & - -1; /* Clear bit 0 */
mouevent 1- (EvFlags & 1); /* Copy EvFlags to bit 0 */

if (EvFlags & LBITS) /* Left mouse button pressed or released? */
! /* YES */
mouevent &. -LBITS; /* Clear previous status */
mouevent 1- (EvFlags & LBITS); /* Add new status */

)

if (EvFlags & RBITS) /* Right mouse button pressed or released? */
{ /* YES, Clear and set bits */
mouevent &- -RBITS; /* Clear previous status */
mouevent 1- (EvFlags & RBITS); /* Add new status */

)

moucol - Xi /* Convert columns into text columns * /
mourow - Yi /* Convert rows into text rows * /

/*-- Check range in which mouse is currently located, and compare --*/
/*-- to range since last call. If a change occurs, the pointer's --*/
/*-- appearance will have to be changed. ---*/

newrng· * (bbuf + mourow * tcol + moucol); /* Get range */
if (newrng ! - moumg) /* New range? */
MouDefinePtr«newrng==NO RANGE) ? stdptr :

- (cur range+newrng) ->ptr mask);
mourng - newrng; /* Place range n~r in global variables */

)

'pragrna check stack /* Re-enable stack checking and old */
'pragrna check=stack /* status */

/********** ••••***•••**~** ••*********••••*••••••••••••*********•••***•••
Function : M 0 u I B u f F ill .._---..
Task 	 Stores a specific screen range code within*

screen memory affecting the module*
Input parameters 	 xl, yl - Upper left corner of the screen

x2, y2 Lower right corner of the screen
CODE - Range code *

Return value None *
Info This functions should only be called from within *

this module. *

*

••***.***••••••••••••••••••/

static void MouIBufFill(BYTE xl, BYTE yl,
BYTE x2, BYTE y2, BYTE code)

register BYTE * Iptr; /* Floating pointer to range memo */
BYTE i, j; /* Loop counter */

Iptr - bbuf + yl * tcol + xl; /* Pointer to first line */

/*-- Go through individual lines -----------------------------*/
for (j-x2 - xl + 1 ; yl <- y2; ++yl, Iptr+-tcol)
mernset (Iptr, code, j); /* Set code */

/ ••••••••••••••••••••**••••••••••••••••••••••••**.**••••••••••••••••••••
* Function : M 0 u D e f Ran g e 	 *
**--*.

Task 	 Allows the definition of different screen ranges *
which configure a different code for the mouse
pointer, depending on the pointer's location.

Input parameters 	 - NUMBER - Number of screen ranges
- PTR - Pointer to screen description vector

(type RANGE)
Return value None
Info - Free screen ranges receive the code NO RANGE.

- When entering the specified screen range, the

*

644

Abacus 	 14. Mouse Programming

mouse handler automatically changes the mouse **
pointer's appearance to correspond with that*

* 	 range.
- Since the specified pointer is stored, but the **

specified vector isn't copied to a separate *
buffer, the contencs of the vecros should not
be changed on the next call of this function.

***********.******•••••*************************.*.*.*.****************/

void MouDefRange(BYTE number, RANGE * ptr)
\
register BYTE 	 i, /* Loop counter */

ranqe; /* Mouse range */

cur_range - ptr; /* Reserve pointer to vector */

nurn range - number; /* and number of ranges */

mernset \ bbuf, NO RANGE, bIen);

for \i=O ; i<number ; ++ptr)

MouIBufFill\ ptr->xl, ptr->yl, ptr->x2, ptr->y2, i++);

/*-- Redefine mouse pointer ---*/

range = * (bbuf + mourow * tcol + moucol); /* Current mouse range */
MouDefinePtr ((range - NO RANGE) ? stdptr

: (cur_range+range)->ptr_mask);

/.*.************************.***********.*.***** ••**********************
* Function : M 0 u Eve n tWa i t
--

Task Waits for a specific event from the keyboard.
Input parameters : TYP - Establishes comparison between

different events.
WAIT EVENT - Bitmask which specifies wait event. *

Return value Bitmask which describes this or another event.
Info - WAIT EVENT can be used with other constants

such-as FN MOO MOVE or FN LEFT PRESS when used *
in conjunction-with FNOR.- *

* - EAND ,FNOR are allowable types. EAND has the *
ability to return to the caller once ALL events*
have occurred; EVOR returns to the caller when *
at least one event occurs.

*************************••••*.*******************••**•••****** ••******/

int MouEventWait(BYTE typ, int wait event
(

int cur_event; /* Current event mask */
register BYTE column - moucol, /* Last mouse position */

line - mourow;
BYTE ende - FALSE; /* TRUE if an event occurs */

while (! ende) /* Repeat until event occurs */
{

/*-- Wait until one of the events occurs --------------------------*/

if (typ == EAND) /* EAND: All events must occur */
while ((cur_event - mouevent) !- wait_event)

else /* FNOR: At least one event must occur */
while (((cur_event - mouevent) , wait_event) -- 0)

cur event ,= wait_event; /* Check event bits only */

/*-- When moving the mouse, the event is only accepted if the --*/
/*-- pointer moves to 'another row or column on the text screen --*/

if «wait event, FN MOO MOVE) " column--moucol " line--mourow)
\ - - /* Mouse moves, but in same screen position */
cur_event ,- (-FN_MOO_MOVE); /* Examine move bit */

645

14. Mouse Programming PC System Programming

ende - (cur_event !- 0); 1* Are events pending? *'
}

else 1* Event occurred *'
ende - TRUE;

ev col - moueol; Set current mouse position *' ev row - mourow;
,*,* and mouse range; place in

ev rng - moumg; 1* global variables *' *' return(cur_event); 1* Return event mask *'
}

/********************••********.*******••• ******************~****.******
* Function : M 0 u I Set Eve ntH and 1 e r
--

Task Installs an event handler which handles events *
called from the mouse driver.

Input parameters EVENT - Bitmask which specifies the event which *
calls the event handler. *

PTR - Pointer to the mouse handler *
* Return value None

* Info - EVENT can be used in conjunction with the EVOR *

* comparison on constants such as EV_MOO_MOVE,
* EV LEFT PRESS
.***••*********/

static void MouISetEventHandler(unsigned event, MOOHAPTR ptr)
{
union REGS regs; '* Processor regs for interrupt call *'
struct SREGS sregs; '* Segment register for interrupt call *'
regs.x.ax OxOOOC; 1* Funct. no. for "Set Mouse Handler- *'
regs.x.cx - event; 1* Load event mask */
regs.x.dx FP_OFF(ptr); /* Offset address of handler */
sregs.es = FP_SEG(ptr); 1* Segment address of handler *1
MOUINTX(regs, regs, sregs); 1* Call mouse driver *1

}

/*****************••••***•••****
* Function : M 0 u I Get X
--

Task Determines text column in which pointer lies.
Input parameters : None

*
*

* *Return value : Mouse pointer column, relative to text screen
.*.******************.********.**/

static BYTE MouIGetX(void)
{
union REGS regs; 1* Processor regs for interrupt call *1

regs.x.ax- Ox0003; /* Funct. no. for "Get mouse position" *1
MOUINT(regs, regs); 1* Call mouse driver *1
return XTOCOL(regs.x.ex); /* Convert and return column */

}

/**.************

* Function : M 0 u I Get Y
--

Task Determines text row in which pointer lies. *
Input parameters : None

Return value : Mouse pointer row, relative to the text screen *

***/

static BYTE MouIGety(void)
{
union REGS regs; 1* Processor regs for interrupt call */

regs.x.ax= Ox0003; 1* Funct. no. for "Get mouse position" *1
MOUINT(regs, regs); /* Call mouse driver */
return YTOROW(regs.x.dx); 1* Convert and return row *1

}

646

http:YTOROW(regs.x.dx
http:regs.x.ax
http:regs.x.ex
http:sregs.es
http:regs.x.dx
http:regs.x.cx
http:regs.x.ax

Abacus 14. Moue Programming

, ••••••••***************.*******.*****.** ••••**.*****.*.*.**************
* Function : M 0 u S how M 0 use *
.*--**
* Task Display mouse pointer on the screen. *
* Input parameters None *

Return value None *
* Info Calls of MouHid~use () and MouShowMouse 0 must *
* be kept balanced.
****••*******.**************.**.********.*••*.**.************•••*******/

void MouShowMouse (void)
(
union REGS regs; 1* Processor regs for interrupt call *1

regs.x.ax - OxOOOl; 1* Funct. no. for "Show Mouse" *1
MOUINT(regs, regs); 1* Call mouse driver *1

)

/*************************************.**************.*******••*********
Funct ion : M 0 u Hid e M 0 use *

--
Task Hide mouse pointer from screen. *
Input parameters None *
Return value None *
Info Calls of MouHid~use() and MouShowMouse() must *

be kept balanced.
*********.***.*.*•••****.*****•••****.****************.*****.**********/

void MouHideMouse(void)
(
union REGS regs; 1* Processor regs for interrupt call *1

regs.x.ax - Ox0002; 1* Funct. no. for "Hide Mouse" *1
MOUINT{regs, regs); 1* Call mouse driver *1

)

j**************************.************************** ******.**••••*••••
Function : M 0 uSe t M 0 v eAr e a *

••_---**
Task Defines a screen range within which the mouse *

pointer may be moved.

Input parameters xl, yl = Coordinates of upper left corner
 *

x2, y2 - Coordinates of lower right corner
Return value None
Info - Both parameters apply to text screen, NOT the

*
*

* *mouse driver's virtual graphic screen
••• **••••••••*••••••••**********.******•••*.****••••••••••****.***.****/

void MouSetMoveArea (BYTE Xl, BYTE yl, BYTE x2, BYTE y2)
(
union REGS regs; 1* Processor regs for interrupt call *1

regs.x.ax OxOOO8; 1* Funct. no. for "Set vertical Limits· *1
regs.x.cx ROWTOY(yl) ; 1* Conversion to virtual *1
regs.x.dx ROWTOY(y2) ; /* mouse screen *1
MOUINT{regs, regs); 1* Call mouse driver *1
regs.x.ax OxOOO?; 1* Funct. no. for ·Set horizontal Limits" *1
regs.x.cx ~ COLTOX(xl); 1* ConversIon to virtual *1
regs.x.dx ~ COLTOX(x2).; 1* mouse screen *1
MOUINT (regs, regs); 1* Call mouse driver *1

)

/*****************************.****.**************** ••• *••*.***••**.****
Function :MouSetSpeed *

.*--**
* Task Determines the difference between mouse movement *

* speed and the resulting pointer speed on the
screen.*

Input parameters - XSPEED ~ Horizontal speed* *

647

http:regs.x.dx
http:regs.x.cx
http:regs.x.ax
http:regs.x.dx
http:regs.x.cx
http:regs.x.ax
http:regs.x.ax
http:regs.x.ax

14. Mouse Programming PC System Programming

* - YSPEED - Vertical speed *
* Return value None *

Info - Both parameters are based on mickeys *
(mickey I 8 pixel) •

•• **** •••********•••************.***********.***••****.***************./

void MouSetSpeed(int xspeed, int yspeed)
{
union REGS regs; 1* Processor regs for interrupt call *1

regs.x.ax - OxOOOf; 1* Funct. no. for ·Set mickeys to pixel ratio· *1

regs.x.cx - xspeed;

regs.x.dx - yspeed;

MOUINT(regs, regs); 1* Call mouse driver *1

I

/************.*********.******************* •••••****************.****.**
Function : M 0 u M 0 v e P t r ',.. *

---------~--
Task Moves the mouse pointer to a specific position *

on the screen. *
Input parameters - COL - new screen column *

- ROW - new screen row
Return value None *
Info - Both parameters apply to the text screen, NOT *

to the mouse driver's virtual graphic screen
.**••**********.********.***************.*.****************.*.***/

void MouMovePtr(int col, int row)
{

union REGS regs; 1* Processor regs for interrupt call *1
unsigned newrng; 1* Range in which the mouse can move *1

regs.x.ax - Ox0004; 1* Funct. no. for ·Set mouse pointer pos~on· *1
regs.x.cx - COLTOX(moucol - col); 1* Convert coordinates and store *1
regs.x.dx - ROWTOY(mourow - row); 1* in global variables *1
MOUINT(regs, regs); /* Call mouse driver */

newrng = * (bbuf + mourow * tcol + moucol); /* Get range * /
if (newrng !- mourng) /* New range? */
MouDefinePtr((newrng--NO RANGE) ? stdptr :

- (cur range+newrng)->ptr mask);
mourng - newrng; 1* Place range nUmber in global varIables */

I

/*******************.*******************.*******************************
Function : M 0 uSe t D e f a u 1 t P t r *

--
Task Defines mouse pointer for screen ranges without

the help of MouDefRange.*
Input parameters STANDARD = Bitmask for standard mouse pointer* *
Return value None* ***••••••••••*********.**.*******/

void MouSetDefaultPtr(PTRVIEW standard)
{
stdptr = standard; /* Place bitmask in global variables *1

1*-- If mouse is currently in no range, go direct to conversion ---*1
1*-- to new pointer appearance ---*1

if (MouGetRange 0 =- NO RANGE 1* Not in any range? */
MouDefinePtr(standard I; / 1* NO */

"

/****************••*.***********•• *••••*.***.*.*.***.*.**•••************
Function : M 0 u End *

--
Task Ends mouseC module functions. *

* Input parameters : None

648

http:regs.x.dx
http:regs.x.cx
http:regs.x.ax
http:regs.x.dx
http:regs.x.cx
http:regs.x.ax

Abacus 	 14. Mouse Programming

* 	 Return value None *
Info Function is called automatically when program *

* 	 ends, as long as MouInstal1 is called first .
•••••*.************************••*******.*••****.*.*.*********•••*.****/

void MouEnd(void
(
union REGS regs; f* Processor regs for interrupt call *f

MouHideMouse () ; f* Hide mouse pointer from screen *f
regs.x.ax - 0; f* Reset mouse driver *f
MOUINT(regs, regs); f* Call mouse driver *f

free (bbuf); 	 f* Release allocated memory *f
}

/ ••• **** •••••***.***.**••••••••** •••• ****** ••••••***•••*.*.**********•••
Function : M 0 u I nit 	 *

**--*.
Task Initializes variables and mousec module *
Input parameters Columns, - Text screen resolution *

Lines
Return value TRUE if a mouse is installed, else FALSE *

* Info This function must be called as the first one in *
* the module.
••••••••••••••• **.**** ••••••• **.***** •••••****** ••••••••••***********•• /

BYTE MouInit(BYTE columns, BYTE lines)
(
union REGS regs; f* Processor regs for interrupt call *f

tline - lines; f* Store no. of lines and cols *f
tcol columns; f* in global variables *f

atexit (MouEnd); 	 f* Call MouEnd at end of program *f

f*-- Allocate and fill mouse range buffer ---------------------------*f

bbuf - (BYTE *) malloc(bIen - tline * tcol);

MouIBufFill(0, 0, tcol-l, tline-l, NO RANGE);

regs.x.ax = 0; f* Initialize mouse driver *f
MOUINT(regs, regs); f* Call mouse driver *f
if (regs.x.ax !- Oxffff f* Mouse driver installed? *f
return FALSE; f* NO *f

MouSetMoveAreaAll(); 	 f* Set range of movement *f

moucol - MouIGetX () ; f* Load current mouse pos. *f
mourow - MouIGety(); f* into global variables *f

f*-- Install assembler event handler "AssmHand" ---------------------*f
MouISetEventHandler(EV_MOU_ALL, (MOUHAPTR) AssmHand);

return mavail - TRUE; 	 f* Mouse is installed *f

j****** •• *****.********.******.*** ••• **.****•••• ** ••••*.**.*.*.*•• ****.*
MAIN PROGRAM 	 *

•••**************••• ******* ••****************••••• ***.*.**••••••••••••• /

int main! void)
{

static RANGE ranges[] - f* Mouse ranges *f
{
(0, 0, 79, 0, MouPtrMask(PTRDIFCHAR(OxI8), PTRINVCOL) } ,
(0, 1, 0, 23, MouPtrMask(PTRDIFCHAR(Oxlb), PTRINVCOL) },
(0, 24, 78, 24, MouPtrMask! PTRDIFCHAR(OxI9), PTRINVCOL) I,
(79, 1, 79, 23, MouPtrMask(PTRDIFCHAR(Oxla), PTRINVCOL) },
(79, 24, 79, 24, MouPtrMask(PTRDIFCHAR('X'), PTRDIFCOLB(Ox40)) },

649

http:regs.x.ax
http:regs.x.ax
http:regs.x.ax

14. Morue Programming PC System Programming

I;

printf("\nHOUSEC - (c) 1989 by MICHAEL TISCHER\n\n");
if (MouInit(80, 25)) 1* Initialize mouse module *1

(1* OK, there is an installed mouse driver *1
printf{"Move the mouse pointer around on the screen. When you move\n"\

"the mouse pointer to the border of the screen, the\n"\
"mouse pointer changes in appearance, depending upon its\n"\
·Current position.\n\n"
"Move the mouse pointer to the lower right corner of the\n"\
• screen, and press both the left and right mouse buttons\n"\
"to end this demo program.\n");

MouSetDefaultPtr(MouPtIMask(PTRDIFCHAR('['), PTRDIFCOL(3)));
MouDefRange(ELVEC(ranges), ranges); 1* Range definition *1
MouShowMouse(); 1* Display mouse pointer on the screen *1

1*-- Wait until the user presses the left and right mouse --*1
1*-- buttons simultaneously, AND the mouse pointer lies int --*1
1*-- range 4 --*1

do 1* Read loop *1
MouEventWait (EAND, EV LEFT PRESS

while (MouGetRange () !:; 4)-;

return 0; 1* Return OK code to DOS *1
I

else 1* No mouse OR mouse driver installed *1
(

printf("Sorry, no mouse driver installed.\n");

return 1; 1* Return error code to DOS *1

)

Assembler listing: MOUSECA.ASM

,.*************.*.**.**.*••,
;* MOUSECA *;
i*--*;
;* Task Mouse driver event handler intended for *;
;* linking to a C program compiled as a SMALL *;
;* memory model. * ;
;*--*i
;* Author MICHAEL TISCHER *;
;* Developed on : 04/20/1989 *;
;* Last update : 06/14/1989 * ;
i*--*;
; * assembly : MASM /MX MOUSECA; * ;
;* ... link to program MOUSEC *;
i***************·*************************··***************************i

;== Segment declarations for the C program ------==--=-=------==========

IGROUP group _text ;Inclusion for program segment
DGROUP group const, bss, _data ;Inclusion for data segment

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public 'CONST';This segment includes all read-only
CONST ends ; constants

BSS segment word public 'BSS' ;This segment includes all un
BSS ends ;initialized static variables

_DATA segment word public 'DATA' ;This segment includes all initialized
;global and static variables

_DATA ends

i== Proqram -=-=-=============--""'=---====-=-:------------=-

650

Abacus 14. Mouse Programming

_TEXT segment byte public 'CODE' ;Proqram segment

public _AssmHand ;Gives the C proqram the ability to
;access assembler handler addresses

extrn _MouEventHandler near ;Event handler to be called

active db 0 ;1ndicates whether a call is under
;executlon

;--
;-- AssmHand: The event handler called by the mouse driver, then
;-- - called by the MouEventHandler () function

;-- Call from C: not allowed!

AssmHand proc far

;-- Place all processor reqisters on the stack --

cmp active,O ;Call still not finished?
jne ende ;NO --> Do not exit call

mov active,l ;No more calls

push ax

push bx

push ex

push dx

push di

push si

push bp

push es

push ds

;-- Place all arguments for callinq C FCT on the stack
;-- Call: MouEventHandler(int EvFlaqs, int ButStatus,
;-- int x, int y);

mov di,ex ;Place horizontal coordinate in D1
mov cI,3 ;Counter for coordinate number
shr dx,cl ;Divide OX (vertical coord.) by 8
push dx ;and place on the stack

shr dl,cl ;Divide 01 (horizontal coord.) by 8
push di ;and place on the stack

push bx ;Push mouse button status onto stack
push ax ;Push event flaq onto staCK

mov ax, DGROUP ;Move seqment address of DGROUP to AX
mov ds,ax ;Move AX to OS reqister

call _MouEventHandler ;C function call

add sp,8 ; Get arquments from stack

:-- Pop reqister contents off of stack --------

pop ds

pop es

pop bp

pop si

pop dl

pop dx

pop ex

pop bx

pop ax

mov active, ° ; Re-enable call

651

14. Mouse Programming PC System Programming

ende: ret ;Return to mouse driver

_AssmHand endp

;--

ends ;End of code segment
end ;End of program

652

Chapter 15

Determi:ning Processor
Types

There are number of utility programs on the market today which can tell you about
the configuration of a PC. This information can include the amount of available
RAM, the running DOS version and the type of processor the PC has.

This information can be very useful for developing programs in high level
languages, since code generation can be adapted to the particular processor. For
example, both Microsoft C and Turbo C allow special code generation for the
8088, the 80286 and the 80386, which makes full use of the capabilities of the
particular processor and instruction sel This can dramatically improve performance
for programs which work with large groups of data. One way to take advantage of
this would be to compile the program once for each of the three processor types.
Then a program could be developed to serve as the boot for the actual program.
This boot program would determine the type of processor being used and load the
main program version most compatible with the processor.

Which processor is which?

This raises the question of how to determine which type of processor is being
used, since unlike other configuration information, we cannot find this out by
making a BIOS or DOS call. Unfortunately, there is no machine language
instruction which instructs the processor to reveal its identity, so we have to use a
trick. This trick relies on a condition which, according to a few hardware
manufacturers, is totally impossible.

This is a test which involves the different ways the various processors execute
certain machine language instructions. Although processors from the 8086 to the
80386 are upwardly software compatible, the development of this processor series
brought small changes in the logic of certain instructions. Since these changes are
only noticeable in rare situations, a program developed for the 8088 processor will
also run correctly on all other processors in the Intel 80x86 series. But if we

653

15. Determining Processor Types PC System Programming

deliberately put a processor into such a situation, we can detennine its identity
from its behavior.

These differences are only noticeable at the assembly language level, so our test
program must be written in assembly language. We have included listings at the
end of this chapter which allow the test routine to be included in Pascal, C and
BASIC programs as well.

NO
80386

YES
80186/88

NEe V20/V30

YES
•• 88 processor

Determining processor type on a PC

654

Abacus 15. D«urmining Processor Types

As the flowchart above shows, the routine consists of several tests which can
distinguish various processor types from one another. The next test executes only
when the current test returns a negative response.

Flag register test

The first test concerns the different layout of the flag register in the different
processors. The meaning of bits 0 to 11 is the same in all processors, but bits 12
15 are also defmed in processors from 80286 up (through the introduction of the
protected mode). This can be noticed in the instructions PUSHF (push the contents
of the flag register onto the stack) and POPF (fetch the contents of the flag register
from the stack). On processors through the 80188 these instructions always set
bits 12-15 of the flag register to 1, but this doesn't occur in the 80286 and 80386
processors. The first test in the routine takes advantage of this fact, in which it
places the value 0 on the stack and then loads it into the flag register with the
POPF instruction. Since there is no instruction for comparing the contents of bits
12 to 15, the flag register is pushed back onto the stack with a PUSHF
instruction. This is so we can get the contents into the AX register with pop AX,
where we can test bits 12 to 15.

If all four bits are set, then the processor cannot be an 80286 or an 80386, and the
next test is performed. However, if not all four bits are set, then we have reduced
the set of possible processors to the 80826 and the 80386. Since POPF also
operates differently between these two processors, it is easy to tell them apart We
simply repeat the whole process, this time by placing the value 07000H on the
stack instead of O. When the flag register is loaded with the POPF instruction, bits
12 to 14 of the flag register will be set to 1. If these bits are no longer 1 when the
contents of the flag register are fetched from the stack, then the processor must be
an 80286, which, in contrast to the 80386, sets these three bits back to O. The test
is then concluded for these two processors.

Narrowing down the field

If the processor did not pass the first test, the following test will show if it is an
80188 or 80186. With the introduction of these two processors, the shift
instructions (like SHL and SHR) were changed in the way they use the CL register
as a shift counter. While in previous processors the number of shifts could be
between 0 and 255, the upper three bits of the CL register are now cleared before
the instructions starts, limiting the number of shift operations. This makes sense
since a word will contain all zeros anyway after at most 16 shifts (17, if the carry
flag is shifted). Additional shifts will cost valuable processor time and will not
change the value of the argument at all.

The second test makes use of this behavior by shifting the value OFFH in the AL
register 2lH positions to the right with the SHR instruction. If the processor
executing the instruction is an 80188 or later type, the upper three bits of the shift
counter will ftrst be cleared, and only one shift is performed instead of21H shifts.

,ss

15. Determining Processor Types PC System ProgrtllNlling

021H (00100001(b» number of shifts
& 01fH (OOOlllll(b» mask out the upper three bits

00lH (OOOOOOOl(b» actual number of shifts

Unlike its predecessors, which would actually shift the value OFFH to the right
021H times and return the value 0, the 80188 and 80186 will return the value
07FH. By checking the contents of the AI. register after the shift we can easy tell
if the processor is an 80188 or 80186 (AI. not zero), or not (AI. equal to 0). If the
processor also fails this test, then we know it is an 808818086 or V20/30.

VlO and V30 processors

The V20 and V30 processors are 8088/8086 "clones" which use the same
instruction set as their Intel cousins, but which operate considerably faster due to
the optimization of internal logic and improved manufacturing. This speed also
results in a higher cost, so some PC manufacturers avoid using these processors.

In addition to the faster execution of instructions, these processors also corrected a
small error which occurs in the 8088 and 8086 processors. Ifa hardware interrupt
is generated during the execution of a string instruction (such as LOOS) in
connection with the REP(eat) prefix and a segment override, the execution of this
instruction will not resume after the interrupt has been processed. This can easily
be determined because the ex register, which functions as the loop counter in this
instruction, will not contain a 0 as expected after the instruction.

We make use of this behavior in the test program by loading the ex register with
the value OFFFFH, and then executing a string instruction 65535 times with the
REP prefIX and segment override. Since even a fast processor needs some time to
do this, a hardware interrupt will be generated during one of the 65535 executions
of this instruction. In the case of the 8088 or 8086, the instruction will not be
resumed after the interrupt, and the remaining "loop passes" will not execute. The
test program verifies this from the ex register after the instruction has been
executed.

Data bus test

Once we have distinguished between the 8088/8086 and the V20/30, one last test
is performed for all processors (except the 80286 and 80386). In this test we
determine if the processor is using an 8-bit or a 16-bit data bus. This allows us to
tell the difference between the 8088 and 8086, the V20 and V30, or the 80188 and
the 80186. We cannot determine the width of the data bus with assembly language
commands, but the data bus width is related to the length of the instruction queue
within the processor.

Queue

The queue stores the instructions following the instruction currently being
executed. Since these instructions are taken from the queue and not from memory,

656

Abacus 15. Determining Processor Types

this improves execution speed. This queue is six bytes long on processors with a
16-bit data bus, but only four bytes long on processors with an 8-bit data bus.

The last test is based on this difference in length. The string instruction STOSB
(store string byte) used in connection with the REP prefIX modifies three bytes in
the code segment immediately following the STOSB instruction. These bytes are
placed so that they are found within the queue on a processor with a six-byte
queue; the processor won't even notice the change. On a processor with a four-byte
queue, these instructions are still outside the queue, so the modified versions of the
instructions are loaded into the queue. The program makes use of this by
modifying the instruction INC OX, which increments the contents of the OX
register which contains the processor code in the routine. This instruction is
executed only when the processor has a six-byte queue, and the instruction was
already in the queue by the time the modification was performed.

On a processor with a four-byte queue, this instruction is replaced by the STI
instruction, which doesn't affect the contents of the OX register (or the processor
code). STI sets the interrupt bit in the processor flag register. Since this procedure
always increments the processor code by one for 16-bit processors, the processor
codes in the routine are chosen so that the code for the 16-bit version of a
processor always follows the code for the 8-bit version of the same processor.

The following BASIC and Pascal programs use OATA orinline statements instead
of assembly language. However, we included the assembly language versions of
these statements here so that you can follow the program logic. The C
implementation requires direct linking of C and the assembly language routine.

BASIC listing: PROCB.BAS

100 1*****.****************.***************.********.************._****
110 '* PRO C B120 1* __ *'*'

130 ,* Task : Examines the main processor and tells the *,

140 ,* user the processor type *'

150 '* Author : MICHAEL TISCHER *,

160 '* Developed on : 09/06/1988 .'

170 ,* Last update : OS/23/1989 *'

180 ••••*••*••**•••***••••***•••**••••**•••**.*••*••••••••***••**••••••
190 '

200 CLS : KEY OFF

210 PRINT"ATTENTION: This program should only be run when GW-BASIC is loaded from"

220 PRINT"the DOS prompt using the command <GWBASIC /m:60000>."

230 PRINT: PRINT"If this isn't the case, press the <s> key to stop."

240 PRINT"otherwise, press any other key to continue... ";

250 A$ - INKEY$: IF A$ - ·s" THEN END

260 IF A$ - ". THEN 250

270 CLS 'Clear screen

280 GOSUB 60000 'Install assembler routine

290 CALL PT(PTYP%) 'Determine processor type

300 RESTORE 1000 'Read DATA statements starting at line 1000

310 FOR n - 0 TO PTYP% READ P$: NEXT 'Get processor name

320 PRINT "PROCB - (c) 1988 by MICHAEL TISCHER"

330 PRINT "Your PC contains a(n) "iPS;" processor."

340 END

350 '

1000 DATA "INTEL 8088", "INTEL 8086", "NEC V20", "NEC V30"

1010 DATA "INTEL 80186", "INTEL 8018S", "INTEL 80286", "INTEL 80386"

657

15. Determining Processor Types PC System Programming

1020 '
60000 .*.***••********••*.***************.*****.*.********.************'
60010 '* Routine for determining onboard processor type *'
60020 ,*--*,
60030 '. Input : none *,
60040 ,* Output: PT is the starting address of the assembler routine *,
60050 ,* Call to the routine:CALL PT(PTYPt) *,
60060 1*****.*.***************.***********•••*************••*••••*****•.
60070 '
60080 PT-60000! 'starting address of BASIC segment routine
60090 DEF SEG 'Define BASIC segment
60100 RESTORE 60140
60110 FOR It - 0 TO 105 READ X% POKE PT+It, X% NEXT 'POKE routine
60120 RETURN 'Return to caller
60130 '
60140 DATA 85,139,236,156, 6, 51,192, 80,157,156, 88, 37, 0,240, 61
60150 DATA 0,240,116, 19,178, 6,184, 0,112, 80,157,156, 88, 37, 0
60160 DATA 112,116, 54,254,194,235, 50,144,178, 4,176,255,177, 33,210
60170 DATA 232,117, 18,178, 2,251,190, 0, 0,185,255,255,243, 38,172
60180 DATA 11,201,116, 2,178, 0, 14, 7,253,176,251,185, 3, 0,232
60190 DATA 23, 0,250,243,170,252,144,144,144, 66,144,251, 50,246,139
60200 DATA 126, 6,137, 21, 7,157, 93,202, 2, 0, 95,131,199, 9,235
60210 DATA 227

Assembler listing: PROCBA.ASM

i**************************************·**********··**************·****i
;* PROCBA *i

i*--*i
; * Task: Detennines the type of processor installed in *;
;* a PC *i
;* This BASIC version of the program converts *;
;* DATA statements into machine language, and *;
, executes this code in the BASIC program *;
i*--*;
; * Author MICHAEL TISCHER * ;
; * Developed on : 09/05/1988 *;
;* Last update : OS/24/1989 *;
;*--*;
; * assembly MASM PROCBA; * ;
; * LINK PROCBA; *;
; * EXE2BIN PROCBA PROCBA. BIN *;
; * convert to DATA statements and add to * ;
; * a BASIC program • ;
;**;

i=- Constants ===-======================-==~---=-==-=-=====----=====-===

p_80386 equ 7 ; Codes for different processor
p_80286 equ 6 itypeS
p_80186 equ 5
p_80188 equ 4
p_v30 equ 3
p_v20 equ 2
p 8086 equ 1
p:::8088 equ 0

; === Code =====1======---=-=---=-===-=-==--========__==-====.=--=-=

code segment para 'CODE' ;Definition of CODE segment

org 100h

assume cs:code, ds:code, ss:code, es:code

getproc proc far ;GW-BASIC waits for CALL FAR procedure

push bp ;Push BP onto stack
mov bp,sp ;Move SP after BP

658

Abacus 15. Determining Processor Types

pushf
push es

;Save contents of flag registers
;Mark ES

;-- test for 80386/80286 - ----------------------------------

xor ax,ax
push ax
popf
pushf
pop ax
and aX,OfOOOh
cmp aX,OfOOOh
je not_a_386

;Set AX to ° and
;push onto stack
;Get as flag register from stack
;Put on stack again and
; return to AX
;Oon't clear the top 4 bits
;Are bits 12-15 all equal to 1?
;YES-> Not an 80386 or 80286

;-- Test to see if it should be handled as 80386 or 80286

mav dl,p 80286
mav ax,07000h
push ax
popf
pushf
pop ax
and aX,07000h
je pende

;This narrows it down to one of the
;two processors
;Push value 07000H onto the stack
;Return as flag register
;and push back onto stack
;Pop off and return to AX register
;00 not mask bits 12-14
;Are bits 12-14 equal to O?
;YES-> Treat it as an 80286

inc
jmp

dl
pend

;No-> Treat it as an 80386
;Test ended

;-- Test for 80186 or 80188 ---------------------------------

mav
mav
mav
shr
jne

dl,p BOlSS
al,Offh
cl,02lh
al,cl
tB8_86

;Load code for 80188
;Set all bits in AL register to
;Number of shift operations after CL
;Shift AL CL times to the right
;If AL<>O then it must be handled as
;80188 or 80186

;-- Test for NEC V20 or V30 --- -----------------------------

mov
sti
mav
mov
rep

or
je

dl,p_v20

si,O
cX,Offffh
lods byte

ex,ex
t88 86

;Load code for NEC V20
;Interrupts should be enabled starting
;with the first byte in ES
;Read a complete segment

ptr es:[sij ;REP with segment override
;works only with NEC V20/V30 chips
;Has the complete segment been read?
;YES--> it's a V20 or V30

mov dl,p_8088 ;NO--> must be an B088 or 8086

;-- Test for •••88 or ••• B6 1 V20 or V30 --------------------

t88 86 label near

tS6_1:

push cs
pop es
std
mov al,Ofbh
mov ex, 3
call get_di
cli
rep stosb
cld
nop
nop
nop

;Push cs onto the stack
;and pop off to ES
;Using string inst. count backwards
;Code for ·STI"
;Execute string instruction 3 times
;Call starting address 01
;Suppress interrupts

;Using string inst. ocunt backwards
;Fill queue with dummy command

659

15. Determining Processor Types 	 PC System Programming

inc dx ; Increment processor code
nop
st! ;Re-enable interrupts

i--
pend 	 label near ;End processor test

xor dh,dh ;Set hiqh b¥te or processor code to 0
mov di, [bp+6] ;Get addr. of processor code variables
mov [di] ,dx ;Place processor code in this variable
pop es ;Pop off stack and place in ES
popf ;Pop flaq reqister off of stack and
pop bp ;Return BP
ret 2 ;FAR return takes us back to GW-BASIC

;Remove parameters from stack

qetproc 	 endp ; End of PROG procedure

;-- GET_DI Check with 01 for 88/S6 Test -------------------------------

proc near

pop di ;Pop return address off of stack
add di,9 ;Remove starting 9 bytes from it
jrnp tS6_1 ;Return to the test routine

i ="'" End ::IIC=...====""===-==_--==--=-__=___=====_--=_~____

code 	 ends ;End of CODE seqment
end getproc

Pascal 	 listing: PROCP.PAS

(**********************************.***********************************)
{* 	 PROCP *}
{*--*}
{* Task : Examines the processor type in the PC and *}
{ * tells the user the processor type * }
{*--*}
(* Author MICHAEL TISCHER *)
{* Developed on : OS/16/198S *'
{* Last update : OS/23/19S9 *'
{********•••****••******.*****.****.*.**********••***.*****************}

proqram PROCP;

type ProNames - array[0 •• 7] of string[ll]; { Array of processor names

canst ProcName ProNames = ('INTEL SOSS', Code 0
'INTEL S086', Code 1
'NEC V20', Code 2
'NEC V30', Code 3
'INTEL SOlSS', Code 4
'INTEL SOlS 6' , Code 5
'INTEL S0286', Code 6
'INTEL S03S6' ,; Code 7

{*******.********.***********.************************.****************}
{* GETPROC: Determines processor type in PC *'
{* Input none * ,
{* Output Processor code (see CONST) *}
1* Info This function can be used in a proqram when added as *'
(* a UNIT *)
{*****••***********.***}

function getproc : byte;

begin { Machine code routine for determining processor type ,

660

Abacus 	 15. Determining Processor Types

inline (
$9C/$Sl/$S2/sS7/sS6/S06/s331$C0/s50/s9D/$9C/$58/$25/$001
$FO/s3D/SOO/SFO/$74/$13/SB2/$06/SB8/S00/S70/sS0/$9D/S9C1
SS8/S25/$00/$70/$74/s36/SFE/$C2/$EB/S32/$90/SB2/S04/SBOI
SFF/$B1/$2l/$D2/SE8/$7S/s12/SB2/S02/sFB/$BE/sOO/$00/sB91
$FF/SFF/SF3/S26/SAC/SOB/sC9/S74/$02/$B2/S00/S0E/s07/SFD1
SBO/SFB/SB9/$03/S00/SE8/s16/S00/SFA/SF3/$AA/SFC/s90/S901
S90/$42/S90/SFB/S88/S56/SFF/S07/S5E/S5F/$5A/$59/$9D/SEB/
$07/$90/S5F/S83/$C7/S09/SEB/SE4

) ;
end;

{******** ••••************.***}
{** 	 MAIN PROGRAM **1
{************.*******••••••*********••••• ******** ••**.*******.*****••**}

begin
writeln('PROCP - (c) 1988 by MICHAEL TISCHER');
writeln(f13flO, 'Your PC contains a(n) " ProcName[getproc),

. processor.');
writeln(f13flO);

end.

Assembler listing: PROCPA.ASM

i**************·*****···*************····************··******········**i
;* 	 PRO CPA *;

;*--------------------------~---wi
;* Task Determines the type of processor installed in * ;
;* a PC. *;
;* This version is converted by INLINE statements *;
;* and then used by a Pascal program. *;
;*--*;
; * Author MICHAEL TISCHER * ;
; * Developed on : 08/2211988 *;
;* Last update : 05/24/1989 *;
i*--*;
; * assembly MASM PROCPA; *;
;* LINK PROCPA; *;
;* EXE2BIN PROCPA PROCPA.BIN *;
;* ••• convert to INLINE statements and add to *;
; * Pascal programs * ;
,.**,

; ...= Constants ==--=-=====""'=-=-~========.:=-=-=--==...=----=====-===

p_80386 equ 7 ;Codes for different types of
p_80286 equ 6 ; processors
p_80l86 equ 5
p 80188 equ 4
p':::v30 equ 3
p_v20 equ 2
p_8086 equ 1
p_8088 equ 0

; -- Code ====-=======-==--==~===----==-"""""'=--=======-=

code segment para 'CODE' 	 ;Definition of CODE segment

org 100h

assume cs:code, ds:code, ss:cod.e, 	es:;code

getproc proc near 	 ;This program is the essential main
; program

pushf ;Get contents of flag registers
push ex ;Get contents of all altered registers
push dx ;and push them onto stack
push di

661

15. Determining Processor Types PC System ProgrtlllUlling

push si

push es

;-- Test for 80386/80286 ------------------------------------

xor ax,ax ,Set AX to 0
push ax ;and push onto stack
popf ,Pop into flaq reqister from stack
pushf ;Return to stack
pop ax ;And pop back into AX
and aX,OfOOOh ;Avoid clearinq the to 4 bits
c:mp aX,OfOOOh ;Are bits 12-15 all equal to 1?
je not_a_386 ;YES->Not an 80386 or an 80286

;-- Test whether to handle it as an 803B6 or 80286 ----------

mov dl, p 80286 ;This narrows it down to one of
rnov ax,07000h ;the two processors
push ax ;Push value 7000H onto the stack
popf ;Pop off as flaq reqister
pushf ;and push it back onto the stack
pop ax ;Pop off and return to AX reqister
and aX,07000h ;Avoid maskinq bits 12-14
je pende ;Are bits 12-14 all equal to 0;

;YES->Handle it as an 80286

inc dl ;No->Handle it as an 80386
jmp pende ;End of test

;-- Test for 801B6 or 80188 ---------------------------------

not a 386 label near

rnov dl,p B01BB ;Load code for B01BB
mov al,Offh ;Set all bits in AL reqister to 1
mov cl,021h ;Number of shift operations after CL
shr al,cl ;Shift AL CL times to the riqht
jne tB8 B6 ;If AL is unequal to 0 it must be

;handled as an B0188 or 80186

;-- Test for NEC V20 or V30 ---------------------------------

mov dl,p_v20 ;Load code for NEC V20
sti ;Interrupts should be enabled startinq
mov si,O ;with the first byte in ES
mov cX,Offffh ;Read a complete seqment
rep lods byte ptr es:[si] ;REP wi seqment override only

;works with NEC V20 and V30 processors
or ex, ex ;Has complete seqment been read?
je t88 86 ;YES-> V20 or V30

mov dl,p_8088 ;No-> Must be an 8088 or 8086

;-- Test for 8088 or 8086/V20 or V30 ------------------------

tB8 B6 label near

push cs ;Push CS onto stack
pop es ; Pop off to ES
std ;Usinq strinq inst. count backwards
rnov al,Ofbh ;Instruction code for ·STI"
rnov ex,3 ;Execute strinq instruction 3 times
call qet_di ;Get startinq address of DI
c11 ;Suppress interrupts
rep stosb
cld ;Usinq strinq inst. count backwards
nop ;Fill queue with dummy instruction
nop
nop

662

Abacus 	 15. Determining Processor Types

inc dx ;Increment processor code
nop

'Lend: 	 sti ;Re-enable interrupts

;--
pende 	 label near ; End testing

mov [bp-1],dl ;Place processor code in return var.
pop es ;Pop saved registers from
pop si ; stack
pop di
pop dx
pop ex
popf ;Pop flag register from stack and
jmp endit ;Return to calling program

getproc 	 endp ; End of PROG procedure

;-- GET_DI examines 01 for 88/86 test ---------------------------------

proc near

pop di ;Pop return address off of stack
add di,9 ;Take first 9 bytes from there
jrnp t86_1 ;Return to the testing routine

endit 	 label near

i-- End =---====-----=--===--=--==-=-=~

code 	 ends ;End of CODE segment

end getproc

C listing: PROCC.C

/*•••****************••••• ***/
1* PRO C C *1
1*--*1
1* Task : Determines the processor type in a PC *1
1*--*1
1* Author MICHAEL TISCHER *I
1* Developed on : 08/14/1988 *1
1* Last update : 06/22/1989 *1
1*--*1
1* (MICROSOFT C) *I
1* Creation CL lAS Ic PROCC.C *1
1* LINK PROCC PROCCA *I
1* Call PROCC *I
1*--*1
1* (BORLAND TURBO C) *1
1* Creation Create a project file containing these lines: *1
1* PROCC *1
1* PROCCA.OBJ *1
/*******••*****••• *****************••••••**••*******.*****••*****•••*.*/

extern int getproc 0 1* Includes the assembler routine *1

/.**********************••• ***********************••••*****************/
1** 	 main program **1
,*********••*****••••*.*••••******************.***•••••••••************/

void main()

{

static char * procname [] - 1* Vector wi pointers to proc. names *1
-Intel 8088-, 1* Code 0 *1
-Intel 8086-, 1* Code 1 *1
-NEC V20-, 1* Code 2 *1

663

15. Determining Processor Types 	 PC System Programming

"NEC VJO", /* Code 3 */
"Intel 801B8", /* Code 4 */
"Intel 80186", /* Code 5 */
"Intel B0286", /* Code 6 */
"Intel 80386" /* Code 7 *1

I;

printf("\nPROCC (cl 1988 by Michael Tischer\n\n");

printf("This PC contains a(nl 's processor\n",

procname[qetproc() 1);

Assembler listing: PROCCA.ASM

:****•••***:
:* PROCCA *;

:*--*;
;* Task Make a function available to a C proqram which *;
;* examines the type of processor installed in a *;
;* PC and informs the calling program of this *;
;* information. *;
;*--*;
;* Author MICHAEL TISCHER * ;
;* Developed on : 08/15/1988 * ;
;* Last update : 05124/1989 *;
;*--*:
; * assembly : MASH PROCCA; *;
; * • •• link to a C program * ;
,-*************************************.********************************,

IGROUP group _text ;Include program segment
DGROUP group const,_bss, data ;Include data segment

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

CONST segment word public 'CONST';This segment includes all read-only
CONST ends ; constants

BSS segment word public 'BSS' ;This segment inoludes al un-initial
BSS ends 	 ;ized static variables

_DATA segment word public 'DATA' 	 ;This segment includes all initialized
;gobal and static variables

DATA ends

;z:_ Constants =========__==__====--===--===-==__==-=_-===-==

p_B0386 equ 	 ;Codes for different processor tpyes
p 80286 equ 6

p:::80186 equ 5

p_B01BB equ 4

p_v30 equ 3

p_v20 equ 2

p_BOB6 equ 1

p_B08B equ 0

;== Proqram ========----====~====....,--=""'======,.-====-""'==-======

_TEXT segment byte public 'CODE' 	 ;Program segment

public _getproc 	 ;Function made available for other
; programs

;-- GETPROC: Determines the type of processor in the current PC -------

;-- Call from C int getproc(void);

;-- Output : The processor type~s number (see constants above)

_getproc proc near

pushf ;Secure flag register contents

664

Abacus 15. Determining Processor Types

;-- Test for 80386/80286 ------------------------------------

xor ax,ax ;Set AX to 0
push ax land push onto stack
popf ;Pop flag register off of stack
pushf ;Push back onto stack
pop ax land pop off of AX
and ax,OfOOOh ;00 not clear the upper 4 bits
cmp ax,OfOOOh ;Are bits 12-15 al equal to 11
je not_a_386 ;YES --> Not an 80386 or 80286

;-- Test for handling as an 80386 or 80286 ------------------

mov dl,p 80286 ;In any case, this routine checks for
mov ax,07000h lOne of the two processors
push ax ;Push 07000h onto stack
popf ;Pop flag register off
pushf land push back onto the stack
pop ax ;Pop into AX register
and ax,07000h ;Bits 12-14 not included
je pende ;Are bits 12-14 all equal to O?

;YES--> Handle it as an 80286

inc dl ;NO --> Handle it as an 80386
jmp pende ;End test

;-- Test for 80186 or 80188 ---------------------------------

mov dl,p_80188 ;Load code for 8018B
mov al,Offh ;Set all bits in At register to 1
mov cl,021h ;Hove number of shift operations to CL
shr al,cl ;At CL shift to the right
jne t88_86 ;If At <> 0, handle is as an

;80188 or B0186

;-- Test for NEC V20 or V30 ---------------------------------

mov dl,p v20 ;Load code for NEC V20
sti - ;Enable interrupts
push si ;Mark contents of SI register
mov si,O ; Starting with first byte in ES, read
mov ex,Offffh ;a complete segment
rep lods byte ptr es:[sij ;REP with a segment override

; (works ony with NEC V20, V30)
pop si ;Pop SI off of stack
or cx.,cx ;Has entire segment been read?
je tBB B6 ;YES--> V20 or V30

;NO --> Must be BOBB or 80B6

;-- Test for BB/86 or V20/V30 -------------------------------

label near

push cs ;Push CS onto stack
pop es land pop ES off
std ;Increment on string instructions
mov di,offset <Lend
mov al,Ofbh ;Instruction code for "STI"
mov ex, 3 ;Execute string instruction 3 times
cli ;Suppress interrupts
rep stosb
cld ;Increment on string instructions
nop ;Fill queue with dummy instructions
nop
nop

inc dx ;Increment processor code

665

15. Determining Processor Types 	 PC System Programming

nop
'Lend: stl ;Re-enable interrupts

;--

pende label near ; End testing

popf ;Pop flag register off of stack
xor dh,dh ;set high byte of proc. code to 0
mav ax,dx ;Processor code-return value of funct.
ret ;Back to caller

_getproc endp ;End of procedure

i-- End ---""'------------------

text 	 ends ;End of program segment
end ;End of assembler source

666

Chapter 16

PC Hardware Interrupts

Now that you're more familiar with the DOS and BIOS interrupts that are triggered
by software, let's look at hardware interrupts. As the term suggests, these
interrupts operate mainly through calls from PC hardware.

Well begin with the interrupts which are called directly by the processor. These
eight interrupts can also be triggered by software through the use of the INT
instruction.

Interrupt DOH: Division by zero

The 8088 has two assembly language instructions (DIV and IDlY) which permit
division of a 16-bit or 32-bit whole number by an 8-bit or a 16-bit whole number.
According to the general rules of mathematics, division by zero is illegal. This
means that you cannot perform the equation 485/0. The equation has no resulL
Because of this, the 8088 prohibits any divisions using a denominator of O. If a
division by zero occurs, the processor triggers interrupt O. The vector assigned to it
is pointed to by DOS during its initialization to its own routine. During the call
of this interrupt, the DOS routine call executes. Most versions of DOS display a
"Division by Zero" message. The program then continues with the instruction
following the division that caused the error.

Interrupt 01 H: Single step

The CPU calls this interrupt when the TRAP bit in the flag register of the CPU is
set to 1. The interrupt then receives a call after every execution of a machine
language instruction. This interrupt allows the user to trace the execution of every
instruction in a assembly language program to determine changes in register
contents or the instructions executed.

Constant re-execution of interrupt 1 during an execution of interrupt 1 could cause
infinite recursion, and an eventual stack overflow. To prevent this, the processor

667

16. PC HQI'dwQl'e Interrupts PC System Programming

resets the TRAP bit during entry into the interrupt routine. It stores the complete
flag register and the TRAP bit on the stack.

IT an IRET instruction ends this interrupt routine, it automatically sets the TRAP
bit to the old value by restoring the complete flag register from the stack. After
completion of the next instruction, interrupt 1 is recalled. Once the programmer
has obtained all desired information about the program, the TRAP bit can be
disabled. However, the program being examined doesn't know it's being run in
single-step mode, and has no instruction to reset the TRAP bit in the flag register.

Resetting the TRAP bit

The key to this problem lies in interrupt l's routine. This is where the TRAP bit
must be reset. Even this is somewhat complicated, since the bit was reset during
the call of this routine, then later reset as part of the flag register from the stack.
The only option of resetting the TRAP bit is taking the flag register from the
stack from within the interrupt routine, resetting the TRAP bit and return the
complete flag register to its original position on the stack. IT an IRET instruction
then terminates the interrupt routine, the CPU restores the flag register from the
stack. Since the lRAP bit is no longer set, no additional calls of interrupt routine
result, and the program executes undisturbed.

Interrupt 1 is rarely executed in application programs. Because of this, DOS sets
the vector of interrupt 1 to an IRET instruction. IT a program accidentally sets the
lRAP bit, nothing happens aside from slower execution, since interrupt 1
executes after every instruction. Interrupt 1 is most useful in utility programs
(e.g., the DEBUG program) which permit program execution in trace mode, i.e.,
execution of every machine language instruction at slow speed.

Interrupt 02H: NMI

This non-maskable interrupt (NMI).is so designated because it cannot be masked
(i.e., you cannot prevent this interrupt's execution). You can suppress the
execution of all interrupts using the eLI instruction, except this one. NMI alerts
the user of any errors in RAM. These errors can be caused by defects in one of the
system's RAM chips. Since a defective RAM chip can cause serious damage and
data problems in the system, this interrupt receives top priority over all others.

During the system boot, DOS points the vector to its own routine. IT a RAM error
does occur, this calls the proper BIOS routine which displays a message on the
screen and stops the system.

Interrupt 03H: Breakpoint

This interrupt is also used in utility programs. Unlike the other interrupts, which
are called by two-byte-Iong assembly language instructions (byte l=CDH, byte
2=interrupt number), interrupt 3 can be called with a single-byte assembly

668

Abacus 16. PC Hardware Jnlerrupts

language instruction (CCH). This interrupt is very useful for testing programs up
to a certain point in the code. Interrupt 3 halts a running program. and allows the
user to examine the current contents of the registers.

Applying interrupt 3

Using a specific utility program for reference (e.g., DEBUG), you place a call for
interrupt 3 in the program in process where you want execution to stop. When the
processor reaches this location during program execution, it calls interrupt 3. The
testing program contains a routine which displays the current register contents and
other data. Then this routine replaces the interrupt 3 call with the instruction
which fonnerly occupied its location.

You could argue that instead of the call for interrupt 3, any other interrupt could be
called to interrupt the program, if a suitable interrupt routine had been installed to
display register contents. etc. Interrupt 3 ~ffers some advantages over this. It can
be called with a single-byte instruction. I

Imagine a program in which a RET instruction occurs at some location. This
instruction is one byte long and nonnally ends a subroutine. Another subroutine
follows which starts with an assembly language instruction. The user wants to
examine the register contents at the end of the ftrst subroutine. He would place a
breakpoint (the call for interrupt 3) at the same location as the RET instruction.

The single-byte instruction to call interrupt 3 has an advantage here. If this
instruction was two or more bytes long. it would overwrite the RET instruction,
and part or all of the frrst instruction in the following subroutine. If this program
call occwred in the course of execution, the program code would change and a crash
could happen. This doesn't happen since the instruction for calling interrupt 3 is
only one byte. At worst it would overwrite only one instruction.

This interrupt has no application other than use with a testing/debugging utility.
Otherwise, DOS points to a routine which contains an IRET (Interrupt RETurn)
instruction, which immediately returns the system to the interrupted program.

Interrupt 04H: Overflow error

This interrupt can be called by a instruction which is based on a condition. It's the
INTO (INTerrupt on Overflow) asSembly language instruction which only calls
interrupt 04H when a set overflow bit occurs in the flag register during execution.
This can happen after math operations (e.g., multiplication using the MUL
instruction). if the result of this operation cannot be represented within a set
number of bits. This interrupt can also be called using the normal INT instruction.
but this instruction doesn't read the status of the overflow bit Since this interrupt
is seldom used, DOS sets it to an IRET instruction.

669

16. PC Hardware Interrupts PC System Programming

Interrupt OSH: Hardcopy

Interrupt 05H belongs with the BIOS interrupts, even though it is technically a
hardware interrupt. Pressing the <Prt Sc> key calls this interrupt through BIOS.
This key has labels which differ from one manufacturer to another. The Tandy
1000 HD version is labeled <PRINT>, but most others have <PrtSc> labels. This
key sends the current contents of the screen to a printer interfaced to the PC. This
printout is called hardcopy.

DOS initializes the vector of this interrupt in the vector table. Both assembly
language programs and programs written in high level languages can access this
interrupt using the !NT instruction.

Interrupts 06H-07H: Unused

At the time of this writing, interrupts 06H and 07H are unused. They are reserved
for later use, but can be used now for other applications.

Interrupts 08H-OFH

Interrupts 08H to OFH are generated by the 8259 interrupt controller. This chip
receives all interrupt demands within the system fIrst. It detennines the priority in
which multiple interrupt requests must be executed. The interrupt given highest
priority passes through the INTR line to the CPU. Up to eight interrupt sources
(devices) can be connected to the 8259, with each device assigned a different
priority. With the help of the interrupt bits in the flag register, the CPU can
suppress all interrupt calls from the 8259 (except NMI interrupt 2-see above).

Interrupt generation from special equipment can be prevented. For this the interrupt
mask register of the 8259 must be accessed through port 2lH. The eighth bit of
this register is connected to the maximum of eight devices which create interrupts.
Bit 0 represents device 0, bit 7 the device with the number 7. If a bit has the value
0, the CPU receives the interrupt calls generated by the device assigned to it from
the 8259. If it contains the value I, the interrupt calls are suppressed. If several
interrupt calls occur at the same time, the device which is connected to bit 0 gets
the highest priority and bit 7 the lowest priority. If the highest priority interrupt
has been processed, theoretically the interrupt with the next priority down can be
transmitted from the 8259 to the CPU.

Interrupt instruction register

The 8259 knows about the completion of an interrupt call through its interrupt
instruction register at port address 20H. This register enables communication
between a program and the 8259. When an interrupt initiated by a device attached
to the 8259 finishes processing. it must send an OUT assembly language
instruction which transmits the value 20H (an EOI = End Of Interrupt) to this

670

Abacus 16. PC Hardware interrupts

port This tells the 8259 that interrupt processing is done, and the next interrupt
can be called.

The bit assignment in the interrupt mask registers (i.e., device assignments and
priorities) differ between individual members of the PC family. You can usually
assume that the device connected to bit 0 of the interrupt mask register triggers
interrupt 08H. The device connected to bit 1 triggers interrupt 09H, etc. Interrupt
OFH (the last interrupt called by the 8259) is triggered by the device attached to bit
7 of the interrupt mask register. Generally these eight interrupts have designations
ofIRQO, etc. up to IRQ7. IRQ stands for Interrupt ReQuest.

AT interrupt controllers

The AT has two 8259 interrupt controllers, so it can control up to 16 interrupt
sources. The interrupts in the second controller have designations ranging from
IRQ8 to IRQI5. If an interrupt request is made from one of the eight interrupt
sources of the second interrupt controller, it simulates the request from a device
connected to bit 2 of the ftrst interrupt controllers. Because of this, all interrupt
requests from the second interrupt controller have a higher priority than those from
devices 4 to 7 of the ftrst interrupt controllers. If several devices demand attention
from the second interrupt controller, it services the interrupt source with the
highest priority, which is the one connected to the lowest bit in the interrupt mask
register.

Interrupt requests from the devices on the second interrupt controller can be
suppressed by manipulating the corresponding bits in the interrupt mask register.
This register is located at port address AIH, not at 21H like the ftrst interrupt
controller. The interrupt instruction register of the second interrupt controller, to
which the EOI instruction must be sent after the completion of the interrupt from
this controller, is at address AOH inst.ead of 20H. In addition to the EOI instruction
to the second interrupt controller, an EOI instruction must be sent to the ftrst
interrupt controller on port 20H at the end of the interrupt routine. This results
from the interconnection between these two controllers, since every interrupt
request to the second interrupt controller triggers an interrupt request on the frrst
interrupt controller.

671

16. PC Hardware /nJerrllpts PC S,stem Programming

The following fIgures show the interrupt request devices and their priorities.

PC
• decreasing priority

7 6 5 4 3 2 1 0 bit __-------..,

controller

Interrupt requests andpriorities (PC)

XT
• decreasing priority

7 6 5 4

Interrupt controller
at port

L---i Timer
Keyboard

L.. ~ ~~d serial Interface

disk

Interrupt requests andpriorities (XI)

672

Abacus 16. PC Hardware lnlerrupts

AT decreasing priority ..
765 4 321

decreasing priority ..
lnlerrupt requests andpriorities (AT)

Interrupt 08H: Timer

The PC's 8253 timer chip oscillates at 1,193,180 cycles per second It receives its
signal from the 8284A clock generator chip. After 65,536 of these signals (about
18.2 cycles per second), it calls interrupt 08H, which the 8259 transmits to the
CPU. Since the occurrence of these interrupt calls is independent of the clock
frequency, this interrupt works well for time measurement. After 18.2 calls means
that a second has elapsed. BIOS points the interrupt vector of this interrupt to its
own routine, which is called 18.2 times per second. The routine increments the
time counter at every call and switches off the disk motor if no access to the disk
has occurred within a certain span of time. After this task has been completed, the
routine calls interrupt lCH. It can be accessed by the user for routines which
depend upon a continuous signal.

Interrupt 09H: Keyboard

The keyboard has either an Intel 8048 processor (for PC/XT) or an 8042 processor
(for An. It controls the keyboard and registers if a key was pressed, released or
pressed and held. The keyboard chip sends a signal to the 8259, which causes the
CPU to call interrupt 09H (unless an interrupt request with a higher priority is
present). The CPU calls a BIOS routine which reads the character from the
keyboard and stores it in the keyboard buffer.

673

16. PC Hardware /nlerrllpts PC System Programming

Interrupts OAH-OCH: Various

These interrupts vary with the hardware connected to the computer. Check your
technical manuals and hardware manuals for more information, and experiment.

Interrupt ODH: Hard disk

The system calls interrupt ODH if a hard disk is connected to the computer. This
occurs when a read or write operation ends and BIOS must be informed of this facL

Interrupt OEH: Disk

The disk controller(s) calls this interrupt in conjunction with the 8259 when the
controller needs the attention of the CPU. A BIOS routine following this interrupt
communicates on the lowest level with the controller. During the call of this
interrupt, the controller passes certain information to inform BIOS that a read or
write operation was completed, or an error occurred.

Interrupt OFH: Printer

A parallel printer calls this interrupt in conjunction with the 8259 when the
controller needs the attention of the CPU.

A T interrupts

Because of the second interrupt controller in the AT, it has more hardware
interrupts than the PC or XT. This second interrupt controller can call interrupts
70H to 77H. These interrupts were available to older PCs for application
programs. Recently manufactured PCs and XTs cannot use these interrupts.
Similar to the first interrupt controller, the device connected with bit 0 of the
second interrupt controller's interrupt mask triggers interrupt 70H. The device on
bit I calls interrupt 71H, bit 2 calls interrupt 72H, etc.

Only interrupts 70H and 75H are called by the interrupt controller because devices
are only connected to bits 0 and 5 of the interrupt mask register. However, the
interrupt vectors of interrupts 71H to 74H and 76H and 77H should not be
redirected.

Interrupt 70H: Realtime clock

Interrupt 70H can stop a program because of alarm time, the current time and date,
or just an interrupt call repeated within a certain time span. The interrupt is
normally serviced by a BIOS routine which detects the reason for the interrupt then
responds occordingly.

674

Abac/IS 16. PC Hardware Interrupts

Interrupt 75H: Math coprocessor

Interrupt 75H informs the ATs CPU that a mathematical coprocessor (80287)
attached to the system requires attention (e.g., because it has completed a certain
calculation).

Interrupt 76H: AT hard disk

The AT hard disk: controller calls this interrupt after completing a hanl disk: access.

Demonstration programs

The two sample programs below demonstrate some of the hardware interrupts
described in this chapter. Both programs are resident interrupt drivers which are
installed and deactivated using the same principles as demonsttated by programs
earlier in this book.

The first program displays the current time in the upper right comer of the display
screen. The second program sends the contents of a screen to a ftle instead of a
printer.

Clock timing

Before discussing each program's structure, you should know about the basic
principles of the clock. Interrupt lCH implements the clock. Timer interrupt 8H
calls interrupt lCH 18.2 times per second.

When this routine counts the number of calls that occur, it knows that exactly one
second elapses after 18.2 calls, and that it must display the time on the screen once
every second. This is great, except that the clock can count one, two, even 18
calls-but not 18.2 calls.

One solution would be to have the clock update the screen display after 18
interrupt calls. This would result in the clock running fifteen minutes fast every
day. You can solve this problem using a trick that we use in everyday living. Our
year doesn't have exactly 365 days. Every four years the calender has a leap year,
which keeps OIB' dates on schedule with Earth's realtime clock.

The PERMCLK program does something similar with the clock. After 18 calls of
the timer interrupt routine, the clock advances one second and the new time appears
on the screen. Therefore, the time advances by five seconds after 5x18 (90) calls.
Five seconds in reality equals 5x18.2 (91) calls. To compensate for the missing
call, the program adds a sixth second after 19 calls. This makes the time
measurement more accurate. Since a second actually corresponds to 18.20648193
calls, the clock will still be fast by a few seconds after a day passes. To
compensate for this, an additional second is introduced after 20 calls. This makes
the clock only about a second fast within a 24-hour period. That's fairly accurate,

675

16. PC Hardware /nlerrllpts PC System Programming

especially when you consider that the average PC doesn't remain switched on for
more than eight hours at a time.

;.**••••**••••••••••••••**•••••**••** •••••••••• ****•••••**** ••*******;
;* PERMCLK *;

;*--*;
;* Task : displays the current time on the *;
;* display Screen *;

;*--*;
;* Author MICHAEL TISCHER *;
;* developed on : 8.10.87 *;
;* last Update : 9.21.87 *;
;*--*;
;* assembly MASM PERM:LK; *;
;* LINK PERM:LK; *;
;* EXE2BIN PERM:LK PERM:LK.COM *;
;*--*;
; * Call : PERMCLK • ;
; ••••••••••••••••••••••••***•••***.**.**•••**•••••••••*•••••****••••*;

;-- Constants --

CLKCOLUMN 72 ;line and column in which the time
CLKLINE o ;is displayed
CLKNUM 6 ;after how many 1/18 S. is the clock displayed
CLKCOLOR - 70h ;color of the clock: inverted

;- here starts the actual Proqram ------~~~-----------

code segment para 'CODE' ;Definition of the CODE-segment

org 100h

assume cs:code, ds:code, es:code, ss:code

start: jmp perminit ;Call of the initialization routine

;- Data (remain in memory

alterint equ this dword ;old interrupt vector 1CH
intaltofs dw (?) ;offset address interrupt vector 1CH
intaltseq dw (1) ;segment address interrupt vector 1CH

time equ this byte ;accepts the current time
tenhours db (1) ;10 hours as ASCII
onehour db (1) ;one hours as ASCII

db ...
tenmint db (?) ;ten minutes as ASCII
onemin db (?) ;one minutes as ASCII

db 11:
tensecs db (1) ;ten seconds as ASCII
onesec db (1) ;one seconds as ASCII

tcount db 18 ;decremented on every timer-call
mnttcount db CLKNUM ;display counter for clock
count1 db 5 ;correction counter 1
count2 db 31 ;correction counter 2

; - this is the new keyboard-interrupt (remains in memory) ------

newint proc far

jmp short newtimer

;Identification of the program

newtimer: push ax ;record all registers which are changed

676

http:PERM:LK.COM

Abacus

push bx
push ex
push dx
push di
push si
push es
push ds

push cs
pop ds

dec nlllllcount
jne nonum

mov nlllllcount,CLKNUM

nonum: 	 dec tcount
je nextsec

cmp numcount,255
jne stl
jmp restore

nextsec: 	 mov tcount,18
dec countl
jne settime
mov countl,5
inc tcount
dec count2

jne settime
mov count2,31
inc tcount

settime: inc onesec
cmp one8ee,":"

stl: jne output
mev onesee, "0"

inc tensecs
cmp tensecs, "6"
jne output
mev tensecs, ·0"
inc onemin
crop anemin,":"
jne output
mov onemin,"O"
inc tenmint
anp tenrnlnt, "6"
jne output
mov tenrnint, "0·
inc onehour
cm.p onehour,":"
jne test24
mav onehour,"O"
inc tenhours
jmp short output

test24: 	 amp onehour,"4"
jne output
cmp tenhours, "2"

jne output
mov tenhours, ",0"
mev onehour,"O"

output: mov ah,15
int 10h
mov ah,3
int 10h
push dx

16. PC HQI'dwQl'e Interrupts

;by the program

Istore CS on the stack
;return as DS

;decrement counter for display
; not yet zero

;set to original value

;already called 18 times ?
;YES --> one Second passed
;display clock now ?
;NO -:--> output
;YES --> back

;set Call-counter new
;correction-counter1 dec. 5 times?
;NO --> increment ASCII-time
;YES --> set to 5 again
;increment Call-counter
;correction-counter2
;decremented 31 times?
;NO --> increment ASCII-time
;YES --> set again to 31
;increment Call-counter

;increment one second (ASCII)
ione second - 101
;NO --> output time
;set one second to zero
;increment ten second (ASCII)
;ten second - 6 (60 Seconds)?
;NO --> output time
;set ten seconds to zero
;increment one minute (ASCII)
lone minute - 10?
;NO --> output time
;set one minute to zero
;increment ten minute (ASCII)
;ten minute = 6 (60 Minutes)
;NO --> output time
;set ten minute to zero
;increment one hour (ASCII)
ione hour - 10?
;NO --> test 24 hour
;YES --> set one hour to zero
;increment ten hour (ASCII)

ione hour - 41
;NO --> output time
;YES --> ten hour = 21
;NO --> output time
;a new day started

;read current display page
;call BIOS video-interrupt
; read current cursor-position
;call BIOS video-interrupt
; store on stack.

677

16. PC HQ1'dware 1nterrupts 	 PC System ProgrtlllUtling

IIlOV si,offset time ;offset address of the time-string
mov cX,l ;write each character once
mov dX,CLKLINE shl 8 + CLKCOLUMN ;cursor-Position for time
mov bl, CLKCOLOR ;color of the clock
mov di,8 ;8 characters are output

pritime: 	 mav ah,2 ;set cursor-position
int 10h ;call Bros video-interrupt
mov dh,CLKLINE shl 8 ;repeat line
inc dl ;increase column for next character
mov ah,9 ;output a character
lodsb ;get character from the string
int 10h ;call BIOS video-interrupt
dec di ;all characters processed ?
jne prit1me ;NO --> output next character

pop dx ;get old cursor-position
mov ah,2 ;and set again
int 10h ;call BIOS video-interrupt

restore: 	 pop ds ;restore all recorded registers
pop es ; again
pop si
pop di
pop dx
pop cx
pop bx
pop ax
jrnp cs: [alterint] ;jump to old timer-Interrupt

newint 	 endp

instend equ this byte 	 ; if SHONCL is installed, memory
;can be released from here on

;- Data (can be overwritten by DOS ---------------

installm 	 db l3,lO,-PERMCLK (c) 1987 by Michael Tischer-,13,10,13,10
db -PERMCLK was installed and can be deactivated ",13,10
db -through a new Call- ,13,10, -S

deactmsg 	 db -PERMCLK was deactivated ",13,10,"S"

;== Program (can be overwritten by DOS) ---------------

;-- Start 	and Initialization Routine ----------------------------

perminit 	 proc near

mov ax,351Ch ;get content of interrupt vector lC
int 21h ;call DOS-function
cmp word ptr es:[bx+2],"SJ" ;test if PERMCLK
jne install ;not yet installed --> install

;-- PERMCLK deactivated again --------------------------

mav dx, es: intaltofs ;offset address of interrupt 1CH
mav ax, es: intaltseq ;segment address of interrupt lCH
mav ds,ax ;to DS
mav ax, 251Ch ; return content of the interrupt
int 21h ; vector lCH to old routine

mav ah,49h ;release the storage of old
int 2lh ;PERMCLK again

push cs ; store CS on the stack
pop ds ;return as DS

mav dx,offset deactmsg ;message: program removed
mav ah,9 ;output function number for string
int 2lh ;call DOS function

678

Abacus 	 16. PC HQ1'dwQ1'e lraterrupts

mov aX,4COOh ;code for program executed correctly
int 21h ;end program with end-code

;-- Install PERMCLK -----------------------------------

install: 	 mov intaltseq,es ;segment and offset address of the
mov intaltofs,bx ;interrupt vector lCH

mov ah,02Ch ;read function number for time
int 02lh ;call DOS interrupt 21H
mov al,cl ;transmit minute to AL
mov di,offset tenmint ;ASCII result to TENMINT
call binascii ;convert 2 numbers to ASCII
mov al,ch ;transmit hour to AL
mov di,offset tenhours ;ASCII result to TENHOURS
call binascii ;convert 2 numbers to ASCII
mov al,dh ;transmit seconds to AL
mov di,offset tensecs ;ASCII result to TENSECS
call binascii ;convert 2 numbers to ASCII

mov dX,offset newint ;offset address new interrupt-routine
mav aX,251Ch ;point content of the interrupt
int 21h ;vector lC to user routine

mav dx,offset installm ;message: program installed
mav ah,9 ;output function number for string
int 21h ;call DOS-function

;-- only the PSP, the new interrupt-routine and the -------
;-- Data for it, must remain resident

mov dX,offset instend ;calculate the number of
mov cl,4 ; paragraphs (each 16 Bytes) which
shr dX,cl ;the program has available
inc dx
mav ax, 3100h ;end program with end-code 0 (o.k)
int 21h ; but remain resident

perminit 	 endp

; -- BINASCII convert binary-value into 2-digit ASCII ---------------
;-- Input AL - the binary-value to be converted
;-- 01 - the offset address for the 2 ASCII numbers
;-- OUtput none
;-- Register AX, CL and FLAGS are changed

binascii 	 proc near

xor ah,ah ;HI-Byte for division - 0

mov cl,lO ;decimal system is used

div cl ;divide value b¥ 10

or ax,03030H ;convert result into ASCII

mov [dij,ax ;and store

ret ;back to caller

binascii endp

i-= End ==-=--=---------
code 	 ends ;end of the CODE-segment

end start

Installation and reinstallation has similarities to the resident interrupt driver already
discussed. It installs itself during its first call and deactivates itself on the
following call.

679

16. PC Hardware 1nterr"Pts PC System Progrtlnlming

The code following the INSTALL label initializes all the program's variables.
First the DOS function 2CH reads in the current time, converts the time into
ASCn code and places the data in the variables TENHOURS, TENMINT and
TENSECS. These variables, which are part of an AScn string, act as buffers for
the time display and are updated once every second. After these variables have been
initialized, the program installation takes place.

Let's look at the clock itself, the new interrupt routine of interrupt lCH. It begins
in the listing at the label NEWINT. It jumps to the label NEWI1MER to bypass
the identification code. All registers changed by the following commands are stored
on the stack. Then the counter (the variable) NUMCOUNT is decremented.
NUMCOtfflT has nothing to do with time measurement; it determines how often
to display the time on the screen. Normally the clock must be redisplayed when
the time has changed (every second). Since the screen scrolls in some applications
(e.g., DOS), the clock would quickly disappear from the display. To display a
clock that looks stationary, it must be redisplayed more often than once a second.

When NUMCOUNT reaches the value 0, this means that the clock display
reappears with the following commands, even if a new second hasn't occurred.
After NUMCOUNT reaches zero, it resets to its original value so that it can be
decremented again the next time the routine is called. The constant CLOCKNUM
contains the original value (6), which displays the clock ai~ 6/18 second (one
third of a second). You may preset other values to display the clock more or less
often.

At the label NONUM the counter TCOUNT decrements. It contains the number of
remaining calls until a second has elapsed. If the number is equal to zero, a second
has elapsed and a jump occurs to the label NEXTSEC where it resets to 18 so that
the next second can be displayed after 18 calls.

Ifa second hasn't elapsed, the program tests for whether the variable NUMCOUNT
reached zero and resets to its starting value during this call of the timer interrupt If
this was the case, the time appears on the screen and the interrupt ends. If the time
isn't displayed, the interrupt can be ended directly.

After NEXTSEC resets TCOUNT to 18, the frrst correction counter decrements. If
it is equal to zero, it means that five seconds have elapsed and that the next second
can only be initiated after 19 calls. The TCOUNT counter increases from 18 to 19
and the frrst correction counter resets to five. Then the second correction counter
decrements. If it then contains the value zero, then 31x5 seconds have passed and
the next second can only be initiated after 20 calls.

At the label SETTIME, incrementing the least significant digit of seconds (one) in
the variable ONEMIN sets the new time. A test is made for the start of a new
minute, a new hour or a new day; the time changes accordingly.

680

AbacllS 16. PC Hardware/nterrupts

The label OUTPUT begins the actual time display. OUTPUT reads the current
display page and cursor position. This data passes to the stack so it can be restored
after the time is displayed on the screen. The cursor moves into position and the
program displays the clock, character by character.

In the final step, the previously stored current cursor position is removed from the
stack and set This occurs through a function of the BIOS video interrupt.

This concludes the work of the timer routine. It restores the registers from the
stack, passing them unchanged to the interrupted program. It finally ends with a
jump to the old timer routine.

The HC2FILE program

The second sample program in this chapter reroutes hardcopy data to a fIle instead
of a printer. The program requires the entry of the program name and the path and
name of the hardcopy fIle. This name can contain a device and path designation,
but must have a three digit number as an extension (e.g., 000 or 153). A sample
call would look like this from the DOS prompt:

C>hc2file a:hc.OOl

You would then press <Shift><Prt Sc> as you would for a printed screen
hardcopy. To capture hardcopies in sequence, the number in the flle extension
automatically increments after the creation of every hardcopy fIle. For example, the
flfSt hardcopy goes to a fIle named HC.OOI and a second hardcopy would go to a
file named HC.OO2. During output the individual characters are read from the
current display page, but their colors (an attribute) are not stored. The screen lines
in the file write to disk in sequence (no carriage returns separate lines). You can
view this fIle on the screen using the DOS TYPE command.

The program expects a fIlename during the first call from the DOS level. If you
omit the fllename, the HC2FILE program will not be installed. If you call the
program again after its installation without passing a fllename, it deactivates the
installed hardcopy program and releases the memory it occupied. If the program is
called again with a fIlename after a successful installation, the installed hardcopy
program remains active, and the new name for the hardcopy file takes effect.

Perhaps the new hardcopy interrupt routine may be of interest. You call it after
installation by pressing <Shift> <Prt Sc>.

First it determines the number of the current display page and the current cursor
position using a function of the BIOS video interrupt. It stores these on the stack,
returning them to BIOS after the output of the hard copy. Then it opens the fIle
which is to receive the hard copy. An error message is output if the attempt fails.
In the next step the display screen content is read line for line into a buffer
(starting at the beginning of the PSP) and is written from there to a file. Here also

681

16. PC Hardware /nlerrllpts PC System Programming

an error message is output through DOS if an error is reported and the file is
~

If the hardcopy could be output successfully, the me is closed and the extension of
the ftlename (the number of the hardcopy) is incremented. Once the number 1,000
is reached, the numbering restarts at O.

Warning:

An important restriction during the use of this program must be observed. It can
only be called when no access is made simultaneously by DOS to the disk or hard
disk. If the new hardcopy is called during the DOS access, most systems will crash
because DOS is not capable of controlling several file or disk accesses
simultaneously. DOS is not re-entrant. Remember this limitation when using this
routine, because it cannot be bypassed.

i***************··*********·*******·······***************•••••**••**;
;* H C 2 F I L E *;
;*---*;
;* Task Outputs the Hardcopy of an SO-column-text *;
;* screen in a file instead of the printer. *;
;* The file must have a three digit number *;
;* as extension which is incremented after *;
;* the output of the hard copy so that several *;
;* hard copy files can be created in succession*;
;*---*i
;* WARNING after installation of this program *;
;* no hard copy may be called during *;
;* a disk or hard disk access. *;
;* The system will crash since DOS is not *;
;* reentrant! *;
;*---*i
;* Author MICHAEL TISCHER *;
;* developed on : S.11.S7 *;
;. last Update : 9.21.87 *;

;*---*;
;* assembly : MASM HC2FILE; *;
; * LINK HC2FILE; *;
;* EXE2BIN HC2FILE HC2FILE.COM *;
;*---*i
;* Call : HC2FILE [(Dr:) (Path) Filename.zzz] ,
:*********************.******************•••••*****.****************:

:-- here starts the actual Program ---=======------===--=----===

code segment para 'CODE' ;definition of the CODE-segment

org lOOh

assume cs:code, ds:code, es:code, ss:code

start: jmp hcinit ;Call of the initialization-routine

;=- Data (remain in storage)

alterint equ this dword ;old Interrupt vector OSH
intaltofs dw (1) ;offset address Interrupt vector OSH
intaltseg dw (1) ;segment address Interrupt vector OSH

print dbO ;indicates if printing is in progress
handle dw (1) ;key for access to File

hcerr db "HC2FILE: Error on output of the hard copy·,13,lO,"S"

682

http:HC2FILE.COM

AbtJclU 16. PC HQI'dwQl'e/1tIeTnIp1s

;- this is the new hard copy interrupt (remains in memory) ------

newint

newhc:

dohc:

next line:

error:

datclose:

proc far

jmp short newhc

db -RL

sti

anp cs:print,O

je dohc

jmp newhcend

mov cs:print,l

push ax

push bx

push ex

push dx

push di

push si

push es

push ds

mov ax,es

mov ds,ax

mov es,ax

cld

mov ah,15

int 10h

mov ah,3
int 10h

push dx

mov ah,3Ch

xor ex, ex

mov dx,130

int 21h

jc error

!nOV handle, ax

mov bl,-l

inc bl

cmp bl,25

je datclose

call hcl1ne

jnc nextl1ne

mov ah,3Eh

mov bX,handle

int 21h

mov ah,41h

mov dX,130

int 21h

mov dx,offset hcerr
mov ah,9
int 21h
jmp short restore

;Identification of the program

;interrupts are again permitted
;printing in progress?
;NO --> print out
;YES --> do not output hard copy

;print now
;save all registers which are changed

;bring CS to AX

;and then set OS and ES

ion string commands count up

;read current display page

;call BIOS video-interrupt

;read current cursor-position

;call BIOS video-interrupt

; store on the stack

;create function number for file

;should become normal file

;filename at DS:130

; call DOS-interrupt 21H

;carry-flag set --> Error

;save handle of the file

;begin with line 0

;increment line number

;all lines printed?

;YES --> close file

;NO --> output a line

;no error --> next line

;close function nr. for file
;access-key
;call DOS-interrupt 21H

;erase function nr. for file

;filename at DS:130

;call DOS-interrupt 21H

;error message offset address

;output function nr. for string

;call DOS-interrupt 21H

;-- all lines output successfully ----------------------

mov ah,3Eh
mov bX,handle
int 21h
jc error

mov bX,128

;close function nr. for file
; access-key
;call DOS-interrupt 21H
;not closed --> Error

;address of number of command line

683

16. PC Hardware 1nterrllpts 	 PC System Programming

IOOV bl, [bx]
add bl,128
xor bh,bh
inc byte ptr
cmp byte ptr
jne restore
IOOV byte ptr
inc byte ptr
cmp byte ptr
jne restore
IOOV byte ptr
inc byte ptr
cmp byte ptr
jne restore
IOOV byte ptr

restore: 	 pop dx
IOOV ah,2
int 10h

IOOV print, 0
pop ds
pop es
pop si
pop di
pop dx
pop cx
pop bx
pop ax

newhcend: iret

newint 	 endp

;number ot characters in command line
;calculate character end address
;Hi-Byte ot the address is 0

[bx] ;increment last number
[bx],":" ;reached ten?

; NO --> RESTORE
[bx],"O· ;set one number back to 0
[bx-l] ;incr_nt ten number
[bx-l],":";has hundred been reached?

;NO --> RESTORE
[bx-I],·O";ten numbers set back to 0
[bx-2] ;increment number
[bx-2],·:";has one thousand been reached?

;NO --> RESTORE
[bx-2],"0";whole number is aqain 0

;qet old cursor-position
;and set aqain
;call BIOS video-interrupt

;hard copy output finished
;restore all stored reqisters

;back to keyboard routine

;-- HCLINE Write a display line into the file ---------------
i-- Input BL - the number of the line
;-- BH - the number of the display paqe
i-- OUtput Carry-flaq - 1 : Error
;-- Reqister AX, ex, OX, SI, 01 and FLAGS are chanqed

hcl1ne proc near

push bx

xor
xor
IOOV

di,di
dl,dl
si,80

getc: IOOV

IOOV

int
IOOV

int

ah,2
dh,bl
10h
ah,8
10h

stosb
inc dl
dec si
jne getc

IOOV

IOOV

IOOV

xor
int

ah,40h
bX,handle
CX,80
dx,dx
21h

pop
ret

bx

hcline endp

instend equ this byte

;store BX on the stack

;copy at start of PSP
;start with column 0
;process 80 columns

;set function number for cursor
;display line to OH
;call BIOS video-interrupt
;read function number for character
;call BIOS video-interrupt
;store character in the buffer
;increment column
;all column processed?
;NO --> qet next character

;function nr. for writing
;access key
;every line has 80 bytes
;offset address of the buffer is 0
;call DOS-interrupt 21H

;restore BX
;back to caller

;if HC2FILE is installed, the meIOOry

684

16; PC HardwareJnlerrupts

;can be released starting here

;- Data (can be overwritten by DOS) --------------

installm 	 db 13,10, "HC2FlLE (c) 1987 by Michael Tischer",13,10,10
db "HC2FlLE was installed and can be ",13,10
db "deactivated with a new call (without parameter) ",13,10
db "A new call with parameters changes the ",13,10
db "Name of the file to which hardcopy is output.",13,10,"$"

deactmsg db "HC2FlLE was deactivated",13,10,"$"

ninstall db "HC2FlLE was not yet installed",13,10,"$"

newnam db "HC2FlLE was already installed, only filename "

db "was changed",13,10,"$"

;- Program (can be overwritten by DOS) ---------------

;-- Start and Initialization-Routine --------------------------------

helnit 	 proc near

mav si,128 ;address of the command line in PSP
cmp byte ptr [si],O ;was parameter passed
mav ax,3505h ;get content of interrupt vector 5
int 2lh ;call DOS-function (flags remain)
jne install ;NO --> install program

;-- HC2FlLE deactivate again -----------------------------

cmp word ptr es:[bx+2],"LR" ;test if HC2FILE

je away ;YES --> remove again

mav dx,offset ninstall ;was not yet installed

mav al,l ;end-code: error

jmp short hcfend1 ;terminate program

away: 	 mav dx,es:intaltofs ;offset address of interrupt 5
mav ax, es: intaltseg ;segment address of interrupt 5
mav ds,ax ;to OS
mav ax, 2505h ; set content of the interrupt
int 2lh ;vector 5 to old routine again

mav ah,49h ; release the memory of old

int 21h ; HC2FILE again

push cs ;store CS on the stack

pop ds ;restore OS

mav dx,offset deactmsg ;message: program removed

hcfend: 	 xor al,al ; end-code: everything o.k.
hcfend1: 	 mov ah,9 ;output function number for string

int 2lh ;call DOS-function
mav ah,4Ch ; function nr. for prg.termination
int 2lh ;end program with end-code

;-- install HC2FILE ------------------------------------

install: 	 cmp word ptr es:[bK+2],"LR" ;test if HC2FILE
jne newinst ;NO --> first installation

;-- was already installed, change only filename ------------

mav cl, [si] ;number of characters in command line
inc cl ;also the number of characters
xor ch,ch ;erase HI-Byte
mov di,128 ;also ES:OI, but in old HC2FlLE
cld ;on string commands count up
rep movsb ;copy filename in PSP

;of the old HC2FlLE
xor al,al ;NUL terminates the filename
stosb ;store in PSP of the old HC2FILE
IIIOV dX,offset newnam ;offset address of the message

685

16. PC Hardware InlerTupts 	 PC System ProgrfJl1lllling

jmp short hcfend ;terminate program

newinst: 	 mov intaltseg, es ;store segment and offset
mov intaltofs, bx ;address of interrupt vector OSH

mov bl, [si] ;number of characters in command line
add bl,129 ;calculate end addr. of character
xor bh,bh ;Hi-B¥te of the address is 0
mov byte ptr [bx],O ;set NUL behind the file name

mov dx,offset newint ;offset address new interrupt-routine
mav ax,2S0Sh ;deflect content of the interrupt
int 21h ;vector 5 to user routine

mov dx,offset installm ;message: program installed
mov ah,9 ;output function number for string
int 21h ;call DOS-function

;-- only the PSP, the new interrupt-routine and the
;-- Data pertaining to it must remain resident.

mov dx,offset instend ;calculate number of paragraphs
mov cl,4 ; (each 16 Bytes) available to
shr dx,cl ;the Program
inc dx
IIIOV ax, 3100h ;end program with end-code 0 (o.k)
int 21h ;but remain resident

hc1nit 	 endp

; -== End ------------===--=-----=--..------------=-----===----
code 	 ends ;End of the CODE-segment

end start

686

Chapter 17

Hard Disk Partitioning

FDISK is the hard disk partitioning program available in MS-DOS. You probably
used the FDISK command if you installed your own hard drive, or if you've
enhanced a PC with an operating system such as XENIX, CP/M-86 or OSfl.
FDISK is the key to operating high capacity hard disks and to installing multiple
operating systems on one computer.

FDISK represents only one step of a three step formatting process. This process
formats and partitions a hard disk drive, preparing it for one or more operating
systems.

Low level formatting

The ftrSt step, called low level formatting, divides the hard disk into cylinders
(tracks) and sectors. This division writes corresponding address markers on the hard
disk. Low level formatting is required, since many hard disk units come from the
manufacturer unformatted, like floppy disks.

Some XT-compatible PCs had to be low level formatted using the DEBUG
program. DEBUG called the low level format routine from the hard disk
controller's ROM-BIOS. Most hard disk manufacturers now provide programs
which make the low level formatting process much simpler.

Partitioning

The next step in formatting the hard disk is partitioning. As the name suggests,
this process divides the hard disk into defInite regions. The original purpose of
partitioning was to divide hard disks into areas which could be occupied by
different operating systems, without the operating systems conflicting with one
another.

The drop in hardware prices in the late 1980s provided another reason for
partitioning. Hard disks became available at low prices with capacities of 40
megabytes and more.

687

17. Hard Dis/c Partitioning PC System Programming

This posed a problem. Versions of DOS below Version 3.3 could only support a
maximum of 32 megabytes per hard disk. In addition, earlier versions of DOS
couldn't partition hard disks into several units.

DOS version 3.3

Version 3.3 of DOS still limited hard disk access to a maximum of 32 megabytes,
but offered some alternatives to the user. DOS 3.3 allowed the configuration of a
primary partition in the first 32 megabytes of the hard disk, as well as 23
additional extended partitions using drive specifiers of D to Z. Since every extended
partition can have up to 32 megabytes, this partitioning increased the maximum
hard disk capacity to 768 megabytes. FDISK names these partitions PRJ DOS and
EXT DOS.

DOS version 4.0

DOS version 4.0 pennits mass storage device support up to 2 gigabytes, thanks to
revised device drivers. However, many users still prefer partitioning their hard disk
unit into logical hard disks (smaller drives), since file management is easier on the
logical drives than having hundreds of ftles on one drive.

FDISK creates a special sector called the partition sector which it places on the
first hard disk sector (head 0, cylinder 0, sector 1). BIOS loads this partition sector
into memory address OOOO:7COO, unless the user has placed a disk in drive A:
before power-up or reset If the computer fmds the code sequence 55H, AAH in the
last two bytes of this 512-byte sector, it treats this sector as executable and starts
program execution with the first byte of the sector. Otherwise, BIOS displays an
error message and either starts an infinite loop or starts ROM BASIC, depending
on the manufacturer and version of the system.

Hard disk partition sector li!Yout

Addr. Content
 '!'Y£.e
+OOOH Partition code
+lBEH 1st ent~ in the partition table 16 ~tes
+lCEH 2nd entl"Y in the partition table 16 ~es
+lDEH 3rd entl:"Y in the partition table 16 ~es
+lEEH 4th entry in the partition table 16 bytes
+lFEH Partition sector rec~nition code (AA55H) 2 ~tes
Length: 200H (512) ~tes

The program code in the boot sector recognizes the active partition and the
operating system to be started. The boot sector and the required operating system
code loads and executes. Since this program code by definition must also be at
memory address OOOO:7COO, the partition code moves to memory address
0000:0600 and releases the memory for the boot sector.

688

Abacus 17. Hard Disk Partitioning

The routine obtains the location of the boot sector to be loaded from the hard disk,
and the boot sector's corresponding partition. The partition table located in the
partition sector at address IBSH contains this information.

Partition table entry layout

Addr. Content Type

+OOH Partition status 1 byte

OOH = inactive
80H = boot partition

+OlH Read/write head where partition starts 1 byte
+02H Sector and cvlinder where partition starts 1 word
+04H Partition type 1 byte

OOH = entry not occupied
OlH - DOS with l2-bit FAT (primary partition)
02H = XENIX
03H = XENIX
04H = DOS with l6-bit FAT (primary partition)
OSH = extended DOS-Partition (after DOS 3.3)
06H = DOS-4.0 partition with more than 32 meg
DBH = Concurrent DOS
Other codes possible in conjunction with other
operatinq systems or s~ecial driver software

+OSH Read/write head at end of partition 1 byte
+06H Sector and cylinder at end of partition 1 word
+08H Distance of first sector of the partition 1 dword

(boot sector) from partition sector
(measured in sectors)

+OCH Number of sectors in this partition 1 dword
Length: lOR (16) bytes

Every partition is described within this table through a 16-byte structure. Since the
table is almost at the end of the partition sector, there is only room available for
four entries. This limits the number of partitions to four. To provide more
partitions on a hard disk, some manufacturers offer a special configmation program
which moves the table ahead within the partition sector and installs new partition
code which accesses the reconfigured table. The basic format of the table remains
unchanged. Remember that individual partition entries do not always start with the
first table entry. The partition of a hard disk can be described through the first,
second, third or even fourth table entry.

The boot partition can be recognized through the first field of the partition
structure. The value OOH stands for "inactive," while the value 80H indicates the
partition for booting. If the partition code detects no bootable partition, more than
one partition, or even unknown code during the table check, the booting process
terminates and the system goes into an endless loop. The only alternative is to
reset the system.

If the partition code recognizes the partition to be booted, it can determine the
position of this partition on the hard disk through the two following bits. The
sector and cylinder number are coded in the form compatible with BIOS interrupt

689

17. Hard Disk Partitioning PC System Progrflllflftlng

13H (disk/hard disk). Bits 6 and 7 of the sector number represent bits 8 and 9 of
the cylinder number. Interrupt 13H and its functions are the only means of
accessing the hard drive. DOS functions are unavailable until after the system
boots DOS.

Even though this information is enough to load the boot sector of the starting
partition, the partition table contains some additional information which is
important for later changes and additions. The position of the boot sector is
followed by a field which describes the type of operating system hidden behind the
partition.

Besides ttJe starting sector, the ending sector of the partition is indicated in the
partition sector. The position of this sector is again described through an indication
of the head, cylinder and sector numbers. The last two fields of a table entry
contain the number of sectors within the partition, the distance of the boot sector
of the partition from the partition secD, as counted in sectors.

When the partition table is checked, it usually determines that the fmt partition
starts with sector one, track zero of the second read/write head, instead of
immediately following the partition sector. This wastes almost all of track one of
the fmt read/write head, almost the complete first track of the first head is wasted,
not counting the partition sector in the fmt sector of this track.

The extended DOS partitions suffer from some inconsistencies. First of all, OOS
Version 3.3 allows only one extended partition on a hard disk, other than the
primary partition. FDISK provides the extended partition with a partition sector
containing a partition table instead of program code. This table consists of two
entries:

1.) A deSCription of the extended partition proper, along with a partition type
value of either 1 (DOS partition with 12-bit FAT) or 4 (DOS partition
with 16-bit FAT)

2.) A description of the next extended DOS partition, ifone is present

Any additional extended partitions are preceded by partition sectors, as described
above. This creates a chained list which ends only when the partition type field
within the partition sector contains the value O.

The following programs in Pascal and C display the contents of the partition
sector, and follow the partition sectors of any extended partitions.

690

AbacllS 17. Hard Disk Partitioning

Pascal program: FIXPARTP.PAS

(***•••***************.**)
(* F I X PAR T P • PAS *'
(*--oJ
(* Task : Display hard disk partitionillQ *'
(*--*'
(* Author MICHAEL TISCHER *'
(* Developed on : 04/26/1989 *'
(* Last update : 06/22/1989 *'
{*--*'
{* Call : FIXPARTP [Drive number] *'
{* Default is drive 0 (drive C:, *'
{***********.*****••********************.*******.******************.***}

uses Dos; { Add DOS unit ,

{- Type declaration -------~~-----~-~----,

type SecPos record Describes the position of a sector
Head byte; { Read/write head
SecCyl : word; { Sector and cylinder number

end;

PartEntry - record { Entry in the partition table
Status byte; { Partition status
StartSec SecPos; { First sector
PartTyp byte; { Partition type
EndSec SecPosi { Last sector
SecOfs longint; Offset of the boot sector
SecNum longint; 1 Number of sectors

end;

PartSec record { Describes the partition sector ,
BootCode array [0 •• $1BD] of byte;
PartTable array [1 •• 4] of PartEntry;
IdCode word; { $AA55 ,

end;

{**********.***••••••••**.***}
{* ReadPartSec: Read a partition sector from the hard disk and *'
{ * place in a buffer * ,
{**--**'
{* Input - HrdDrive BIOS code of the drive ($80, $81 etc.) *'
{ * - Head Read/wri te head number *'
{* - SecCyl Sector and cylinder number in BIOS format *J
(* - Buf Buffer into which sector should be loaded *)
(*******••**••*****.***}

function ReadPartSec (HrdDri ve, Head byte;
SecCyl word;
var Buf PartSec) : boolean;

var Regs Registers; Processor regs for interrupt call ,

begin
Regs.AX :- $0201; { Function no. for "Read", 1 sector

Regs.DL '= HrdDrive; { Load additional

Regs.DH Head; (parameters into the

Regs.ex :- SecCyl; (different registers

Regs.ES '= seg(Buf);

Regs.BX := ofs(Buf);

Intr($13, Regs); (Call hard disk interrupt ,

ReadPartSec :- (Regs.Flags and 1) = 0; {Carry flag indicates error'

end;

{***.**}
{* GetSecCyl:, Determines the combined sector/cylinder coding of BIOS *'
{* sector and cylinder number *'
(**--**)
1* Input : SecCyl : Value to be decoded *'

691

17. Hard Disk Partitioning PC System Programming

1* Sector: Reference to the sector variable *)
1* Cylinder : Reference to the cylinder variable *)
{.**.***••••***••••••••••**.***•••••***•••••••••••••••••••••••** ••••••• }

procedure GetSecCyl (SecCyl : word; var Sector, Cylinder: integer);

begin
Sector :- secCyl and 63; Exclude bits 6 and 7)
Cylinder :- hi(SecCyl) + (lo(SecCyI) and 192) sh12;

end;

{**••**.****•••••••*****•••••••••••••••••••••••••**••••*.*****•••******}
1* ShowPartition: Displays hard disk partitioning on the screen *)
(**--**)
(* Input : DR : Number of the corresponding hard disk drive *)
1* (0, 1, 2 etc.) *1
{*••••••••••••••*****••*** •••*****••••••••••••••••••••••••••••••••*****}

procedure ShowPartition(DR : byte);

var Head byte; I Head of current partition
SecCyl byte; I Sector and cylinder of current partition
ParSec PartSec; I Current partition sector
Entry byte; (Loop counter
Sector, Get sector and
Cylinder integer; cylinder numbers
Regs Registers; I Processor regs for interrupt call

begin
writeln;
DR := DR + $80; I Prepare drive number for BIOS
if ReadPartSec(DR, 0, 1, ParSec) then I Read partition sector

begin I Sector is readable
Regs.AH := 8; I Read drive data
Regs.DL := DR;
Intr($13, Regs); I call hard disk interrupt
GetSecCyI(Regs.eX, Sector, Cylinder);
writeln('r---,+

---------1');
Upper left corner can be typed using <Alt><201>
Top horiz. line can be typed using <Alt><205>
Upper right corner can be typed using <Alt><187»

writeln('1 Drive ',DR-$80, ': " Reqs.DH+1:2,
, Heads with " Cylinder:5, , cylinders and "
Sector:3, , sectors I');

(Vert. lines can be typed using <Alt><186>
writeln('1 Partition table in partition sector ,+

I ') ;
Vert. lines can be typed using <Alt><186>

writeln ('{--T--T T T'+
-----------·T---T~');

I Left T can be typed using <Alt><204>

I Top T can be typed using <Alt><209>

I Right T can be typed using <Alt><185>

writeln (' I I Start 1'+
End IDis.fr.1 I ');

I First and last vert. lines can be typed using <Alt><186>
I Remaining vert. lines can be typed using <Alt><179>

writeln('I'.IBootIType IHead Cyl. Sec.I'+
'Head Cyl. Sec.IBootseqNumber I');

I First and last vert. lines can be typed using <Alt><186>
I Remaining vert. lines can be typed using <Alt><179>

writeln('{--+---~----------------~I~----------_+I'+
I { ') ;

left T can be typed using <Alt><204>
crosses can be typed using <Alt><216>
Right T can be typed using <Alt><18S>

692

Abacus 	 17. Hard Disk Partitioning

for Entry:-1 to 4 do { Execute table entries)
with ParSec.PartTable[Entry) do

begin
write ('I " Entry, '1');

{ Type first line using <Alt><186>, second using <Alt><179>)
if Status - $80 then write ('YES ')

else write (' NO 'I;
write('I');

{ Type thin vert. line using <Alt><179>
case PartTyp of Display partition type

$00 write (' Not occupied ');
$01 write('DOS, 12-bit FAT 'I;
$02 write (' XENIX ') ;
$03 write ('XENIX ');
$04 : -write('DOS, 16-bit FAT 'I;
$05 write('DOS, extd.partition');
$DB write('Concurrent DOS 'I;
else write('Unknown (',PartTyp:3, ') 'I;

end;
GetSecCyl(StartSec.SecCyI, Sector, Cylinder);
write('I', StartSec.Head:2,' ',Cyl1nder:5,' ',Sector:3);
GetSecCyl(EndSec.SecCy1, Sector, Cylinder);

{Enter vert. line using <Alt><179>
write(' I'. EndSec.Head:2,' ',Cyllnder:5,' ',Sector:3);

{Enter vert. line using <Alt><179>
writeln(' I', SeCOfs:7, 'I', SecNum:7, '1');

{ Enter first and second vert. lines using <Alt><179>,
{ third line using <Alt><186>

end;

writeln ('l-.l--.l,..-------....,.l----....,.l' +
-----.l---.l---J, '13110);

Left angle can be typed using <Alt><200>
Hor!z. lines can be types using <Alt><205>
Bottom Ts can be typed using <Alt><207>
Right angle can be typed using <Alt><188>

end
else

writeln('Error during boot sector access!');
end;

{** •••*****************.**************••••••***** •••*******.****••••••**
MAIN PROGRAM *_----_.-..._.._.._.-.------------_._._.-.-.._._-----_._._._.__._._}

var 	HrdDrive, Variables for converting
DError integer; given arguments

begin
writeln(.13.10'-------------------------------- FIXPARTP - (c)',

, 1989 by MICHAEL TISCHER ---');
HrdDrive :- 0; { Default is first hard disk
if ParanCount - 1 then other drive specifier given?

begin { YES
val (Param5tr (1), HrdDrive, DError); { ASCII/decimal
if DError <> 0 then Conversion error?

begin (YES
writeln(.13.10'Il1egal drive specifier!');
exit; End program

end;
end;

ShowPartition(HrdDrive); { Display partition sector)
end.

693

17. Hard Disk Partitioning PC System Programming

C program: FIXPARTC.C

/**••**************************1
1* F I X PAR T C • C *1
�*--*1
1* Task : Displays hard disk partitioninq *1
I*----------------------~---*1
1* Author MICHAEL TISCHER *1
1* Developed on : 04/26/1989 *1
1* Last update : 06/22/1989 *1
1*---~--*I
1* call : FIXPARTC [Drive number 1 *1
1* Default is drive 0 (Drive C:) *1
/.*************.*••••**********••• ************••******•••*.************,

'include <dos.h>
'include <string.h>

'include <stdlib.h>

/*=- Constants -====---~========---=---=-----=-----=------------~-====*/

'define TRUE (1 -- 1)

'define FALSE (1-- 0)

1*-- Macros =-=--======~~~-=======-------=--*I

'define HI (x) * «BYTE *) (&x) +1) 1* Returns high byte of a word *1
'define LO (x) * «(BYTE *) &x)) 1* Returns low byte of a word *1

1*== Type declarations -=--====----------=---==---=-==------------===*1

typedef unsigned char BYTE;

typedef unsigned int WORD;

typedef struct 1* Describes the position of a sector *1
BYTE Head; 1* Read/write head *1
WORD SecCyl; 1* Sector and cylinder number *1

) SECPOS;

typedef struct (1* Entry in the partition table *1
BYTE Status; 1* Partition status *1
SECPOS StartSec; 1* First sector *1
BYTE PartTyp; 1* Partition type *1
SECPOS EndSec; 1* Last sector *1
unsigned long SecOfs; 1* Offset of boot sector *1
unsigned long SecNum; 1* Number of sectors *1

) PARTENTRY;

typedef struct 1* Describes the partition sector *1
BYTE BootCode[Ox1BE I;
PARTENTRY PartTable[4 J;
WORD IdCode; 1* OxAA55 *1

I PARTSEC;

typedef PARTSEC far *PARSPTR; 1* Pointer > partition sector in memory *1

/ ••••***********.******.************•••************************* •• ****./
1* ReadPartSec: Reads a partition sector from the hard disk into a *1
1* buffer *1
1* Input - HrdDrive BIOS code of the drive (Ox80, Ox81 etc.) *1
1* - Head Number of read/write heads *1
1* - SecCyl Sector and cyinder number in BIOS format *1
1* - Buf Buffer into which sector should be loaded *1
1* Output : TRUE if sector is read without error, otherwise FALSE *1
,*.*******************************.*.**********************************/

BYTE ReadPartSec(BYTE HrdDrive, BYTE Head, WORD SecCyl, PARSPTR Buf)

694

Abacus 	 17. Hard Disk Partitioning

union REGS Regs; /* Processor regs for interrupt call */

struct SREGS SRegs;

Regs.x.ax Ox0201; /* Funct.no. for ·Read·, 1 Sector */

Regs.h.dl HrdDrive; /* Load parameters into */

Regs.h.dh Head; /* different registers as */

Regs.x.ex SecCyI; /* needed */

Regs.x.bx FP OFF(Buf);

SRegs.es FP:::SEG(Buf);

intB6x(Ox13, 'Regs, 'Regs, 'SRegs); /* call hard disk interrupt */

return IRegs.x.cflag;

I

/*.**•••••••••••••••••••**••••••••**••••••• **•••• **•••••••••****•••••••,
/* GetSecCyl: Determines the combined sector/cylinder coding from */
/* BIOS sector/cylinder number */
/* Input SecCyl Value to be decoded */
/* Sector Reference to the sector variable */
j* Cylinder Reference to the cylinder variable */
/* Output: none */
j** ••••••••••••**** •• **** •••••••••••••••••••••* ••••••• • ** ••••**** •••••• /

void GetSecCyl(WORD SecCyl, int *Sector, int *Cylinder)

Sector - SecCyl , 63; / Exclude bits 6 and 7 */

*Cylinder - HI (SecCyl) + (((WORD) LO(SecCyl) , 192) « 2);

I

,.**.....*** ••****.*** ••••••••••• ***.** ••**••••••**•••••••***•••***•••• /
/* ShowPartition: Displays hard disk partitioninq on the screen */
/* Input: LW : Number of the hard disk (0, 1, 2, etc.) */
/* OUtput: none */
/ ••• *******.**•••••••• **.*** •••••••••••••••••••• **** ••••••••••••••••••*/

void ShowPartition(BYTE LW)
{
'define AP ParSec.PartTable[Entry I

BYTE Head, /* Head for current partition */

Entry, /* Loop counter */

SecCyl; /* Sector and cylinder of current partition */

PARTSEC ParSec; /* Current partition sector */

1nt Sector, /* Get sector and cylinder */

Cylinder; /* number */

union REGS Regs; j* Processor regs for interrupt call */

printf ("\n");

IM 1- OxBO; /* Prepare drive number for BIOS */

if (ReadPartSec(LW, 0, 1, &ParSec » /* Read partition sector */

(/* Sector can be read */

Regs.h.ah = 8; /* Read disk data */

Regs.h.dl - LW;

intB6(Ox13, 'Regs, &Regs); /* call hard disk interrupt */

GetSecCyl(Regs.x.cx, 'Sector, &Cylinder);

printf (·f-------------------

------------l\n") ;
/* Upper left corner can be typed using <Alt><201> */
/* Horizontal line can be typed using <Alt><205> */
/* Upper right corner can be typed using <Alt><lB7> */

printf ("I Drive '2d: '2d heads with '4d"

" cylinders, "3d sectors I\n",

LW-OxBO, Regs.h.dh+1, Cylinder, Sector);

/* Vertical lines at beginning and end can be typed using <Alt><186> */

printf ("I Partition table in partition sector

I\n");

/* Vertical lines at beginning and end can be typed using <Alt><186> */

695

http:Regs.x.cx
http:Regs.h.dl
http:Regs.h.ah
http:SRegs.es
http:Regs.x.bx
http:Regs.x.ex
http:Regs.h.dh
http:Regs.h.dl
http:Funct.no
http:Regs.x.ax

17. Hard Disk PartitimUng PC System Programming

printf ("~-T--T l' 1"
'-----T---'f---..I\n") ;

/* Left T can be typed using <Alt><199> */
/* Horiz. lines can be typed using <Alt><205> */
/* Ts in middle of line can be typed using <Alt><209> */
/* Right T can be typed using <Alt><185> * /

printf ("I I I I Start I"
End lOis.fr.1 I\n");

/* First and last vertical lines in the above line */
/* can be typed using <Alt><186> */
/* Remaining vertical lines can be typed using <Alt><179> */

printf("1'.IBootIType IHead Cyl. Sec.l"
"Head Cyl. Sec.iBootSecINumber I\n");
/* First and last vertical lines in the above line */
/* can be typed using <Alt><186> */
/* Remaining vertical lines can be typed using <Alt><179> */

printf ("~ • ."
• hn");

/* Left T can be typed using <Alt><204> */
/* Horizontal lines can be typed using <Alt><205> */
/* Crosses can be typed using <Alt><2l5> */
/* Right T can be typed using <Alt><185> */

/*-- Check partition table --*/
for (Entry-O; Entry < 4; ++Entry)

{

printf ("I 'dI", Entry);
/* First vertical line can be typed using <Alt><186> */
/* Second vertical line can be typed using <Alt><179> */

if (AP.status - Ox80) /* Partition active? */
printf ("Yes ");

else
printf ("No ");

printf ("I");
/* Vertical line can be typed using <Alt><179> */

switch (AP.PartTyp) /* Display partition types */
(

case OxOO printf("Not occupied ·);
break;

case OxOl printf(-DOS, l2-Bit FAT ·);
break;

case Ox02 printf("XENIX ·);
break;

case Ox03 printf("X~IX ·);
break;

case Ox04 printf("DOS, l6-Bit FAT ·);
break;

case Ox05 printf(-DOS, extended part.") ;
break;

case OxOB printf("Concurrent DOS ·);
break;'

default printf("Unknown ('3d) ",
ParSec.PartTable[Entry) .PartTyp);

/*-- Display physical and logical parameters --------------------*/
GetSecCyl (AP •StartSec. SecCyl, &Sector, &Cylinder);
printf("1'2d \5d '3d", AP.StartSec.Head, Cylinder, Sector);

/* Vertical line can be typed using <Alt><179> */
GetSecCyl (AP.EndSec.SecCyl, &Sector, &Cylinder);
printf("1\2d \5d \3d", AP.EndSec.Head, Cylinder, Sector);

/* Vertical line can be typed using <Alt><179> */

printf("1'6lu 1\6lu I\n", AP.SecOfs, AP.SecNlDD);
I
/* First and second vertical lines can be typed using <Alt><179> */
/* Third vertical line can be typed using <Alt><186> */

printf (-L-..l--..l ..l J."

696

Abacus 17. Hard Disk Partitioning

,-----:1--.L--.!\n");
1* Left angle can be typed using <Alt><200> *1
1* Horizontal lines can be typed using <Alt><205> *1
1* Ts can be typed using <Alt><207> *1
1* Right angle can be typedusinq <Alt><188> *1

else

printf("Error during boot sector access!\n");

/ •••••••••••••••••••**•••••**••••••••••*******••••••••****••••**••***.*.
MAIN PROGRAM* * •••••••••••••••***••••••••••• ** •••••••••••••••••••••••••***••••••••••••,

int main(int argc, char *argv[])
{
int HrdDrive;

printf("\n-------------------------------- FIXPARTC - (c)"
" 1989 by MICHAEL TISCHER ---\n");

HrdDrive - 0; 1* Default is first hard disk *1
if (argc =- 2) 1* other drive specified? *1

(1* YES *1
HrdDrive - atoi (argv[l] I;
if (HrdDrive -- 0 && '*argv(1) !- '0')

{
printf("\nIllegal drive specifier!");
return(1 I; 1* End program *1

I

I

ShowPartition(HrdDrive); 1* Display partition sector *1
return(0);

I

'97

Chapter 18

The PC Ports

Chapter 2 of this book described a series of CPU support chips which help the
CPU control the system. These chips stay in constant contact with the CPU,
which delegates tasks to and obtains information from the support chips.

Ports

The ports represent the interfaces between the CPU and the other system hardware.
A port can be viewed as an 8-bit-wide data input or output connected to a particular
piece of hardware. A port has an assigned address with values ranging from 0 to
65,535. The CPU uses the data bus and address bus to communicate with the
ports. If the CPU needs access to a port, it transmits a port control signal. This
signal instructs the other hardware that the CPU wants to access a port instead of
RAM. Ports have addresses which are also assigned to memory locations in RAM,
but these addresses have nothing to do with those memory locations. The port
address is placed on the lowest 16 bits of the address bus. This instructs the system
to transfer the eight bits of information following on the data bus to the proper
port. The hardware connected with this port receives the data and responds
accordingly.

The 80(x)xx processor series has two instructions that control this process from
within a program. The IN instruction sends data from the CPU to a port; the OUT
instruction transfers data from a port into the CPU.

The system can set the port address of a certain hardware device-this address is not
a constant value. For this reason, there are many similarities in port addressing
between the PC, XT and AT. There are few differences between the PC and XT,
but many differences exist between the PC and AT.

699

18. TIu! PC Ports PC System Progran&11ling

The following table shows the port addresses of individual chips in each system.

Component

DMA controller (8237A-5)

Interrupt controller (8259A)

tirrer

Programmable Peripheral Interface (PPI 8255A-5)

Keyboard (8042)

Realtime clock (MC146818)

DMA page register

Interrupt controller 2 (8259A)

DMA controller 2 (8237A-5)

Math coprocessor

Math coprocessor

Hard disk controller

Garre port

IExpansion unit

Interface for second parallel printer

Second serial interface

Prototype card

Network card

Interface for first parallel printer

Monochrorre Display Adapter and

'parallel printer connection

Color/Graphics Adapter

Disk controller

First serial interface

PC/XT AT

OOO-OOF OOO-OlF
020-021 020-03F
040-043 040-05F
060-063 none
none 060-06F
none 070-07F
080-083 080-09F
none OAO-OBF
none OCO-ODF
none OFO-OF!
none OF8-0FF
320-32F 1FO-1F8
200-20F 200-207
210-217 none
none 278-27F
2F8-2FF 2F8-2FF
300-31F 300-31F
none 360-36F
378-37F 378-37F
BO-3BF 3BO-3BF

3DO-3DF 3DO-3DF
3FO-3F7 3FO-3F7
3F8-3FF 3F8-3FF

700

Chapter 19

Interaction between
Keyboard, BIOS and DOS

The preceding chapters of this book described three levels of PC system
architecture:

• oos
BIOS

• hardware

We've examined each level separately throughout this book. This chapter
investigates the interaction between the three levels. We'll use the keyboard as an
example, because it best illustrates the connection between the three levels. We'll
start with the lowest level (the hardware itself) and progress to the highest level (an
application program which communicates with the user through the keyboard).

Hardware level

The hardware level consists of the keyboard itself, which connects to the CPU
through a cable. This keyboard contains either an Intel 8048 (PC/XT) or 8042
(AT) processor. The processor's task monitors the keyboard to determine whether a
key was depressed or released. If a user depresses a key for longer than half a
second, the 8048 enables key repeat at a rate of 10 characters per second. While the
8048 can only repeat at this frequency, the 8042's repeat frequency can be changed
to other values. This repetition continues until the user releases the key. The
keyboard processor assigns each key a number, instead of a character or ASCII
code. It views control keys such as <Shift> and <Ctrl> like any other key. In the
83-key standard PC keyboard, the processor assigns numbers to the keys ranging
from 1 to 83 decimal.

701

19. Inleraction between Keyboard. BIOS and DOS PC System Programming

BIOS level

When you press a key, this key code passes to the CPU as a byte. When you
release the key the processor passes the code to the CPU again, along with an
added 128. This is the same as setting bit 7 in the byte. The keyboard instructs the
8259 interrupt controller that the CPU should trigger interrupt 9H. If the CPU
responds we reach the next level, because a BIOS routine is controlled through
interrupt 9H. While this routine is being called, the keyboard processor sends the
key code to port 60H of the main circuit board using the asynchron,ous
transmission protocol. The BIOS routine checks this port and obtains the number
of the depressed or released key. This routine then generates an ASCII code from
this key code.

This task is more complex than ftrst appears, since the BIOS routine must test for
a control key such as <Shift> or <Alt>. Depending on the key or combination of
keys, either a normal ASCII code or an extended keyboard code may be required.
The extended key codes include any keys which don't necessarily input characters
(e.g., cursor keys).

Once BIOS determines the correct code, this code passes to the 16-byte BIOS
keyboard buffer. If it is full, the routine produces a beep which informs the user of
an overflow in the keyboard buffer. The processor returns to the other tasks which
were in progress before the call to interrupt 9.

The next level, BIOS interrupt 16H, reads the character in the keyboard buffer and
makes it available to a program. This interrupt includes three BIOS routines for
reading characters from the keyboard buffer, as well as the keyboard status (e.g.,
which control keys were pressed). These three routines can be called with an !NT
assembly language instruction from an application program.

DOS level

The keyboard's device driver routines represent the DOS level. These DOS routines
read a character from the keyboard and store the character in a buffer, using the
BIOS functions from interrupt 16H. In some cases, the DOS routines may clear
the BIOS keyboard buffer. If the system uses the extended keyboard driver
ANSI.SYS, ANSI.SYS can translate certain codes (e.g., function key I) into other
codes or strings. For example, it's possible to program the <FlO> key to display
the DIR command on the screen. You can theoretically call device driver functions
from within an application program, but in practice DOS functions usually address
these functions.

DOS is the highest level you can go. Here you'll ftnd the keyboard access
functions in DOS interrupt 21H. These functions call the driver functions,
transmit the results and perform many other tasks. For example, characters and
strings can be read and displayed directly on the screen until the user presses the
<Return> key. These strings are called by an application program and form the end
of this chain of events.

702

AbaclLS 	 19. Interaction between Keyboard, BIOS and DOS

Application program

Interrupt 21 (h) (DOS routine) 0)
DOS keyboard driver o

Interrupt 16(h) (BIOS routine) o
Keyboard buffer o

o
o

Levels ofkeyboard access

The keyboard access levels are as follows:

(1) Enables functions available f<X' keyboard access

(2) 	 Reads a character with the functions of interrupt16H and converts it into
other characters <X' character strings as needed

(3) 	 Reads keyboard status or a character from the keyboard buffer and transfers
it to the calling program

(4) 	 Accepts the character entered

(5) 	 Receives codes from the keyboard, converts them into ASCII or extended
keyboard codes and adds them to the keyboard buffer

(6) 	 Calls interrupt 9 when the key is depressed or released

When you consider the many levels through which a key code has to travel before
reaching an application program, you might be thinking that direct keyboard access
would be much faster. In principle that's true, but the process as described above
offers several advantages. One advantage is that the system offers complex
functions which reduce programming work, such as simultaneously displaying a
line on the screen as you enter it from the keyboard. Also, using higher level
functions make programs hardware independent, so that they'll run on PCsthat
may not be hardware-compatible with the IBM PC but still use DOS as the
operating system.

703

19. Interaction between Keyboard, BIOS and DOS 	 PC System ProgrfJl'lllning

The program which concludes this chapter demonstrates a method of changing the
system levels. The challenge is to increase the size of the BIOS keyboard buffer.
The keyboard buffer usually holds up to 16 characters before emitting beeps to tell
the user that the buffer is full.

The assembler program which follows increases the size of the keyboard buffer to
128 characters (256 bytes). It generates extended interrupt handlers for hardware
keyboard interrupt 09H and BIOS keyboard interrupt 16H.

;**.*****************:
;* KEYBUF *;

:*--*i
;* Task Installs extended keyboard reading interrupt *;
;* routines and implements a virtual keyboard *:
;* buffer of up to 256 bytes (128 characters). *;
;* An initial call installs the program, while a *:
;* second call disables the program. *;
:*--*:
;* Author MICHAEL TISCHER *;
;* Developed on : 08/24/1988 *;
;* Last update : 06/23/1989 *;

;*--*;
;* Assembly : MASH KEYBUF; 	 *;
;* LINK KEYBUF; *;
;* EXE2BIN KEYBUF KEYBUF.COM *;
;*--*;
; * Call : KEYBUr *;
i**··*·········*****·*····*···*********··***·····***** ****••••••••••***;

;== BIOS variable segment ----=-==~==--___--=____==---====------__--=_==

bios 	 segment at 40h ;Segment begins at 0040:0000

org 1ah

;-- BIOS pointer points to the keyboard ring buffer ---------

dw (1) 	 ;Pointer to next character
dw (1) ;Pointer to last character

bios ends
;== constants =_________a=-__________________~_____________==____==_=-_

equ 128 	 ;Keyboard buffer length must be a
;power of 2 (change this constant to
;change the size of the keyboard buffer
;e.g., 2, 4, 8, 16, 32, etc.)

;-- Start of program ------------___________________________________====

code 	 segment para 'CODE' ;Definition of CODE segment

org 100h

assume cs:code, ds:code, es:code, ss:code

start: ;First executable instruction

; -- Data (stays in memory) ------------------------------_____=_

keybuf_id dw ·CS· ;Identifies the program

;Segment address of environment

int9 equ this dword ;Old interrupt vector 09H

704

http:KEYBUF.COM

Abac/lS 19. Inluaction between Keyboard, BIOS and DOS

int9 ofs
int9_seq

intl6
intl6 ofs
int16:::seq

dw (1)
dw (1)

equ this dword

dw (1)

dw (1)

;Offset address interrupt vector 09H
;Segment address interrupt vector 09H

;Old interrupt vector 16H
;Offset address interrupt vector 16H
;Segment address interrupt vector 16H

;-- Virtual keyboard buffer is placed in the PSP of this proqram,
;-- makinq the proqram resident until a second call disables it

nextkey dw 0 ;Offset address of next key
curkey dwKBLEN-2 ;Offset address of current key

;- New interrupt hander ----------------------------

new int9

ni9 1:

ni9 end:

new int9

proc far ;New INT 9H handler

assume ds:bios ;Assiqn os the BIOS variable seqment

pushf ;Simulate interrupt call to old INT
call cs:int9 ;9H handler

;-- Get character from BIOS keyboard buffer -----------------

eli
push es
push ds
push di
push bx
push ax

mav aX,bios
mov ds,ax
mav di,cs:nextkey
mav bx, b _next

cmp bx, blast
je ni9_end

;Push all reqisters which will be
;chanqed by this new interrupt
;handler onto the stack

;Get segment address of BIOS variable
;segment to OS
;Move 01 to next character in KEYBUF
;BIOS: Get address of next character

;Still a character in BIOS kbd buffer?
;No more characters --> END

;-- Still a character in the BIOS keyboard buffer -

mov ax, [bx]
add bX,2
cmp bX,3eh
jne ni9 1

mav bX,leh

cmp di,cs:curkey
je ni9 0
I!IOV cs:[di] ,ax
add di,2
and di,KB LEN-1
jmp ni9_0

mav cs:nextkeY,di
mav b_next,bx
pop ax
pop bx
pop di
pop ds
pop es

iret

assume ds:code
endp

;Get character from BIOS kbd. buffer
;Set pointer to next character
;Reached end of keyboard buffer?
;NO --> NI9_1

;YES --> Set start of kbd. buffer

;Virtual keyboard buffer full yet?
;YES --> Don't store any more chars
;Characters in virtual kbd. buffer
; Set pointer to next character
; Wrap-around
;Get next character

;Mark position for next character
;Set BIOS pointer to next character
;Pop reqisters off of stack

;Return to interrupt caller

IDS indicates code segment

;-- New handler for BIOS keyboard interrupt 16H ---------------------

70S

19. Interaction. between Keyboard, BIOS and DOS 	 PC System Programming

new_int16 proc far 	 ;New interrupt 16H handler

stl ;Enable interrupt
cmp ah,l ;Read keyboard status?
ja status ;YES --> Status

;-- Update keyboard LEOs when function 1 of the old keyboard
;-- handler is called

push ax ;Push function code on the stack

pushf ;Push flags onto stack
IOOV ah,l ; Funct . no. : Key ready?
call cs: [intl6] ;Call old handler

pop ax ; Pop funct ion code off of stack
push bx ;Push BX onto stack

n1l6_0: 	 IOOV bx,cs:curkey ;Get pointer to current key
add bX,2 ;Set to next word
and bX,KB LEN-l iWrap-around
or ah,ah- i Read character?
je n1l6_2 ;YES --> Get character from buffer

, Function 1: Help caller determine whether a character is
;-- available

cmp bx,cs:nextkey ;Found a character in KEYBUF?
je nil6 1 ;NO --> NIl6_1

IOOV ax, cs: [bx] iYES, Get character from KEYBUF
nil6_1: pop bx ;Pop BX off of stack

ret 2 ;Return to caller but DO NOT remove
;flags from stack

i-- Function 0: Read character from the keyboard buffer

cmp bx,cs:nextkey ;Character found in KEYBUF?
je n1l6_0 iNO --> NIl6 °

IOOV ax, cs: [bx] ;YES -- > Get character from KEYBUF
IOOV cs:curkey,bx ;Store position for current character
pop bx ;Pop BX off of stack
iret. ;Return to caller

status: 	 jmp cs: [intl6] ;Jump to old handler

new int16 endp

;--

instend equ this byte 	 ;Everything must remain resident up
;to this meroory location

;- Data (cann be overwritten from DOS) ---------------=-~=--

installm 	 db 13,10,"--- KEYBUF (c) 1988 by Michael Tischer ---",13,10,13,10
db "KEYBUF now enabled. Entering KEYBUF a second time",13,10
db "from the DOS prompt disables the KEYBUF program.",13,10,"S"

removeit 	 db 13,10,"--- KEYBUF (c) 1988 by Michael Tischer ---",13,10
db "KEYBUF program now disabled.",13,10,"S"

;- Program (can be overwritten fran DOS) -------------------

;-- start 	and nitialization routine -----------------------------------

label near

IOOV aX,3509h ;Get contents of interrupt vector 9H

706

AbacllS

install

int 21h
cmp es:keybuf id,·CS·
jne install

;-- If KEYBUF is already installed, remove it ---------------

cli
Ids dx,es:int9
mov ax, 2509h
int 21h

Ids dx,es:int16
mov ax, 2516h
int 21h
ati

mov bx,es
mov es,es:env_seg
mov ah,49h
int 2lh

mov es,bx
mov ah,49h
int 2lh

push cs
pop ds

;Disable interrupts
;DS:DS - old handler address int9H
;Return interrupt vector for int 9H
Ito old interrupt handler

;DS:DS - Old handler address int16H
;Return interrupt vector 16H to old
;interrupt handler
;Enable interrupt

;Move segment address of program
;Get segment address of environment
;fram code segment and
;release memory

;Release memory of
;old KEYBUF using
;DOS interrupt 49H

; Push CS onto stack
;Pop OS off of stack

mov dx,offset removeit ;Message: Program disabled
mov ah,9 ;Write function number for string
int 21h ;Call DOS function

mov ax,4COOh ;Funct. no.: End program
int 21h ;Call DOS interrupt --> END

;-- Install KEYBUF

label near

;-- In order to configure new keyboard buffer within the
;-- PSP, the segment address must first be moved to the end
;-- of the PSP, where it cannot be overwritten

19. Inleraction between Keyboard, BIOS and DOS

;Cal DOS function
;proqram already installed?
;NO --> Install

mov ax, [2Ch)
mov env_seg-,ax

mov ax, 3509h
int 21h
mov int9_seg,es
mov int9_ofs,bx

mov ax, 3516h
int 21h
mov int16_seg,es
mov int16_ofs,bx

cli
mov ax, 2509h
mov dx,offset new_int9
int 21h

IIIOV ax, 2516h

;Load segment address of environment
land place in code segment

;Get contents of interrupt vector 9H
;Call DOS function
;Mark segment and offset address of
; interrupt vector 9H

;get contents of interrupt vector 16H
;Call DOS function
;Mark segment and offset address of
;interrupt vector 16H

;Disable interrupt
;Funct. no.: Set interrupt vector 9H
;Offset addr. of new into 9H handler
;Call DOS interrupt

;Funct. no.: Set interrupt vector 16H
mov
int
sti

dx,offset
2lh

new int16;Offset addr. of new into 16H handler
- ;Call DOS interrupt

;Enable interrupts

mov
IIIOV

int

dx,offset installm ;Message: Install program
ah,9 ;Function number for string display
21h ;Call DOS function

707

19. Interaction between Keyboard, BIOS and DOS 	 PC System Programming

;-- Just PSP, new interrupt routine and corresponding -------
;-- data must be resident -------

lIIOY <lx, offset instend ;Get offset address of last byte
add <lx, 15 ;Make paragraph -full
lIIOY cl,4 ;Compute number of resident
shr dx,cl ; paragraphs
lIIOY ax, 3100h ;Terminate but keep resident program
int 21h ;with end code of (0)

;- Ende ---

code 	 ends ;End of code segment
end start

708

Appendices

Appendices A to F contain descriptions of each interrupt.

AppendixA. Important Hardware Interrupts 710
AppendixB. BIOS Interrupts and Functions 713
AppendixC. DOS Interrupts and Functions 766
AppendixD. EMM Functions 849
AppendixE. EGANGA BIOS Functions 856
AppendixF. Mouse Driver Interrupts 882

These descriptions include documentation of the interrupt, any sub-functions (if
applicable) and a listing of input and output registers (if applicable). Each interrupt
title has the following fonnat:

Interrupt hex_numberH
Interrupt_name

Every processor register important to the called function is mentioned. Registers
that aren't included in this list don't apply to the called function, and can contain
any value during the call of the interrupt

The output listing identifies the register that contains information returned by the
function after the call is completed. The register assignment depends on whether or
not the function call is successfully executed. If a specific value is supposed to be
in the AX register after a successful execution, but the function doesn't execute
properly, then the value in this register won't have any meaning. Problems in each
function will be addressed as needed.

In addition to the description of the input and output registers, details about the
function may also be included. For example, the function may be used in
conjunction with another function. There may also be information about any
changes in register contents caused by the function call. This is very important to
the assembly language programmer who wants to keep data in a register after the
function call. This programmer wants to avoid any changes in the contents of the
registers.

709

Appendix A

Important Hardware
Interrupts

Interrupt OOH Hardware (CPU)
Division by zero

The CPU calls this interrupt when it encounters a divisor of 0 during one of the
two assembly language division instructions (DIY or IDN). According to the rules
of mathematics, dividing a number by 0 is illegal. During the booting process,
this interrupt points to a routine that, when called, displays the "Division by Zero"
error message (or a similar message) on the screen. The interrupt continues with
the execution of the current program.

Interrupt 01H Hardware (CPU)
Single step

The CPU calls this interrupt when the TRAP bit in the flag register of the CPU
has been set to 1. Then the interrupt is called after the execution of each assembly
language instruction. This allows the user to follow these instructions, determine
the changes in register contents and determine which instructions are executed. To
prevent the call of the interrupt after the execution of every instruction in the trap
routine (which would create an endless loop and a stack overflow), the processor
resets the TRAP bit upon entry to the trap routine. If the trap routine ends with
the IRET instruction, it automatically resets the TRAP bit to its old value by
restoring the complete flag register from the stack. Because of this, the execution
of the next instruction calls interrupt 1 again. Once the programmer has obtained
the necessary information about a program from single step mode, the TRAP
mode (or TRAP bit) can be disabled.

710

AbaclLS' Appendix A: ImportOlll Hardware Interrupts

Interrupt 02H Hardware (CPU)
NMI

The hardware calls this interrupt when an error is discovered in the RAM chips.
The system calls the non-maskable interrupt because this type of error impairs the
capabilities of the system, and can lead to a crash. The NMI has the highest
priority of all interrupts and therefore is executed faster than other interrupts. The
NMI usually calls a BIOS routine which informs the user of a memory error,lists
the number of defective memory chips and stops the system.

If the NMI detects an error, the math coprocessor included in some PCs can also
trigger the NMI. Even though NMI usually cannot be suppressed, the PC allows
an exception to this rule. Some PC/XT and AT models have a special port (port
AOH on PCs and XTs, port 70H on ATs). If a 0 value is written to one of these
ports, the NMI interrupt is disabled . If the ports return the value SOH, the NMI
interrupt is enabled.

Interrupt 03H Hardware (CPU)
Breakpoint

While the other interrupts can be called with a two-byte assembly language
instruction (first byte CDH, second byte the number of the interrupt), interrupt 3
is called by the single-byte instruction CCH. This interrupt can be used to test
programs when you want to execute the program up to a certain instruction, then
stop and display the current register contents. Utilities designed for program testing
like DEBUG implement this by placing calls for interrupt 3 where the break
should occur. When the program is executed and the processor reaches the
instruction, it calls interrupt 3. The program testing utility contains a routine
which displays the register contents and other information.

Interrupt 04H Hardware (CPU)
Overflow

This interrupt can be called by the INTO (INTerrupt on Overflow) conditional
assembly language instruction. The call occurs when the overflow bit in the flag
register is set during the execution of the INTO instruction. This can happen
following math operations (e.g., multiplication with the MUL instruction) that
produce a result which cannot be represented within a specified number of bits.
This interrupt can also be called with the normal INT instruction, but this
instruction isn't controlled by the status of the set overflow bit. Since it is seldom
used, DOS points this interrupt to an IRET instruction.

Interrupt 05H BIOS
Hardcopy

BIOS calls this interrupt when the user presses the <Prt Sc> key. The system then
makes a hardcopy by sending the current screen contents to a printer. BIOS

711

Appendix A " Importanl Hardware InlUTwpts PC System Programming

initializes the interrupt vector from the vector table and points to the BIOS
hardcopy routine in ROM-BIOS. Assembly language and programs written in
higher level languages can use this interrupt with the INT instruction to get a
hardcopy during program execution.

Interrupt 08H Hardware (8259 interrupt controller)
Timer

In the PC, the 8259 timer chip receives 1,193,180 signals per second from the
heart of the system, which is an oscillating quartz crystal. After 65,536 of these
signals (I second), it triggers a call of interrupt 8, which the 8259 transmits to the
CPU. Since the frequency of the call of this interrupt is independent of the system
clock frequency, interrupt 8 works well for timekeeping. The PC also uses the
interrupt for timekeeping. BIOS points the interrupt vector of this interrupt to its
own routine, which is called 18.2 times per second. A time counter increments
every second and disables the disk drive motor ifdisk access hasn't occurred within
a certain time period.

Interrupt 09H Hardware (8259 interrupt controller)
Keyboard

PC keyboards contain an independent processor. This Intel processor carries either
the number 8048 (PCIXT) or 8042 (AT). This processor monitors the keyboard
and registers whether a key was depressed or released. When either of these actions
occur, this processor must inform the CPU so that the code of the activated key
can be sent to the system and processed. The keyboard instructs the interrupt
controller to call interrupt 9. This interrupt calls a BIOS routine that reads the
character from the keyboard and places it into the keyboard buffer.

712

Appendix B

BIOS Interrupts and
Functions

Interrupt 108: Video functions
Function Description Page Number
OOH Set video mode .. 716

OlH Define cursor type ...•..•..••............•••...•.•••••............716

02H Position cursor ..717

03H Read cursor position ... 718

04H Read lightpen position .. 718

OSH Select current display page719

06H Initialize window/scroll text upward 719

07H Initialize window/scroll text downward720

08H Read character/attribute .. 720

09H Write character/attribute ... 721

OAH Write character ... 722

OBH Select palette (sub-function 0) 723

OBH Select color palette (sub-function 1)723

OCH Write graphic pixeL..724

ODH Read graphic pixeL ...724

OEH Write character ...725

OFH Read display mode .. 726

13H Write character string (AT only)726

Interrupt 118: Determine configuration727

Interrupt 128: Determine memory size..................................728

Interrupt 138: Disk
Function Description Page Number
OOH Reset floppy disk system729

OlH Read disk status ..730

02H Read disk..731

03H Write to disk ...731

04H Verify disk sectors ...732

713

Appendix B: BIOS Inte""pts and FlUlCtions PC System ProgrlDlUlling

OSH Format track ..733

ISH Determine drive type (AT ooly)•..•.................734

16H Determine disk change (AT only)735

17H Detennine disk fonnat (AT only)•..............735

Interrupt 13H: Hard disk

Function Description Paae Number

OOH Reset {XT and AT only) ..736

OIH Read disk status {XT and AT only)736

02H Read disk (XT and AT only)...................................737

03H Write to disk (XT and AT only)738

04H Verify disk sectors (XT and AT only).......................740

05H Fonnat cylinder (XT and AT only) 741

08H Check fonnat (XT and AT only)742

09H Adapt to foreign drives (XT and AT ooly)743

OAH Extended read (XT and AT only)..........................•...744

OBH Extended write (XT and AT only)745

ODH Reset {XT and AT only) ..746

lOH Drive ready? {XT and AT only)747

llH Recalibrate drive (XT and AT only)748

14H Controller diagnostic (XT and AT only)748

15H Detennine drive type (AT only)749

Interrupt 14H: Serial interface

Function Description Page Number

OOH Initialize ..750

01H Output character ..751

02H Input character ..751

03H Read status ..752

Interrupt ISH: Cassette interrupt (AT only)

Function Description Page Number

83H Set flag after time interval (AT only)752

84H Read joystick fire button (sub-function 0) (AT only)...753

84H Read joystick position (sub-function I) (AT only)......753

85H <Sys Req> key activated (AT only)754

86H Wait (AT only)..754

87H Move memory areas (AT only)754

88H Detennine memory size beyond I megabyte (AT only)755

89H Switch to protected mode (AT only)755

Interrupt 16H: Keyboard
Function Description Pa"e Number
OOH Read character ...756

OIH Read keyboard for character756

02H Read keyboard status ..757

714

Abacus

Interrupt 17H:

Interrupt 18H:

Interrupt 19H:

Function
OOH
OlH
02H

Interrupt lAH:
Function
OOH
OlH
02H
03H
04H
05H
06H
07H

Interrupt IBH:

Interrupt lCH

Interrupt IDH

Interrupt lEH

Interrupt IFH

Appendix B. BIOS Interrupts and Functions

Parallel printer
Description rue Number
Write character .. 757
Initialize printer .. 758
Read printer status ... 758

Call ROM BASIC ... 759

Boot process\) .•...•••••.•••••.•••••.•.•.•.•...•..•759

Date and time

Description rue Number

Read time counter ... 759

Set time counter ...7(1)

Read realtime clock (AT only)7(1)

Set realtime clock (AT only) 761

Read date from realtime clock (AT only) 761

Set date in realtime clock (AT only) 762

Set alarm time (AT only) 762

Reset alarm time (AT only) 763

<Break> key pressed 763

Periodic interrupt ... 764

Video table .. 764

Drive table .. 764

Character table .. 765

715

Appendix B: BIOS Interrupts and F/UlCtions 	 PC System ProgrQ11lllUng

Interrupt 108, function. 008 BIOS
Video: Set video mode

Selects and initializes a video mode and clears the screen. This function is a fast
method of clearing the screen while maintaining the current video mode.

Input: AH= OOH
AL = Video mode

0: 4Ox25 text mode, monochrome (color card)
1: 40x25 text mode, color (color card)
2: 80x25 text mode, monochrome (mono card)
3: 8Ox25 text mode, color (color card)
4: 32Ox200 4-color graphics (color card)
5: 32Ox200 4-color graphics (color card)

(colors displayed in monochrome)
6: 640000 2-color graphics (color card)
7: Internal mode (mono card)

Output: No output

Remarks: 	 The colors for modes 4, 5 and 6 can be set with function 11.

The contents of the BX, CX, OX registers and the SS, CS and OS
segment registers are not affected by this function. The contents of all
other registers may change, especially the SI and DI registers.

Interrupt 108, function 018 BIOS
Video: Define cursor type

Defines the starting and ending lines of the cursor. This cursor exists independently
of the current display page.

Input: 	 AH= OlH
CH = Starting line of the cursor
CL = Ending line of the cursor

Output: 	 No output

Remarks: 	 The values allowed for the cursor's starting and ending line depend on the
installed video card The following values are permitted:

Monochrome display cards: 0-13
Color display cards: 0-7

BIOS defaults to the following values:

Monochrome display cards: 11-12
Color display cards: 6-7

716

AbacllS 	 AppeNJiJe B. BIOS Irtlernlpts and FllllClions

You can use this function to set the cursor only within the permitted
ranges. Setting cursor lines outside these parameters may result in an
invisible cursor or system poblems.

The contents of the BX, ex, ox registers and the segment registers SS,
es and OS are not affected by this function. The contents of all the other
registers may change, especially the SI and DI registers.

Interrupt lOB, function 02B BIOS
Video: Position cursor

Repositions the cursor, which determines the screen position for character output
by using one of the BIOS functions.

Input: 	 AH= 02H
BH = OispJay page number
OH = Screen line
OL = Screen column

Output: 	 No output

Remarks: 	 The blinking cursor moves through this function when the addressed
display page is the current display page.

Values for the screen line parameter range from 0 to 24.

Values for the screen column parameter range from 0 to 79 (for an 80
column display) or from 0 to 39 (for a 40-column display), depending on
the selected video mode.

You can make the cursor disappear by moving it to a nonexistent screen
position (e.g., column 0, line 25).

The number of the display page parameter depends on how many dispJay
pages are available to the video card.

The contents of the BX, ex, ox registers and the SS, es and OS
segment registers are not affected by this function. The contents of all
other registers may change, especially the SI and DI registers.

717

Appendix B: BIOS InterrMpIs ONJ FlUlCtions PC System Programming

Interrupt lOB, 'unction 03B BIOS
Video: Read cursor position

Senses the text cursor's position, starting ~ne and ending line in a display page.

Input:

Output:

Rema.tks:

AH= 03H
BH = Display page number

OH = Screen line in which the cursor is located
OL = Screen column in which the cursor is located
CH = Starting line of the blinking cursor
CL = Ending line of the blinking cursor

The number of the display page parameter depends on how many display
pages are available to the video card.

Line and column coordinates are related to the text coordinate system.

The contents of the BX register and the SS, CS and OS segment registers
are not affected by this function. The contents of all the other registers
may change, especially the SI and DI registers.

Interrupt lOB, function 04B BIOS
Video: Read Jightpen position

Senses the position of the lightpen on the screen if applicable.

Input:

Output:

Rema.tks:

AH= 04H

AH = Lightpen position ~ng stabls
0: Lightpen position unreadable
1: Lightpen position readable

OH = Screen line of the lightpen (text mode)
OL = Screen column of the lightpen (text mode)
CH = Screen line of the lightpen (graphic mode)
BX= Screen column of the lightpen (graphic mode)

This function call must be repeated until 1 is returned in the AH register,
because only then can coordinates be read from the other registers.

Coordinates indicated represent the cwrent video mode's resolution.

Usually the coordinates of the light pen cannot be accurately sensed in the
graphic mode. The Y -coordinate (line) is always a multiple of 2, so it
isn't possible to determine whether the lightpen is in line 8 or 9. The X
coordinate (column) is always a multiple of 4 in 320x200 graphic mode
and a multiple of 8 in the 64Ox2OO bitmap mode.

The contents of the CL register and the SS, CS and OS segment registers
are not affected by this function. The contents of all the other registers
may change, especially the SI and DI registers.

718

Abacus 	 Appendix B. BIOS Interrupts and Frurctions

Interrupt IOU, runction OSU BIOS
Video: Select current display page

Selects the cumnt display page (text mode only) which should be displayed.

Input: AII= 05H
AL = Display page number

Output: No output

Remarks: The number of the display page depends on the number of display pages
available to the video card.

On switching to a new display page, the screen cursor points to the
position of the text cursor in this page.

Switching between various display pages does not affect their contents
(the individual characters).

You can write characters to an inactive display page.

The contents of the BX. CX. OX registers and the SS. CS and OS
segment registers are not affected by this function. The contents of the
other registers, such as the SI and DI registers. may change.

Interrupt IOU, runction 06U BIOS
Video: Initialize window/scroll text upward

Clears window or scrolls a portion of the current display page up by one or more
lines. depending on the input.

Input: 	 AH= 06H
AL = Number of window lines to be scrolled upward (O=clear window)
CH = Screen line of the upper left comer of the window
CL = Screen column of the upper left comer of the window
OH = Screen line of the lower right comer of the window
OL = Screen column of the lower right corner of the window
BH = Color (attribute) for blank line(s)

Output: 	 No output

Remarks: 	 Initializing a window (placing a 0 in the AL register) fills the window
with blank spaces (ASCII code 32).

The contents of the lines scrolled out of the window are lost and cannot
be restored.

Function 0 of this interrupt is better for clearing the entire screen.

719

Appendbc B: BIOS Interrupts and FlIIICtions 	 PC System Programmin.g

The contents of the BX. CX. OX registers and the SSt CS and OS
segment registers are not affected by this function. The contents of all
other registers may change. especially the SI and DI registers.

Interrupt IOU, function 07U BIOS
Video: Initialize window/scroll text downward

Clears window or scrolls a portion of the current display page up by one or more
lines. depending on the input.

Input: 	 AH= 07H
AL = Number of window lines to be scrolled downward (O=clear window)
CH = Screen line of the upper left corner of the window
CL = Screen column of the upper left corner of the window
DH = Screen line of the lower right corner of the window
OL = Screen column of the lower right corner of the window
BH = Color (attribute) for blank line(s)

Output: 	 No oUlput

Remarks: 	 This function only affects the current display page.

Initializing a window (placing a 0 in the AL register) fills the window
with blank spaces (ASCII code 32).

The contents of the lines scrolled out of the window are lost and cannot
be restored.

Function 0 of this interrupt is better for clearing the entire screen.

The contents of the BX, CX, DX registers and the SS, CS and DS
segment registers are not affected by this function. The contents of all
other registers may change, especially the SI and DI registers.

Interrupt IOU, function 08U BIOS
Video: Read character/attribute

Reads the ASCII code of the character at the current cursor position and its color
(attribute).

Input: 	 AH= OSH
BH = Display page number

Output: 	 AL = ASCII code of the character
AH = Color (attribute)

720

Abacus 	 AppendiJc B. BIOS Interrupts and P/U'lCtions

Remarks: 	 The number of the display page depends on the number of display pages
made available to the video card.

This function can also be called in graphic mode. The function compares
the bit pattern of the character on the screen with the bit pattern of the
character in character ROM of the video card and with the character
patterns stored in a RAM table whose addresses appear in interrupt IFH.
If the character cannot be identified, the AL register contains the value 0
after the function call.

The contents of the BX, CX, DX registers and the SS, CS and DS
segment registers are not affected by this function. The contents of the
other registers may change, especially the SI and DI registers.

Interrupt IOU, function 09U BIOS
Video: Write character/attribute

Writes a character with a certain color (attribute) to the current cursor position in a
predefined display page.

Input: 	 AH= 09H
BH = Display page number
CX = Number of times to write the character
AL = ASCII code of the character
BL = Attribute

Output: 	 No output

Remarks: 	 If the character should be displayed several times (the value of the CX
register is greater than I), all characters must fit into the current screen
line in the graphic mode.

The control codes (e.g., bell, carriage return) appear as normal ASCII
codes.

This function can display characters in graphic mode. The patterns of the
characters, with the codes from 0 to 127, are determined by a table in
ROM. The patterns of the characters with the codes from 128 to 255 are
determined by a RAM table that was previously installed by OOS the
GRAFfABL command.

In text mode, the contents of the BL register define the attribute byte of
the character. In graphic mode this register determines the color of the
character. The 64Ox200 bitmap mode only allows the values 0 and 1 for
selecting colors from the color palette. The 320x200 bibDap mode only
allows the values 0 to 3 for selecting colors from the color palette.

If the graphic mode is active during character output and bit 7 of the BL
register is set, an exclusive OR is performed on the character pattern and
the graphic pixels behind the character pattern.

721

Appendix B: BIOS /nurrllpts and FlUlClions 	 PC System Programming

After character output, the cursor remains in the same position as the
character.

The contents of the BX, ex, DX registers and the SS, es and DS
segment registers are not affected by this function. The contents of all
other registers may change, especially the SI and DI registers.

Interrupt IOU, function OAU BIOS
Video: Write character

Writes a character to the current cursor position in a predefined display page by
using the color of the character previously at this position.

Input: 	 AR= OAR
BH = Display page number
ex = Number of times to write the character
AL = ASCII code of the chamcter

Output: 	 No output

Remarks: 	 If the character should be displayed several times (the value of the ex
register is greater than 1), all characters must fit into the current screen
line in the graphic mode.

The control codes (e.g., bell, carriage return) appear as normal ASeII
codes.

This function can display characters in graphic mode. The patterns of the
characters with the codes from 0 to 127 are determined by a table in ROM
and the patterns of the characters with the codes from 128 to 255 are
determined by a RAM table previously installed by the GRAFfABL
command.

In text mode, the contents of the BL register define the attribute byte of
the character. In graphic mode this register determines the color of the
character. The 640x200 bitmap mode only allows the values 0 and 1 for
selecting colors from the color palette. The 320x200 bitmap mode only
allows the values 0 to 3 for selecting colors from the color palette.

If the graphic mode is active during character output and bit 7 of the BL
register is set, an exclusive OR is performed on the character pattern and
the graphic pixels behind the character pattern.

The cursor remains in the same position after character output.

The contents of the BX, ex, DX registers and the SS, es and DS
segment registers are not affected by this function. The contents of all
other registers may change, especially the SI and DI registers.

722

Abacus 	 Appendbc B. BIOS Interrupts and FlUlCtions

Interrupt 108, function OB8, sub·function 0 BIOS
Video: Select palette

Selects the border and baclcground color for graphic or text mode.

Input: 	 AH= OBH
BH= 0
BL = Bmierlbackground color

Output: 	 No output

Remarlcs: 	 In graphic mode, the color value passed defines the color of both the
border and background. In text mode, the background color of each
character is defmed individually, so the passed color value only defmes the
color of the screen border.

Values for the color passed can range from 0 to IS.

The contents of the BX, CX, OX registers and the SS, CS and OS
segment registers are not affected by this function. The contents of all
other registers may change, especially the SI and DI registers.

Interrupt 10H, function OBH, sub·function 1 BIOS
Video: Select color palette

Selects one of the two color palettes for the 32Ox200 bitmapped graphic mode.

Input: 	 AH= OBH
BH= 1

BL = Color palette number

Output: 	 No output

Remarlcs: 	 Two color palettes are available. They have the numbers 0 and 1 and
contain the following colors:

Palette 0: Green, red, yellow
Palette 1: Cyan, magenta, white

The contents of the BX, ex, ox registers and the SS, es and OS
segment registers are not affected by this function. The contents of all
other registers may change, especially the SI and DI registers.

723

Appendix B: BIOS Interrupts and FlllfCtions 	 PC System Programming

Interrupt 10H, function OCH BIOS
Video: Write graphic pixel

Draws a color pixel at the specified coordinates in graphic mode.

Input: 	 AH= OCH
AL = Pixel color value (see below)
BH = Graphics page
ex = Screen column
ox = Screen line

Output: 	 No output

Remarks: 	 The pixel value color parameter depends on the current graphic mode.
64Ox200 bitmapped mode only permits the values 0 and 1. In the
32Ox200 bitmapped mode, the values 0 to 3 are permitted, which gener
ates a certain color according to the chosen color palette. 0 represents the
selected background color; 1 represents the first color of the selected color
palette; 2 represents the second color of the color palette, etc.

The contents of the BX, ex, ox registers and the SS, CS and OS
segment registers are not affected by this function. The contents of all
other registers may change, especially the SI and DI registers.

Interrupt 10H, function ODH BIOS
Video: Read graphic pixel

Reads the color value of a pixel at the specified coordinates in the current graphic
mode.

Input: 	 AH= OOH
OX = Screen line
ex = Screen column

Output: 	 AL = Pixel color value

Remarks: 	 The pixel color value parameter depends on the current graphic mode.
64Ox200 bitmapped mode permits the values 0 and 1 only. In the
320x200 bitmapped mode, the values 0 to 3 are permitted, which gener
ates a certain color according to the color palette chosen. 0 represents the
selected background color; 1 represents the first color of the selected color
palette; 2 represents the second color of the color palette, etc.

The contents of the BX, ex, ox registers and the SS, es and OS
segment registers are not affected by this function. The contents of all
other registers may change, especially the SI and DI registers.

724

Abacw 	 Appendix B. BIOS 17Ilemlpts and F/I.1ICtions

Interrupt IOU, function OEH BIOS
Video: Write character

Writes a character at the current cursor position in the current display page. The
new character uses the color of the character that was previously in this position
on the screen.

Input: 	 AH= OEH
AL = ASCII code of the character
BL = Foreground color of the character (graphic mode only)

Output: 	 No output

Remarks: 	 This function executes control codes (e.g., bell, carriage return) instead of
reading them as ASCII codes. For example, the function sounds a beep
instead of printing the bell character.

After this function displays a character, the cursor position increments so
that the next character appears at the next position on the screen. If the
function reaches the last display position, the display scrolls up one line
and output continues in the fll'St column of the last screen line.

The foreground color parameter depends on the current graphic mode.
64Ox200 bitmapped mode only permits the values 0 and 1. In the
32Ox200 bitmapped mode, the values 0 to 3 are permitted, which
generates a certain color according to the chosen color palette. 0 represents
the selected background color; 1 represents the fll'St color of the selected
color palette; 2 represents the second color of the color palette, etc.

The contents of the BX, CX, DX registers and the SS, CS and DS
segment registers are not affected by this function. The contents of all
other registers may change, especially the SI and DI registers.

725

Appendix B: BIOS Inlerrupts and FlUlClions 	 PC System ProgrlJl1llfUng

Interrupt IOU, function OFU BIOS
Video: Read display mode

Reads the number of the current video mode, the number of characters per line and
the number of the current display page.

Input: AH = OFH

Output: AL = Video mode
0: 40x25 text mode, monochrome (color card)
1: 4Ox25 text mode, color (color card)
2: 8Ox25 text mode, monochrome (mono card)
3: 8Ox25 text mode, color (color card)
4: 32Ox200 4-color graphics (color card)
5: 32Ox200 4-oolor graphics (color card)

(colors represented in monochrome)
6: 640x200 2-oolor graphics (color card)
7: Internal mode (mono card)

AH = Number ofcharacters per line
BH = Current display page number

Remarks: 	 The contents of the BX, ex, ox registers and the SS, es and OS
segment registers are not affected by this function. The contents of all
other registers may change, especially the SI and DI registers.

Interrupt IOU, function 13U BIOS (AT only)
Video: Write character string

Displays a character string on the screen, starting at a specified screen position on
a specified display page. The characters are taken from a buffer whose address
passes to the function.

Input: 	 AH= 13H
AL = Output mode (0--3)

0: Attribute in BL, retain cursor position
1: Attribute in BL, update cursor position
2: Attribute in the buffer, retain cursor position
3: Attribute in the buffer, update cursor position

BH = Display page number
BL = Attribute byte of the character (modes 0 and 1 only)
BP = Offset address of the buffer
ex = Number of characters to be displayed
DH = display line
DL = display column
ES = segment address of the buffer

Output: 	 No output

726

Abacus 	 Appendix B. BIOS InlemllJts and FlUfCtions

Remarks: 	 Modes 1 and 3 set the cursor position following the last character of the
character sUing. On the next call of a BIOS function for character output.
the next stting of characters appears following the original character
sUing. This does not occur in the modes 0 and 2.

In modes 0 and 1, the buffer contains only the ASCII codes of the
characters to be displayed. The BL register contains the color of the
character string. However, in modes 2 and 3 each character has its own
atttibute byte when the character is stored in the buffer. The BL register
doesn't have to be loaded in this mode. Even though the character sUing is
twice as long in these modes as the number of the characters to be
displayed, the ex register requires only the number of ASCII characters
in the string and not the total length of the character stting.

Control codes (e.g., bell) are interpreted as control codes only, and not as
chanK;ters.

When the sUing reaches the last position on the screen, the display scrolls
upward by one line and output continues in the first column of the last
screen line.

The contents of the BX, CX, DX registers and the SS, CS and DS
segment registers are not affected by this function. The contents of all
other registers may change, especially the SI and DI registers.

Interrupt llH BIOS
Determine configuration

Reads the configuration of the system as recorded during the booting process.

Input: No input

Output: AX =Configuration

PC and XT: Bit 0: 1 if the system has one or more disk drives
Bit 1: Unused
Bits 2-3: RAM available on main circuit board

00: 16K
01: 32K
10: 4SK
ll:64K

Bits 4-5: Video mode after system boot
00: Unused
01: 4Ox25, color card
02: SOX25, color card
03: S0x2S,monocard

Bits 6-7: Number of disk drives in the system ifbit 0 is equal to 1
00: 1 disk drive
01: 2 disk drives
10: 3 disk drives
11: 4 disk drives

727

Appendix B: BIOS Interrupts and Functions 	 PC System Programming

Bit 8:

Bits 9-11:

Bit 12:

Bit 13:

Bits 14-15:

AT: 	 Bit 0:
Bit 1:
Bit 2-3:
Bit 4-5:

owhen a DMA chip is present
Number of RS-232 cards connected
1 when system has a joystick attached
Unused
Indicates the number of printers available

1 if the system has one or more disk drives
1 when a math coprocessor exists in the system
Unused
Video mode during system boot

00: Unused
01: 4Ox25,colorcard
02: 8Ox25, color card
03: 8Ox25, mono card

Bits 6-7: Number of disk drives in the system if bit 0 is equal to 1
00: 1 disk drive
01: 2'disk drives
10: 3 disk drives
11: 4 disk drives

Bit 8: Unused
Bits 9-11: Number ofRS-232 cards connected
Bit 12-13: Unused
Bits 14-15: Indicates the number of printers available

Remarlcs: 	 The type of PC must be known (pc, XT or A1) in order to properly
interpret the meanings of the individual bits of the configuration word.

The memory size indicated in bits 2 and 3 of the PC/XT configuration
word refers only to the main circuit board. Interrupt 12H lets you
determine the total amount of available memory.

The video mode recorded in bits 4 and 5 is the mode that was activated
when the system was switched on. To determine the current video mode
use function 15 of interrupt 1OH.

The contents of the AX register are affected by this function.

Interrupt 128 BIOS
Determine memory size

Input: 	 No input

Output: 	 AX =Memory size in kilobytes

Remarlcs: 	 The PC and the XT can accept a maximum of 640K of RAM. The AT
accepts up to 14 megabytes of RAM memory beyond the 1 megabyte
limit. The memory size returned by this function ignores this extended
memory. To determine the memory size beyond the I megabyte limit,
use function 88H of interrupt 15H (available only on the A1).

The contents of the AX register are affected by this function.

728

Abacus 	 Appendix B. BIOS Interrllpts and FlUlCtions

Interrupt 138, function 008 BIOS
Disk: Reset

Resets the disk controller ~d any connected disk drives. A reset should be executed
after each disk operation during which an error occwred.

Input: 	 AH= OOH
DL= Oor 1

Output: 	 Carry flag=O: Operation completed (AH=O)
Carry flag=l: Error (AH=error code)

Remarks: 	 The value in the DL register is unnecessary since all the disk drives
execute a reset. XT and AT models use this register to determine whether
a reset should be peIformed on the disk drives or the hard disk.

The following error codes can occur:

01H: Function number not permitted
02H: Address not found
03H: Write attempt on write protected disk
04H: Sector not found
08H: DMA overflow
09H: Data transmission beyond segment border
lOH: Read error
20H: Error in disk controller
40H: Track not found
SOH: Time out error, unit not responding

The contents of the BX, CX, DX, SI, DI, PB registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 138, function 018 BIOS
Disk: Read status

Reads the status of the disk drive since the last disk operation.

Input: 	 AH= 01H
DL= Oor 1

Output: 	 Carry flag=O: Operation completed (AH=O)
Carry flag=l: Error (AH=error code)

Remarks: 	 The value in the DL register is unnecessary, since disk drives constantly
return their status. XT and AT models use this register to determine
whether the status of the hard disk should be checked.

729

Appendix B: BIOS Interrupts and FlUfCtions 	 PC System Programming

The following error codes can occur:

OIH: FWlction number not permitted
02H: Address not found
03H: Write attempt on write protected disk
04H: Sector not found
OSH: DMA overflow
09H: Data transmission beyond segment border
IOH: Readenur
20H: Error in disk controller
40H: Track not found
SOH: Time out error, unit not responding

The contents of the BX, CX, DX, SI, 01, PB registers and the segment
registers are not affected by this fWlction. The contents of all other
registers may change.

Interrupt 138, (unction 028 BIOS
Disk: Read disk

Reads one or more disk sectors into a buffer.

Input: 	 AH= 02H
AL = Number of sectors to be read
BX = Offset address ofbuffer
CH = Track number
CL = Sector number
DH = Disk side number (0 or I)
DL = Disk drive number
ES = Buffer segment address

Output: 	 Cany flag=O: Operation completed (AH=O)
Cany flag=1: Error (AH=error code)

Remark: 	 The number of sectors to be read into the AL register is limited to sectors
which logically follow each other on a track on one side of the disk.

730

Abacus 	 Appendiz B: BIOS Interrupts and F/UlCtwns

The following error codes can occm:

01H: Function number not pennitted
02H: AddreM not found
03H: Write attempt on a write protected disk
04H: Sector not found
OSH: DMA overflow
09H: Data transmission over segment border
10H: Readenor
20H: Error in disk controller
40H: Track not found
SOH: Time out error, drive not responding

The contents of the BX, CX, DX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all the other
registers may change.

Interrupt 13H, function 03H BIOS
Disk: Write to disk

Writes one or more sectors to a disk. The data to be transmitted are taken from a
buffer.

Input: 	 AH= 03H
AL = Number of sectors to be written
BX = Offset address of buffer
CH = Track number
CL = Sector number
DH = Disk side number (0 or 1)
DL = Disk drive number
ES = Buffec segment address

Output: 	 Carry flag=O: Operation completed (AH=O)
Carry flag=1: Error (AH=error code)

Remark: 	 The number of sectors that can be written in the AL register is limited to
sectors which logically follow each other on a track on one side of the
disk.

The following error codes can occur:

01H: Function number not permitted
02H: Address not found
03H: Write attempt on a write protected disk
04H: Sector not found

731

Appendix B: BIOS Interrupts and FlU'lCtions 	 PC System Programming

OSH: DMA overflow
09H: Data transmission over segment bonler
10H: Readenor
2OH: Error in disk controller
4OH: Track not found
80H: Time out error, drive not responding

The contents of the BX, CX, DX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 13H, function 04H BIOS
Disk: Verify disk sectors

Compares one or more sectors on disk with the data stored in a buffer. This can be
used to verify that the data was properly saved to disk.

Input: 	 AH= 04H
AL = Number of sectors to be verified
BX = Offset address of buffer
CH = Track number
CL = Sector number
DH = Disk side number (0 or I)
DL = Disk drive number
ES = Buffer segment address

Output: 	 Carry flag=<>: Operation completed (AH=O)
Carry flag=l: Error (AH=error code)

Remarks: 	 The number of sectors to be verified in the AL register is limited to
sectors which logically follow each other on a track on one side of the
disk.

The following error codes can occur:

OIH: Function number not permitted
02H: Address not found
03H: Write attempt on a write protected disk
04H: Sector not found
08H: DMA overflow
09H: Data transmission over segment bonler
IOH: Read error
20H: Error in disk controller
40H: Track not found
SOH: Time out error, drive not responding

The contents of the BX, CX, DX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

732

Abacu Appendix B: BIOS Interrupts and FlUtCtions

Interrupt 13H, function 05H BIOS
Disk: Format track

Input:

Output:

Remark:

Formats a complete track on one side of a disk. A buffer which contains
information about the sectors to be formatted must be passed to the function.

AH= 05H

AL = Number of sectors to be formatted .

BX = Offset address ofbuffer

CH = Track number

OH = Disk side number (0 or 1)

OL = Disk drive number

ES = Buffer segment address

Carry fJag=O: Operation completed (AH=O)

Carry flag=l: Fznr (AH=emr code)

The number of sectors to be fonnatted is limited to sectors which
logically follow each other on a track on one side of the disk.

The buffer passed in ES:BX contains an entry consisting of four
consecutive bytes for every sector to be formatted.

1: Track number
2: Pagenumber
3: Logical sector number
4: Number of bytes in this sector:

0: 128 bytes
1: 256 bytes
2: 512 bytes (PC standard)
3: 1,024 bytes

The logical sector number increments continuously, but may not be the
same as the physical sector number.

The following error codes can occur:

01H: Function number not permitted
02H: Address not found
03H: Write attempt on a write protected disk
04H: Sector not found
OSH: OMA overflow
09H: Data transmission over segment border
lOH: Read error
2OH: Error in disk controller
4OH: Track not found
80H: Time out error, drive not responding

The contents of the BX, CX, OX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all the other
registers may change.

733

Appendix B: BIOS InleTrupts and F/UlCtions 	 PC System ProgramnUng

Interrupt 13H, function 1SH BIOS (AT only)
Disk: Determine drive type

Senses disk change and drive type. The AT supports both the standard 320/360K
drives and the 1.2 megabyte drives.

Input: 	 AH= ISH
DL = Disk drive number (0 or 1)

Output: Carry flag=O: Operation completed (AH=unit type)
AH=O: Device not present
AH=l: Unit does not recognize disk change
AH=2: Unit recognizes disk change
AH=3: Hard disk (see remarks below)

Carry flag=l: Error

Remark: 	 The AT has a controller which selectively controls 2 disk drives and a
hard disk, or one disk drive and 2 hard disks. In the latter case, the flrst
hard disk has the number 1 and can be accessed with this function.

The contents of the BX, CX, DX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 13H, function 16H BIOS (AT only)
Disk: Media cbange

Senses a disk change. The AT supports both the standard 320/360K drives and the
1.2 megabyte drives. This function reads any disk change that may have occurred
since the last disk access.

Input: 	 AH= 16H
DL = Disk drive number (0 or 1)

Output: 	 AH=O: No disk change
AH=6: Disk changed since last disk access

Remarks: 	 The contents of the BX, CX, DX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

734

Abacus 	 Appendix B: BIOS Intemq1ts and FlUlCtions

Interrupt 138, function 178 BIOS (AT only)
Disk: Determine disk format

Determines the format of a disk. The ATs 1.2 megabyte disk drive can read both
320/360K disks and 1.2 megabyte disks. While the BIOS can determine disk
format during a read or write access, it first must be informed of the formal
Function 23 must be called on the AT before you can call function 5 (format).

Input: 	 AH= 17H
AL= Format

AL=1: 320/360K format on 320!360K drive
AL=2: 320!360K foonat on 1.2 megabyte drive
AL=3: 1.2 megabyte foonat on 1.2 megabyte drive

Output: 	 Carry f1ag=O: Operation completed
Carry flag:1: Error

Remark: 	 The following error codes can occur:

01H: Function number not permitted
02H: Address not found
03H: Write attempt on a write protected disk
04H: Sector not found
08H: DMA overflow
09H: Data transmission over segment border
10H: Read error
2OH: Error in disk controller
40H: Track not found
80H: Time out error, drive not responding

The contents of the BX, CX, OX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

735

Appendix B: BIOS Interrupts and FlUlCtions 	 PC System Programming

Interrupt 13H, function ooH BIOS (XT and AT only)
Hard disk: Reset

Resets the hard disk controller and any interfaced bani disk drives. A reset should be
executed after every bani disk operation during which an enu was reported.

Input: 	 AII= OOH
OL= SOH or SIH

Output: 	 Carry fJag=O: Operation completed (AH=O)
Carry flag=1: Fmx' (AII=enu code)

Remarlcs: 	 The rust hard disk drive is assigned the number SOH, the second is
assigned the number S1H.

The value in the OL register is unnecessary since all the hard disk drives
execute a reset. XT and AT models use this register to determine whether
a reset should be perfonned on the disk drives or on the hard disk.

The following error codes can occur:

01H: Addressed function or unit not available
02H: Address not found
04H: Sector not found
05H: Error on controller reset
07H: Error during controller initialization
09H: OMA transmission error: Segment border exceeded
OAII: Defective sector
lOH: Read error
IIH: Read enu corrected by ECC
2OH: Controller defect
40H: Search operation failed
80H: Time out, unit not responding
AAH: Unit not ready
CCH: Write enu

The contents of the BX, ex, OX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 13H, function 01H BIOS (XT and AT only)
Hard disk: Read disk status

Reads the status of the hard disk since the last hard disk operation.

Input: 	 AH= OlH
OL= SOHorSlH

Output: 	 Carry flag=O: Operation completed (AH=O)
Carry flag=1: Error (AH=enu code)

73(;

Abacus 	 Appendix B: BIOS InlerrKpts and FlUlCtions

RemaIks: 	 The first hard disk drive is assigned the number 80H. the second is
assigned the number 8tH.

The value in the DL register is unnecessary since the status is
consistently returned for each disk drive. XT and AT models use this
register to determine whether the status of the disk drives or hard disk
should be checked.

The following error codes can occur:

01H: Addressed function or unit not available
02H: Address not found
04H: Sector not found
05H: Error on controller reset
07H: Error dwing controller initialization
09H: DMA transmission error: Segment border exceeded
OAH: Defective sector
10H: Readtm>r
IIH: Read error corrected by ECC
20H: Controller defect
40H: Search operation failed
80H: Time out. unit not responding
AAH: Unit not ready
CCH: Write error

The contents of the BX. CX. DX. SI. DI. BP registers and the segment
registers are not affected by this function. The contents of the other
registers may change.

Interrupt 13H, function 02H BIOS (XT and AT only)
Hard disk: Read disk

Reads one or more hard disk sectors into a buffer.

Input: 	 AH= 02H
AL = Number of sectors to be read (1-128)
BX = Offset address ofbuffer
CH = Cylinder number
CL = Sector number
DH =Read/write head number
DL = Hard disk number (80H or 81H)
ES = Buffer segment address

Output: 	 Carry flag=O: Opemtion completed (AH=O)
Carry flag=l: Error (AH=error code)

737

Appendix B: BIOS Inlerrllpts and FlUlCtions 	 PC System Programming

Remarlcs: 	 The first hard disk drive is assigned the number 80H, the second is
assigned the numbeJ' 81H.

Since the eight bits of the CH register can address only 256 cylinders at a
time, bits 6 and 7 of the CL register (sector number) form bits 8 and 9 of
the cylinder number, which enables the addressing of up to 1,023
cylinders at a time.

IT several sectors are being read and the system reaches the last sector of a
cylinder, reading continues at the ftrst sector of the next cylinder of the
next read/write head. IT the system reaches the last read/write head, reading
continues on the first sector of the following cylinder on the first
read/write head.

The following error codes can occur:

01H: Addressed function or unit not available
02H: Address not found
04H: Sector not found
OSH: Error on controller reset
07H: Error during controller initialization
09H: DMA transmission error: Segment border exceeded
OAH: Defective sector
lOH: Read enur
11H: Read error corrected by ECC
20H: Controller defect
40H: Search operation failed
80H: Time out, unit not responding
AAH: Unit not ready
CCH: Write error

The contents of the BX, CX, DX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 138, function 03H BIOS (XT and AT only)
Hard disk: Write to disk

Writes one or more sectors to the hard disk. The data to be transmitted are taken
from a buffer in the calling program.

Input: 	 AH = 03H
AL = Number of sectors to be written (1-128)
BX = Offset address ofbuffer
CR = Cylinder number
CL = Sector number
DR = Read/write head number
DL = Hard disk number (80H or 81H)
ES = Buffer segment address

738

Abacus

Output:

Remarks:

Appendix B: BIOS lrtlerrupts and F/UlCtions

Carry fIag=O: Operation completed (AH=O)
Carry t1ag=1: Error (AH=emr code)

The frrst hard disk drive is assigned the number 80H, the second is
assigned the number 81H.

Since the eight bits of the CH register can address only 256 cylinders at a
time, bits 6 and 7 of the CL register (sector number) form bits 8 and 9 of
the cylinder number, enabling the addressing of up to 1,023 cylinders at a
time.

If several sectors are being written and the system reaches the last sector
of a cylinder, writing continues at the first sector of the next cylinder of
the next read/write head. If the system reaches the 1ast read/write head,
writing continues on the first sector of the following cylinder on the fust
read/write head:

The following error codes can occur:

01H: Addressed function or unit not available
02H: Address not found
04H: Sector not found
05H: Error on controller reset
07H: Error during controllec initialization
09H: DMA transmission enor: Segment border exceeded
OAH: Defective sector
lOH: Read error
IlH: Read error corrected by ECC
20H: Controller defect
40H: Sean:h operation failed
80H: Time out, unit not responding
AAH: Unit not ready
CCH: Write error

The contents of the BX, CX, DX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

739

Appendix B: BIOS /1JIerrllpts and Functions 	 PC System Programming

Interrupt 13H, function 04H BIOS (XT and AT only)
Hard disk: Verify disk sector

Verifies one or more sectors of a hard disk. Unlike the corresponding floppy disk
function, the data on the hard disk are not compared with the data in memory.
During data storage, four check bytes are stored for every sector; these check bytes
verify the contents of a sector.

Input: 	 AH= 04H
AL = Number of sectors to be verified (1-12S)
BX = Offset address of buffer
CH = Cylinder number
CL = Sector number
DH = Read/write head number
DL = Hard disk number (SOH or SIH)
ES = Buffer segment address

Output: 	 Carry flag=&. Operation completed (AH=O)
Carry flag=1: Error (AH=error code)

Remarks: 	 The first hard disk drive is assigned the number SOH, the second is
assigned the number S1H.

Since the eight bits of the CD register can only address 256 cylinders at a
time, bits 6 and 7 of the CL register (sector number) form bits S and 9 of
the cylinder number, which enables the addressing of up to 1,023
cylinders at a time.

If several sectors are being verified and the system reaches the last sector
of a cylinder, verification continues at the first sector of the next cylinder
of the next read/write head. If the system reaches the last read/write head,
verification continues on the first sector of the following cylinder on the
first read/write head.

The following error codes can occur:

01H: Addressed function or unit not available
02H: Address not found
04H: Sector not found
05H: Error on controller reset
07H: Error dwing controller initialization
09H: DMA transmission error: Segment border exceeded
OAH: Defective sector
10H: Readerror
IIH: Read error corrected by ECC
20H: Controller defect
40H: Search operation failed
SOH: Time out, unit not responding
AAH: Unit not ready
CCH: Write error

740

AbacllS 	 Appendix B: BIOS Interrupts and FlU1Ctions

The contents of the BX, ex, ox, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 13H, function OSH BIOS (XT and AT only)
Hard disk: Format cylinder

Formats a complete cylinder (17 sectors) of a hard disk. A buffer, which contains
information about the sectors to be formatted. must be passed to the function.

Input: 	 AH= OSH
AL= 17
BX = Offset address ofbuffer
CH = Cylinder number
CL= 1
DH = Read/write head number
DL = Hard disk number (80H or 8IH)
ES = Buffer segment address

Output: 	 Carry flag=O: Operation completed (AH=O)
Carry flag=I: Error (AH=error code)

Remarks: 	 The fIrst hard disk drive is assigned the number 80H, the second is
assigned the number 8IH.

Since the eight bits of the CH register can only address 256 cylinders at a
time, bits 6 and 7 of the CL register (sector number) form bits 8 and 9 of
the cylinder number, which enables the addressing of up to 1,023
cylinders at a time.

Since a complete cylinder is always formatted, the first sector to be
formatted in the CL register is always sector 1. For the same reason the
number of sectors to be formatted in the AL register is always 17, since
the average hard disk operates with 17 sectors per cylinder.

The buffer, whose address is passed in ES:BX, must always be at least
512 bytes long. Only the fIrSt 34 bytes of this buffer are used for
formatting the 17 sectors of a cylinder. Two succeeding bytes contain
infOrmation about the corresponding physical sector. Before the function
call, the fIrSt byte isn't significant. Mter the function call the fIrst byte
indicates whether or not the sector could be formatted (OOH) or (80H). The
second byte returns the logical sector number of the physical sector and
must be placed in the buffer by calling the program before the function
call.

741

Appendix B: BIOS Interrupts and FlUlCtwns 	 PC System Programming

The following error codes can occur:

01H: Addressed function or unit not available
02H: Address not found
04H: Sector not found
05H: Error on controller reset
07H: Error during controller initialization
09H: DMA transmission error: Segment bonler exceeded
OAH: Defective sector
10H: Readmor
IIH: Read error corrected by ECC
20H: Controller defect
40H: Search operation failed
8OH: Time out, unit not responding
AAH: Unit not ready
CCH: Write error

The contents of the BX, CX, DX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 13H, function 08H BIOS (XT and AT only)
Hard disk: Check format

Conveys the formatting information found on the hard disk.

Input: 	 AH= 08H
CH = Cylinder nwnber .
CL = Sector nwnber
DH = Read/write head nwnber (O=first head)
DL = Hard disk: number

Output: 	 Carry flag=O: Operation completed (AH=O)
Carry flag=1: Error (AH=error code)

Remarks: 	 The first hard disk drive is assigned the number 80H, the second is
assigned the nwnber 81H.

Since the eight bits of the CH register can address only 256 cylinders at a
time, bits 6 aDd 7 of the CL register (sector number) form bits 8 and 9 of
the cylinder nwnber, enabling the addressing of up to 1,023 cylinders at a
time.

The total capacity of the hard disk unit in bytes can be calculated with the
following formula:

capacity = Heads * Cylinders * Sectors * 512

742

AbaclLf 	 Appendix B: BIOS Inteml/JI. tmd FlI1ICtions

The following error codes can occur:

OIH: Addressed function or lDlit not available
02H: Address not found
04H: Sector not found
OSH: Error on controller reset
07H: Error dOOng controller initialization
09H: OMA transmission error: Segment border exceeded
OAH: Defective sector
lOH: Read enur
IIH: Read error corrected by ECC
20H: Controller defect
40H: Search operation failed
SOH: Time out, unit not responding
AAH: Unit not re8dy
CCH: Write error

The contents of the BX, CX, OX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 13H, function 09H BIOS (XT and AT only)
Hard disk: Adapt to foreign drives

Interfaces other hard disk drives for access through BIOS functions.

Input: 	 AH= 09H
OL = Number of hard disk to be interfaced (SOH or SIH)

Output: 	 Carry flag=O: Operation completed (AH=O)
Carry flag=l: Error (AH=error code)

Remarlcs: 	 The frrst hard disk drive is assigned the number SOH, the second is
assigned the number SlH.

BIOS takes the information about the hard disk drive to be interfaced
(number of units, read/write heads, etc.) from a table. The address of this
table for the hard disk unit numbered SOH is stored in interrupt vector
41H. and the unit numbered SIH is stored in interrupt 46H.

The following error codes can occur:

OIH: Addressed function or unit not available
02H: Address not found
04H: Sector not found
OSH: Error on controller reset
07H: Error dOOng conbOller initialization
09H: OMA transmission error: Segment border exceeded
OAH: Defective sector
IOH: Readenur
IIH: Read error corrected by Ece

743

Appendix B: BIOS inlemllJts and FlUlCtions 	 PC System Progrtun11Ung

lOH: Controller defect
40H: Search operation failed
SOH: Time out, unit not responding
AAH: Unit not ready
CCH: Write error

The contents of the BX, CX, OX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 13H, function OAH BIOS (XT and AT only)
Hard disk: Extended read

Reads one,Or more sectors from the hard disk drive into a buffer. Besides the actual
512 bytes stored in the sector, the function also reads the four check bytes (ECC).

Input: 	 AR= OAR
AL = Number of sectors to be read (1-127)
BX= Offset address of buffer
CH = Cylinder number
CL = Sector number
OH = Read/Write head number
OL = Hard disk number (80H or 81H)
ES = Buffer segment address

Output: 	 Carry flag=O: Operation completed (AR=O)
Carry flag=l: Error (AH=error code)

Remarks: 	 The flTst hard disk drive is assigned the number 80H, the second is
assigned the number 81H.

Normally the controller computes the four check bytes. Here the buffer
reads the information direct

Since the eight bits of the CH register can only address 256 cylinders at a
time, bits 6 and 7 of the CL register (sector number) form bits 8 and 9 of
the cylinder number, enabling the addressing of up to 1,023 cylinders at a
time.

If several sectors are being read and the system reaches the last sector of a
cylinder, reading continues at the flTSt sector of the next cylinder of the
next read/write head. If the system reaches the last read/write head, reading
continues on the flTSt sector of the following cylinder on the flTst
readIwrite head.

The following error codes can occur:

OIH: Addressed function or unit not available
02H: Address not found
04H: Sector not found
05H: Error on controller reset

744

Abacus 	 Appertdbc B: BIOS Interrupts and FlUlCtiom

07H: Error dming controller initialization
09H: DMA transmission error: Segment border exceeded
OAH: Defective sector
lOH: Read em.
IIH: Read enol' corrected by Bce
20H: Controller defect
4OH: Search operation failed
80H: Time out, unit not responding
AAH: Unit not ready
CCH: Write error

The contents of the BX, ex, DX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 13H, function OBH BIOS (XT and AT only)
Hard disk: Extended write

Writes one or more sectors to the hard disk drive. Besides the actual 512 bytes
stored in a sector, four check bytes (ECC) stored at the end of every sector are
transmitted from the buffer.

Input: 	 AH= OBH
AL= Number of sectors to be read (1-127)
BX = Offset address of buffer
CH = Cylinder number
CL = Sector number
DH =Read/write head number
DL = Hard disk number (80H or 81H)
ES = Buffer segment address

Output: 	 Carry fIag=O: Operation completed (AH=O)
Carry flag=1: Error (AH=error code)

Remarks: 	 The first hard disk drive is assigned the number 80H, the second is
assigned the number 81H.

Normally the controller calculates the four check bytes. Here the system
reads them direct from the buffer.

Since the eight bits of the CH register can only address 256 cylinders at a
time, bits 6 and 7 of the CL register (sector number) form bits 8 and 9 of
the cylinder number, enabling the addressing of up to 1,023 cylinders at a
time.

If several sectors are being written and the system reaches the last sector
of a cylinder, writing continues at the first sector of the next cylinder of
the next read/write head. If the system reaches the last read/write head,
writing continues on the fIrst sector of the following cylinder on the fIrst
read/write head.

745

Appendix B: BIOS InlUrupts and FJUtCtions 	 PC System Progrflll'lNling

The following error codes can occur:

01H: Addressed function or unit not available
02H: Address not found
04H: Sector not found
OSH: Error on controller reset
07H: Error during controller initialization
09H: OMA transmission error: Segment border exceeded
OAH: Defective sector
10H: Readenm
IIH: Read error COITeCted by ECC
2OH: Controller defect
4OH: Search operation failed
80H: Time out, unit not responding
AAH: Unit not ready
CCH: Write error

The contents of the BX, CX, OX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 13H, function ODH BIOS (XT and AT only)
Hard disk: Reset

Resets the hard disk controller and any interfaced hard disk drives. A reset should be
executed after every hard disk operation during which an error was reported.

Input: 	 AH= OOH
OL = Hard disk drive number (SOH or 81H)

Output: 	 Carry flag=O: Operation completed (AH=O)
Carry flag=l: Error (AH=error code)

Remarks: 	 The value in the OL register is unnecessary since all the hard disk drives
execute a reseL XT and AT models use this register to detennine whether
a reset should be perfonned on the disk drives or on the hard disk.

This function is identical to function 0 listed above.

The fIrst hard disk drive is assigned the number SOH, the second is
assigned the number 81H.

The following error codes can occur:

01H: Addressed function or unit not available
02H: Address not found
04H: Sector not found
OSH: Error on controller reset
07H: Error during controller initialization
09H: OMA transmission error: Segment border exceeded
OAH: Defective sector

746

AbaclLS' 	 Appendix B: BIOS IlIlerrupts tmd FlUlCtions

2OH: Controller defect
4OH: Search operation failed
80H: Time out, unit not responding
AAH: Unit not ready
CCH: Write error

The contents of the BX, CX, OX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 13H, function 10H BIOS (XT and AT only)
Hard disk: Drive ready?

Detennines if the drive is ready (i.e., the last opemtion has been completed and the
drive can perform the next task).

Input: 	 AH= IOH
OL = Hard disk drive number (SOH or 81H)

Output: 	 Carry flag=O: Drive ready (AH=O)
Carry flag=1: Error (AH=error code)

Rerruuks: 	 The first hard disk drive is assigned the number 80H, the second is
assigned the number 81H.

The following error codes can occur:

01H: Addressed function or unit not available
02H: Address not found
04H: Sector not found
05H: Error on controller reset
07H: Error during controller initialization
09H: OMA transmission error: Segment border exceeded
OAH: Defective sector
IOH: Read error
11H: Read error corrected by ECC
20H: Controller defect
40H: Search operation failed
80H: Time out, unit not responding
AAH: Unit not ready
CCH: Write error

The contents of the BX, CX, OX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

747

Appendix B: BIOS Inlerrllpts and FlUtCtioru 	 PC System ProgrO»i11Ung

Interrupt 13H, function 11H BIOS (XT and AT only)
Hard disk: Recalibrate drive

Recalibrates hard disk after an error occurs, especially after a read or write error.

Input: 	 AH= IIH
DL = Hard disk drive number (SOH or 81H)

Output: 	 Carry fIag=O: Operation completed (AH=<»
Carry flag=1: Fnur (AH=error code)

Remarlcs: 	 The first hard disk drive is assigned the number 80H, the second is
assigned the number 81H.

The following error codes can occur:

OIH: Addressed function or unit not available
02H: Address not found
04H: Sector not found
05H: Error on controller reset
07H: Error during controller initialization
09H: DMA transmission error: Segment border exceeded
OAH: Defective sector
lOH: Read enor
IIH: Read error corrected by ECC
20H: Controller defect
4OH: Search operation failed
SOH: Time out, unit not responding
AAH: Unit not ready
CCH: Write error

The contents of the BX, CX, DX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 13H, function 14H BIOS (XT and AT only)
Hard disk: Controller diagnostic

Initializes an internal diagnostic test of the hard disk controller.

Input: 	 AH= 14H
DL = Hard disk drive number (SOH or 81H)

Output: 	 Carry fIag=O: Operation completed (AH=<»
Carry f1ag=1: Fn"or (AH=error code)

Remarlcs: 	 The fIrst hard disk drive is assigned the number 80H, the second is
assigned the number 8tH.

748

Abacus 	 Appendix B: BIOS InleTrlqKs and FlUlCtions

The following m:or codes can occur:

OlH: Addressed function or unit not available
02H: Address not found
04H: Sector not found
OSH: Error on controller reset
07H: Error dming controller initialization
09H: OMA transmission enor: Segment border exceeded
OAH: Defective sector
IOH: Readenor
lIH: Read error corrected by ECC
2OH: Controller defect
40H: Search operation failed
80H: Time out. unit not responding
AAH: Unit not ready
CCH: Write error

The contents of the BX. CX. OX. SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 13H, function 15H BIOS (AT only)
Hard disk: Determine drive type

Determines whether or not the computer hardware assigned numbers 80H and 81H
are hard disk drives. The AT contains a controller capable of controlling both hard
disks and disk drives. This controller can manage either two disk drives and one
hard disk, or one disk drive and two hard disks.

Input: 	 AH= ISH
OL = Hard disk drive number (SOH or 81H)

Output: 	 Carry flag=<>: Operation completed (AH=drive type)
0: Equipment not available
1: Drive does not recognize disk change
2: Drive recognizes disk change
3: Hard disk unit

Carry flag=1: Error (AH=error code)

Remarlcs: 	 The ftrst hard disk drive is assigned the number 80H, the second is
assigned the number 8IH.

The contents of the BX, CX, OX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

749

Appendix B: 	 BIOS Interrupts and Functions PC System Programming

Interrupt 148, function 008 BIOS
Serial port: Initialize

Initializes and configures a serial port This configuration includes parameters for
word length, baud rate, parity and stop bits.

Input: 	 AH= OOR
DX = Nwnber of serial port (O=first serial port, l=second serial port)
AL = Configuration parameters
Bits 0-1: Word length

10(b) = 7 bits
11(b) = 8 bits

Bit 2: 	 Number of stop bits

00(b) = 1 stop bit

01(b) = 2 stop bits

Bits 3-4: 	 Parity

00(b)= none

01 (b) = odd

11(b) = even

Bits 5-7: 	 Baudrate

OOO(b) = 11 0 baud

001(b) = 150 baud

o1O(b) = 300 baud
011 (b) = 600 baud
l00(b) =1200 baud
101(b) = 2400 baud
11O(b) = 4800 baud
111 (b) = 9600 baud

Output: AH = Serial port status
Bit 0: Data ready
Bit 1: Overrun error
Bit 2: Parity error
Bit 3: Framing error
Bit 4: Break discovered
Bit 5: Transmission hold register empty
Bit 6: Transmission shift register empty
Bit 7: Time out

AL = Modem status
Bit 0: Modem ready to send status change
Bit 1: Modem on status change
Bit 2: Telephone ringing status change
Bit 3: Connection to receiver status change
Bit 4: Modem ready to send
Bit 5: Modem on
Bit 6: Telephone ringing
Bit 7: Connection to receiver modem

Remarks: 	 The contents of the BX, CX, DX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all the other
registers may change.

750

Abacus 	 Apperulbt B: BIOS Interrupts and FlUlCtions

Interrupt 14H, function 01H BIOS
Serial port: Send character

Sends a character to the serial port.

Input: 	 AH= OIH
DX = Number of serial pmt (O=first serial pmt, l=second serial port)
AL = Character code to be sent

Output: 	 AH: Bit 7 = 0: Character transmitted
Bit 7 =1: Error
Bit 0-6: Serial port status

Bit 0: Data ready
Bit 1: Overrun error
Bit 2: Parity error
Bit 3: Framing error
Bit 4: Break discovered
Bit 5: Transmission hold register empty
Bit 6: Transmission shift register empty

Remarks: 	 The contents of the BX, CX, DX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 148, function 028 BIOS
Serial port: Read character

Receives a character from the serial port.

Input: 	 AH= 02H
DX = Number of serial port (O=first serial port, l=second serial port)

Output: 	 AH: Bit 7 =0: Character received:
AL =Character received
Bit 7 =1: Error:
Bit 0-6: Serial port status:

Bit 0: Data ready
Bit 1: Overrun error
Bit 2: Parity error
Bit 3: Framing error
Bit 4: Break discovered
Bit 5: Transmission hold register empty
Bit 6: Transmission shift register empty

Remarks: 	 This function should only be called if function 3 has determined that a
character is ready for reception.

The contents of the BX, CX, DX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

751

Appendix B: BIOS Interrupts and FJUlCtions 	 PC System Programming

Interrupt 148, function 038 BIOS
Serial port: Read status

Reads the status of the serial port.

Input: 	 AH= 03H
OX = Number of the serial port (the fll'St serial port has the number 0)

Output: AH = Serial port status
Bit 0: Dalaready
Bit 1: Ovemmemr
Bit 2: Parity error
Bit 3: Framing error
Bit 4: Breakdiscovered
Bit 5: Transmission hold register empty
Bit 6: Transmission shift register empty

AL = Modem status:
Bit 0: Modem ready to send status change
Bit 1: Modem on status change
Bit 2: Telephone ringing status change
Bit 3: Connection to receiver status change
Bit 4: Modem ready to send
Bit 5: Modem on
Bit 6: Telephone ringing
Bit 7: Connection to receiver modem

Remarks: 	 This function should always be called before calling function 2 (read
chanr;:ter).

The contents of the BX, CX, OX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 158, function 838 BIOS (AT only)
Cassette interrupt: Set nag after time interval

Sets bit 7 of a flag to 1 after a certain amount of time in microseconds elapses.

Input: 	 AH= 83H
ES = Segment address of the flag
BX = Offset address of the flag
CX = High word of elapsed time in microseconds
OX = Low word of elapsed time in microseconds

Output: 	 No output

Remarks: 	 A microsecond is a millionth of a second.

The contents of the BX, SI, 01, BP registers and the segment registers are
not affected by this function. The contents of all other registers may
change.

752

AbacllS 	 Appendbc B: BIOS Inlerrllpts and FlUlCtioras

Interrupt ISH, function 84H, sub-function 0 BIOS (AT only)
Cassette interrupt: Read joystick switch settings

Reads the status of switches on joysticks interfaced to a PC, if game ports and
joysticks are present.

Input: 	 AH= 84H
DX= 0

Output: 	 Carry flag=1: No game port connected
Carry flag=O: Game port present:
AL = Switch settings:

Bit 7=1: First joystick's fU'St switch enabled
Bit 6=1: First joystick's second switch enabled
Bit 5=I: Second joystick's fllSt switch enabled
Bit4=l: Second joystick's second switch enabled

Remarks: 	 Sub-function 1 reads the joystick position(s).

The contents of the BX, CX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt ISH, function 84H, sub·function 1 BIOS (AT only)
Cassette interrupt: Read joystick position

Reads the positions of joysticks interfaced to a PC if game ports and joysticks are
present

Input: 	 AH= 84H
DX= 1

Output: 	 Carry flag=l: No game port connected
Carry flag=O: Game port present:
AX = X-position offllStjoystick
BX = Y-position of frrst joystick
CX = X-position of second joystick
DX =Y -position of second joystick

Remarks: 	 Sub-function 0 reads the joystick switch status.

The contents of the SI, DI. BP registers and the segment registers are not
affected by this function. The contents of all other registers may change.

753

Appendix B: BIOS Intemlpts and FlIIICtions 	 PC System Programming

Interrupt ISH, function 85H BIOS (AT only)
Cassette interrupt: <Sys Req> key activated

Responds to pressure oc release of the <Sys Req> key. The keyboard routine calls
this function.

Input: 	 AlI= 85H
AL = 0: <Sys Req> key depressed
AL = 1: <Sys Req> key released

Output: 	 No output

Remarks: 	 This function acts as an intennediary foc application programs, so that the
application program will respond appropriately when the user presses the
<Sys Req> key.

Interrupt ISH, function 86H BIOS (AT only)
Cassette interrupt: Wait

Returns control to the calling program after a certain amount of time has elapsed.

Input: 	 AlI= 86H
CX = High word of pause time in microseconds
DX = Low word ofpause time in microseconds

Output: 	 No output

Remarks: 	 A microsecond is a millionth of a second.

The contents of the BX, SI, 01, BP registers and the segment registers are
not affected by this function. The contents of all other registers may
change.

Interrupt ISH, function 87H BIOS (AT only)
Cassette interrupt: Move memory areas

Moves areas of RAM from below the 1 megabyte limit to the range above the 1
megabyte limit, and from above the 1 megabyte limit to below the 1 megabyte
limit.

Input: 	 AH= 87H
CX = Number of wocds to move
ES = Segment address of global descriptor table
SI = Offset address of global descriptor table

Output: 	 Carry flag=O: No erroc
Carry flag=1: Error:

AlI=I: RAM parity erroc
AlI=2: Inconect GDT on function call
AlI=3: Protected mode could not be initialized

754

Abacus 	 Appendix B: BIOS 11IIe"upts and F/D'ICtions

Remarks: 	 See Section 7.10.1 for more infonnation about the global descriptor table
(GOT).

Only words can be IIansferred; individual bytes cannot be IIanSferred.

Maximum amount of memory allowed in a transfer is 64K. The value in
the ex register cannot exceed SOOOH.

All interrupts are disabled during the memocy block move.

The contents of the BX, ex, DX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt ISH, function 88H BIOS (AT only)
Cassette interrupt: Determine memory size beyond 1 megabyte

Determines the amount of memory installed beyond the 1 megabyte limit.

Input: AH= 88H

Output: AX::: Memory size

Remarks: 	 The value in the AX register represents memory in kilobytes (K).

Memory size below the 1 megabyte limit can be determined using
interrupt 12H.

The contents of the BX, ex, DX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt ISH, function 89H BIOS (AT only)
Cassette interrupt: Switch to virtual mode

Switches the 80286 processor to virtual mode.

Input: AH::: 89H

Output: No output

Remarks: This function should be called only if you know how virtual mode
operates. Improper use of this function can easily lead to a system crash.

755

Appendix B: BIOS Inlerrllpls and FlUlCtiorts 	 PC System ProgrQIIIIIUng

Interrupt 168, function 008 BIOS
Keyboard: Read character

Reads a character from the keyboard buffer. If the buffer doesn't contain a character,
the function waits until a character is entered. Then the character is read and
removed from the keyboard buffer.

Input: 	 AH= OOH

Output: AL = 0: Extended key code:
AH =Extended key code

AI>1: Nonnal key activated:
AL = ASCII code of key
AH =Scan code of key

Remarks: 	 ASCII code definition occurs independent of the keyboard. Scan codes
apply only to the type of keyboard attached to the PC. See Appendix J for
a list of ASCII codes and Section 7.11 for a list of extended key codes.

The contents of the BX, CX, DX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 168, function 018 BIOS
Keyboard: Read keyboard for character

Reads the keyboard buffer for a character ready to be entered. If a character is
available, the function passes the character to the calling function. The character
remains in the keyboard buffer and can be re-read when a program calls either
function 0 (see above) or function l. The function returns to the calling program
immediately after the call.

Input: 	 AH= OIH

Output: Zero flag = 1: No character in the keyboard buffer
Zero flag =0: Character available in keyboard buffer:
AL = 0: Extended key code:

AH =Extended key code
AL>1: Normal key:

AL =ASCII code of the key
AH = Scan code of the key

Remarks: 	 ASCII code definition occurs independent of the keyboard. Scan codes
only apply to the type of keyboard attached to the PC. See Appendix J for
a list of ASCII codes and Section 7.11 for a list of extended key codes.

The contents of the CX, DX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

756

AbacllS 	 AppendiJc B: BIOS Interrupts and FlUlCtions

Interrupt 16H, (undion 02H BIOS
Keyboard: Read keyboard status

Reads and returns the status ofcertain control keys and various keyboard modes.

Input: 	 AH= 02H

Output: 	 AI. = Keyboard status

7 6 5 4 	 3 2 1 o

I I I 1- 1=Rlght SHIFT key pressed
1 =Left SHIFT key pressed I I

1=CTRL key pressed
1 =AL T key pressed

1 =SCROLL LOCK on

1=NUM LOCK on

1=CAPS LOCK on
1=INSERT on

Keyboard status

Remarlcs: 	 The contents of the BX, ex, DX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 178, (unction OOH BIOS
Printer: Write character

Writes a character to one of the printers interfaced to the PC.

Input: 	 AH= OOR
AI. = Character code to be printed
DX = Printer number

Output: AH = Printer status:
Bit 0=1: Time out error
Bit 1: Unused
Bit 2: Unused
Bit 3=1: TIaIlsfer erroc
Bit 4=0: Printer omine
Bit 4= 1: Printer online
Bit 5=1: Printer out of paper
Bit 6=1: Receive mode selected
Bit 7=0: Printer busy

757

Appendix B: BIOS lnurrupts and FlUlCtiolv 	 PC System ProgrOllU1ling

Remarlcs: 	 Parallel port LPTI is assigned the number 0, parallel port LPT2 is
assigned the number 1 and parallel port LPI'3 is assigned the number 2.

The contents of the BX, ex, DX, SI, Dl, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 178, function 018 BIOS
Printer: Initialize printer

Initializes the printer interfaced to the PC. This function should be executed before
executing function 0 (see above).

Input: 	 AH= OlH
DX = Printer number

Output: 	 AH = Printer status

Remarlcs: 	 Parallel port LPTI is assigned the number 0, parallel port LPT2 is
assigned the number 1 and parallel port LPI'3 is assigned the number 2.

The contents of the BX, ex, DX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 178, function 028 BIOS
Printer: Read printer status

Returns the status of the printer interfaced to the PC.

Input: 	 AH= 02H
DX = Printer number

Output: 	 AH = Printer status

Remarks: 	 Parallel port LPTI is assigned the number 0, parallel port LPT2 is
assigned the number 1 and parallel port LPT3 is assigned the number 2.

The contents of the BX, ex, DX, SI, DI, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

758·

Abacus 	 AppendiJe B: BIOS Interrupts and FlDICtilms

Interrupt 18H BIOS
Call ROM BASIC

Accesses BASIC in ROM if a system disk cannot be found during the system
bootstrap process.

Input: No input

Output: No output

Remarks: Very few PCs or compatibles have built-in ROM BASIC (this is a
throwback from the early days of the pc). IT a PC doesn't have ROM
BASIC, interrupt 18H returns the system to the calling program.
However, if the PC does has ROM BASIC, interrupt 18H calls BASIC.
In most cases, the only way to return to DOS is by warm-starting the
computer (pressing the <Ctrl><Alt><Delete> keys) or turning the
computer off and on again. Some versions of ROM BASIC allow an exit
to DOS by entering the SYSTEM command from BASIC.

Interrllpt 19H BIOS
Boot process

Boots the computer.

Input: No input

Output: No output

Remarks: Pressing the <Ctrl><Alt><Delete> keys invokes this interrupt from the
keyboard.

Interrupt 1AH, function OOH BIOS
Date and time: Read clock count

Reads the current clock count. The clock count increments 18.2 times per second.
This calculates the time elapsed since the computer was switched on.

Input: 	 AH= OOH

Output: 	 CX = High word of the clock count
DX = Low word of the clock count
AL = 0: Less than 24 hours have elapsed since the last reading
AL<>O: More than 24 hours have elapsed since the last reading

759

Appendix B: BIOS Interrupts and Fu.nctions 	 PC S,stem ProgrtllrllrUng

Remarlcs: 	 The AT, which has a battery powered realtime clock, sets the clock count
to the current time when the computer boots. PCs (which don't have
realtime clocks) set the counter to 0 during booting.

The contents of the BX, CX, OX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other regis
ters may change.

Interrupt lAB, function OlB BIOS
Date and time: Set dock count

Sets the contents of the current clock count, which increments 18.2 times per
second. This calculates the time elapsed since the computer was switched on and
sets the current time through this function.

Input: 	 AH= 01H
CX = High wool of clock count
OX = Low wool of clock count

Output: 	 No output

Rematks: 	 The AT, which has a battery powered realtime clock, sets the clock count
to the current time when the computer boots. PCs (which don't have
realtime clocks) set the counter to 0 during booting. PC owners should
use this function to set the current time.

The contents of the AX, BX, CX, OX, SI, 01, BP registers and the
segment registers are not affected by this function. The contents of all
other registers may change.

Interrupt lAB, function 02B BIOS (AT only)
Date and time: Read realtime clock

Reads the time from the realtime clock.

Input: 	 AH= 02H

Output: Carry flag =0: O..K.:
CH= Hours
CL= Minutes
OH= Seconds

Carry flag = 1: Dead clock battery

Rematks: 	 All time readings appear in BCO formal

The contents of the BX, SI, 01, BP registers and the segment registers are
not affected by this function. The contents of all other registers may
change.

760

AbaclLf 	 Appendix B: BIOS Interrupts and FlUlCtions

Interrupt IAH, function 03H BIOS (AT only)
Date and time: Set realtime clock

Sets the time on the realtime clock.

Input: 	 AH= 03H
CH= Hours
CL= Minutes
DH= Seconds
DL = 1: Daylight Saving Time
DL = 0: Standard Time

Output: 	 No output

Remarks: 	 All time settings must be in BCD formal.

The contents of the BX, SI, 01, BP registers and the segment registers are
not affected by this function. The contents of all other registers may
change.

Interrupt IAH, function 04H BIOS (AT only)
Date and time: Read date from realtime clock

Reads the current date from the realtime clock.

Input: 	 AH= 04H

Output: Carry flag = 0: O.K.:
CH = Century (19 or 20)
CL= Yea-
DH= Month
DL= Day

Carry flag = 1: Dead clock battery

Remarks: 	 All date readings appear in BCD format.

The contents of the BX, SI, 01, BP registers and the segment registers are
not affected by this function. The contents of all other registers may
change.

761

Appendix B: BIOS Inlerrllpts and FlIIICtioras

Interrupt IAU, function OSU
Date and time: Set date in realtime dock

Sets the cmrent date in the realtime clock.

Input: 	 AH= OSH
CH = Century (19 or 20)
CL= Year
DH= Month
DL= Day

Output: 	 No output

PC System Programming

BIOS (AT only)

Remarks: All date settings must be in BCD format.

The contents of the BX, CX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt IAU, function 068 BIOS (AT only)
Date and time: Set alarm time

Sets alarm time for the current day. The alarm time triggers interrupt 4AH.

Input:

Output:

Remarks:

AH= 06H

CH= Hours

CL= Minutes

DH= Seconds

Carry flag=O: O.K.

Carry flag= 1: Dead clock battery Q[programmed alarm time.

All alarm settings must be in BCD format.

During booting, interrupt 4AH points to an IRET command. If this
interrupt doesn't point to a particular routine responding to the alarm,
nothing will happen once the alarm time is reached.

Only one alarm time can be active at a time. If another alarm setting
already exists, you must first delete it by using interrupt 26-1AH,
function 7 (see below).

The contents of the BX, CX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

762

AbacllS 	 Appettdix B: BIOS Intemlpts and FlUlCtions

Interrupt lAH, runttion 07H BIOS (AT only)
Date and time: Reset alarm time

Clears an existing alarm setting created by using function 06H above.

Input: AH= 07H

Output: No output

Remarlcs: This function must be called when you want to change an alarm setting.
Reset the alarm, then use function 06H to set the new alarm time.

The contents of the BX, CX, SI, 01, BP registers and the segment
registers are not affected by this function. The contents of all other
registers may change.

Interrupt IBH BIOS/DOS
Keyboard: <Break> key pressed

Records the occurrence ofa <Ctrl><Break> key combination and triggers interrupt
IBH. During the system boot, BIOS sets interrupt IBH to an IRET command in
order to prevent any reaction.

This routine sets a flag to indicate that the user has pressed <Ctrl><Break>.
Following the execution of one of the DOS functions, this flag is tested for
character input or output. If the system encounters <Ctrl><Break>, the current
program stops. In addition, when a batch file is in process, the program asks
whether the batch fIle should be continued or terminated.

Pressing <Ctrl><C> doesn't activate the interrupt. This key combination forces
DOS to end the currently executing program. However, the DOS functions for
character input/output search for this key combination.

To prevent termination of an application program, this interrupt can also be
pointed to a user routine by pressing <Break> or <Ctrl><Break>.

Input: 	 No input

Output: 	 No output

Remarlcs: 	 Before returning control to the calling program, this interrupt must
restore all registers to their previous values.

763

Appendix B: BIOS Interrupts 0IId FlUlCtions 	 PC System Programming

Interrupt ICU BIOS
Periodic interrupt

The timer IC calls interrupt 8H approximately 18.2 times per second. After ending
its task, it calls interrupt 1 CH in order to allow an application program access to
the signals from the timer IC. During booting, BIOS initializes the interrupt
vector of interrupt 1 CH so that it points to an IRET command, which prevents
any response if the interrupt is called. For example, this interrupt can be pointed to
a user routine to create a constant display clock on the screen.

Input: 	 No input

Output: 	 No output

Remarks: 	 This interrupt must restore all registers to their previous values before
returning control to the calling program.

Interrupt IDU BIOS
Video table

Sets a pointer to a table. The vector of this interrupt in the vector table, starting at
address 0000:0074, stores the offset and segment address of this table. The table
itself contains a collection of parameters used by BIOS for initializing a certain
video mode. This involves the 16 memory locations on the video card, whose heart
is a 6845 video processor. For this reason the table to which the vector points and
which is part of the ROM-BIOS, consists of 16 consecutive bytes that indicate the
contents of individual registers for a certain video mode. The frrst of these 16 bytes
is copied into the first register of the 6845, the second byte into the second
register, etc. The table in ROM contains a total of four 16-byte entries: 4Ox25
color mode, 8Ox25 color mode, 8Ox25 monochrome mode and one entry for the
various color graphics modes.

Do not call this interrupt If you do, the system will attempt to read the video
table as executable code and will crash.

Input: 	 No input

Output: 	 No output

Interrupt lEU BIOS/DOS
Drive table

Sets a pointer to a table. The vector of this interrupt in the vector table starting at
address 0000:0078 stores the offset and segment address of this table. The table
itself contains a collection of parameters used by BIOS in disk drive access. BIOS
has a table in ROM, but deviates the interrupt vector of interrupt 30 to its own
table which allows faster disk access than the BIOS table (see Section 7.7 for more
information about this table).

764

AbaclU ApperuliJc B: BIOS Interrllpts and FlUfCtions

Do not call this interrupt If you do call it. the system will attempt to read the
drive table as executable code and will crash.

Input: No input

Output: No oulput

Interrupt IFH BIOS/DOS
Character table

Sets a pointer to a table. The vector of this interrupt in the vector table, starting at
address OOOO:OO7C, stores the offset and segment address of this table. The table
itself contains character patterns for the characters possessing ASCII codes 128 to
255. BIOS needs this table in order to display the graphic mode characters on the
screen. These characters are displayed by placing the character patterns, which are
stored in this table, on die screen as individual pixels.

Since the character patterns for codes 0 to 127 are already stored in a table in
ROM-BIOS, this table contains only the character patterns for codes 128 to 255.
The DOS GRAFT ABL command loads a table for codes 127 to 255 into RAM and
points the interrupt vector of interrupt 31 to this table. A user table can be added to
display on the screen, in graphic mode, certain characters that are not part of the
normal PC character set. The construction of the table requires that eight
consecutive bytes define the appearance of the character. The first eight bytes of the ..
table derme the appearance of ASCII code 128, the next eight bytes derme ASCII
code 129, etc. Each set of eight bytes represent the eight lines which denote a
character in graphic mode. The eight bits of each byte indicate the eight columns
of pixels for each line.

Do not call this interrupt If you do call it, the system will attempt to read the
character table as executable code and will crash.

Input: No input

Output: No oUlput

Appendix C

DOS Interrupts and Functions

Function Description Pa~e Number

Interrupt 20H Terminate program ... 773

Interrupt 21H functions-arranged by function groups

Character input
Function
OlH
03H
06H
07H

08H
OAH
OBH
OCH

Character output
Function
02H
04H
05H
06H
09H

Program termination
Function
OOH
3lH
4CH

Description Page Number

Character input with echo (Ver. 1 and up) 773

Auxiliary input (Ver. 1 and up) 775

Direct console I/O (Ver. 1 and up) 776

Unftltered character input without echo

(Ver. 1 and up) ... 777

Character input without echo (Ver. 1 and up) 778

Buffered input (Ver. 1 and up) 779

Get input status (Ver. 1 and up)780

Reset input buffer and then input (Ver. 1 and up)780

Description Page Number

Character output (Ver. 1 and up)774

Auxiliary output (Ver. 1 and up)77 5

Printer output (Ver. 1 and up) 776

Direct console I/O (Ver. 1 and up)776

Output character string (Ver. 1 and up) 778

Description rue Number

Terminate program (Ver. 1 and up)773

Terminate and stay resident (Ver. 2 and up)799

Terminate with return code (Ver. 2 and up) 825

766

Abacus

Subdirectory access
Function
39H
3AH
3BH
47H

RAM control
Function
48H
49H
4AH
58H

58H

Device driver 	access
Function
44H

44H

44H

44H

44H

44H

44H

44H

44H

44H

44H

44H

Time and date
Function
2AH
2BH
2CH
2DH

Appendix C: DOS /lIIeTrllpts fIIIII. FlDICtions

Description PaKe Number

Create subdirectory (Ver. 2 and up) 804

Delete subdirectory (Ver. 2 and up)80S

Set current directory (Ver. 2 and up).........................80S

Get current directory (Yer. 2 and up)821

Description PaKe Number

Allocate memory (Ver. 2 and up) 821

Release memory (Ver. 2 and up) 822

Modify memory allocation (Yer. 2 and up)................ 822

Get allocation strategy (sub-function 0)

(Ver.3 and up) ... 830

Set allocation strategy (sub-function 1)

(Ver. 3 and up) ... 830

Description Pas;« Number

IOC1L: Get device info (sub-function 0)

(Ver.2 and up) ..813

IOC1L: Set device info (sub-function 1)

(Ver. 2 and up) .. 813

IOCTL: Read data from charocter device

(sub-function 2) (Yer. 2 and up) 814

IOC1L: Send data to character device

(sub-function 3) (Ver. 2 and up) 815

IOCTL: Read data from block device

(sub-function 4) (Ver. 2 and up) 816

IOC1L: Send data to block device

(sub-function 5) (Ver. 2 and up) 816

IOC'TI.: Read input status

(sub-function 6) (Ver. 2 and up) 817

IOC1L: Read output status

(sub-function 7) (Ver. 2 and up)817

IOC1L: Test for changeable block device

(sub-function 8) (Ver. 3 and up) 818

IOC1L: Test for local or remote drive

(sub-function 9) (Ver. 3.1 and up) 818

IOC1L: Test for local or remote handle

(sub-function 10) (Ver. 3.1 and up)......................... 819

IOCTL: Change retry count

(sub-function 11) (Ver. 3 and up) 819

Description Page Number

Get system date (Ver. 1 and up)796

Set system date (Ver. 1 and up) 797

Get system time (Ver. 1 and up) 797

Set system time (Ver. 1 and up) 797

767

AppendiJe C: DOS Interr"Pts and F/UlCtions PC System Programming

DTA
Function
IAH
2FH

Search directory
Function
llH

12H

4EH

4FH

File access (FCB)
Function
OFH
10H
13H
14H
ISH
16H
17H
21H
22H
23H
24H
27H
28H
29H

File access (handle)
Function
3CH
3DH
3EH
3FH
40H
41H
42H
4SH
46H
5AH
56H

Description rue Number

Set DTA address (Ver. I and up)788

Get DTA address (Ver. 2 and up)798

Description rue Number

Search for first matching directory FCB

(Ver. 1 and up) ... 783

Search for next matching directory PCB

(Ver. I and up) ... 783

Search for first matching directory PCB

(Ver. 2 and up) ... 826

Search for next matching directory handle

(Ver. 2 and up) .. 827

Description Pat::e Number

Open file (FCB) (Ver. I and up) 782

Close file (FCB) (Ver. I and up) 782

Delete file (PCB) (Ver. I and up)784

Sequential read (PCB) (Ver. I and up) 786

Sequential write (FCB) (Ver. I and up) 786

Create or truncate fIle (PCB) (Ver. I and up) 786

Rename file (FCB) (Ver. I and up) 787

Random read (FCB) (Ver. I and up) 790

Random write (FCB) (Ver. 1 and up)791

Get file size in records (FCB) (Ver. I and up) 792

Set random record number 01er. I and up)................. 792

Random block (FCB) (Ver. 1 and up) 794

Random block write (FCB) (Ver. I and up) 795

Parse fIlename to PCB (Ver. I and up) 795

Description Pat::e Number

Create or truncate fIle (handle) (Ver. 2 and up) 806

Open file (handle) (Ver. 2 and up) 807

Close file (handle) (Ver. 2 and up) 808

Read file or device (handle) (Ver. 2 and up)................ 808

Write to file or device (handle) (Ver. 2 and up)809

Delete me (handle) (Ver. 2 and up) 810

Move file pointer (handle) (Ver. 2 and up)................. 810

Duplicate handle (Ver. 2 and up) 820

Force duplicate of handle (Ver. 2 and up) 820

Create temporary me (handle) (Ver. 3 and up) 834

Rename fIle (handle) (Ver. 2 and up) 828

768

Abacus Appendix C: DOS lrtlerTupts and FlUlCtiorts

Interrupt vectors
Function
25H
35H

Disk/hard disk access
Function
ODH
OEH
19H
IBH

ICH

36H

PSP access
Function
26H
62H

DOS nag access
Function
2EH
33H
33H
54H

File inrormation access
Function
43H
43H
57H
57H

Country-specific runctions
Function
38H
38H
38H

Other rUDctions
Function
30H
4BH
4BH
4DH
59H

Description Pa&e Number
Set interrupt vector (Ver. 1 and up) 793
Get interrupt vector (Vee. 2 and up)801

Description Pa&e Number
Disk: reset (Vee. 1 and up)781
Set default disk drive (Ver. 1 and up) 781
Get default disk drive (Ver. 1 and up)788
Get allocation information for default drive
(Vee. 1 and up) ..789
Get allocation information fm- specified drive
(Ver. 2 and up) .. 789
Get free disk space (Ver. 2 and up) 801

Description Pa~ Number
Create PSP (Vee. 1 and up) 793
Get PSP address (Ver. 3 and up) 839

Description Pa~ Number
Set verify flag (Ver. 1 and up)798
Get <Ctrl><Break> flag (sub-function 0) 800
Set <Ctrl><Break> flag (sub-function I)800
Get verify flag (Ver. 2 and up)

Description Page Number
Get file attributes (sub-function 0) (Ver. 2 and up) 811
Set file attributes (sub-function I) (Ver. 2 and up)812
Get file date and time (sub-function 0) (Vee. 2 and up). 829
Set file date and time (sub-function I) (Vee. 2 and up). 829

Description Pa~ Number
Get country (Vee. 2 and up) 802
Get country (sub-function 0) (Ver. 3 and up)802
Set country (sub-function I) (Ver. 3 and up) 804

Description Pa~ Number

Get MS-DOS version number (Ver. 2 and up)799

Execute program (sub-function 0) (Vee. 2 and up) 823

Execute overlay program (sub-function 3)824

Get return code (Ver. 2 and up)826

Get extended err<X' information (Ver. 3 and up)831

769

Appendbc C: DOS Interrupts and Functions PC System Programming

Interrupt 22H
 Terminate address ...841

............................841

.........................842

..843

..844

...........................845

Interrupt 23H
 <Ctri><C> handler address
Interrupt 24H
 Critical error handler address
Interrupt 25H
 Absolute disk read
Interrupt 26H
 Absolute disk write
Interrupt 27H
 Terminate and stay resident

Interrupt 2FH

Function

OOH
 Get print spooler install status846

.......................................846
.................................847
................................847

................................846

01H
 Send file to print spooler
02H
 Remove fIle from print queue
03H
 Cancel all fIles! in print queue
04H
 Hold print job for status check

Print spooler
Description Pge Number

Interrupt 21H functions-arranged by function numbers

Function

OOH
 Program terminate (Ver. 1 and up)...........................773

................. 774

.............................774

............................... 775

.............................775

......•.........776

.............776

07H

.............778

.....................778

.................................779

..............................780

.......780

......................................781

........................781

..............................782

.............................782

.............783

.............784

...........•................784

......................785

.....................786

01H
 Character input with echo (Ver. 1and up)
02H
 Character output (VeL. 1and up)
03H
 Auxiliary input (Ver. 1 and up)
04H
 Auxiliary output (VeL. 1 and up)
05H
 Character output to printer (VeL. 1 and up)
06H
 Direct character input/output (Ver. 1and up)

08H
 Character input without echo (Ver. 1 and up)
09H
 Output chaIacter string (Ver. 1 and up)
OAH
 Buffered input (Ver. 1 and up)
OBH
 Get input status (Ver. 1 and up)
OCH
 Reset input buffer and then input (Ver. 1 and up)
ODH
 Disk reset (Ver. 1 and up)
OEH
 Set default disk drive (Ver. 1 and up)
OFH
 Open fIle (FCB) (Ver. 1 and up)
10H
 Close fIle (FCB) (Ver. 1 and up)
llH
 Search for first match (PCB) (Ver. 1 and up)
12H
 Search for next match (PCB) (Ver. 1 and up)
13H
 Delete fIle (FCB) (VeL. 1 and up)
14H
 Sequential read (FCB) (Ver. 1and up)
15H
 Sequential write (FCB) (Ver. 1 and up)
16H
 Create or truncate fIle (PCB) (VeL. 1and up)786

.........•................787
17H
 Rename fIle (FCB) (Ver. 1 and up)
19H
 Get default disk drive (Ver. 1 and up)788

...........••................788
lAH
 Set DTA address (Ver. 1 and up)
IBH

lCH

21H
 Random read (FCB) (VeL. 1 and up)790

.......................791

............ 792

22H
 Random write (PCB) (VeL. 1 and up)
23H
 Get fIle size in records (PCB) (VeL. 1 and up)

Description Pge Number

UnfIltered character input without echo (Ver. 1 and up)777

Get allocation information for default drive

(Ver. 1 and up) ..789

Get allocation information for specified drive

(Ver. 2 and up) ...789

770

Appendix C: DOS Inlerrllpts awl FlIlICtions

Function
24H
2SH
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
33H

33H

3SH
36H
38H
38H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H
43H
44H

44H

44H

44H

44H

44H

44H

Description Pale Number

Set random record number (Ver. 1 and up)................• 792

Set interrupt vector (Ver. 1 and up).........................• 793

Create PSP (Ver. 1 and up) ..••.••............................. 793

Random block read (PCB) (Ver. 1 and up)................. 794

Random block write (PCB) (Ver. 1 and up) 795

Parse ftlename to FeB (Ver. 1 and up)• 795

Get system date (Ver. 1 and up)796

Set system date (Ver. 1 and up)•......................... 797

Get system time (Ver. 1 and up)797

Set system time (Ver. 1 and up) 797

Set verify flag (Ver. 1 and up) 798

Get DTA address (Ver. 2 and up) .•••..••...•••••............. 798

Get MS-DOS version number (Ver. 2 and up)• 799

Terminate and stay resident (Ver. 2 and up) ..•...........•799

Get <Ctrl><Break> flag (sub-function 0)

(Ver. 2 and up) .•.•..••••.•...•.•••.••.•........................... 800

Set <Ctrl><Break> flag (sub-function 1)

(Ver. 2 and up) ..••••••..••.•.•••••.••............................• 800

Get interrupt vector (Ver. 2 and up)801

Get free disk space (Ver. 2 and up)...........................801

Get country (Ver. 2 and up) 802

Get country (sub-function 0) (Ver. 3 and up) 802

Set country (sub-function 1) (Ver. 3 and up).............. 804

Create subdirectory (Ver. 2 and up)•.....804

Delete subdirectory (Ver. 2 and up)S05

Set current directory (Ver. 2 and up).......••................ S05

Create or truncate ftle (handle) (Ver. 2 and up)•. S06

Open file (handle) (Ver. 2 and up) 807

Cose file (handle) (Ver. 2 and up)•........SOS

Read ftle or device (handle) (Ver. 2 and up)................SOS

Write to ftle or device (handle) (Ver. 2 and up) 809

Delete ftle (handle) (Ver. 2 and up) 810

Move file pointer (handle) (Ver. 2 and up)................. 810

Get file attributes (sub-function 0) (Ver. 2 and up)...... 811

Set file attributes (sub-function 1) (Ver. 2 and up)812

IOC1L: Get device info (sub-function 0)

(Ver. 2 and up)•.•.•.....•.....................................813

IOC1L: Set device info (sub-function 1)

(Ver. 2 and up) ...813

IOCIL: Read data from character device (sub-function 2)

(Ver. 2 and up) .. SI4

IOCIL: Send data to character device (sub-function 3)

(Ver. 2 and up) .. SI5

IOCIL: Read data from block device (sub-function 4)

(Ver. 2 and up) .. SI6

IOC1L: Send data to block device (sub-function 5)

(Ver. 2 and up) ..816

IOCIL: Read input status (sub-function 6)

(Ver. 2 and up) .. 817

771

Appendix C: DOS Inlerrupts and Functions PC System Programming

Function
44H

44H

44H

44H

44H

45H
46H
47H
48H
49H
4AH
4BH
4BH
4CH
4DH
4EH
4FH
54H
56H
57H
57H
58H

58H

59H
5AH
SBH
5CH
SEH
SEH
SEH
5FH

5FH
5FH
62H
63H
63H

63H

Description fa" Number

IOCTI..: Read output status (sub-function 7)

0/er. 2 and up) ••.•.•..•.••••••••••.••...........................•.817

IOCTI..: Test for changeable block device

(sub-function 8) 0/er. 3 and up)•.......••.818

IOCTI..: Test fm' local or remote drive

(sub-function 9) 0/er. 3.1 and up)818

IOCTI..: Test for local or remote handle

(sub-function 10) 0/er. 3.1 and up).........•...............819

IOCfL: Change retry count (sub-function 11)

0/er.3 and up)••...•.••.••.••..•......•..•...819

Duplicate handle 0/er. 2 and up)•...820

Force duplicate of handle 0/er. 2 and up)•....•... 820

Get current directory 0/er. 2 and up)•.••... 821

Allocate memory 0/er. 2 and up)•..•......821

Release memory 0/er. 2 and up)822

Modify memory allocation (Ver. 2 and up)................822

Execute prognun (sub-function 0) 0/er. 2 and up).......823

Execute overJay (sub-function 3) 0/er. 2 and up)•824

Terminate with return code (Ver. 2 and up).............•••825

Get return code (Ver. 2 and up)•..........•. 826

Search for first match (Ver. 2 and up)...................•..•826

Search for next match (handle) 0/er. 2 and up)•827

Get verify flag (Ver. 2 and up)••.••..•............828

Rename file (handle) 0/er. 2 and up) .•......................828

Get file date and time (sub-function 0) 0/er. 2 and up). 829

Set file date and time (sub-function 1) 0/er. 2 and up). 829

Get allocation strategy (sub-function 0)

0/er. 3 and up) ...830

Set allocation strategy (sub-function 1)

0/er. 3 and up) .. 831

Get extended error information (Ver. 3 and up)••832

Create temporary file (handle) .0/er. 3 and up)834

Create new file (handle) 0/er. 3 and up)835

Control record access 0/er. 3 and up)835

Get machine name (sub-function 0) 0/er. 3 and up) ...•836

Set printer setup (sub-function 2) 0/er. 3 and up)836

Get printer setup (sub-function 3) 0/er. 3 and up).......837

Get redirection list entry (sub-function 2)

0/er. 3 and up) ..837

Redirect device (sub-function 3) 0/er. 3 and up) .••.••... 838

Cancel redirection (sub-function 4) 0/er. 3 and up)839

Get PSP address 0/er. 3 and up)839

Get lead byte table (sub-function 0) 0/er. 2.25 only) ... 840

Set or clear interim console flag (sub-function 1)

(Ver. 2.25 only)•.••.•••....................840

Get interim console flag (sub-function 2)

(Ver. 2.25 only)•..•.••.................................840

772

Abacus 	 Appendix c: DOS Interrllpts and FlUfCtions

Interrupt 20B DOS
Terminate program (Version 1 and up)

Restores the three interrupt vectors whose contents were stored in the PSP before
the program call, terminates the currently running program and returns control to
MS-DOS. If the program redirected the vectors to its own routine, these vectors
cannot be overwritten by another program. However, the terminating program
releases the RAM it had occupied. Before turning control over to the calling
program, this memory releases and all data buffers cleM.

Input: CS =Segment address of the PSP

Output: No output

Remarks: COM programs automatically store the segment address of the PSP in the
CS register. EXE programs require additional programming to load the
segment address of the PSP into the CS register. Since the code and the
PSP are stored in two separate segments, the address of the PSP must be
loaded into the CS register. The code executes from another segment,
which makes it impossible to call interrupt 32. To help overcome this
problem, the value 0 and then the segment address of the PSP are pushed
onto the stack. If aFAR RETURN command then executes, the program
execution continues in the PSP segment at offset address O. There a call
for interrupt terminates the program.

For the flfSt version of DOS, this interrupt is the usual method for ending
a program. To terminate a program in DOS Version 2 and up, functions
31H or 4CH of DOS interrupt 21 H should be called instead.

Interrupt 21B, function OOH DOS
Terminate program (Version 1 and up)

Terminates execution of the currently running program and returns control to the
calling program. Before this happens, the three interrupt vectors, whose contents
had been stored in the PSP before the call of the program, are restored. If the
program redirects these vectors to its own routine, they cannot be overwritten by
another program. However, the terminating program does release the RAM it had
occupied. Before turning control over to the calling program, the function releases
this memory and clears all buffers.

Input: 	 AH= OOH
CS = segment address of the PSP

Output: 	 No output

Remarlcs: 	 COM programs automatically store, in the CS register, the segment
address of the PSP. Since the code and the PSP are stored in two separate
segments, you cannot execute this function from an EXE program.

773

Appendix C: DOS Interrupts 0IId Functions 	 PC System Programming

Instead of this function, use either function 31H or 4CH of interrupt 21H
for terminating a program.

Interrupt 218, function 018 DOS
Character input with echo (Version 1 and up)

Reads a character from the standard input device and displays it on the standard
output device. When the function is called but a character doesn't exist, the
function waits until a character is available. Since standard input and output can be
redirected, this function is able to read a character from an input device other than
the keyboard and send it to an output device other than the screen. The characters
that are read may originate from other devices or from a me. If the character comes
from a file, the input doesn't redirect to the keyboard once it reaches the end of the
file. So, the function continues to try to read data from the file after it passes the
end

Input: AH= OlH

Output: AL = Charocter read

Remarks: If extended key codes are read, the function passes code 0 to the AL regis
ter. The function must be called again to read the actual code.

If the function encounters a <Ctrl><C> character (ASCII code 3), it calls
interrupt 23H.

The contents of the AH, BX, CX, DX, SI, 01, BP, CS, DS, SS, ES and
the flag registers are not affected by this function.

Interrupt 218, function 028 DOS
Character output (Version 1 and up)

Displays a character on the standard output device. Since this device can be
redirected, the character can be displayed on another output device or sent to a me.
This function doesn't test whether or not the storage medium (disk or hard disk) is
already full. Therefore, it will continue to try to write characters to this me.

Input: 	 AH= 02H
DL = code of the character to be output

Output: 	 No output

Remarks: 	 Control codes such as backspace, carriage return and linefeed are executed
when the function sends characters to the screen. If the output is redirected
to a file, control codes are stored as normal ASCII codes.

If the function encounters a <Ctrb<C> character (ASCII code 3), it calls
interrupt 23H.

774

AbacllS 	 Appendix C: DOS Interrupts and FlIIICtions

The contents of the processor registers and the flag registers are not
affected by this function.

Interrupt 21H, runction 03H DOS
Read character auxiliary input (Version 1 and up)

Reads a character from the serial port. Access defaults to the device with the
designation COMI, unless a MODE command previously redirected serial access.

Input: AH= 03H

Output: AI.. = Olaracter received

Remarks: Since the serial port has no internal buffer, it can receive characters faster
than it can read them. The unread characters are then ignored.

Before calling this function, communication parameters (baud rate,
number of stop bits, etc.) must be set using the MODE command.
Otherwise OOS defaults to 2400 baud, one stop bit, no parity and a word
length of 8 bits.

The BIOS functions called from interrupt 14H are a more efficient way to
access the serial port. Since they also allow reading of the serial port
status, these functions offer more flexibility than the OOS functions.

If the function encounters a <Ctrl><C> character (ASCII code 3), it calls
interrupt 23H.

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and
the flag registers are not affected by this function.

Interrupt 21H, runction 048 DOS
Auxiliary output (Version 1 and up)

Sends a character to the serial port. Unless a MODE command previously
redirected serial access, access defaults to the device with the designation COM I.

Input: 	 AH= 04H
DL = Character set for output

Output: 	 No output

Remarks: 	 As soon as the receiving device sends a signal to the function indicating
that it is ready to receive it, the function transmits the character. Control
then returns to the calling program.

Before calling this function, communication parameters (baud rate,
number of stop bits, etc.) must be set using the MODE command.

775

Appendix C: DOS Interrupts and FlIIICtions 	 PC System Programming

Otherwise DOS defaults to 2400 baud, one stop bit, no parity and a word
length of 8 bits.

The BIOS functions called from interrupt 14H are a more efficient way to
access the serial port. Since they also allow reading of the serial port
status, they offer more flexibility than the DOS functions.

If the function encounters a <Ctrl><C> character (AScn code 3). it calls
interrupt 23H.

The contents of the processor registers and the flag registers are not
. affected by this function.

Interrupt 218, -'unction OS8 DOS
Character output to printer (Version 1 and up)

Sends a character to the printer. Access defaults to the device with the designation
LPTI (identical to PF~, unless a MODE command previously redirected printer
access. •

Input: 	 AH= 05H
DL = Character code to be printed

OutPut: 	 No output

Remarlcs: 	 The function transmits the character only when the printer signals that it
is ready to receive it. Then control returns to the calling program.

If the function encounters a <Ctrl><C> character (ASCII code 3), it calls
interrupt 23H.

The BIOS functions called from interrupt 17H are more ef~cient for
printer access. They offer more flexibility than the DOS printer functions
for character output

The contents of the processor registers and the flag registers are not
affected by this function.

Interrupt 218, function 068 DOS
Direct console I/O (Version 1 and up)

Reads characters from the standard input device and displays them on the standard
output device. The read or written character isn't tested by the operating system
(e.g., <Ctrl><C> has no effect on the program). Since standard input and output
can be redirected, this function can read a character from an input device other than
the keyboard and sends it to an output device other than the screen. The characters
read may originate from other devices or from a rtle. When writing characters, this
function doesn't test whether or not the storage medium (disk or hard disk) is

776

Abacus 	 AppendiJc C: DOS inlt!1'rllpts and FlIIICtions

already full. Also, the calling program cannot detennine whether all the characters
have been read from an input fIle.

During character input, the function doesn't wait until a character is available.
Instead, the function retwlls control to the calling program.

Input: 	 AH= 06H
DL = 0-254: Send character code
DL = 255: Read a character

Output: 	 Character output: No output
Character input: Zero flag=1: No character ready
Zero f1ag=O: Character read is in the AL register

Remarks: 	 If extended key codes are read, the function passes code 0 to the AL regis
ter. The function must be called again to read the actual code.

ASCn code 255 (blank) cannot be displayed with this function because
the function interprets ASCII code 255 as a command to input a character.

The contents of the AR, BX, CX, DX, SI, DI, BP, CS, DS, SS and ES
registers are not affected by this function.

Interrupt 21H, function 07H DOS
Unfiltered character input without echo (Version 1 and up)

Reads a character from the standard input device without displaying the character on
the standard output device. If a character doesn't exist when the function is called,
the function waits until a character is available. The read character is not tested by
the operating system (e.g., <Ctrl><C> has no effect on the program). Since
standard input and output can be redirected, this function can read a character from
an input device other than the keyboard. The characters that are read may originate
from other devices or from a file. If the characters come from a file, the input
doesn't redirect to the keyboard once it reaches the end of file. This causes the
function to continue to try reading data from the file after it passes the end of fIle.

Input: 	 AR= 07H

Output: 	 AL = Chara;ter read

Remarks: 	 If extended key codes are read, the function passes code 0 to the AL regis
ter. The function must be called again to read the actual code.

The contents of the AH, BX, CX, DX, SI, DI, BP, CS, DS, SS, ES and
the flag registers are not affected by this function.

777

Appendix C: DOS InleTT'IIpIS and FlUfCtUms 	 PC System Programming

Interrupt lI8, function 088 DOS
Character input without echo (Version 1 and up)

Reads a character from the standard input device without dispJaying the character on
the standard output device. If no character exists when the function is called, the
function waits until a character is available.

Since standard input can be redirected, this function can read a character from an
input device other than the keyboard. The characters read may originate from other
devices or from a file. If the characters come from a file, the input doesn't redirect
to the keyboard on reaching the end of file, so the function continues to tty reading
data from the file after it passes the end of fIle.

Input: AH= 08H

Output: AL = Olaracter read

Remarks: Ifextended key codes are read, the function passes code 0 to the AL regis
ter. The function must be called again to read the actual code.

If the function encounters a <Ctrb<C> character (ASCII code 3), it calls
interrupt 23H.

The contents of the AH, BX, CX, OX, SI, DI, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 218, function 098 DOS
Output character string (Version 1 and up)

Displays a character string on the standard output device. Since this device can be
redirected, the character may be dispJayed on another output device or sent to a file.
This function doesn't test whether or not the storage medium (disk or hard disk) is
already full, and will continue to try to write the string to a file.

Input: 	 AH= 09H
OS = String segment address
OX = String offset address

Output: 	 No output

Remarlcs: 	 The string must be stored in memory as a series of bytes which contain
the ASCII codes of the characters to be output A dollar sign character "$"
(ASCII code 36) indicates, to DOS, the end of the string.

Control codes, such as backspace, caniage return and linefeed, are executed
within the string.

The contents of the processor registers and the flag registers are not
affected by this function.

778

Abacus 	 Appendix C: DOS Inlerllpts and FlIIICtions

Interrupt UD, function OAD DOS
Bullered input (Version 1 and up)

Reads a number of characters from the standard input device and transmits the
characters to a buffer. The input ends when the user presses the <Return> key. The
ASCII code of this key (13) is then placed in the buffer as the last character of the
string.

Since standard input can be redirected, this function can read a character from an
input device other than the keyboard. The characters read may OOginate either from
other devices or from a file. If the characters come from a file, the input doesn't
redirect to the keyboard on reaching the end of file, so the function continues to tty
reading data from the file after it passes the end.

Input: 	 AH= OAH
OS = Buffer' segment address
OX = Buffer offset address

Output: 	 No output

Remarlcs: 	 The frrst byte of the buffer accepts the maximum number of characters
(including the carriage return which ends the input) which can be read into
the buffer, starting at memory location 2. In order to inform the function
of the maximum number of characters it may read, this information must
be entered, by the calling program, into the buffer before the function
call.

After completion of the input, DOS places the number of characters read
(excluding the carriage return) in memory location 1.

The buffer must be the number of the characters to be read plus 2 bytes.

When the input reaches the second to last memory location in the buffer,
the computer beeps if you attempt to enter any character other than the
<Return> key (end of input).

Extended key codes occupy two bytes in the buffer. The first byte
contains the code 0, and the second byte contains the extended key code.

If the function encounters a <Ctrb<C> character (ASCII code 3), it calls
interrupt 23H.

The <Backspace> and cursor keys let you edit the input without storing
these keys in the buffer.

The contents of the processor registers and the flag registers are not
affected by this function.

779

AppendiJC C: DOS Inlerrllpts and Functions 	 PC System ProgrfllNlling

Interrupt 21B, function ORB DOS
Get input status (Version 1 and up)

Detennines whether a character is available for reading from the standard input
device.

Input 	 AR= OBH

Output: 	 AL = 0: No character available
AL = 255: One or more characters available for reading

Remarks: 	 If the function encounters a <Ctrl><C> character (ASCII code 3), it calls
interrupt 23H.

The contents of the AR, BX, CX, OX, SI, DI, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt UB, function OCB DOS
Reset input burter and then input (Version 1 and up)

Clears the input buffer then calls one of the character input functions. Since all the
character input functions get their characters from the standard input device and
standard input may redirected, this function only operates when the keyboard is the
standard input device. In this case the characters could be entered before the
function call but not read by a function. These existing characters are erased to
ensure that the function call only reads characters which were inputted after its call.

Input: 	 AR= OCH
AL = Function to be called during call of function 10
OS = Input buffer segment address
OX = Input buffer offset address

Output: 	 Functions I, 6, 7 and 8: AL = Character to be read
Function 10: No output

Remarks: 	 Functions 1,6,7,8 and 10 can be passed to the function as calling func
tions.

The contents of the AR, BX, CX, OX, SI, DI, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

780

Abacus 	 AppendiJc c: DOS Interrupts and Frmctions

Interrupt 11B, tunction ODB DOS
Disk reset (Version 1 and up)

Sends all data stored in an internal DOS buffer to a block driver device (e.g., disk
drive, hard disk). The open ftles (handles or FCBs) remain open.

Input: AH= OOH

Output: No output

Renwks: Despite this function call, all open mes must be closed in an ordedy
manner. Otherwise the current directory entry of the file may not update
properly, which prevents access to new file data.

The contents of the processor registers and the flag registers are not
affected by this function.

Interrupt 21B, tunction OEB DOS
Select default disk drive (Version 1 and up)

Defines the the current default disk drive. Its designation appears as a prompt on
the screen when the command interpreter expects input from the user. The drive
indicated here will be used for all me access in which no special device was
specified.

Input: 	 AH = OEH
OL = Drive number

Output: 	 AL = Number of installeddnves or volumes

Renwks: 	 Drive A: has code number of 0, drive B: code number I, etc.

Even if the PC has only one disk drive and one hard disk, the number of
volumes in the AL register can be greater than two because the hard disk
can be divided into multiple volumes. In addition, the PC can have one or
more RAM disks as part of its configuration. For a PC with a single disk
drive, you can only have two volumes because drive A: also simulates
driveB:.

Unlike DOS Version 2, which permits 63 different device codes, DOS
Version 3 permits 26 different devices (the letters A to Z). To keep
compatibility between versions, limit your device access to a maximum
of 26 devices.

BIOS interrupt 11H does a better job of reading the number of disk drives
than this function.

The contents of the AH, BX, ex, ox, SI, 01, BP, es, OS, SS, ES and
the flag registers are not affected by this function.

781

Appendix C: DOS lnurrupts ond FlUlCtions 	 PC System Progrtlltlllting

Interrupt 21H, function OFH DOS
Open file (FCB) (Version 1 and up)

Opens a file if one is available. After this function call executes successfully, the
file can be read or written.

Input: 	 AH= OFH
DS = FCB segment address of the file
DX = FCB offset address of the file

Output: 	 AL = 0: File found and opened
AL = 255: File not found

Remarlcs: 	 Both nonna! and extended FCBs can be used.

If the file was found, DOS enters, into the FCB, the file size, the date and
the time of its creation or last modification.

DOS sets the record length at 128 bytes. This record length can be
changed in the FCB before opening a file. If you need a longer record
length, the DTA must be moved (the original DTA is only 128 bytes
long).

If random file access is performed, the random record field in the FCB
must be set after the file opens successfully.

The file pointer points to the first byte of the file after the file opens.

The contents of the AH, BX, CX, DX, SI, 01, BP, CS, DS, SS, ES and
the flag registers are not affected by this function.

Interrupt ltH, function 10H DOS
Close file (FCB) (Version 1 and up)

Writes all data currently in the DOS buffer to the file and closes the file. In
addition, the directory entry changes to reflect the new file size and the date and
time of the most recent modification to the file.

Input: 	 AH= IOH
DS = FCB segment address of the file
DX = FCB offset address of the file

Output: 	 AL = 0: File closed and directory entry revised
AL = 255: File not found in directory

Remarlcs: 	 Only open files can be closed.

For disk files, the disk which was in the drive when the function call
occurred must also be the disk that contains the file. Otherwise, the

782

Abacus 	 Appendix C: DOS Interrupts and Functions

function call writes an incorrect FAT and an incorrect directory to the
disk, which makes the data that is already on the disk useless.

The contents of the AH, BX, CX, OX, SI, 01, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 218, function 118 DOS
Search for first match (FeB) (Version 1 and up)

Searches for the fIrst occurrence in the disk directory of the fIlename indicated in
the FCB.

Input: 	 AH= llH
OS = ~B segment address
OX = ~ offset address

Output: 	 AL = 0: File found
AL = 255: File not found

Remarks: 	 The FCB passed to the function contains the drive specifier and the
fIlename for which the function should search.

The fIlename can contain the wildcard "1" to search for a group of fIles.

The search is made only in the current directory of the indicated device.

If the function searches for a normal file, a normal FCB can pass the
information to the function. However, if you wish to search for a fIle
with special attributes (volume name, subdirectories, hidden fIles, etc.),
extended PCBs must be used.

If a fIle was found, the OTA contains an FCB of the same type as the
FCBs. This FCB in the OTA contains the found filename. For this
reason, the OTA must always be large enough to accept either a normal
or an extended PCB.

The OTA can be switched to its own buffer using function IAR, to
ensure that it is large enough to accept the FCB.

The contents of the AH, BX, CX, OX, SI, 01, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

783

Appendix C: DOS Interrupts and Functions 	 PC System Programming

Interrupt 21H, function 12H DOS
Search for next match (FeB) (Version 1 and up)

Searches for additional occurrences in the disk directory of the filename indicated in
the FCB, after the file was found by function 17 (see above).

Input: 	 AH= 12H
DS = FeB segment address
OX =FeB offset address

Output: 	 AL = 0: File found
AL = 255: File not found (no other files available)

Remarks: 	 This function can only be called after calling function llH.

The FCB passed to the function contains the drive specifier and the
flIename for which the function should search.

If another. filename was found its name is recorded in the FCB at the
beginning of the OTA.

The OTA can be switched with function lAH to its own buffer to ensure
that it is large enough to accept the FCB.

The contents of the AH' BX, CX, DX, SI, 01, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 21H, function 13H DOS
Delete file (FCB) (Version 1 and up)

Erases one or more files in the current directory of the specified device.

Input: 	 AH= 13H
OS = PCB segment address
OX = PCB offset address

Output: 	 AL = 0: file(s) emsed
AL = 255: No file(s) found, or file(s) assigned Read Only attribute (undeletabJe)

Remarks: 	 The FCB passed to the function contains both the device on which the
flies to be erased are located and the name of the file.

The filename can contain the wildcard "?" to erase a group of files.

Only files in the current directory of the indicated device may be erased.

If the function is used to delete a normal file, a normal FCB can pass the
information to the function. However, if you want to delete a file with
special attributes (volume name, subdirectories, hidden files, etc.),
extended FCBs must be used.

784

Abacus 	 Appendix C: DOS Interrupts and Functions

Volumes may be deleted with this function; subdirectories may not

The contents of the AH, BX, CX, OX, SI, 01, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 21H, function 14H
Sequential read (FCB)

DOS
(Version 1 and up)

Reads the next sequential data block from a file.

Input: AH= 14H
OS = FCB segment address
OX = FCB offset address

Output: AL = 0: Block read
AL= I: End of file reached
AL = 2: Segment wrap
AL = 3: Partial record read

Remarks: 	 The function can only be called after the file was opened by the indicated
FCB.

The OTA reads the block. If the OTA is not large enough, function IAH
must move the OTA into its own buffer.

The FCB records the size of the block and the corresponding number of
oytesread.

Error 2 occurs when the OTA reaches the end of a segment and the block
being read extends beyond the end of the segment

Error 3 occurs when a partial block appears at the end of the file. The
block is read in anyway and blank spaces bring the block up to the
allocated block size.

After reading a block, the me pointer resets to the beginning of the next
block so that the next function call automatically reads the next block.

The contents of the AH, BX, CX, OX, SI, 01, BP, es, OS, SS, ES and
the flag registers are not affected by this function.

785

AppendiJe C: DOS InleTrupts and F/UlCtions 	 PC System Programming

Interrupt 21H, function
Sequential write (FCB)

ISH DOS
(Version 1 and up)

Writes a sequential block to a file.

Input: AH= ISH
OS = feB segment address
OX = FeB offset address

Output: AL = 0: Block written
AL = 1: Medium (disklhard disk) full
AL = 2: Segment overflow

Remarlcs: 	 The function can only be called after the file was opened by the indicated
FCB.

The OTA writes the block it contains to the file. If the OTA is not large
enough to hold the file, function IAH must be used to move the OTA
into its own buffer.

The FeB records the size of the block and the corresponding number of
bytes written.

Error 2 occurs if the OTA reaches the end of a segment and the block
being written extends beyond the end of the segment

After writing a block, the file pointer resets to the beginning of the next
block, so that the next function call automatically writes the next block.

The contents of the AH, BX, CX, OX, SI, 01, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 21H, function 16H DOS
Create or truncate file (FCB) (Version 1 and up)

Creates a new file, or dumps the contents of an existing file (file size=O bytes).
This function call allows other functions to read or write to the open file.

Input: 	 AH= 16H
OS = feB segment address
OX = PCB offset address

Output: 	 AL = 0: File created or cleared
AL = 255: File could not be created (e.g., directory full)

Remarks: 	 The contents of an existing fIle called by this function are lost.

After calling this function, the fIle is already open; you don't need to open
the file using function OFH (see above).

786

Abacus 	 Appendix C: DOS IfIlerrMprs and FlUlCtitms

If you open the fIle using an extended FeB, you can assign certain
attributes to the fIle (e.g., volume name, hidden file, etc.).

You cannot create a subdirectory using this function.

After opening the fIle, the fIle pointer moves to the frrst byte of the fIle.

The contents of the AH, BX, ex, OX, SI, DI, BP, es, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 218, fuuction 178 DOS
Rename file (FeB) (Version 1 and up)

Renames one or more files in the current directory of the specified device.

Input: 	 AH= 17H
OS = FCB segment address
OX = FCB offset address

Output: 	 AL = 0: File(s) renamed
AL = 255: No file found, or new filename matches old filename

Remarlcs: 	 The FeB here is a special FCB, based on a normal FeB. The first 12
bytes contain the drive specifier and the name of the file to be renamed.
However, this type of FeB has the new drive specifier and the new
filename stored starting at memory location lOH. The drive specifier must
be identical for both filenames.

The name of the fIle to be renamed can contain the wildcard "1", which
renames several files. If the new filename contains the wildcard "1", the
places in the fIlename and extension where a question mark appears in
this parameter remain unchanged.

The contents of the AH, BX, ex, OX, SI, DI, BP, es, DS, SS, ES and
the flag registers are not affected by this function.

787

Appendix C: DOS Inlerrllpts and FlUfCtioru 	 PC System ProgrtlllllttUsg

Interrupt 21H, function 19H DOS

Get default disk drive (Version 1 and up)

Returns the drive specifier of the default (current) disk drive.

Input: AH= 19H

Output: AL = Drive specifier

Remarks: This function identifies drive A as code 0, drive B as code I, etc.

The contents of the AH, BX, CX, OX, SI, DI, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 21H, function 1AH DOS
Set DTA address (Version 1 and up)

Transfers the OTA (Disk Transfer Area) to another area of memory. The OTA acts
as buffer memory for all FCB supported file accesses.

Input: 	 AH= lAH
OS = New OTA segment address
OX = New OTA offset address

Output: 	 No oulput

Remarks: 	 This function must be called if the existing DTA has insufficient memory
to handle the transmitted data.

When the program starts, MS-DOS places the OTA at address 128 in the
PSP. Since the program starts after address 255 of the PSP, it is 128
bytes long.

DOS does not test the length of the OTA. Instead it assumes that the
OTA is large enough to accept the transmitted data. If this is not the case,
a DOS function can overwrite the excess data.

DOS recognizes an error during various functions if the OT A is at the end
of a segment and the data to be transmitted exceeds the end of the
segment.

The contents of the processor registers and the flag registers are not
affected by this function.

788

Abacus 	 Appendix C: DOS InterrllplS and Functions

Interrupt 2lH, function IBH DOS
Get allocation information for default drive (Version I and up)

Returns infonnation about the format of the default drive.

Input: 	 AlI= IBH

Output: 	 AL = Number of sectors per cluster

DS = Media descriptor segment address

BX = Media descriptor offset address

DX = Number of clusters

Remarks: 	 The media descriptor can return the following codes:

F8H: Hatd disk
F9H: Disk drive: double-sided, 15 sectors per track (AT only)
FCH: Disk drive: single-sided, 9 sectors per track
FDH: Disk drive: double-sided, 9 sectors per track
FEH: Disk drive: single-sided, 8 sectors per track
FFH: Disk drive: double-sided, 8 sectors per track

The contents of the All, BX, CX, DX, SI, 01, BP, CS, DS, SS, ES and
the flag registers are not affected by this function.

Interrupt 2lH, function lCH DOS
Get allocation information for specified drive (Version 1 and up)

" 	 Returns information about the format of the specified drive.

Input: 	 All = 1CH

DL = Drive specifier

Output: 	 AL = Number of sectors per cluster

DS = Media descriptor segment address

BX = Media descriptor offset address

DX = Number of clusters

Remmks: 	 This function identifies drive A as code 0, drive B as code 1, etc.

The media descriptor can return the following codes:

F8H: Hard disk
F9H: Disk drive: double-sided, 15 sectors per track (AT only)
FCH: Disk drive: single-sided, 9 sectors per track
FDH: Disk drive: double-sided, 9 sectors per track
FEH: Disk drive: single-sided, 8 sectors per track
FFH: Disk drive: double-sided, 8 sectors per track

The contents of the All, BX, CX, DX, SI, 01, BP, CS, DS, SS, ES and
the flag registers are not affected by this function.

789

Appendix C: DOS Interrupts and Functions 	 PC System Programming

Interrupt 21(h), function 1DH DOS
Reserved (Version 1 and up)

Interrupt 21(b), function lEU DOS
Reserved (Version 1 and up)

Interrupt 21(b), function 1FU DOS
Reserved (Version 1 and up)

Interrupt 21(b), function 20U DOS
Reserved (Version 1 and up)

Interrupt 21U, function 21U DOS
Random read (FeB) (Version 1 and up)

Reads a specified file record into the DTA.

Input: 	 AH= 21H
DS = PCB segment address
DX = PCB offset address

Output: 	 AL = 0: Record read
AL = 1: End offile reached
AL = 2: Segment overflow
AL = 3: Partial record read

Remarks: 	 The function can only be called after the file was opened by the indicated
FCB.

The record whose address is stored in the FCB starting at location 21H is
read.

The DTA reads the record. If the DTA is not large enough, function IAH
must be called to move the DTA into its own buffer.

The FCB records the size of the record and the corresponding number of
bytes read.

During the function call, the file pointer moves to the beginning of the
record being read so that a subsequent call of a sequential read (function
14H-see above) reads the same record sequentially.

The record number does not increment following the function call, so a
new call of this function would read the same record.

Error 2 occurs when the DTA reaches the end of a segment and the record
being read extends beyond the end of the segment

790

Abacus 	 Appendix C: DOS inlerrllpts and Functions

Error 3 occurs when a partial record appears at the end of the file. The
record is read in anyway and blank spaces bring the record up to the
allocated record size.

The contents of the AH, BX, CX, DX, SI, 01, BP, CS, DS, SS, ES and
the flag registers are not affected by this function.

Interrupt 21Ht function 22H DOS
Random write (FCB) (Version 1 and up)

Writes data from memory to the specified record in a file.

Input: 	 AH= 22H
DS = FCB segment address
DX = FCB offset address

Output: 	 AI.. = 0: record was written
AI.. = 1: Medium (disk/hard disk) full
AI.. = 2: segment overflow

Remarlcs: 	 The function can only be called after the file was opened by the indicated .
FCB.

The record whose address is stored in the FCB starting at location 21H is
read.

The record is written from the DT A to the file. If the DT A is not large
enough, function IAH must move the DTA into its own buffer.

The FCB records the size of the record and the number of bytes read.

During the function call, the file pointer moves to the beginning of the
record being read. This instructs subsequent calls of a sequential read
(function 14H-see above) to read the same record sequentially.

The record number does not increment following the function call, so a
new call of this function would read the same record.

Error 2 occurs when the DTA reaches the end of a segment and the record
being written extends beyond the end of the segment

The contents of the AH, BX, CX, DX, SI, 01, BP, CS, DS, SS, ES and
the flag registers are not affected by this function.

791

Appendix c: DOS InlUrllpts and FlUlCtioru 	 PC System Progronaming

Interrupt UH, function 23H DOS

Get tile size in records (FeB) (Version 1 and up)

Detennines the size ofa me based on the number of records in that fIle.

Input: 	 AH= 23H
OS = PCB segment address
OX =PCB offset address

Output: 	 AI.. = 0: Number of records found starting at FCB address 21H
AI.. = 255: File not found

Remarks: 	 The FeB passed contains the drive specifier as well as the name and
extension of the me to be examined.

Unlike the other FeB supported me accesses, the PCB requires the record
size before the application can call this function.

A record size of 1 returns the size of the fIle in bytes.
,

The contents of the AH, BX, ex, ox, SI, DI, BP, es, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 21H, function 24H DOS
Set random record number (Version 1 and up)

Sets the record number in the FeB to the current position of the fIle pointer.
Random access may begin at the point at which earlier sequential accesses left off.

Input: 	 AH= 24H
OS = PCB segment address
OX = PCB offset address

Output: 	 No output

Remarlcs: 	 The function can only be called after the fIle was opened by the indicated
FeB.

The contents of the processor registers and the flag registers are not
affected by this function.

792

Abacus 	 AppendiJc c: DOS Interrupts fl1fIl. FlIIICtions

Interrupt 21H, function 2SH DOS
Set interrupt vector (Version 1 and up)

Sets any interrupt vector to another routine.

Input: AH= 2SH
AL = Interrupt number
OS = New interrupt routine segment address
OX = New interrupt routine offset address

Output: No output

Remarks: 	 Before calling this function, the old contents of the interrupt vector to be
changed should be read and stored using function 3SH. Mter the program
terminates, the old contents of the interrupt vector should be restored.

The contents of the processor registers and the flag registers are not
affected by this function.

Interrupt 21H, function 26H 	 DOS
Create 	PSP (Version 1 and up)

Copies the PSP (program segment prefix) of the executing program to a specified
address in memory.

Input: AH= 26H
OX = New PSP segment address

Output: No output

Remarks: 	 The new PSP offset address is O.

DOS Version 1 uses this function to execute other programs by creating a
PSP,loading the program after this PSP and executing it.

For DOS Version 2 up, use the EXEC function 4BH to load and execute
additional programs instead of this function.

The contents of the processor registers and the flag registers are not

affected by this function.

793

Appendix C: DOS Inlerrllpts and Functions 	 PC System Programming

Interrupt 2lH, function 27H DOS
Random block read (FCB) (Version 1 and up)

Reads one or more sequentially stored records into memory.

Input: 	 AH= 27H
ex = NumbeJ- of records to be read
OS = FCB segment address
ox = FeB offset address

Output: 	 AL = 0: Record read
AL = 1: End of file reached
AL = 2: Segment overflow
AL = 3: Partial record read
ex =Number ofrecords read

Remarks: 	 The function can only be called after the file was opened by the indicated
FeB.

The starting record is the record whose address is stored in the FeB,
starting at location 21H.

The record data passes to the OTA. If the OT A is not large enough,
function lAH must move the OTA into its own buffer.

The FeB records the size of the record and the corresponding numbeJ- of
bytes read.

Mter the function call, the file pointer moves to the end of the last record
that was read so that it points to the next record (following the last record
reOO>.

Error 2 occurs when the DTA reaches the end ofa segment and the record
being read extends beyond the end of the segment

Error 3 occurs when a partial record appears at the end of the file. The
record is read in anyway and blank spaces bring the record up to the
allocated record size.

The contents of the AH, BX, ex, ox, SI, 01, BP, CS, DS, SS, ES and
the flag registers are not affected by this function.

794

Abacus 	 AppertdiJc C; DOS intt!n'''Pts and FJUlCtions

Interrupt UH, function 28H DOS

Random block write (FeB) (Version 1 and up)

Writes one or more records in sequence to the specified rue.

Input: 	 AH= 28H
ex = Number of records to be written
OS = FCB segment address
OX = FCB offset address

Output: 	 AL = 0: Record written
AL = 1: Medium (diskJhard disk) full
AL = 2: Segment overflow
ex = Number of records written

Remarks: 	 The function can only be called after the rue was opened by the indicated
FeB.

The starting record is the record whose address is stored in the FeB
starting at location 21H.

The FeB records the size of the record and the corresponding number of
bytes read.

The data is written from the OT A to the flle. If the OTA is not large
enough, function IAH must move the DTA into its own buffer.

After the function call, the flle pointer moves to the end of the last. record
written so that it points to the next record, which follows the last record
written. The record number increments by the number of records written.

Error 2 occurs when the DT A reaches the end of a segment and the record
being written extends beyond the end of the segment

The contents of the AH, BX, ex, ox, SI, 01, BP, es, os, SS, ES and
the flag registers are not affected by this function.

Interrupt 21H, function 29H DOS
Parse filename to FCB (Version 1 and up)

Transfers an ASCII format rueruime into the proper fields of an FCB. The ruename
can include a drive specifier, fIlename and fIle extension.

Input: 	 AH = 29H
DS = Segment address of fllename in memory
SI = Offset address of ruename in memory
ES = FCB segment address
01 = FCB offset address

795

Appendix C: DOS Intemlpts and FlllfCtions 	 PC System Programi'lUng

Output:

Remarks:

AL = Transmission parameters:
Bit 1 = 1: The drive specifier in the FCB changes only if the fllename

passed contains a drive specifier
0: 	 The drive specifier changes anyway. If the filename passed

contains no drive specifier, the the FeB defaults to 0
(current drive)

Bit 2 = 1: The filename in the FCB changes only if the filename
parameter passed contains a filename

0: 	 The fllename changes. If the fllename passed does not con
tain a fllename, the fllename in the FCB fills with spaces
(ASCII code 32)

Bit 3 = 1: The flle extension in FCB changes only if the fllename
passed contains an extension

0: 	 The flle extension in the FeB changes. If the filename
passed has no extension, the extension field is padded with
spaces (ASCII code 32)

Bits ~: Should contain the value 0

AL = 0: The filename passed contains no wildcards
AL = 1: The filename passed contains wildcards
AL = 255: Invalid drive specifier
OS = Segment address of the first character after parsed filename
SI = Offset address of the first character after parsed filename
ES = FCB segment address
01 = FCB offset address

The filename must end with an end character (ASCII code 0).

If the fllename contains the wildcard ".", all corresponding fields in the
FCB fiU with the wildcard "?".

The contents of the AH, BX, ex, ox, SI, 01, BP, es, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 21H, function 2AH DOS
Get system date (Version 1 and up)

Reads the current system date.

Input: AH= 2AH

Output: 	 AL= Day of the week (O=Sunday, l=Monday, etc.)
ex= Year
OH= Month
OL= Day

Remarks: 	 DOS calls the clock driver to read the date.

The contents of the AH, BX, ex, ox, SI, 01, BP, es, OS, SS, ES and
the flag registers are not affected by this function.

796

Abacus 	 Appendbc c: OOS Interrupts and FlUICtions

Interrupt 21H, function 2BH DOS
Set system date (Version 1 and up)

Sets the current system date as returned by function 2AH (see above).

Input: 	 AlI= 2BH
CX= Year
OH= Month
OL= Day

Output: 	 AL= 0: O.K.
AL = 255: Date incorrect

Remarks: 	 The date passes to the clock driver.

If the PC does not have a realtime clock, the date remains in effect until
the PC is switched off or rebooted.

If the date entry is incorrect, the PC retains the old date.

The contents of the AlI, BX, CX, OX, SI, 01, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 21H, function 2CH DOS
Get system time (Version 1 and up)

Gets the current system time.

Input: 	 AlI= 2CH

Output: 	 CH= Hours
CL= Minutes
OH= Seconds
OL = Hundredths ofa second

Remarks: 	 DOS calls the clock driver to read the time.

The contents of the AlI, BX, CX, OX, SI, 01, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 21H, function 2DH DOS
Set system time (Version 1 and up)

Sets the current system time.

Input: 	 AH = 2DH
CH= Hours
CL= Mmiites
OH= Seconds
OL = hundredths of a second

797

Appendix C: DOS l111errllpts and FlUlCtiolU 	 PC System Programming

Output: AL= 0: O.K.
AL = 255: Incorrect time

RemaIks: The time passes to the clock driver.

If the PC does not have a realtime clock. the time remains in effect until
the PC is switched off or rebooted.

If the time entty is incorrect. the PC retains the old time.

The contents of the AH. BX. ex. DX. SIt DI. BP, es, DS, SSt ES and
the flag registers are not affected by this function.

Interrupt 21H, function 2EH DOS
Set verify flag (Version 1 and up)

Sets the verify flag. This flag determines whether data should be verified after a
write operation to a block driver for proper ttansmission.

Input: 	 AH= 2EH
DL= 0
AL = 0: Don't verify data
AL = 1: Verify data

Output: 	 No output

RemaIks: 	 This flag can be controlled at the user level with the VERIFY ON and
VERIFY OFF commands.

The contents of the processor registers and the flag registers are not
affected by this function.

Interrupt 21H, function 2FH DOS
Get DT A address (Version 2 and up)

Returns the address of the DTA (Data Transmission Area). which serves as a data
buffer for all FeB supported me accesses.

Input: 	 AH= 2FH

Output: 	 ES = DTA segment address
BX = DTA offset address

Remarks: 	 This function determines the address of the DTA. but not the DTA's size.

After the start of a program. the DTA starts at memory location 128 of
the PSP and has a length of 128 bytes.

The contents of the AH. BX. ex. DX, SIt DI. BP. es, DS. SSt ES and
the flag registers are not affected by this function.

798

Abacus 	 Appendix C: DOS Inlerrllpts and FlUlCtions

Interrupt 21H, function JOH DOS
Get MS-DOS version number (Version 2 and up)

Returns th~ DOS version number.

Input: 	 AH= 30H

Output: 	 AL= Major version number (e.g., version 2.01=2)
AH = Minor version number (e.g., version 3.01=01)

Remarlcs: 	 The major (whole) version number represents the number preceding the
decimal point. For example, the version number 3.3 returns the major
version number 3.

The minor (fractional) version number represents the number following
the decimal point. It is always given as two digits. For example, Version
2.1 returns the minor version number 10 (OAR).

If the AL register contains a value of 0. the program runs under DOS
Version l. DOS Version l.0 cannot use this function.

The contents of the OX. SIt DI. BP, es, OS. SS, ES and the flag
registers are not affected by this function.

Interrupt 21H, function 31H DOS
Terminate and stay resident (Version 2 and up)

Terminates the currently executing program and returns control to the calling
program. The current program remains in memory for later recall.

Input: 	 AH= 31H
AL = Return code
OX = Number ofparagraphs to be reserved

Output: 	 No output

Remarlcs: 	 The return code in the AL register indicates whether or not the program
called by it correctly executes. The calling program can read this number
by calling function 77 (40H). This value can be tested from within a
batch file using the ERRORLEVEL and IF commands.

The number of 16-byte paragraphs to be reserved indicates how many
bytes. beginning with the PSP. cannot be released for other uses.

Memory blocks reserved by function 48H are not affected by the value in
the OX register because they can only be released by calling function
49H.

799

Appendix C: DOS Irtlerrupts and FlUfCtions 	 PC System Progromming

Interrupt 21H, function 33H, sub-function 0 DOS
Get <Ctrl><Break> nag (Version 2 and up)

Reads the <Ctrl><Break> flag. This determines whether DOS should test for
active <Ctrl><C> or <ctrl><Break> keys on each function call, or on character
input/output calls. <Ctrl><C> and <ctrl><Break> trigger interrupt 23H.

Input: 	 AlI= 33H
AL= 0

Output 	 OL = 0: Test only during character input/output
OL = 1: Test on every function call

Remarks: 	 Since the <Ctrl><Break> flag is not part of the environment block of a
program, it affects all programs which call the DOS character functions
that test for <Ctrl><C> or the <Break> key.

The contents of the AH, BX, CX, OX, SI, 01, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 21H, function 33H, sub-function 1 DOS
Set <Ctrl><Break> nag (Version 2 and up)

Sets and unsets the <Ctrl><Break> flag. This detennines whether DOS should test
for the activation of the <Ctrl><C> or <Ctrl><Break> keys on each DOS
function call or character input/output calls. <Ctrl><C> and <Ctrl><Break>
trigger interrupt 23H.

Input: 	 AlI = 33H
AL= 1
DL = 0: Test only during character input/output
DL = 1: Test on every function call

Output 	 No output

Remarks: 	 Since the <Ctrl><Break> flag is not part of the environment block of a
program, it affects all programs which call the DOS character functions
that test for <Ctrl><C> or the <Break> key.

The contents of the processor registers and the flag registers are not
affected by this function.

~ I

800

Abacus 	 Appel'lllU C: DOS Intf!ITupts and FlUlCtions

Interrupt 21H, function 3SH DOS
Get interrupt vector (Version 2 and up)

Returns the current contents of an interrupt vector and the address of the interrupt
routine that belongs to it.

Input: 	 AH= 35H
AI.. = Interrupt number

Output: 	 ES = Interrupt routine segment address
BX = Interrupt routine offset address

Remarks: 	 To ensure compatibility with future versions of DOS, instead of reading
the vector's contents directly from the interrupt vector table, call this
function for reading an interrupt vector.

The contents of the AH, BX, ex, ox, SI, DI, BP, es, OS, SS, ES and
the flag registers are not affected by this function.

Interrupt 21H, function 36H DOS
Get free disk space (Version 2 and up)

Returns information about the device (the block driver) from which the
available memory space can be calculated.

Input: 	 AH= 36H
OL = Device code

Output: 	 AX = 65535: Device unavailable
AX< 65535: Number of sectors per cluster
BX = Number of available clusters
ex = Number of bytes per sector
OX = Total number of clusters on the device

Remarks: 	 This function identifies drive A as code 0, drive B as code 1, etc.

The remaining memory on the medium can be computed from the number
of bytes per sector multiplied by the number of sectors per cluster,
multiplied by the number of free clusters.

The contents of the SI, DI, BP, es, OS, SS, ES and the flag registers are
not affected by this function.

801

Appendix C: DOS Inlemlf'ts and Functions 	 PC System Programming

Interrupt 218, function 388 DOS
Get country (Version 2 and up)

Detennines country-specific parameters, which are set in the CONFIG.SYS file
using the DOS COUNTRY command.

Input: 	 AH= 38H
AL= 0
OS = Buffer segment address
OX = Buffer offset address

Output: 	 No output

Remarlcs: 	 Before the function call, function 30H should be used to determine the
DOS version. This can help the programmer compensate for differences
between DOS versions during the call and return of this function.

The buffer must have at least 32 bytes allocated for recording the various
country-specific parameters.

Following the function call, the individual bytes of this buffer contain the
following information :

Bytes 0-1: Date format
0= USA: Month-<lay-year
1 =Europe: day-month-year
2 =Japan: Year-month-<lay

Byte 2: ASCII code of the currency symbol
Byte 3: 0
Byte 4: ASCII code of the thousand character (comma/period)
Byte 5: 0
Byte 6: ASCII code ofdecimal chamcter (period/comma)
Byte 7: 0
Bytes ~31: reserved

The contents of the processor registers and the flag registers are not
affected by this function.

Interrupt 218, function 388, sub-function 0 DOS
Get country (Version 3 and up)

Gets the country-specific parameters that are currently set.

Input: 	 AH = 38H
OS = Buffer segment address
OX = Buffer offset address
AL = 0: read current country parameters
AL = 1-254: Country code parameters to be read
AL = 255: Country code parameters to be read p1aced in the BX register

802

Abacus

Output:

Remruks:

Appendu: C: DOS Interrupts and FlUfCtions

Carry flag=O: O.K.

Carry flag=1: Invalid country code

Before the function call, function 30H should be used to determine the
OOS version. This can help the programmer compensate for differences
between OOS versions during the call and return of this function.

The buffer must have at least 32 bytes allocated for recording the various
country specific parameters.

Following the function call, the individual bytes of this buffer contain the
following infonnation:

Bytes 0-1: Date format
0= USA: Month-day-year
1 = Europe: Day-month-year
2 = Japan: Year-month-day

Bytes 2-6: Currency indicator (string terminated by an end character)
Byte 7: ASCII code of the thousand character (comma/period)
Byte 8: 0
Byte 9: ASCII code of decimal character (period/comma)
Byte 10: 0
Byte 11: ASCn code of the date separation character
Byte 12: 0
Byte 13: ASCn code of the time separation character
Byte 14: 0
Byte 15: Currency fonnat

bit 0 = 0: Currency symbol before the value
bit 0 = 1: Currency symbol after the value
bit 1 = 0: No spaces between value and currency symbol
bit 1 = 1: Space between value and currency symbol

Byte 16: Precision (number of decimal places)
Byte 17: Time fonnat

bit 0 = 0: 12-hour clock
bit 0 = 1: 24-hour clock

Bytes 18-21: Address of character conversion routine (see below)
Bytes 22-33: reserved

Addresses 18 to 21 are the offset and segment addresses of a FAR
procedure, which is used for accessing the country specific characters from
the character set of the PC. The routine views the AL register's contents
as the ASCII code of a lower case letter that should be converted to a
capital letter. If a capital letter exists, it is retained in the AL register after
the call. If the letter doesn't exist, the contents of the AL register remain
unchanged For example, the routine could be used to convert a lower case
"a" into a capital" A".

The contents of the AH, BX, CX, OX, SI, DI, BP, CS, OS, SS, ES and
the flag registers are not affected by this function.

803

Appendix C: DOS lnurrupts and FlI1ICtions 	 PC System Programming

Interrupt 2lB, function 38B, sub·function 1 DOS
Set country (Version 3 and up)

Sets the current country-specific parameters. These parameters can be read using
function 38H, sub-function O. Previous versions of DOS required country-specific
settings fromthe CONFIG.SYS file using the COUNTRY command. This
function allows the user to set and change these parameters after booting.

Input: 	 AH= 38H
OX= 65535
AL = 1-254: Number of the country
AL > 254: Look in BX for country number
BX = Number of the country (if AL > 254)

Output: 	 Carry flag=O: O.K.
Carry flag=l: Invalid country code

Remarks: 	 Before the function call, function 30H should be used to determine that
this command exists.

This function only allows setting of the country code, for which DOS has
preset parameters. These parameters cannot be changed from this function.

The contents of the AH, BX. CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 21H, function 39H DOS
Create subdirectory (Version 2 and up)

Creates a new subdirectory on the specified device.

Input: 	 AH= 39H
DS = SUbdirectory path segment address
DX = Subdirectory path offset address

Output: 	 Carry flag=O: Subdirectory created
Carry flag=1: Error (AX = error code)

AX=3: Path not found

AX=5: Access denied

Remarks: 	 The subdirectory path passed is an ASCII string which is terminated by
an end character (ASCII code 0).

If the subdirectory path contains a drive specifier, the indicated device is
accessed. Otherwise DOS creates the subdirectory on the current device.

An error can occur if any element of the path designation doesn't exist, a
subdirectory already exists by that name, or the directory to be made is a
subdirectory of the root directory and it is already filled.

804

Abacus 	 Appendi:x c: DOS Inlerrupts and FlUlCtions

The contents of the BX, ex, DX, SI, DI, BP, es, DS, SS and ES
registers are not affected by this function.

Interrupt UH, function lAH DOS
Delete subdirectory (Version 2 and up)

Deletes a subdirectory from the specified drive.

Input: 	 AH= 3AH
OS = Subdirectory path segment address
OX = Subdirectory path offset address

-
Output: 	 Carry t1ag=O: Subdirectory deleted

Carry f1ag=l: Error (AX = error code)
AX=3: Path not found
AX=5:<k.cess denied
AX=6: Directory to be deleted is the current directory

Remarks: 	 The subdirectory path passed is an ASen string which is tenninated by
an end character (ASen code 0). e:
If the subdirectory path contains a drive specifier, the indicated device is
accessed. Otherwise DOS deletes the subdirectory from the current device.

An error can occur if any element of the path designation doesn't exist,
the subdirectory is the current directory, or the directory to be deleted still
contains fIles.

The contents of the BX, CX, OX, SI, DI, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 21H, function lBH DOS
Set current directory (Version 2 and up)

Sets the current subdirectory for the device indicated.

Input: 	 AH= 3BB
DS = Subdirectory path segment address
ox = Subdirectory path offset address

Output: Carry flag=O: Subdirectory set
Carry flag=l: Error (AX = error code)

AX=3: Path not found

Remarks: 	 The subdirectory path passed is an ASen string which is tenninated by
an end c~ter (AScn code 0).

If the subdirectory path contains a drive specifier, the indicated device is
accessed. Otherwise DOS deletes the subdire<;tory from, the current device.

805

AppendiJc C: DOS Inlerrupts ond F&lllCtions 	 PC System ProgrfllMJing

An error can occur ifany element of the path designation doesn't exist.

The contents of the BX, CX, OX, SI, DI, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 21n, function JCn DOS
Create or truncate file (bandle) (Version 2 and up)

Creates a new file, or dumps the contents of an existing file (file size=O bytes).
This function call allows other functions to read or write to the open file.

Input: 	 AH= 3CH
CX = File attribute
Bit 0 = I: File is read only
Bit 1 =1: Hidden file
Bit 2 =1: System file
OS = Filename segment address
OX = Fdename offset address

Output: 	 Carry flag=O: O.K. (AX =fIle handle)
Carry flag=l: Error (AX = error code)

AX=3: Path not found

AX=4: No available handle

AX=5: Access denied

Remarks: 	 The various bits of the fIle attribute can be combined with each other.

The fIlename must be available as an ASCII string terminated by an end
character (ASCII code 0). The filename parameter can contain a driver
specifier, path, fIlename and extension. No wildcards are allowed. If you
omit the drive specifier or path. DOS accesses the current drive or current
directory.

An error can occur if any element of the path designation doesn't exist, if
the file must be created in the root directory which is already full, or if a
fIle with the same name already exists but cannot be cleared because it is
write protected (bit 0 in the fIle attribute byte =1).

If the function call executed successfully, all other handle functions can be
called with this handle once the file opens. '

The fIle pointer is set to the first byte of the fIle.

The contents of the BX, CX, OX, SI, DI, BP, CS, OS, SS and ES
registers are not affected by this function.

806

AbacllS AppendiJC C: DOS Inl.rupts tlIId FlUlCtions

Interrupt liB, function 3DB DOS
Open file (handle) (Version 2 and up)

Opens an existing file for access by other functions.

Input:

Output:

Remarks:

AH= 3DH
AL = Access mode
Bits 0-2: Read/write access

000(b) =File is read only

00 1 (b) =File can only be written

01O(b) = File can be read and written

Bit 3: O(b)
Bits ~: File sharing mode

000(b) = Only current program can access the file (FCB mode)
00 1 (b) = Only the current program can access the file
01O(b) =Another program can read but not write the file
011(b) = Another program can write but not read the file
l00(b) =Another program can read and write the file

Bit 7: Handle flag
o = Child program of the current program can access file handle
1 =Current program can access file handle only

DS = Filename segment address
DX = Filename offset address

Carry flag=O: O.K. (AX = file handle)
Carry flag=1: Error (AX = error code)

AX=I:Missing ftle sharing software
AX=2: File not found
AX=3: Path not found or ftle doesn't exist
AX=4: No handle available
AX=5: Access denied
AX=12: Access mode not pennitted

The filename must be available as an ASCII string terminated by an end
character (ASCn code 0). The ftlename parameter can contain a driver
specifier, path, ftlename and extension. No wildcards are allowed. If you
omit the drive specifier or path, OOS accesses the current drive or current
directory.

If the function call executes successfully, all other handle functions can be
called with this handle once the file opens.

The me pointer is set to the first byte of the ftle.

DOS Version 2 uses only bits 0 to 2 of the access mode. All other bits,
even under Version 3, should be 0 to ensure proper execution of the call.

DOS Version 3 uses the ftle sharing mode in bits 4 to 6 of the access
mode only if the ftle is on a mass storage device which is part of a
network. These three bits decide if and how the ftle, while it is open

807

Appendix c: DOS Interrupts Q1fd F'lUICtions 	 PC System Programming

using the current call, may be accessed by other programs from other PCs
,/ on the network.

Error 12 can occur only und« DOS Version 3 and only within a network
when the file is already opened by another program and if no other
program can gain access tolhat file.

The contents of the BX, CX, OX, SI, 01, BP, CS, DS, SS and ES
registers are no~ affected by this function.

Interrupt 21B, IUDl:tion 3EB DOS
Close file (handle) (Version 2 and up)

Writes any data in the OOS buffers to a currently open file, then closes the file. If
changes occur to the file, the new file size and the last date and time of
modification are adde3 to the directa:)'.

Input: 	 AH= 3EH
BX = Handle to be closed

Output: Carry flag=O: O.K.
Carry flag=l: Error (AX = error code)

AX=6: Unauth<Xized handle or file not opened

Remarks: 	 Do not accidentally call this functiOn with the numbers of the previous
handle (the numbers 0 to 4) because the standard input device or standard
output device may close. This 'Nould leave you unable to enter characters
from the keyboard or display characters on the screen.

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 21B, lunction 3FB DOS
Read file or device (handle) (Version 2 and up)

Reads a certain number of characters by using a handle from a previously opened
me or device and passes the characters to a buffer. The read operation starts at the
current ftle pointer position.

Input: 	 AH= 3FH
BX = File or device handle
CX = Number of bytes to be read
OS = Buffec segment address
OX = Buffer offset address

Output: 	 Carry flag=O: O.K. (AX = number ofbytes read)
Carry flag=l: Error (AX = error code)

AX=5: Access denied
AX=6: illegal handle or ftle not open

808

Abacus 	 Appendix C: DOS Itt1errllflts and FlUtCtions

Remarks: 	 Characters can be read from a file or from a device (e.g., the standard input
device [keyboard], which has the handle 0).

When the carry flag resets after the function call but the AX register has
the value 0, this means that the file pointer has already reached the end of
the file before the function call. So, no files could be read.

When the carry flag resets after the function call but the contents of the
AX register are smaller than the contents of the ex register before the
function call, this means that the desired number of bytes wasn't read
because the end of the file was reached.

After the function call, the file pointer follows the last byte read.

The contents of the BX, ex, DX, SI, DI, BP, es, DS, SS and ES
registers are not affected by this function.

Interrupt 218, function 408 DOS
Write to file or device (bandle) (Version 2 and up)

Writes a certain number of characters from a buffer to an open file or device by
using a handle. The write operation begins at the file pointer's current position.

Input: 	 AH= 40H
BX = File or device handle
CX = Number of bytes to be written
DS = Buffer segment address
DX = Buffer offset address

Output: 	 Carry flag=O: O.K. (AX = number of bytes written)
Carry fIag=1: Error (AX = eaor code)

AX=5: Access denied
AX=6: illegal handle or file not open

Remarks: 	 eharacters can be written to a file or to a device (e.g., the standard output
device [screen], which has the handle 1).

When the carry flag resets after the function call but the AX register has
the value 0, this means that the file pointer has already reached the end of
the file before the function call. Therefore no files could be written.

When the carry flag resets after the function call but the contents of the
AX register are smaller than the contents of the ex register before the
function call, this means that the desired number of bytes were not
written because the end of file was reached.

After the function call, the file pointer follows the last byte written.

809

Appendix C: DOS InterrMpts and Functions 	 PC System Programming

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 218, function 418 DOS
Delete file (bandle) (Version 2 and up)

Oeletes the filename passed to the function. Through the call of this function, a
file is erased and its name is passed to the function.

Input: 	 AlI= 41H
OS = Filename segment address
OX = Filename offset address

Output: Carry flag=<>: O.K.
Carry flag=l: Error (AX =error code)

AX=2: File not found
AX=5: Access denied

Remarks: 	 The ftlename must be available as an ASCII string terminated by an end
character (ASCII code 0). The filename parameter can contain a drive
specifier, path, ftlename and extension. No wildcards are allowed. If you
omit the drive specifier or path, OOS accesses the current drive or current
directory.

An error occurs when any element of the path designation doesn't exist or
when the file has the attribute Read Only and therefore can not be written
to or deleted. This attribute can be changed by using function 43H.

You cannot delete subdirectories or volume names with this function.

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 218, function 428 DOS
Move file pointer (bandle) (Version 2 and up)

Moves the file pointer of a previously opened file by using its handle. This allows
random access because the individual records don't have to be read in sequence. 1be
new file pointer position is given as an offset from the current position, either
from the beginning of the file or from the end of the file. The offset itself is
indicated as a 32-bit number.

Input: All = 42H
AL = Offset code

AL--o: Offset is relative to the beginning of the file
AL=1: Offset is relative to the current position of the file pointer
AL=2: Offset is relative to the end of the file

BX= Handle
CX = High word of the offset

810

AbacIloS'

Output:

Rematks:

Appendix c: DOS [1IIerTllpts and FlUtClions

ox = Low word of the offset

Carry fIag=O: O.K.
OX = High word of the fIle pointer
AX =Low word of the fIle pointer

Carry f1ag=1: Error (AX = error code)
AX=I: Dlegal offset code
AX=6: megal handle or File not open

IT offset codes 1and 2 are accessed, negative offsets may be used to move
the ftle pointer backwards or to place the pointer at the beginning of the
ftle. It's possible to set the fIle pointer before the end of the ftle, which
causes an error during the next read or write access to the ftle.

The position of the ftle pointer passed after the function call is always
relative to the beginning of the fIle. The offset code used during the
function call is independent of this fIle pointer position.

Passing offset code 2 and offset 0 returns the size of the fIle. This action
moves the ftle pointer to the last byte of the ftle and the pointer's
position returns to the calling program after the function call.

The contents of the BX, CX, , SI, 01, BP, CS, OS, SS and ES registers
are not affected by this function.

Interrupt ltH, function 43H, sub·function 0 DOS
Get file attributes (Version 2 and up)

Determines fIle attributes.

Input: 	 AH= 43H
AL= 0

OS = Filename segment address

OX = FUename offset address

Output: 	 Carry flag =0: O.K. (CX = fIle attribute)
Bit 0=1: File can be read but not written
Bit 1=1: File hidden (not displayed on OIR)
Bit 2=1: File is a system ftle
Bit 3=1: File is the volume name
Bit 4=1: File is a subdirectory
Bit 5=1: File was changed since the last date/time
Carry flag =1: Error (AX =error code)

AX=I: Unknown function code
AX=2: File not found
AX=3: Path not found

Remarlcs: 	 The fdename must be available as an ASCII string terminated by an end
character (ASCII code 0). The ftlename parameter can contain a driver
specifIer, path, fdename and extension. No wildcards are allowed. IT you

811

Appendix C: DOS lrllerr"Pts and F/UlCtWru 	 PC System Programming

omit the drive specifter or path, ooS accesses the current drive or current
direday.

An error occurs when any element of the path designation or the ftle does

not exist.

The contents of the BX, CX, , SI, 01, BP, CS, OS, SS and ES registers
are not affected by this function.

Interrupt UH, function
Set file attributes

43H, sub·function 1
(Ve

DOS
rsion 2 and up)

Sets the ftle attributes.

Input: AH= 43H
AL= 1
CX = File attributes
Bit 0 =1: File can be read but not written
Bit 1=I: File hidden (not displayed on OIR)
Bit 2 =1: File is a system ftle
Bit 3 =0
Bit4 = 0
Bit 5 =I: File was changed since the last date/time
OS = Filename segment address
OX =Filename offset address

Output: 	 Carry flag=O: O.K.
Carry flag=1: Enor (AX = error code)

AX=I: Unknown function code
AX=2: File not found
AX=3: Path not found
AX=5: Attribute cannotbe changed

Remarks: 	 The ftlename must be available as an ASCn string terminated by an end
character (ASCII code 0). The ftlename parameter can contain a driver
specifier, path, ftlename and extension. No wildcards are allowed. If you
omit the drive specifier or path, DOS accesses the current drive or current
directory.

An error occurs when any element of the path designation or the ftle does
not exist.

Neither subdirectories nor volume names can be accessed with this
function. For this reason bits 3 and 4 of the ftle attribute must be 0
during the function call. If you attempt to access a subdirectory or a
volume name anyway, the function returns error code 5.

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

812

Abacus 	 Appendix c: DOS Interrupts and Functions

Interrupt 11H, function 44H, sub-function 0
IOCTL: Get device information

DOS
(Version 2 and up)

Pennits access of a character driver's device attribute.

Input: AH= 44H
AL= 0
BX= Handle

Output: Carry flag=O: O.K. (OX =device attribute)
Bit 14= 1: Processes control characters through IOCIL
Bit 7 = 1: Character driver
Bit 5 = 0: Cooked mode operation

1: Raw mode opcption
Bit 3 = 1: Oock driver operation
Bit 2 = 1: NUL driver operation
Bit 1 = 1: Console output driver (screen)
Bit 0 = 1: Console input driver (keyboard)
Carry flag=l: Error (AX =error code)

AX=I: Unknown function code
AX=6: Handle not opened or does not exist

Remarks: 	 A handle is passed (not the name of the addressed character driver which
must be connected with this driver). This can be one of the five pre
assigned handles (0 to 4). A handle could have been previously opened for
a certain device with the help of the Open function (function 30H), and
then passed to the function. For example, since the standard input and
output devices (handles 0 and 1) can be redirected, this method assures that
the indicated device is accessed.

If bit 7 in the device attribute is unequal to 1, the driver addressed is not a
character driver and the significance of the individual bits in the device
atlribute disagrees with those of the device driver.

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 21H, function 44H, sub-function 1 DOS
IOCTL: Set device information (Version 2 and up)

Sets the character device attributes.

Input: 	 AH = 44H
AL= 1
BX= Handle
CX = Number of bytes written
OX = Device attributes
Bit 14= 1: Processes control characters through IOCIL using sub

functions 2 and 3
Bit 7 =1: Character driver

813

Appendix C: DOS Inlemlpls 0I'Id FlUlCtlons 	 PC System Programming

Bit 5 = 0: Cooked mode operation
Bit 5 = 1: Raw mode operation
Bit 3 = 1: Clock driver operation
Bit 2 = 1: NUL driver operation
Bit 1 =1: Console output driver (screen)
Bit 0 =1: Console input driver (keyboard)

Output: 	 Carry flag=O: O.K.
Carry flag=1: Error (AX = Error code)

AX=I: Unknown function code
AX=6: handle not opened or handle does not exist

Remarlcs: 	 A handle is passed but it is not the name of the addressed character device.
which must be connected with this device. This can be one of the five
pre-assigned handles (0 to 4). A handle could have previously been
opened, with the Open function. fer a certain device and then passed to the
function. For example. since the standard input and output devices
(bandles 0 and 1) can be redirected, this method assures that the indicated
device is accessed.

To change various device attribute bits with this function, use sub
function 0 to read the device attributes first. Then this sub-function can
reset the device attribute bits in the device driver.

Ifbit 7 in the device attribute is unequal to 1, the driver addressed is not a
character driver. The meanings of the individual bits in the device attribute
disagree with those in the device driver.

This function is especially useful for switching between cooked mode and
raw mode within a character driver (bit 5).

The contents of the BX, CX, OX, SI, OJ, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt UH, (unction 44H, sub-function 2 DOS
IOCTL: Read data (rom character device (Version 2 and up)

Reads data from a character device. This function defmes the number of bytes of
data to read from the buffer, which contains the data taken from the character
device.

Input: 	 AH = 44H
AL= 2

BX= Handle

CX = Number of bytes to be read

OS = Buffer segment address

DX = Buffer offset address

814

Abac/U 	 Appendix C: DOS Interrllpts and FlUlCtions

Output: Carry flag=O: O.K. (AX =Number of bytes sent)
Carry flag=1: Error (AX = Enor code)

AX=I: Unknown flDlction code
AX=6: Handle not opened or does not exist

Remarks: 	 A handle is passed, but it is not the name of the addressed character device
which must be connected with this device. This can be one of the five
pre-assigned handles (0 to 4). A handle could have previously been opened
with the Open function (function number 30H) for a certain device, then
passed to the function. For example, since the standard input and output
devices (handles 0 and 1) can be redirected, this method assures that the
indicated device is ~

An error always occurs if the handle passed is connected with a block
driver instead of a character driver.

The driver defines the data type and structure.

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 218, function 448, sub-function 3 DOS
IOCTL: Send data to character device (Version 2 and up)

Sends data from an application program directly to a character device. The calling
function defines the number ofbytes to be transferred from a buffer to the device.

Input: 	 AH= 44H
AL= 3
BX= Handle
CX = Number of bytes to be transmitted
DS = Buffer segment address
DX = Buffer offset address

Output: Carry flag=O: O.K.
AX =Number of bytes sent

Carry fla&=l: Error (AX = Enorcode)
AX=I: Unknown function code
AX=6: Handle not opened or does not exist

Remarks: 	 A handle is Passed. but it is not the name of the addressed character device
which must be connected with this device. This can be one of the five
pre-assigned handles (0 to 4). A handle could have previously been opened
with the Open function (function number 61) for a certain device, then
passed to the function. For example, since the standard input and output
devices (handles 0 and 1) can be redirected, this method assures that the
indicated device is accessed.

An error always occurs if the handle passed is connected with a block
driver instead of a character driver.

815

Appendix C: DOS Interrupts and FlUlCtions 	 PC System Programming

The driver defines the data type and structme.

The contents of the BX, CX, OX, SI, I>I, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 21B, function 44B, sub-function 4 DOS
IOCTL: Read data from block device (Version 2 and up)

Reads data for an application directly from a block device. The calling function
defines the number of bytes to be copied by the device into a buffer.

Input: 	 AH= 44H
AL= 4
BX = Device designation

CX = Number ofbytes to be read

OS = Buffer segment address

OX =Buffer offset address

Output: Carry flag=O: O.K.
AX = Number of bytes sent

Carry fIag=1: Error (AX = Error code)

AX=1: Unknown function code

AX=15: Unknown device

Remarks: 	 Instead of defining the device driver, the device designation parameter
defines the device from which data will be received. Code 0 represents
device A;, 1 represents device B:. etc.

The driver defines the data type and SlIUCtme.

The contents of the BX, CX, OX, SI, 01, BP. CS, OS, SS and ES
registers are not affected by this function.

Interrupt lIB, function 44B, sub-function 5 DOS
IOCTL: Send data to block device (Version 2 and up)

Sends data from an application program directly to a character device. The calling
function defines the number ofbytes to be transferred from a buffer to the device.

Input: 	 AH= 44H
AL= 5

BX = Device designation

CX = Number of bytes to be sent

OS = Buffer segment address

OX = Buffer offset address

Output: Carry flag=O: O.K. ~
AX =Number ofbytes sent

Carry fIag= 1: Error (AX =Error code)
AX=l: Unknown function code

816

AbacllS 	 ApperuliJc C: DOS Il1IeTrllpts and Frurctions

AX=15: Unknown device

Remarks: 	 Instead of defining the device driver, the device designation parameter
defines the device from which data will be received. Code 0 represents
device A:, 1 represents device B:, etc.

The driver defines the data type and sttucture.

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 210, function 440, sub·function , DOS
IOCTL: Read input status (Version 2 and up)

Detennines whether a device driver can transmit data to an application program.

Input: 	 AH= 44H
AL= 6
BX= Handle

Output: Carry flag=O: O.K. (AX =Input status)
AX=<>: Driver not ready
AX=255: Driver ready

Carry flag=1: Error (AX =Error code)

AX=l: Unknown function code

AX=5: Access denied

Remarlcs: 	 The handle passed can refer to either a character driver or a file.

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 210, function 440, sub·function 7 DOS
IOCTL: Read output status (Version 2 and up)

Determines whether a device driver can receive data from an application program.

Input: 	 AH= 44H
AL= 7
BX= Handle

Output: Carry f1ag=O: O.K. (AX =Output status)
AX=O: Driver is not ready
AX=255: Driver is ready

Carry flag=1: Error (AX =Error code)

AX=l: Invalid function number

AX=5: Access denied

817

Appendix C: DOS Interrupts and FlUlCtions 	 PC System Programming

Remarks: 	 The handle passed can refer to either a charactec driver or a file.

IT the handle refers to a file, the block device driver signals its readiness to
receive data, even if the medium containing the flle is full and no
additional data can be appended to the end of the file.

The contents of the BX, CX, DX, SI, 01, BP, CS, DS, SS and ES
registecs are not affected by this function.

Interrupt ltH, function 44H, sub-function 8 DOS
IOCTL: Test for cbangeable block device (Version 3 and up)

Determines whether the block device medium (e.g., disk, hard disk, etc.) can be
changed.

Input: 	 AH= 44H
AL= 8
BL = Device designation

Output: Carry flag=O: O.K. (AX=status code)
AX = 0: Medium changeable
AX =1: Medium unchangeable

Carry flag::1: Error (AX =Error code)

AX=I: Invalid fooction number

AX=15: Invalid drive number

Remarks: 	 The device designation parameter defines the device being addressed instead
of the device driver. Code 0 represents device A:, 1 represents device B:,
etc.

The contents of the BX, CX, DX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 2ID, function 44H, sub-function 9 DOS
IOCTL: Test for local or remote drive (Version 3.1 and up)

Determines whether a drive (block device) is local (part of the PC making the
inquiry) or remote (part of another PC in a networlc).

Input: 	 AH= 44H
AL= 9

BL = Device designation

Output: 	 Carry flag=O: O.K.
DX = device attribute
Bit 12 =0: Loc8I
Bit 12 =1: Remote
Carry flag=1: Error (AX =Error code)

AX=I: Invalid flDlCtion number
AX=15: Invalid drive specification

818

Abacus 	 AppendbcC: OOS inlerrllpts and FlUlCtions

Remarks: 	 You can access this sub-function only if networking software has
previously been installed.

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 218, function 448, sub·function OA8 DOS
IOCTL: Test for local or remote bandle (Version 3.1 and up)

Determines whether a fIle associated with this handle is local (part of the PC
making the inquiry) (X'remote (part of another PC in a network).

Input: 	 AlI= 44H
AL= OAH
BX= Handle

Output: 	 OX = IOCTI.. code
Bit 15 =0: Local
Bit 15 =1: Remote
Carry flag=: I: Error (AX =Error code)

AX=I: Invalid function number
AX=6: Handle not opened or does not exist

Remarks: 	 You can access this sub-function only if networking software has
previously been installed.

The contents of the BX. ex, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 218, function 448, sub·function OBR DOS
IOCTL: Cbange retry count (Version 3 and up)

Sets the variables that specify the number of attempts at file access. One PC
within a network may try to access a file that is already being accessed by another
PC. The PC attempting access repeats the fIle access procedure the number of
times and the number of waiting periods dermed by these variables.

Input: 	 AH= 44H
AL= OBH
BX= Number of attempts
CX = Waiting time between attempts

Output Carry flag=O: O.K.
Carry flag=:1: Error (AX =Error code)

AX=I: Invalid function number

Remarks: 	 You can only access this sub-function if networking software has
previously been installed.

819

Appendix C: DOS Int.errupts and FU1IClions 	 PC System Programming

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt ltH, function 4SH DOS
Duplicate handle (Version 2 and up)

Creates a duplicate of the handle passed. This duplicate handle interfaces with the
same file or device as the [ust handle. If the [ust handle refers to a file, the value of
the [ust handlez's file pointer joins with the file pointer of the duplicate handle.

Input: AH= 45H
BX= Handle

Output: Carry flag=O: O.K. (AX = the new handle
Carry flag:1: Error (AX = Error code)

AX=4: No additional handle available
AX=6: Handle not opened or does not exist

Remarlcs: Without having to close the file, this function updates a file directory
entry after its modification. A file can be closed using function 62 (3EH).

If the file pointer of one of the two handles changes position due to the
call of a read or write function, the other file pointer also changes
automatically.

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 21H, function 46H DOS
Force duplicate of handle (Version 2 and up)

Refers a second file handle to the save device or file as the first file handle. The
second handle's file pointer also contains the same value as the first handle's file
pointer.

Input: 	 AH= 46H
BX = First handle
CX = Second handle

Output: 	 Carry flag:::(): O.K.
Carry flag=1: Error (AX =Error code)

AX=4: No additional handle available
AX=6: Handle not opened or does not exist

Remarlcs: 	 If the function call connects the second handle to an open file, the file
closes before the foraxi duplication.

If the file pointer of one of the handles changes position due to the call of
a read or write function, the other file pointer also changes automatically.

820

Abacus 	 Appendix c: DOS InleTTlipts and Functions

The contents of the BX, ex, ox, SI, 01, BP, es, os, SS and ES
registers are not affected by this function.

Interrupt ltH, function 47H DOS
Get current directory (Version 2 and up)

\
Gets an ASen string listing the complete path designation of the current directory
of the indicated device. This string passes to the specifIed buffer.

Input: 	 AlI= 17H
OL = Device designation
OS = ButTer segment address
SI = ~utTeroffset address

Output: Carry flag=O: O.K.
Carry flag=1: Error (AX=Error code)

AX=15: Invalid drive specification

Rernarlcs: 	 The device designation parameter defines the device being addressed instead
of the device driver. Code 0 represents the current device, 1 represents
device A:, etc.

The path description in the buffer terminates with an end character (ASCII
code 0). This description has no drive specifier or \ character (root
directory specifier). If the root directory is the current directory, the end
character becomes the first character in the buffer.

The contents of the BX, ex, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 218, (unction 48H DOS
Allocate memory (Version 2 and up)

Reserves an area of memory for program use.

Input: 	 AlI= 48H
BX = Number ofparagraphs to be reserved

Output: Carry flag=O: O.K.
AX=Memory area segment address)

Carry flag=1: Error (AX = Error code)
AX=7: Memory control block destroyed
AX=8: Insufficient memory

BX = Number of paragraphs available

Remarlcs: 	 A paragraph consists of 16 bytes.

821

Appendix C: DOS 1nlemlf,ts ond FlUlCtions 	 PC System Programming

If memory allocation was successfully executed, the allocated range
begins at address AX:OOOO.

This function always fails when executed from within a COM program
because the PC assigns the total amount of free memory to a COM
program when it executes.

The contents of the ex, OX, SI, DI, BP, CS, OS, SS and ES registers
are not affected by this function.

Interrupt UH, function 49H DOS
Release memory (Version 2 and up)

Releases memory previously allocated by function 72 (49H-see above) for any
pwpose.

Input: 	 AH= 49H
ES = Memory area segment address

Output: Carry flag=(): O.K.
Carry flag=l: Error (AX = Error code)

AX=7: Memory control block destroyed
AX=9: Incorrect memory area passed in ES

Remarks: 	 Since DOS knows the size of the memory area to be released, no
parameter exists for passing memory size.

If the wrong segment address appears in the ES register during the
function call, memory assigned to another program can be released. This
can lead to a system crash or other consequences.

The contents of the BX, CX, OX, SI, DI, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt UH, function 4AH DOS
Modify memory allocation (Version 2 and up)

Changes the size of a memory area previously reserved using function 72 (3FH
see above).

Input: 	 AH= 4AH
BX = New memory area size in paragraphs
ES = Memory area segment address

Output: Carry flag=(): O.K.
Carry flag=1: Error (AX = Error code)

AX=7: Memory control block destroyed
AX=8: Insufficient memory

BX = Number ofparagraphs available

811

Abac/lS 	 AppendiJC C: DOS InleTrllpts and FlIIICtions

Remarlcs: 	 A paragraph has 16 bytes.

If the wrong segment address appears in the ES register dwing the
function call, memory assigned to another program can be released. This
can lead to a system. crash <r other consequences.

Since the PC assigns the total amount of free memory to a COM
program when it executes, this function call always fails when executed
from within a COM program.

COM programs should use this function to release all unnecessary
memory since all RAM becomes part of a COM program. This is
especially important before calling the EXEC function (function number
75 (4BH).

The contents of the CX, OX, SI, 01, BP, CS, OS, SS and ES registers
are not affected by this function.

Interrupt 218, function 488, sub·function 0 DOS
Execute program (Version 2 and up)

Executes another program from within a program and continues execution of the
original program after the called program finishes its run. The function requires the
name of the program to be executed and the address of a parameter block, which
contains information that is important to the function.

Input: 	 AH= 4BH
AL= 0
ES = Parameter block segment address
BX = Parameter block offset address
OS = Program name segment address
OX = Program name offset address

Output: Carry flag=O: O.K.
Carry flag= 1: Error (AX = Error code)

AX=I: Invalid function number
AX=2: Path or program not found
AX=5: Access denied
AX=8: Insufficient memory
AX=10: Wrong environment block
AX=11: Incorrect format

Remarlcs: 	 The directory name passed is an ASCII string which is terminated by an
end character (ASCII code 0). It can contain a path designation and drive
specifier. No wildcards are allowed. If no drive specifier or path
designation exists, the function accesses the current drive or directory.

Only EXE or COM programs can be executed. To execute a batch file,
the command processor (COMMAND.COM) must be called using the Ic
parameter followed by the name of the batch file.

823

http:COMMAND.COM

Appendix. C: DOS Interrllpts and FlUtCtiorts 	 PC System ProgrQ11J11ljrag

The parameter block must have the following format:

Bytes ~1: Environment block segment address
Bytes 2-3: Command parameter offset address
Bytes ~5: Command parameter segment address
Bytes 6-7: First FCB offset address
Bytes 8-9: First PCB segment address
Bytes 10-11: Second FCB offset address
Bytes 12-13: SecondFCB segment address

If the segment address of the environment block is a 0, the called program
has the same environment block as the calling program.

The command parameters must be stored SO that the parameter string
begins with a byte representing the number of characters in the command
line. Next follow the individual ASCII characters, which are terminated
by a carriage return (ASCII code 13) (this carriage return is not counted as
a chanK:ter).

The first FCB passed is copied to the PSP of the called program starting
at address 5CH. The second PCB passed is copied to ~e PSP of the called
program starting at address 6CH. If the called program does not obtain
information from the two FCBs, any desired value can be entered into the

."") FCB fields at the parameter block.

After the call of this function, all registers are destroyed except the CS
and IP registers. For later recall, save their contents before the function
call.

The program called should have all the handles available to the calling
program.

Interrupt 21H, function 4BH, sub-function 3 DOS
Execute overlay (Version 2 and up)

Loads a second program into memory as an overlay without automatically
executing the second program.

Input: 	 AH= 4BH
AL= 3
ES = Parameter block segment address
BX = Parameter block offset address
DS = Program name segment address
DX = Program name offset address

Output: 	 Carry flag=O: O.K.
Carry flag=1: Error (AX = Error code)

AX=I: Invalid function number

AX=2: Path or program not found

AX=5: Access denied

AX=8: Insufficient memory

824

Abacus 	 AppendiJe C: DOS Inlerrllpts and Frmctions

AX=lO: Wrong environment block
AX=ll: Incorrect format

Rematks: 	 The directory name passed is an Ascn suing which is terminated by an
end character (ASCII code 0). It can contain a path designation and drive
specifier. No wildcards are allowed. If no drive specifier or path
designation exists, the function accesses the current drive or directory.

Only EXE or COM programs can be executed. To execute a batch file,
the command processor (COMMAND.COM) must be called using the Ic
parameter followed by the name of the batch file.

The parameter block must have the following format

Byte 0-1: Segment address where the overlay will be stored
(offset address=O)

Byte 2-3: Relocation factor

The relocation factor requires the value 0 for COM programs. Use the
segment address at which the program should load when accessing EXE
programs.

The contents of the BX, CX, DX, SI, DI. BP. CSt DS. SS and ES
registers are not affected by this function.

Interrupt UH, lunction 4CH DOS
Terminate with return code (Version 2 and up)

Terminates a program and passes an end code for which function 77 (4DH-see
below) searches. This function releases the memory previously occupied by the
terminated progmm.

Input: 	 AH= 4CH
AL = Return code

Output: 	 No output

Rematks: 	 This function may be used for program termination instead of the other
functions listed earlier.

This function call restores the contents of the three interrupt vectors that
were stored in the PSP when the program started execution.

Before passing control to the calling program. all handles opened by this
program close, along with the corresponding meso This is not applicable
to files accessed using FCBs.

A batch file can test for the return code using the ERRORLEVEL and IF
batch commands.

825

http:COMMAND.COM

Appendix C: DOS Interrupts and Functiolls 	 PC System Programming

Interrupt UH, function 4DH DOS

Get return code (Version 2 and up)

Checks a program, called from another program by the EXEC function, for the
return code passed by the called program when it terminates.

Input: 	 AH= 40H

Output: AH = Type of"progmm tennination
AH=O: Nonnal end
AH=I: End through <CtrlxC> or <Break:>
AH=2: Device access enur
AH=3: Call of function 49 (31H)

AL = Return code

Remarks: 	 This function reads the return code of the called program only once.

The contents of the AX, BX, CX, OX, SI, 01, BP, CS, OS, SS, ES and
flag registers are not affected by this function. The contents of all other
registers may change.

Interrupt UH, function 4EH DOS
Search for first match (Version 2 and up)

Searches for the first occurrence of the fIlename listed. The file can have certain
attributes, so a search can be made through subdirectories and volume names.

Input: 	 AH= 4EH
CX = File attribute
OS = Filename segment address
OX = FIlename offset address

Output: 	 Carry flag=O: O.K.
Carry flag=1: Error (AX = Error code)

AX=2: Path not found
AX=18: No fIle with the attribute found

Remarks: 	 The directory name passed is an ASCII string which is terminated by an
end character (ASCII code 0). It can contain a path designation and drive
specifier. No wildcards are allowed. If no drive specifier or path
designation exists, the function accesses the current drive or directory.

The search defaults to nonnal files (attribute 0). Any set attribute bits
extends the search to normal fIles and any other file types.

If a matching file occurs, the first 43 bytes of the DT A contain the
following information about this file:

Bytes 0-20: Reserved
Byte 21: File attribute
Bytes 22-23: Time of last modification to fIle

826

AbacllS Appendix C: DOS Inlerrupts tIIId FlU/Ctions

Bytes 24-25: Date of last modification to file
Bytes 26-27: Low word of file size
Bytes 28-29: High word of file size
Bytes 30-42: ASCII filename and extension terminated

by an end character (ASCII code 0)

This function may only be called to search for the first occurrence of a
file. If you want to search for a group of files using wildcards, function
4FH (see below) must be called.

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES
registers are not affected by this function.

Interrupt 21H, function 4FH DOS
Search for next match (handle) (Version 2 and up)

Searches for subsequent occurrences of the filename listed after function 78 (above)
executed successfully.

Input: AH= 4FH

Output: Carry fIag=O: O.K.
Carry flag=1: Error (AX=Error code)

AX=18: No other files found with this attribute

Remarks: If a matching file occurs, the first 43 bytes of the DTA contain the
following information about this file:

Bytes 0-20: Reserved
Byte 21: File attribute
Bytes 22-23: Time of last modification to file
Bytes 24-25: Date of last modiftcation to file
Bytes 26-27: Low word of file size
Bytes 28-29: High word of file size
Bytes 30-42: ASCII filename and extension tenninated

by an end character (ASCII code 0)

This function can only be called if function 4EH has been called once and
if the DTA remains unchanged.

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES
registers are not affected by this function.

827

Appendix C: DOS Inlerrllpts and FlIIICtWns 	 PC System Programming

Interrupt 21H, lunction 54H DOS
Get verily nag (Version 2 and up)

Gets the current status of the verify flag. This flag determines whether or not data
transmitted to a medium (floppy disk or hard disk) should be verified after the
transmission.

Input: 	 AH= S4H

Output: AL = Verify flag
AL=O: Verify off
AL=1: Verify on

Remarlcs: 	 Function 2EH (see above) controls the status of the verify flag.

The contents of the AH, BX, CX, OX, SI, 01, BP, CS, OS, SS, ES and
flag registers are not affected by this function.

Interrupt 21H, function 56H DOS
Rename file (handle) (Version 2 and up)

Renames a fIle or moves the fIle to another directory of a block device. Moving is
possible only within the different directories ofone particular device (i.e., you can't
move a fIle from a hard disk directory to a floppy disk directory).

Input: 	 AH= 56H
OS = Old fIlename segment address
OX = Old ftlename offset address
ES = New fIlename segment address
01 = New ftlename offset address

Output: 	 Carry flag=O: O.K.
Carry f1ag=I: Error (AX = Error code)

AX=2: File not found

AX=3: Path not found

AX=S: Access denied

AX=II: Not the same device

Remarlcs: 	 The directory name passed is an ASCII string which is tenninated by an
end character (ASCII code 0). It can contain a path designation and drive
specifier. No wildcards are allowed. If no drive specifier or path
designation exists, the function accesses the current drive or directory.

An error occurs if you attempt to move the file to a filled root directory.

This function cannot access subdirectories (X" volume names.

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

828

Appendix C: DOS]ntt!l7'lIpts and FlUlCtions

Interrupt 21H, function 57H, sub-function 0 DOS

Get file date and time (Version 2 and up)

Gets the date and time of the creation or last modificadon of a file.

Input: 	 AH= 57H
AL= 0
BX= Handle

Output: Carry flag=O: O.K.
CX=Tune
OX=DaIe

Carry flag=1: Error (AX =Error code)

AX=I: Invalid function

AX=6: Invalid handle

Remarks: 	 In order for it to be accessed with a handle, the file must have been
previously opened or created using one of the handle functions.

The time appears in the ex register in the following format

Bits 0-4: Seconds in 2-second increments
Bits 5-10: Minutes
Bits 11-15: Hours

The date appears in the OX register in the following format:

Bits 0-4: Day of the month
Bits 5-8: Month
Bit 9-15: Year (relative to 1980)

The contents of the BX, CX, OX, SI, DI, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt 21H, function 57H, sub-function 1 DOS
Set file date and time (Version 2 and up)

Stores the date and time of the creation or last modification of a file in the
corresponding file and device.

Input: 	 AH= 57H
AL= 1
BX= Hand1e
CX= Time
OX= Dale

Output: 	 Carry fiag=O: O.K.
Carry flag=1: Error (AX =Error code)

AX=J: Invalid function

AX=6: Invalid handle

829

Appendix C: DOS Inlerrllpts and FIl1ICIifms 	 PC System Programming

Rematks: 	 In order to be accessed with a handle, the file must have been previously
opened or created using one of the handle functions.

The time appears in the ex register in the following formac

Bits 0-4: Seconds in 2-second increments
Bits 5-10: Minutes
Bits 11-15: Hours

The date appears in the OX register in the following formal:

Bits 0-4: Day of the month
Bits 5-8: Month
Bit 9-15: Year (relative to 1980)

The contents of the BX, ex, ox, SI, DI, BP, es, OS, SS and ES
registers are not affected by this function.

Interrupt ltU, function 58U, sub-function 0 DOS
Get allocation strategy (Version 3 and up)

Oetermines the method currently in use by MS-DOS for allocating blocks of
memory. If a program allocates memory using function 48H, different programs in
memory may already have memory blocks assigned to them. Since these requested
memory blocks vary in size, DOS has three methods of allocating memory to a
program:

First fit: DOS starts searching at the start of memory and allocates the
first memory block it fmds of the requested size;

Best fit: DOS searches all available memory blocks and allocates the
smallest suitable memory block it finds (the most efficient method);

Last fie DOS starts searching al the end of memory and allocates the first
memory block it finds of the requested size.

Input: 	 AH= 58H
AL= 0

Output: carry flag=O: O.K..
AX=O: rU'St fit (start from beginning of memory)
AX=I: Best fit (search for best-fitting memory block)
AX=2: Last fit (start from end of memory)

Carry flag=l: Error (AX = Error code)

AX=I: Invalid function number

Remarks: 	 The allocation strategy applies to all programs.

The contents of the BX, ex, ox, SI, DI, BP, es, OS, SS and ES
registers are not affected by this function.

830

Abacus Appendix C: DOS lntt!ITllpts and FlUlCtions

Interrupt UH, function 58H, sub·function 1 DOS
Set allocation strategy (Version 3 and up)

Defmes the method currently in use by MS-DOS for allocating blocks of memory.
If a program allocates memory using function 48H, different programs in memory
may already have memory blocks assigned to them. Since these requested memory
blocks vary in size, DOS has three methods of allocating memory to a program:

First fit DOS starts searching at the start of memory and allocates the
flfSt memory block it fmds of the requested size;

Best fit DOS searches all available memory blocks and allocates the
smallest suitable memory block it fmds (the most efficient method);

Last fit: DOS starts searching at the end of memory and allocates the first
memory block it finds of the requested size.

Input: AH= 58H
AL= 1
BX = Allocation strategy

BX=O: First fit (start from beginning of memory)
BX=l: Best fit (search for best-fitting memory block)
BX=2: Last fit (start from end of memory)

Output: Carry flag=O: O.K.
Carry flag=l: Error (AX =Enor code)

AX=l: Invalid function number

Remarks: The allocation strategy applies to all programs.

The contents of the BX, CX, DX, SI, 01, BP, CS, DS, SS and ES
registers are not affected by this function.

831

Appendix C: DOS /nleTl'IIpts and FIUICtiorts 	 PC System ProgrQlfl/flbsg

Interrupt 218, function 598 DOS
Get extended error information (Version 3 and up)

Gets information about errors that occur during the call of one of the functions of
either interrupt 21H or interrupt 24H. This information includes detailed
infonnation about the error, its origin and the action the user should take to
alleviate the e.mB".

Inpu~ 	 AH= 59H
BX= 0

Output: 	 AX = Description of error
BH = Cause of error
BL = Recommended action
CH = Source oferror

Remarks: 	 The following codes describe the error:

Code Error
0: Noerror
1: Invalid function number
2: File not found
3: Path not found
4: Too many files open at once
5: Access denied
6: Invalid handle
7: Memory control block destroyed
8: Insufftcient memory
9: Invalid memory address
10: Invalid environment
11: Invalid format
12: Invalid access code
13: Invalid data
14: R~
15: Invalid drive
16: Current directory cannot be removed
17: Different device
18: No additional fIles
19: Medium write protected
20: Unknown device
21: Deviceootready
22: Unknown command
23: CRC error
24: Bad request slructure length
25: Seek error"

832

Abacus 	 Appendix C: DOS Interrupts and Functions

Code 	 Error
26: 	 Unknown medium type
27: 	 Sector not found
28: 	 Printer out of paper
29: 	 Write error
30: 	 Read error
31: 	 General failure
32: 	 Sharing violation
33: 	 Lock violation
34: 	 Unauthorized disk change
35: 	 FCB not available
80: 	 File already exists
81: 	 Reserved
82: 	 Directory cannot be created
83: 	 Terminate after call of interrupt 24H

The following codes describe the cause of the error:

Code 	 Error
1: 	 No memory available on the medium
2: 	 Temporary access problem-may end soon
3: 	 Access unauthorized
4: 	 Internal error in system software
5: 	 Hardwareerror
6: 	 Software failure not caused by running application program
7: 	 Application program error
8: 	 File not found
9: 	 Invalid file format/type
10: 	 File locked
11: 	 Wrong medium in drive, bad disk or medium problem
12: 	 Other error

The following codes describe the action needed to fix the error:

Code 	 Error
1: 	 Repeat process several times, then ask user to abort/ignore
2: 	 Repeat process several times pausing each time, then ask

user to abort/ignore
3: 	 Ask user for correct information (e.g., filename)
4: 	 Terminate program as completely as possible
5: 	 Terminate program NOW (no file closing, etc.)
6: 	 Ignore error
7: 	 Ask user to remove error source and repeat process

833

Appendix C: DOS Inlerr"pts and FlUlCtWns 	 PC System Programming

The following codes describe the source of the error:

Code Error
1: Unknown
2: Block device (disk drive, hard disk, etc.)
3: Network
4: Serial device
S: RAM

The contents of the CS, OS, SS and ES registers are not affected by this
function. All other register contents are destroyed.

Interrupt 21H, function SAH DOS
Create temporary file (handle) (Version 3 and up)

Creates a temporary file in memory for storage during program execution. The
filename doesn't matter because the access occurs through the assigned handle.
Since this function allows several files open at the same time, DOS creates
filenames from the current date and time. Every temporary file is ensured its own
particular name because the function cannot be called more than once at a time.

Input: 	 AH= SAH
CX = File attribute
OS = Directory segment address
OX = Directory offset address

Output: Carry fIag=O: O.K.
AX=Handle
OS=Complete filename segment address
OX=Complete filename offset address

Carry flag=1: Error (AX =Error code)
AX=3: Path not found
AX=S: Access denied

RemaIks: 	 The directory name passed is an AScn string which is terminated by an
end character (ASCn code 0). It can contain a path designation and drive
specifier. No wildcards are allowed. If no drive specifier or path
designation exists, the function accesses the cmrent drive or directory.

The bits of the file attribute have the following meanings:

Bit 0 =1: Read only file

Bit 1 =1: Hidden file

Bit 2 = 1: System file

Temporary files are not automatically deleted after program execution.
The file must be closed using function 3EH, then the temporary file must
be deleted using function 41H.

834

AbacllS 	 Appendix C: DOS InleTTllpts awl FlUlClions

The contents of the BX, CX, OX, SI, 01, BP, CS, OS, SS and ES
registers are not affected by this function.

Interrupt ltD, function SBD DOS
Create new file (handle) (Version 3 and up)

Creates a file in the specified directory based upon an ASCII file famal Ifno drive
specifier or path is provided, the file opens in the default (current) directory.

Input: 	 AH= 5BH
CX = File attributes:

CX=OO: Normal file

CX=Ol: Read-only file

CX=02: Hidden file

CX=04: System file

OS = ASCII file specification segment address
OX = ASCII file specification offset address

Output: 	 Carry fJag=O (AX= file handle)
Carry flag=1 (AX = Error code)

AX=3: Path not found

AX=4: No handle available

AX=5: Access denied

AX=80 (SOH): File already exists

Remarlcs: 	 An error occurs when any element of the path designation doesn't exist,
when the filename already exists in the specified directory, or when an
attempt is made to create the file in an already full root directory.

The file defaults to the normal read/write attribute, which allows both read
and write operations. This attribute can be changed by using function
43H.

Interrupt ltD, function 5CD DOS
Control record access (Version 3 and up)

Locks or unlocks a particular section of a file. This function operates on
multitasking and networking systems.

Input: 	 AH = 5CH
AL = Function code

AL=OO: Lock file section

AL=01: Unlock file section

BX = File handle

CX = High word of section offset

OX = Low word of section offset

SI = High word of section length

01 = Low word of section length

835

Appendix C: DOS Interrupts and F/UlCtions 	 PC System Programming

Output: 	 Carry f1ag=O: Successfulloclc/unlock
Carry flag= 1: Error (AX = Error code)

AX=l: Invalid function code
AX=6: Invalid handle
AX=33 (21H): All (X' part of section already locked

Remarlcs: 	 This function can only be used on mes already opened or created using
functions 3CH, 30H, 5AH or 5BH.

The corresponding call to unlock a me region must contain the identical
me offset and file region length.

Interrupt 21H, function SEH, sub·function 0 DOS
Get machine name (Version 3.1 and up)

Returns the address of an ASCII string which defmes the local computer type
within a network.

Input: 	 AH= 5EH
AL=OO
OS = User buffer segment address
OX = User buffer offset address

Output: 	 Carry flag=O: Successful execution
CH = 00: Name undefined
CH > 00: Name defined
CL = NETBIOS name number (when CHoOO)
OS = Identifier segment address (when CHoOO)
OX = Identifier offset address (when CHoOO)
Carry flag= 1: Error (AX = Error code)

AX=1: Invalid function code

Remarks: 	 The computer type is a 15-byte-Iong string terminated by an end character
(ASClI code 0).

Interrupt 21H, function SEH, sub· function 2 DOS
Set printer setup (Version 3.1 and up)

Specifies a string which precedes all output to a particular printer used by a
network. This string allows networlc users to assign their own individual printing
parameters to the shared printer.

Input: 	 AH = SEH
AL= 02
BX = Redirection list index (see Remarks below)
CX = Printer setup string length
OS = Printer setup string segment address
SI = Printer setup string offset address

836

AbacllS 	 Appendix C: OOS Inlerr"Pts and Frmctions

Output: Carry flag:::O: Successful execution
Carry flag=1: Error (AX = Error code)

AX=I: Invalid function code

Remarks: The contents of register BX (redirection list index) come from function 94
SEH, sub-function 2. Function SEH, sub-function 3 (see below) can
supply the current printer setup string.

Interrupt 21R, function SER, sub-function 3 DOS
Get printer setup (Version 3.1 and up)

Gets the printer setup string assigned to a particular network printer by using
function SEH, sub-function 2 (see above).

Input: 	 AH = 5EH
AL= 03 I

BX = Redirection list index)
OS = Setup string receiving buffer segment address
SI = Setup string receiving buffer offset address

Output: Carry flag=O: Successful execution
CX=Printer setup string length
ES=Segment address of buffer retaining setup string
DI=Offset address of buffer retaining setup string

Carry flag=l: Error (AX = Error code)
AX=I: Invalid function code

Remarks: 	 The contents of register BX (redirection list index) come from function
SEH, sub-function 2. Function SEH, sub-function 3 can supply the
current printer setup string.

Interrupt 218, function SF8, sub-function 2 DOS
Get redirection list entry (Version 3.1 and up)

Gets the system redirection list This list assigns local names to network printers,
fJles or directories.

Input: 	 AH = 5FH
AL=02
BX = Redirection list index (see Remarks below)

OS = Device name buffer segment address (16 bytes)

SI = Device name buffer offset address (16 bytes)

ES = Network name buffer segment address (128 bytes)

01 = Network name buffer offset address (128 bytes)

837

AppendiJc C: DOS Interrupts and FtmCtions 	 PC S,stem Programming

Output: 	 Carry flag=O: Successful execution
BH = Status flag

0: Valid device
1: Invalid device

BL = Device type

3: Printer
4: Drive

BP = Destroyed
CX = Parameter value in memory
OX= ~yed
OS = ASCn format local device name segment address
SI = ASCII format local device name offset address
ES = ASCn format networt: name segment address
DI = ASCn funnat networt: name offset address
Carry flag=1: Error (AX =Enor code)

AX=l: Invalid function code
AX=18: No more fdes available

Remarks: 	 The contents of register CX come from function SFH, sub-function 3 (see
below).

Interrupt 21H, function SFH, sub-function 3 DOS
Redirect device (Version 3 and up)

Redirects device access in a network, assigning a network name to a local device.

Input: 	 AH= SFH
AL= 03
BL = Device type

BL=3:Printer

BL=4: Drive

CX = Parameter value in memory
OS = ASCn format local device name segment address
SI = ASCII format local device name offset address
ES = ASCII format networt: name and password segment address
DI = ASCII format network name and password offset address

Output: Carry flag=O: Successful execution
Carry flag=l: Error (AX = Enor code)

AX=I: Invalid function code; string format incorrect;
device redirected

AX=3: Path not found
AX=5: Access denied
AX=8: Insufficient memory

Remarks: 	 The contents of register CX are supplied from function 5FH, sub-function
3.

Device names can be drive specifiers (e.g., A:), printer names (Le., LPTl,
PRN, LPT2 or LPf3) or null strings. If you enter a null string and pass

838

Abac/lS 	 AppenIJa C: DOS Il11errllplS and FlUlCtions

word as the device name, OOS tries to open access to the network using
the password.

Interrupt liB, function SFB, sub·function 4 DOS
Cancel redirection (Version 3 and up)

Disables the current redirection by removing local name assignments to network
printers, files (X'directOOes.

Input: 	 AH= 5FH
AL= 04
BX = Redirection list index (see Remarks below)
DS = ASCII fonnat local device name segment address
SI = ASCII fonnatlocal device name offset address

Output: 	 Carry fIag=O: Successful execution
Carry fIag= 1: Error (AX =Error code)

AX=l: Invalid function code; device name nOl on network
AX=15: Redirection halted

Remarks: 	 Device names can be drive specifiers (e.g., A:), printer names (i.e., LPTI,
PRN, LPT2 or LPT3) or strings beginning with double backslashes (i.e.,
\\). A string preceded by two backslashes terminates communications
between the local computer and the network.

Interrupt 21B, function 62B DOS
Get PSP address (Version 3 and up)

Gets the segment address of the PSP from the currently executing program.

Input: 	 AH= 62H

Output: 	 BX = PSP segment address

Remarks: 	 The PSP starts at address BX:OOOO.

The contents of the AX, CX, DX, SI, DI, BP, CS, DS, SS, ES registers
and the flag registers are not affected by this function.

839

Appendix C: DOS Interrupts and Functions 	 PC System Programming

Inter~upt 21n, function 63n, sub-function 0 DOS
Get lead byte table (Version 2.25 o}Jly)

Gets the address of the system table which defines the byte ranges for the PC's
extended character sets.

Input: 	 AH= 9963H
AL = 00: Get address of system lead byte table

Output: 	 DS = Table segment address
SI = Table offset address

Remarks: 	 This function is available only in OOS Version 2.25.

Interrupt 21n, function 63n, sub-function 1 DOS
Set or clear interim console nag (Version 2.25 only)

Clears the interim console flag.

Input: 	 AH= 63H
AL = 01: Clear or set interim console flag
DL = Interim console flag setting

DL=OI: Set interim console flag
DL--OO: Clear interim console flag

Output: 	 No output

Remarks: 	 This function is available only in OOS Version 2.25.

Interrupt 21n, function 63n, sub·function 2 DOS
Get interim console nag (Version 2.25 only)

Gets the interim console flag.

Input: 	 AH= 63H
AL = 02: Get interim console flag value

Output: 	 DL = Flag value

Remarks: 	 This function is available only in OOS Version 2.25.

Interrupt 21n, function 64n DOS
Reserved (Version 3 and up)

Interrupt 21n, function 65n DOS
Get extended country information (Version 3.3 and up)

Gets information about the specific country/code page.

Input: AH= 65H
AL = sub-function:

AL = 1: Get international information

840

Abacus Appendix C: DOS InJerrwpts and Functions

Output:

Remarks:

AL = 2: Get uppercase pointer table

AL = 4: Get pointer to uppercase pointer table (filename)

AL = 6: Get pointer to collation table

BX = Code page:
BX = -1: active CON device
CX = Length of buffer allocated to receive information
DX = Country ID number
DX = -1: Default
ES:DI = Address of buffer allocated to receive information

Carry flag=<>: Successful execution
Carry flag=l: Error (AX = Error code)

The information this function returns is an extended version of the
information returned by int 21H, function 38H.

An error may occur if the country code in DX is invalid, or if the code
page number is different from the country code, or if the buffer length
specified in the CX register is less than five bytes. If the buffer is not
long enough to receive all the information, the function accepts as much
information as the buffer will accept. This buffer contains the following
information after the call:

Byte 0: ID code for information
Bytes 1-2: Length of buffer
Bytes 3-4: Country ID
Bytes 5-6: Code page
Bytes 7-8: Date format
0= USA: Month-day-year
1 = Europe: Day-month-year
2 = Japan: Year-month-day
Bytes 9-13: Currency indicator
Bytes 14-15: ASCII code of the thousand character (comma/period)
Bytes 16-17: ASCII code of the decimal character (period/comma)
Bytes 18-19: ASCII code of the date separation character
Bytes 20-21: ASCII code of the time separation character
Byte 22: Currency format
bit 0;;;; 0: Currency symbol before the value
bit 0;;;; 1: Currency symbol after the value
bit 1 = 0: No spaces between value and currency symbol
bit 1 ;;;; 1: Space between value and currency symbol
Byte 23: Precision (number of decimal places)
Byte 24: Time format
bit 0 = 0: 12-hour clock
bit 0;;;; 1: 24-hour clock
Bytes 25-28: Address of character conversion routine
Bytes 29-30: ASCII data separator
Bytes 31-40: Reserved

841

Appendix C: DOS Interrupts and Functions 	 PC System Programming

Interrupt 218, function 668 DOS

Get or set code page (Version 3.3. and up)

Gets or sets the current code page.

Input: 	 AH= 66H
AL = sub-fWlction:

AL = I: Get code page

AL = 2: Select code page

BX = Selected code page (if AL = 2)

Output: 	 Carry flag=<>: Successful execution
If AL =1 used for input:

BX = active code page

DX = default code page

Carry flag=l: Error (AX = Enor code)

Remarks: 	 If sub-function 2 is used, COUNTRY.SYS supplies the code page
number.

The DEVICE ... (CONFIG.SYS), NLSFUNC and MODE CP PREPARE
commands (AUTOEXEC.BA 1') must have already configured the system
for code page switching before this function may be called.

Interrupt 218, function 678 DOS
Set handle count (Version 3.3 and up)

Sets the maximum number of accessible files and devices that may be currently
opened using handles.

Input: 	 AH= 67H
BX = Number of handles desired

Output: 	 Carry flag=<>: Successful execution
Carry flag=1: Error (AX = Enor code)

Remarks: 	 The PSP's default table reserved for the process can control 20 handles.

An error occurs if the content of the BX register is greater than 20, or if
insufficient memory exists to allocate a block for the extended table.

If the number in the BX register is greater than the number of entries
assigned by the FILES entry in the CONFIG.SYS file, no error occurs.
However, attempts at opening a file or device fail if all file entries are in
use, even if file handles are still available.

Interrupt 218, function 688 DOS
Commit file (Version 3.3 and up)

Writes all DOS buffers associated to a specific handle to the specified device. If the
handle points to a file, the file's contents, date and size are updated.

842

http:AUTOEXEC.BA

Abacus 	 Appendix C: DOS Interrupts and Functions

Input: 	 AH= 68H
BX= File handle

Output: 	 Carry flag=<>: Successful execution
Carry f1ag.=1: Error (AX = Error code)

Remarks: 	 This function perfonns the same task as closing and reopening a file or
duplicate handle, even without handles. If this function accesses a
character device's handle, the carry flag returns 0 but nothing else
happens.

Multiprocessing and networking applciations maintain control of the file.

Interrupt 22H DOS
Terminate address (Version 1 and up)

Contains the address of a routine which tenninates a program. Control returns to
the program that called for tennination. You should never call this routine directly.

DOS stores the contents of this interrupt vector in the PSP of the program to be
executed before passing control to the program. This prevents program changes to
the vector, which could prevent DOS from calling the tennination routine.

Interrupt 23H DOS
<Ctri><C> handler address (Version 1 and up)

Contains the address of a routine which executes when the user presses <Ctrl><C>
or <Ctrl><Break>. You should never directly call this routine.

DOS stores the contents of this interrupt vector in the PSP of the program to be
executed before passing control to the program. This prevents program changes to
the vector, which could prevent DOS from calling the tennination routine.

Interrupt 24H DOS
Critical error handler address (Version 1 and up)

Represents a routine called during hardware access (e.g., disk drive) when a critical
error occurs. You should never directly call this routine.

When an application routine is called during a critical error, bit 7 of the AH
register indicates the type of failure (0 = disk/hard disk error, 1= other errors). A
disk/hard disk error will only be reported after several attempted accesses. During
the call, the DI register receives one of the following codes:

0: Disk write protected
1: Access on unknown device
2: Drive not ready
3: Invalid command
4: CRCerror
5: Bad request structure length
6: Seek error
7: Unknown device type

843

Appendix C; DOS Interrupts and Functions 	 PC System Programming

8: Sector not found
9: Printer out of paper
10: Write error
11: Read error
12: General failure

The error routine restores the SS, SP, DS, ES, BX, CX and DX registers to the
same values that they contained during the call. During execution it can only
access functions 1 to OCH of interrupt 2lH. It should be tenninated by an IRET
instruction and pass one of the following codes to the AL register:

0: Ignoreerror
1: Repeat the operation
2: Tenninate program using interrupt 23H
3: Fail system call (Version 3 and up only)

If a program changes the content of this interrupt vector, the program can
tenninate without restoring the memory contents. Since RAM can be released and
used by other programs, the critical error routine can be overwritten by another
program in memory. When this occurs, a critical error could cause a system crash
because a completely different code now exists at the location of the old error
handler routine.

Before passing control to the program, DOS stores the contents of this interrupt
vector in the PSP of the program to be executed. This prevents program changes
to the vector, which could prevent DOS from calling the tennination routine.
During program termination, the contents of the interrupt vector pass from the
PSP to the vector; then the system calls the routine.

Interrupt 2SH DOS
Absolute disk read (Version 1 and up)

Reads one or more consecutive sectors from a disk or hard disk.

Input: 	 AL = Drive specifier
CX= Number of sectors to read
DX= First sector to read
DS= Buffer segment address
BX= Buffer offset address

Output: 	 Carry flag=O: O.K.
Carry flag=l: Error (AX = Error code)

AX=I: Bad command

AX=2: Bad address

AX=4: Sector not found

AX=8: DMA error

AX=16: CRC error

AX=32: Disk controller error

AX=64: Seek error

AX=128: Device does not respond

844

Abacus Appendix C: DOS Interrupts and Functions

Remarlcs: In the AL register 0 represents drive A:, 1 represents drive B:, etc.

All the sectors of the medium can be accessed. OOS itself uses this
interrupt to read the root directory and the FAT of a medium. The data are
read from the medium into the buffer of the calling program. After the
function call, the contents of all registers, except the segment register,
may change.

After the interrupt call, the stack pointer changes position because two
bytes stored on the stack during the call are removed and not returned.
These bytes represent the flag register, which can be read from the stack
using the POPF instruction. The old value of the stack pointer can be set
by adding- 2 to its contents. If you omit the stack pointer correction, the
stack could overflow. Because of this, you cannot call this interrupt from
higher level languages. You must call it from assembly language.

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 26H DOS
Absolute disk write (Version 1 and up)

Writes one or more consecutive sectors to a disk or hard disk.

Input:

Output:

Remarks:

AL = Device designation
CX = Number of sectors to be written
DX = First sector to be written
DS = Buffer segment address
BX = Buffer offset address

Carry flag=<>: O.K.
Carry flag=l: Error (AX = Error code)

AX=l: Bad command
AX=2: Bad address
AX=3: Medium write protected
AX=4: Sector not found
AX=8: DMA error
AX=16: CRC error
AX=32: Disk controller error
AX=64: Seek error
AX=128: Device does not respond

In the drive specifier 0 represents drive A:, 1 represents drive B:, etc.

All the sectors of the medium can be accessed. OOS itself uses this
interrupt to write the root directory and the FAT to a medium. The data
are written from the buffer of the calling program to the medium. After
the function call, the contents of all registers, except the segment register,
may change.

845

Appendix C: DOS Interrupts and Functions 	 PC System Programming

After the interrupt call, the stack pointer changes position because two
bytes stored on the stack during the call are removed and not returned.
These bytes represent the flag register, which can be read from the stack
using the POPF instruction. The old value of the stack pointer can be set
by adding 2 to its contents. If you omit the stack pointer correction, the
stack could overflow. Because of this, you cannot call this interrupt from
higher level languages. You must call it from assembly language.

The contents of the BX, CX, DX, SI, DI, BP, CS, DS, SS and ES
registers are not affected by this function. The contents of all other
registers may change.

Interrupt 278 DOS
Terminate and stay resident (Version 1 and up)

Terminates the currently executing program and returns control to the program that
called the current program. Unlike other functions used for program termination,
the memory used by the current program keeps the program code for later recall.

Input: CS = PSP segment address
DX = Number of bytes + 1 to be reserved

Output: No output

Remarks: This function is only suitable for calling COM programs.

The number of bytes to be reserved relates to the beginning of the PSP.

The value in the DX register has no effect on memory blocks reserved by
function 48H of interrupt 21H.

An error occurs during the call of this interrupt if the value in the DX
register ranges from FFFIH to FFFFH.

This interrupt does not close open files.

Interrupt 2F8, sub-function 0 DOS

Get print spool install status (Version 3 and up)

Gets current installation status of the print spooler.

Input: 	 AH= 2FH
AL= 0

Output: 	 Carry flag=O: Successful execution
AL = 0: O.K. to install
AL= 1: Don't install
AL = 255: Already installed
Carry flag=l: Error (AX = Error code)

AX=1: Invalid function
AX=2: File not found
AX=3: Path not found

846

Abacus 	 Appendix C: DOS Interrupts and Functions

AX=4: Too many files currently open
AX=5: Access denied
AX=8: Print queue full
AX=9: Print spooler busy
AX=12: Name too long
AX=15: Invalid drive

Interrupt 2FH, sub-function 1 DOS
Send file to print spooler (Version 3 and up)

Passes a file to the print spooler.

Input: 	 AH= 2FH
AL= 1
DS = Print packet (see below) segment address
DX = Print packet (see below) offset address

Output: 	 Carry flag=O: Successful execution
Carry flag=l: Error (AX = Error code)

AX=I: Invalid function
AX=2: File not found
AX=3: Path not found
AX=4: Too many files currently open
AX=5: Access denied
AX=8: Print queue full
AX=9: Print spooler busy
AX=12: Name too long
AX=15: Invalid drive

Remarks: 	 The five-byte print packet contains print spooler information. The first
byte indicates the DOS version (O=Versions 3.1 to 3.3); the remaining
bytes indicate the segment and offset addresses of the file specification.

Interrupt 2FH, sub-function 2 DOS
Remove file from print queue (Version 3 and up)

Deletes a file from the print spooler queue.

Input: 	 AH= 2FH
AL= 2
DS = ASCII-format file segment address
DX = ASCII-format file offset address

Output: 	 Carry flag=O: Successful execution
Carry flag: I: Error (AX = Error code)

AX=I: Invalid function
AX=2: File not found
AX=3: Path not found
AX=4: Too many files currently open
AX=5: Access denied
AX=8: Print queue full

847

Appendix C: DOS Interrupts and Functions 	 PC System Programming

AX=9: Print spooler busy

AX=12: Name too long

AX=15: Invalid drive

Remarks: 	 This sub-function allows wildcards (1 and *) in file specifications.
allowing you to delete more than one file at a time from the print queue.

Interrupt 2FH, sub-function 3 DOS
Cancel all files in print queue (Version 3 and up)

Cancels all files waiting in the print spooler queue for printing.

Input: 	 AH= 2FH
AL= 3

Output: 	 Carry flag=O: Successful execution
Carry flag=1: Error (AX = Error code)

AX=I: Invalid function
AX=2: File not found
AX=3: Path not found
AX=4: Too many files currently open
AX=5: Access denied
AX=8: Print queue full
AX=9: Print spooler busy
AX=12: Name too long
AX=15: Invalid drive

Interrupt 2FH, sub-function 4 DOS
Hold print jobs for status check (Version 3 and up)

Halts all print jobs while testing for spooler status.

Input: 	 AH= 2FH
AL= 4

Output: 	 Carry flag=O: Successful execution
Carry flag=1: Error
OX = Number of errors
OS = Print queue segment address
SI = Print queue offset address

Remarks: 	 The print queue segment and offset addresses point to a set of 64-byte
filenames in the queue. Each entry contains an ASCII file specification.

The first filename in the queue is the file currently printing in the print
spooler. The last filename in the queue has a zero in the first byte of the
specification. j

848

Appendix 0

EMM Functions

Interrupt 678, function 18 LIM/EMS
Extended memory: Get status

Returns the error status of the EMM after calling any EMS functions.

Input: AH= 40H

Output: AH = EMM status
AH=OOH: O.K.
AH=80H: Internal error, EMM possibly destroyed
AH=81H: EMS hardware error

Remarks: Do not call this function unless you know that EMS memory and a
corresponding EMM are installed (see Chapter 13 for more infonnation).
This function should be the flfSt EMM call a program makes, to ensure
that the hardware and software are functioning properly.

Interrupt 678, function 28 LIM/EMS
Extended memory: Get segment address of the page frame

Detennines the segment address of the page frame.

Input: 	 AH= 41H

Output: 	 AH= 0: O.K.
BX = Page frame segment address
AH> 0: Error

AH=80H: Internal error, EMM poSSIbly destroyed
AH=81H: EMS hardware error

Remarlcs: 	 Do not call this function unless you know that EMS memory and a
corresponding EMM are installed (see Chapter 13 for more infonnation).
The addresses of the four physical pages can be calculated from this
segment address, whereby the first page starts at address
PAGE_FRAME:OOOO. The three other pages follow at 16K intervals.

849

Appendix D: EMM FflllCliotv 	 PC System ProgrtJ1ll11ling

Interrupt '78, (unction 38 LIM/EMS
Extended memory: Get number o(EMS pales

Informs the calling program how many 16K EMS pages are installed, and how
many EMS pages are still available or unallocated.

Input: 	 AH=42H

Output: 	 AH= 0: O.K.
BX = Number of free (unallocated) pages
OX = Total number of EMS pages
AH> 0: Error

AH=80H: Internal error, EMM possibly destroyed
AH=81H: EMS hardware error

Remarks: 	 Do not call this function unless you know that EMS memory and a
corresponding EMM are installed (see Chapter 13 for more information).

The number of kilobytes of free EMS memory can be calculated by
multiplying the number of free pages by 16.

Interrupt 678, (unction 48 LIM/EMS
Extended memory: Allocate EMS memory

Allocates a given number of 16K EMS pages for later access.

Input: 	 AH= 43H
BX = Number of logical (16K) pages to be allocated

Output: 	 AH= 0: O.K.
OX =Handle for accessing allocated memory
AH> 9: Error

AH=80H: Internal error, EMM possibly destroyed
AH=81H: EMS hardware error
AH=85H: No more handles available
AH=87H: Not enough pages free
AH=88H: No pages were requested

Remarks: 	 00 not call this function unless you know that EMS memory and a
corresponding EMM are installed (see Chapter 13 for more information).

The handle returned can be used for future access and for releasing the
allocated memory. If this handle is "lost", the handle cannot be recovered,
nor can memory be released or used by other programs.

A call to this function may fail because there are not enough pages free or
because the EMM has been called so often that no more handles are
available.

The handles normally have the numbers FFOOH, FEOIH, FD02H,
FC03H, etc.

8S0

Appendix D: EMM FlIIICtions

Interrupt 67H, function 5H LIM/EMS
Extended memory: Set mapping

Places one of the pages previously allocated by function 4H in one of the four
physical pages within the page frame.

Input: 	 AH= 44H
AL = Pbysical page number (0 to 3)
BX = Logical page number
OX= Handle

Output: AH = Error status
AH=OOH: O.K.
AH=80H: Internal error. EMM possibly destroyed
AH=81H: EMS hardware error
AH=83H: Invalid handle
AH=8AH: Invalid logical page
AH=8BH: Invalid physical page

Remarlcs: 	 Do not call this function unless you know that EMS memory and a
corresponding EMM are installed (see Chapter 13 for more infonnation).

The handle used when calling this function must have been returned by a
previous call to EMM function 4H.

The logical pages are numbered from 0 on. so that the value 0 must be
passed to access the first logical page. The largest value allowed is the
number of allocated pages minus one.

Before accessing the physical page, the segment address of the page frame
must be determined with function 2H.

Interrupt 67H, function 6H LIM/EMS
Extended memory: Release pages

Releases pages allocated with function 4H to the EMM. This makes these pages
available to other applications.

Input: 	 AH= 45H
OX= Handle

Output: 	 AH = Error status:
AH=OOH: O.K.
AH=80H: Internal error. EMM possibly destroyed
AH=81H: EMS hardware error
AH=83H: Invalid handle
AH=85H: Error while saving and restoring mapping

851

Appendix D: EMM FlllfCtions 	 PC Sy8lem ProgrfJlfUlling

Remmks: 	 Do not call this function unless you know that EMS memory and a
corresponding EMM are installed (see CIJapa 13 fm mme infonnation).

The handle used when calling this functicn must have been returned by a
previous call to EMM function 4H.

All of the pages allocated to this handle are released by this function. It is
impossible to release individual pages.

Mter a successful call to this function the handle is no longer valid and
cannot be used for accessing EMS memory.

If the function returns an error, you should repeat the call at least three
times or the pages will remain allocated and will not be available for
other programs.

Interrupt 67H, function 7H LIM/EMS
Extended memory: Get EMM version

Determines the version number of the EMM (Expanded Memmy Manager).

Input: 	 AH=46H

Output: 	 AH= 0: O.K.
AL = EMM version number
AH> 0: Error

AH=80H: Internal error, EMM possibly destroyed
AH=81H: EMS hardware erm-

Remmks: 	 Do not call this function unless you know that EMS memory and a
corresponding EMM are installed (see Chapter 13 fm mme information).

The EMM version number is stored in the AL register as a BCD number,
in which the upper four bits represent the version number preceding the
decimal point and the lower four bits represent the version number
following the decimal point. See also the demonstration programs in
Chapter 13.

Interrupt 67H, function 8H LIM/EMS
Extended memory: Save mapping

Saves current mapping between the four physical pages in the page frame and the
associated logical pages.

Input: 	 AH = 47H
DX= Handle

852

Abacus 	 AppettdiJe D: EMM F/lllCtions

Output: AH = Error status
AH=OOH: O.K.
AH=80H: Internal error, EMM possibly destroyed
AH=81H: EMS hardware error
AH=83H: Invalid handle
AH=8CH: Mapping memory full
AH=8DH: Mapping for handle already stored, not restored using

function 9H

Remarks: 	 Do not call this function unless you know that EMS memory and a
corresponding EMM are installed (see Chapter 13 fo: more information).

The handle used when calling this function must have been returned by a
previous call to EMM function 4H.

This function is intended for use within a TSR program or by the
operating system in a multitasking environment, but can be used by any
program.

Interrupt 678, function 98 LIM/EMS
Extended memory: Restore mapping

Restores mapping between the logical and physical pages saved by function 8H.

Input: 	 AH= 48H
DX=Hand1e

Output: AH = Error status:
AH=OOH: O.K.
AH=80H: Internal error, EMM possibly destroyed
AH=81H: EMS hardware error
AH=83H: Invalid handle
AH=8EH: Mapping storage contains no entry for this handle

Remarks: 	 Do not call this function unless you know that EMS memory and a
cmesponding EMM are installed (see Chapter 13 for more information).

The handle used when calling this function must have been returned by a
previous call to EMM function 4H.

Calling this function fails whenever the mapping for this handle has not
been saved with function 8H, or the mapping has a1ready been restored by
a previous call to function 9H.

This function is intended for use within a TSR program or by the
operating system in a multitasking environment, but can be used by any
program.

853

Appendix D: EMM FlUlCtiotu 	 PC System Programming

Interrupt 67H, function OCH LIM/EMS
Extended memory: Get number of handles

Returns the number of memory blocks and the number of handles allocated by
function 4H.

Input: 	 AH= 4BH

Output: 	 AH= 0: O.K.
BX = Number ofallocated handles
AH> 0: Error

AH=80H: Internal error. EMM possibly desb'oyed
AH=81H: EMS hardware error

Rematks: 	 Do not call this function unless you know that EMS memory and a
corresponding EMM are installed (see Chaptec 13 for more information).

The number of allocated handles is not the same as the number of
programs which are currently accessing the EMS memory. Each program
can request an arbitrary number of EMS memory blocks/handles with
function 4H.

Interrupt 67H, function ODH LIM/EMS
Extended memory: Get Dumber of allocated pages

Returns the number ofpages which have been allocated to the specified handle.

Input: 	 AH= 4CH
OX= Handle

Output: 	 AH= 0: O.K.
BX = Number of allocated pages
AH> 0: Error

AH=80H: Internal error, EMM possibly desb'oyed
AH=81H: EMS hardware error
AH=83H: Invalid handle

Rematks: 	 Do not call this function unless you know that EMS memory and a
corresponding EMM are installed (see Chapter 13 for more infonnation).

The number of allocated pages must range from 1 to 512.

854

Abacus 	 Ap~Nlix D: EMM FlUfCtioru

Interrupt 67H, (unction OEH LIM/EMS
Extended memory: Get all handles

Loads the numbers of all active handles and the number of pages allocated to each
into an array.

Input: 	 AH=48H
ES = Segment address ofarray
DI =Offset address ofarray

Output: 	 AH=O:O.K.
BX =Number ofallocated logical pages
AH> O:Enor

AH=80H: Internal error, EMM possibly destroyed
AH=81H: EMS hardware error

Remarlcs: 	 Do not call this function unless you know that EMS memory and a
cmesponding EMM are installed (see Chapter 13 foc more information).

If the function returns successfully, the memory area to which the ES:DI
register pair points will contain two words for each active handle. The
first word contains the handle itself and the second word contains the
number of pages allocated to the handle. The number of these entries is
returned in the BX register.

Since the EMM can manage a maximum of 256 handles, the array will
never occupy Itlore than 1024 bytes (lK).

855

Appendix E

EGA/VGA BIOS Functions

Interrupt 108, function 008 EGA/VGA
Screen: Set video mode

Sets and initializes the video mode.

Input: 	 AH= OOH
AL = EGA video mode
0: 	 4Ox25-character text, 16 colors (EGA/VGA - color monitor)
1: 	 40x25-character text, 16 colors (EGA/VGA - color monitor)
2: 	 80x25-character text, 16 colors (EGA/VGA - color monitor)
3: ..~ SOx25-character text, 16 colors (EGA/VGA - color monitor)
4: 	 320x200 pixel graphics, 4 colors (EGA/VGA - color monitor)
5: 	 320x200 pixel graphics, 4 colors (EGA/VGA - color monitor)
6: 	 640x200 pixel graphics, 2 colors (EGA/VGA - color monitor)
7: 	 SOx25-character text, mono (EGA/VGA - mono monitor)
13: 	 320x200 pixel graphics, 16 colors (EGA/VGA - color monitor)
14: 	 640x200 pixel graphics, 16 colors (EGA/VGA - color monitor)
15: 	 640x350 pixel graphics, mono (EGA/VGA - mono monitor)
16: 	 640x350 pixel graphics, 4 colors (64K EGA-hi-res monitor)

640x350 pixel graphics, 16 colors (128K EGA/VGA-hi-res
monitor)

17: 	 640x480 pixel graphics, 2 colors (VGA only)
18: 	 640x480 pixel graphics, 16 colors (VGA only)
19: 	 320x200 pixel graphics, 256 colors (VGA only)

Output: 	 No output

Remarlcs: 	 Modes 0 and I, 2 and 3, 4 and 5 differ in the output of the color signal
that is suppressed in the fIrst mode. This isn't possible on an EGA/VGA
card so the modes are identical. Ifbit 7 of the AL register is set when this
function is called, the contents of the video RAM will not be erased when
the new mode is enabled. The task is to program the video controller and
defIne a color palette. The contents of registers BX, ex, ox, SI, DI, BP
and the segment registers are not affected by this functi6n.

856

AbacllS 	 Appendix E: EGAlVGA BIOS FlUlCtions

Interrupt lOB, function 01B EGA/VGA
Screen: Define cursor appearance

Defmes the starting and ending lines of the screen cursor. This function is
independent of the display page being displayed.

Input 	 AH= OlH
CH = Starting line of the cursor
CL = Ending line of the cursor

Output: 	 No output

Remarks: 	 Since the possible values depend on the size of the current video mode's
character matrix, the values in the CH and CL registers always refer to an
eight-line character matrix. The values should thus be between zero and
seven. The EGA/VGA BIOS adapts these values to the current size of its
own character matrix.

The contents of registers BX, CX, DX, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt lOB, function 02B EGA/VGA
Screen: Position cursor

Moves the cursor into position on the screen.

Input: 	 AH= 02H
BH = Video page nwnber
DH = Screen line
DL = Screen column

Output: 	 No output

Remarlcs: 	 The cursor moves only if the specified display page is the current page.

The values for the screen line and column are based on the resolution of
the current display mode.

Assigning the DH and DL registers values for a non-existent screen
position (e.g., colwnn 0, line 255) makes the cursor disappear from the
screen.

The number of the display page is based on how many display pages the
card has available.

The contents of registers BX, CX, DX, SI, 01, BP and the segment
registers are not affected by this function.

857

AppendU: E: EGAlVGA BIOS FlUlCtions 	 PC System ProgrtJlllllli.ng

Interrupt lOB, function 03B EGA/VGA
Screen: Read cursor position

Reads the position of the text C1Jl"S(X' on the screen and the starting and ending lines
of the screen cursor.

Input: 	 AH= 03H
BH = Video page nwnber

Output: 	 DH = Screen line in which cursor is located
DL = Screen colwnn in which cursor is located
CH = Starting line of screen cursor
CL = Ending line of screen cursor

Remadcs: 	 The screen line and screen colwnn parameters refer to the text coordinate
system, even if a graphic mode is active.

The starting and ending lines of the cursor are returned correctly only in
the text modes. They have no meanings in graphic modes.

The contents of registers BX, SI, 01, BP and the segment registers are not
affected by this function.

Interrupt lOB, function 05B EGA/VGA
Screen: Select current display page

Selects the current display page, and thereby the page which appears on the screen
(text mode only).

Input: 	 AH= OSH
AL = Display page nwnber

Output: 	 No output

Remarks: 	 The number of available display pages depends on the amount of video
RAM installed on the EGANGA card.

When a new page is selected the screen cursor will be moved to the
position of the text cursor on this page.

Switching between different pages does not change the contents of these
pages.

The contents of registers BX, CX, DX, SI, 01, BP and the segment
registers are not affected by this function.

858

http:ProgrtJlllllli.ng

Appt!1lda E: EGAlVGA BIOS FlIIICtions

Interrupt 10H, function 06H EGA/VGA
Screen: Scroll text lines up

Scrolls part of the current display page up by one or more lines.

Input: 	 AH= 06H
AL "'" Number of lines to be scrolled up

AL=O: Clear window
CH = Screen line of ower left corner of window
CL = Screen column ofupper left corner of window
OH =Screen line of lower right COOler of window
OL = Screen column of lower right corner of window
BH = Color (attribute) fm- blank line(s)

Output: 	 No output

Remarks: 	 Normally the contents of the current display page are scrolled, but in the
320x200 four-color graphic mode this function only affects display page
O.

Clearing the screen window (number of lines =0) is the same as filling it
with spaces (ASCII code 32).

The contents of the lines scrolled out of the window are lost and cannot
be recovered.

Use function 0 of this interrupt to clear the screen.

The interpretation of the attribute byte in the BL register depends on the
current video mode. In text mode it is interpreted as any other attribute
byte in video RAM. In 640000 two-color mode this byte represents the
color value for eight successive pixels. In 32Ox200 four-color mode this
byte represents the color value of four successive pixels. In all other
graphic modes it represents the color of all of the pixels in the cleared
screen area.

The contents of registers BX, CX, OX, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt 10H, function 07H EGA/VGA
Screen: Scroll text lines down

Scrolls part of the current display page down one or more lines.

Input: 	 AH = 07H
AL = Number of lines to be scrolled down

AL=O: Clear window
CH = Screen line of upper left corner of window
CL = Screen column ofupper left COOler of window
OH = Screen line of lower right COOler of window

859

Appendix E: EGAlVGA BIOS F/UfCtions 	 PC System Programming

OL = Screen colwnn of lower right comer of window
BH= Color (attribute) fm blank line(s)

Output: 	 No output

Remarlcs: 	 Normally the contents of the current display page are scrolled. but in
320x200 four-color graphic mode this function only affects display page
O.

Clearing the screen window (nwnber of lines = 0) is the same as filling it
with spaces (ASCII code 32).

The contents of the lines scrolled out of the window are lost and cannot
be recovered.

To clear the entire screen, use function 0 of this interrupt instead.

The interpretation of the attribute byte in the BL register depends on the
current display mode. In the text mode it is interpreted like any other
attribute byte in the video RAM. In the 640000 two-color mode this
byte represents the color value for eight successive pixels. In the 32Ox200
four-color mode it represents the color value of four successive pixels. In
all other graphic modes it represents the color of all of the pixels in the
cleared screen area.

The contents of registers BX, CX, DX, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt 10H, runction 08H EGA/VGA
Screen: Read character/color

Reads and returns the ASCII code and color (attribute) of the character at the current
cursor position.

Input: 	 AH= 08H
BH = Video page nwnber

Output: 	 AL = ASCn code of character
AH = Colm (attribute)

Remarks: 	 This function can also be called in the graphic mode, whereby the bit
pattern of the character on the screen will be compared with the bit
patterns of the characters. If the character cannot be identified, the AL
register will contain the value zero after the call.

In the 320x200 four-color graphic mode this function only affects display
pageO.

The contents of registers BX, CX, OX, SI, 01, BP and the segment
registers are not affected by this function.

860

AbacllS

Interrupt 108, function 098 EGA/VGA
Screen: Write character/color

Writes character with the specified color at the current cursor position (in a
specified display page).

Input: 	 AH= 09H
BH = Video page number
ex = Repeat factor
AL = ASCll code ofcharacter
BL = Attribute

Output: 	 No output

Remarks: 	 If the graphic mode is active and the specified character is to be printed
more than once (the value of the ex register is greater than 1), all of the
characters must fit on the current screen line.

In the 320000 four-color graphic mode this function correctly works
only on display page O.

Within a graphic mode the attribute in the BL register specifies the
foreground color of the character, whereby the background color is zero. If
bit seven is set, the character will be XORed with the bitmap at the
output position.

The controls codes for bell, carriage return, etc. are not recognized as
control codes, and are displayed as normal ASen characters.

This function can also be used to output characters in the graphic mode,
in which case the character patterns are taken from one of the EGA
character tables.

This function does not move the cursor to the next screen position.

The contents of registers BX, ex, ox, SI, DI, BP and the segment
registers are not affected by this function.

Interrupt lOB, function OAR EGA/VGA
Screen: Write character

A character will be written to the current screen position on the specified display
page and the color of the old character at this position will be retained.

Input: 	 AH= OAH
AL = ASCll code of the character
BH = Video page number
BL = Foreground color of character for graphic modes
ex = Repeat factor

Output: 	 No output

Appendix E: EGAlVGA BIOS FlUlCtioras 	 PC System ProgrfllNllillg

Remarks: 	 If the graphic mode is active and the specified character is to be printed
more than once (the value of the ex register is greatez than I), all of the
characters must fit on the current screen line.

The conb'Ols codes for bell, carriage return, etc. are not recognized as such
and are dispJayed as nonnal ASCII characters.

This function can also be used to output characters in the graphic mode,
in which case the character patterns are taken from one of the EGA
character tables.

Within a graphic mode the attribute in the BL register specifies the
foreground color of the character, whereby the background color is zero. If
bit seven is set, the character will be XORed with the bitmap at the
output position.

This function does not move the cursor to the next screen position.

The contents of registers BX, ex, DX, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt IOU, function OBU, sub-function 0 EGA/VGA
Screen: Select borderlbackground color

Selects the border and background color for the graphic or text mode.

Input: 	 AU= OBU
BU= 0
BL = Bmier/bockground color

Output: 	 No output

Remarks: 	 This function should be called only when the EGANGA card is in the
320x200 or 640x200 graphic mode. Use function 10H for all other
modes.

Bits zero to three of the BL register set the background and border color.
Setting bit four will enable high-intensity colors.

The contents of registers BX, ex, DX, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt IOU, function OBU, sub-function 1 EGA/VGA
Screen: Select color palette

Selects one of the two color palettes for the 320x200 graphic mode.

Input: 	 AU = OBH
BH= 1
BL = Color palette number

862

Abacus 	 Appendix E: EGAlVGA BIOS FlUlCtions

Output: No output

Renuub: This function should be called only when the EGA/VGA card is in the
320x200 or 640x200 graphic mode. Use function 10H for all other
modes.

The EGA/VGA BIOS emulates the two CGA color palettes with the
numbers 0 and 1. They contain the following colors:

Palette 0: green, red, yellow
Palette 1: cyan, magenta, white

The contents of registers BX, CX, DX, SI, 01, BP and the segment
registezs are not affected by this function.

Interrupt lOR, function OCR EGAlVGA
Screen: Write pixel

Sets the color value of a screen pixel in the graphic mode.

Input: 	 AH= OCH
BH = Video page
OX = Screen line
CX = Screen column
AL = Color value

Output: 	 No output

Remarks: 	 The color value depends on the colors available in the current display
mode.

Ifbit seven of the AL register is set, the color value will be XORed with
the previous color value of the pixel.

The display page is ignored in the 320x200 four-color graphic mode.

The contents of registers BX, CX, OX, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt lOR, function ODB EGA/VGA
Screen: Read pixel

The color value of a pixel in the graphic mode is returned.

Input: 	 AH= OOH
BH = Video page
OX = Screen line
CX = Screen column

Output: 	 AL = Color value

863

ApperuliJc E: EGAlVGA BIOS FllltCtWns 	 PC System Programming

Rematks: 	 The color value depends on the colors available in the current display
mode.

The display page is ignored in the 320x200 four-color graphic mode.

The contents of registers BX, CX. DX. SI, DI. BP and the segment
registers are not affected by this function.

Interrupt lOB, function OEB EGA/VGA
Screen: Write character

Writes a character to the current cursor position on the current display page. The
color of the old character at this position will be retained.

Input: 	 AH= OEH
AI.. = ASCll charocter code
BL = Foreground color of character

Output: 	 No output

Remarks: 	 This function does not treat the various control codes like :t>ell and
carriage as normal characters, and implements them as the control
characters they represent

After displaying a character with this function. the cursor position is
incremented so that the next character will be printed at the following
screen position. If the last screen position has been reached, the screen
will be scrolled up one line and the output will continue in the frrst
column of the last screen line.

If bit seven of the BL register is set. the color value will be XORed with
the previous color value of the pixels. The background color is zero.

Characters can be displayed in the graphic mode with this function. The
character patterns are taken from one of the EGA character tables.

The contents of registers BX. CX, DX. SI, DI, BP and the segment
registers are not affected by this function.

Interrupt lOR, function OFH EGA/VGA
Screen: Returns current display mode

Reads the number of the current display mode. the number of characters per line,
and the number of the current display page.

Input: 	 AH= OFH

Output: 	 AI.. = Video mode:
0: 4Ox2S-character text, 16 colors (EGA/VGA - color monitor)
1: 4Ox2S-character text, 16 colors (EGA/VGA - color monitor)

864

Abacus 	 Appl!lfdix E: EGAlVGA BIOS FlDfCtions

2: 	 8Ox25-character text, 16 colors (EGA/VGA - color moni1m')
3: 	 8Ox25-character text, 16 colors (&JA/VGA - color moni1m')
4: 	 320x200 pixel graphics, 4 colors (&JA/VGA - color monitor)
5: 	 320x200 pixel graphics, 4 colors (&JA/VGA - color monitor)
6: 	 640x200 pixel graphics, 2 colors (EGA/VGA - color monitor)
7: 	 8Ox25-character text, mono (EGA/VGA - mono moniUX')
13: 	 320x200 pixel graphics, 16 colors (EGA/VGA - coloc moniUX')
14: 	 640x200 pixel graphics, 16 colors (&JA/VGA - coloc moniUX')
15: 	 640x350 pixel graphics, mono (&JNVGA - mono monitor)
16: 	 640x350 pixel graphics, 4 colors (64K EGA - high-resolution

monitor)
640x350 pixel graphics, 16 colors (I28K EGNVGA - high
resolution monitor)

17: 	 640x480 pixel graphics, 2 colors (VGA only)
18: 	 640x480 pixel graphics, 16 colors (VGA only)
19: 320x200 pixel graphics, 256 colors (VGA only)
AH = Number ofcharacters per line
BH= Number of current display page

Remark: 	 The contents of registers BX, CX, DX, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt IOU, function IOU, sub-function OOU EGA/VGA
Screen: Set palette registers

Sets the contents of a palette register in the attnbute controller of the EGA/VGA
card.

Input: 	 AH= 10H
AL= OOH
BL = Color value
BH= Register to be addressed

Output: 	 No output

Remarlcs: 	 Since the register number is not checked by the BIOS, you can also
program the other registers in the attribute controller. These include the
mode control register, overscan register and others.

The contents of registers BX, CX, DX, SI, 01, BP, and the segment
registers are not affected by this function.

Interrupt IOU, function IOU, sub-function 01U EGA/VGA
Screen: Set screen border color

Copies resulting value into the overscan register of the EGA attribute controller.

Input: 	 AH = 10H
AL= 01H
BH = Bordercolor

865

AppendiJe E: EGAIVGA BIOS FlUlCtiom 	 PC System Programming

Output: 	 No OUlpUt

Remark: 	 The contents of registers BX, ex, DX, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt lOH, function lOH, sub-Iunction 02H EGA/VGA
Screen: Set all palette registers

eonfigures all 16 palette registers and the overscan register.

Input: 	 AH= 10H
AL= 02H
ES = Segment address of color table
DX = Offset address ofcolor table

Output: 	 No output

Remarks: 	 The ES:BX register pair points to a 17-byte table. The fust 16 bytes will
be transferred to the 16 palette registers of the attribute controller and the
17th byte will be copied into the overscan register.

The contents of registers BX, ex, DX, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt lOH, lunction lOH, sub-Iunction 03H EGA/VGA
Screen: Set blinking attribute

Determines whether bit 7 in the attribute byte of a character in the text mode will
enable character blinking, or display characters on a high-intensity background.

Input: 	 AH= 10H
AL= OOH
BL= Blinking attribute

BL=O: high-intensity background
BL=I: blinking

Output: 	 No output

Remark: 	 The contents of registers BX, ex, DX, SI, 01. BP and the segment
registers are not affected by this function.

Interrupt lOH, lunction lOH, sub-Iunction 07H VGA
Screen: Read out palette register

Reads the contents of one of the attribute controller's palette registers.

Input: 	 AH = 10H
AL= 07H
BH = Number of palette register

866

AbaclLf 	 Appendix E: EGAlVGA BIOS FlIIICtions

Output: 	 BL = Contents ofaddressed palette register

Remarks: 	 Since the BIOS doesn't verify the nwnber of the palette register read, this
fwlciion can read all the registers of the attribute controller.

The contents of registers BL, CX, OX, SI, 01, BP and all segment
registers are not affected by this function.

Interrupt 10H, function 10H, sub-function 08H VGA
Screen: Read contents of overscan register

Returns the contents of the overscan register containing the screen's border color.

Input: 	 AH= lOH
AL= OSH

Output: 	 BH = Contents of the overscan register

Remarlcs: 	 The contents of registers BL, ex, OX, SI, 01, BP and all segment
registers are not affected by this function.

Interrupt 10H, function 10H, sub-function 09H VGA
Screen: Read contents of all palette registers and the overscan register

Copies the contents of the 16 palette registers and overscan register into a buffer.

Input: 	 AH= 10H
AL= 09H
ES= &gmmtoo~ofthebuffer
OX = Offset address of the buffer

Output: 	 No output

Remarlcs: 	 The buffer must be a minimwn of 17 bytes long to allow room for all
the palette registers (bytes 0-15) plus the overscan register (byte 16).

The contents of registers BL, CX, OX, SI, 01, BP and all segment
registers are not affected by this function.

Interrupt 10H, function 10H, sub-function 10H VGA
Screen: Define a DAC color register

Allows the definition of one of the 256 available OAC color registers.

Input: 	 AH = lOH
BX = Nwnber of the OAC color register (0-255)
CH = Green value
CL = Blue value
OH = Red value

867

Appendix E: EGAlVGA BIOS Functions 	 PC System PTOgrtJl7Utfing

Output: No output

Remarlcs: Only bits 0 to 5 in the CH, CL and DH registers are of importance to
this function. All other bits are ignored.

The contents of registers BL, CX, DX, SI, DI, BP and all segment
registers are not affected by this function.

Interrupt 108, function IOU, sub-function 128 VGA
Screen: Load multiple DAC color registers

Allows the defmition of multiple DAC color registers.

Input: 	 AH= 10H
AL= 12H
BX = Number of the fIrst DAC color register (0-255)
CX = Number of registelS to be loaded
ES = Segment address of the buffer
DX = Offset address of the buffer

Output: 	 No output

Remarks: 	 The assigned buffer must be able to hold a group of three consecutive
bytes for each DAC color register. The fJrst byte contains the red value;
the second byte contains the green value; and the third byte contains the
blue value. These frrst three bytes correspond to the first DAC color
register being accessed, the next three for the bytes to the next DAC color
register.

Only bits 0 to 5 in the CH, CL and DH registers are of importance to
this function. All other bits are ignored.

If the sum of BX and ex is greater than 255, the first DAC color register
is reloaded after the last register is loaded.

The contents of registers BL, CX, DX, SI, DI, BP and all segment
registers are unchanged by this function.

Interrupt 108, function IOU, sub-function 138 VGA
Screen: Select color register or select a DAC register group

Manipulates bit 7 of the mode control registelS.

Input: 	 AH= lOH
AL= 13H
BL= OOH or OIH (see below)
BH = see below

Output: 	 No output

868

AppendiJC E: EGAlVGA BIOS FlUlCtions

Rernarlcs: 	 This sub-function performs as two different sub-functions, depending on
the value contained in the BL register. Sub-function OOR allows color
selection, while sub-function OlH allows the selection of the active DAC
register group.

Sub-function OOH copies bit 0 in the BH register into bit 7 of the mode
control register, thus providing a method of color selection. IT bit 0 in the
BR register contains a value of 0, then the 256 DAC color registers are
divided into four groups of 64 registers. Color selection involves bits 0-5
in the corresponding palette register, as well as bits 2-3 of the color select
register. These eight bits act as the index for the DAC color register. IT
bit 0 in the BH register contains a I, the DAC color registers are divided
into 16 groups of 16 registers. Then color selection involves the lowest 4
bits of the palette register and the lowest 4 bits of the color select
register, acting as the 8-bit index to the DAC color table.

Sub-function OIH loads the color select register, whose contents are
specified by the active group of DAC color registers. The contents of the
BH register are copied to the color select register.

The contents of registers BL, CX, DX, SI, DI, BP and all segment
registers are not affected by this function.

Interrupt 10H, function 10H, sub-function ISH VGA
Screen: Read a DAC color register

Returns the contents of one of the 256 DAC color registers.

Input: 	 AH= IOH
AL= ISH
BX = Number of the DAC color registers

Output: 	 CH = Green value
CL = Blue value
DR = Red value

Remarks: 	 Only bits 0 to 5 in the CH, CL and DH registers are of importance to
this function. All other bits are ignored.

The contents of registers BX, DL, SI, DI, BP and all segment registers
are not affected by this function.

869

Appendix E: EGAlVGA BIOS FlUlCtiorv 	 PC System Progrommirag

Interrupt 108, function 108, sub·function 178 VGA
Screen: Load contents of multiple DAC color registers

Loads several DAC color registers at a time.

Input AH= 10H
AL= 17H
BX = Number of the fIrSt DAC color register to be loaded (0-255)
CX = Number of registers to be loaded
ES = Segment address ofbuffer
DX = Offset address ofbuffer

Output No output

Rernarlcs: The contents of each DAC color register are represented within a buffer by
three consecutive bytes. The red value is loaded into the fIrSt of these
registers; the green value is loaded into the second ofthese registers; and
the blue value- is loaded into the third register. The first group of three
bytes corresponds to the first DAC color register addressed, the second
group to the next DAC color register, etc.

Only bits 0 to 5 in the CH, CL and DH registers are of importance to
this function. All other bits are ignored.

If the sum of BX and CX is greater than 255, the fIrst DAC color register
is reloaded after the last register is loaded (wrap-around occurs).

The contents of registers BX, CX, DX, SI, 01, BP and all segment
registers are not affected by this function.

Interrupt 108, function 108, sub-function 188 VGA
Screen: Load DAC mask register

Loads the specified value into the DAC mask register.

Input: 	 AH= 10H
AL= I8H
BL= Value ofDAC mask register

Output: 	 No output

Remruks: 	 The contents Qf the DAC mask register play an important role in color
selection. An AND instruction adds it to the index access to the DAC
color table.

The contents of registers BH, CX, DX, SI, 01, BP and all segment
registers are not affected by this function.

870

Abacus 	 Appendix E: EGAIVGA BIOS FlUlCtions

Interrupt IOU, function IOU, sub-function 19U VGA
Screen: Read out contents of the DAC mask register

Reads the current contents of the DAC mask register.

Input: 	 AH= 10H
AL= 19H

Output: 	 BL= Contents of the DAC mask register

Remarlcs: 	 The contents of the DAC mask register play an important role in color
selection. An AND instruction adds it to the index access to the OAC
color table.

The contents of registers BH, CX, OX, SI, 01, BP and all segment
registers are not affected by this function.

Interrupt IOU, function IOU, sub-Cunction 1AU VGA
Screen: Returns method of color selection and color select register

Returns the method of color selection, contained in the contents of bit 7 of the
mode control register. It also returns the contents of the color select register chosen
by the active group of OAC color registers.

Input: 	 AH= lOH
AL= IAH

Output: 	 BL = Bit 7 of mode control register
BH = Contents of color select registers

Remarks: 	 The contents of registers BX, CX, OX, SI, 01, BP and all segment
registers are not affected by this function.

Interrupt IOU, Cunction IOU, sub-Cunction IBU VGA
Screen: Convert DAC color register into gray scales

Converts a specified range within a OAC color table into gray scales.

Input: 	 AH = 10H
AL= IBH
BX = Number of fIrst DAC color register to be converted
CX = Total number of OAC color registers to be converted

Output: 	 No output

Remarlcs: 	 Conversion into grays results from changes to the red, green and blue
values, as well as the intensity of these values. The default factor for red
is 0.3, the default factor for green is 0.59, and the default for blue 0.11.

871

Appendix E: EGAlVGA BIOS FlI1ICtioru 	 PC System Progrtlll'lming

The contents of registers BX. ex. ox. SI, DI, BP and all segment
registers are not affected by this function.

Interrupt 10H, runction 11H, sub-runction OOH EGA/VGA
Screen: Load user-defined character set

Loads a user-defmed character set from RAM into one of the two EGA character
tables.

Input: AH= llH
AL= OOH
BH = Lines per character (also bytes per character)
BL = Character table (0 or 1)
ex = Number of characters in table
ox = ASCII code of first character in table
ES = Segment address of character table in RAM
BP = Offset address of character table in RAM

Output: No output

Remarks: A maximum of 512 characters can be loaded per c~ter table.

The loaded character set is not activated, nor are the CRTe registers
programmed to the size of the characters. The changes will not be visible
on the screen unless the character definitions are loaded into the active
character table.

The contents of registers BX. ex. ox, SI, DI, BP and the segment
registers are not affected by this function.

Interrupt 10H, function 11H, sub-runction OlH EGA/VGA
Screen: Load 8x14 character set

Loads the entire 8x14-pixel character set from EGA/VGA ROM-BIOS into one of
the two character set tables.

Input: 	 AH= llH
AL= 01H
BL = Character table (0 or 1)

Output: 	 No output

Remarks: 	 The loaded character set is not activated, nor are the CRTC registers
programmed to the size of the characters. The changes will not be visible
on the screen unless the character definitions are loaded into the active
character table.

The contents of registers BX, ex, ox, SIt DI, BP and the segment
registers are not affected bytbis function.

872

Abacus 	 AppmdiJc E: EGAlVGA BIOS FlUlCtions

Interrupt 108, lunction 118, sub·lunction 028 EGAlVGA
Screen: Load 8s8 character set

Loads the entire 8x8-pixel character set from EGA/VGA ROM-BIOS into one of
the two character set tables.

Input: 	 AH= llH
AL= 02H
BL= Character table (0 or 1)

Output: 	 No output

Remarks: 	 The loaded character set is not activated, nor are the CRTC registers
programmed to the size of the characters. The changes will not be visible
on the screen unless the character definitions are loaded into the active
character table. The EGA card displays 43 lines on the screen, while the
VGA card displays SO lines.

The contents of registers BX, ex, DX, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt 108, lunction 118, sub·lunction 038 EGA/VGA
Screen: Activate character set

Activates one (or two) of the four 256-character character sets.

Input: 	 AH= llH
AL= 03H
BL = Number of the character set to activate

Output: 	 No output

Remarks: 	 Bits zero and one of the BL register specify the number of the character
set to be accessed when bit three of the attribute byte of the character is
zero.

Bits two and three of the BL register specify the number of the character
set to be accessed when bit three of the attribute byte of the character is
one.

If the contents of bits zero and one are identical to the contents of bits
two and three of the BL register, then bit three of the character attribute
byte has no effect on the character displayed. Only 256 different characters
can then be displayed on the screen.

The contents of registers BX, ex, DX, SI, 01, BP and the segment
registers are not affected by this function.

873

Appendix E: EGAlVGA BIOS FlUlCtions 	 PC System Programming

Interrupt 108, function 118, sub·function 048 VGA
Screen: Load 8xl' character set

Loads the entire 8xl6-pixel character set from the VGA BIOS into one of the two
character set tables.

Input: 	 AH= llH
AL= 04H
BL = Corresponding character set table (0 or 1)

Output: 	 No output

Remm: 	 The loaded character set is not activated, nor are the CRTC registers
programmed to the size of the characters. The changes will not be visible
OIl the screen unless the character definitions are loaded into the active
character table. The VGA card displays 25 text lines on the screen.

The contents of registers BX, ex, ox, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt 108, function 118, sub-function 108 EGA/VGA
Screen: Load and activate user-defined character set

Loads a user-defmed character set from RAM into one of the two EGA character
tables and activates it by programming the eRTC registers.

Input: 	 AH= I1H
AL= 10H
BH = Lines per character (also bytes per character)
BL = Character table (0 or 1)
ex = Number of characters in table
OX =ASCII code of first character in table
ES = Segment address of character table in RAM
BP = Offset address ofcharacter table in RAM

Output: 	 No output

Remarlcs: 	 A maximum of 512 characters can be loaded per character table.

The number of text lines displayed on the screen results from the height
of the individual characters. It is calculated by dividing the number of
screen lines (350) by the character height

The starting and ending lines of the screen cursor are automatically
adapted to the height of the new character matrix.

The contents of registers BX, ex, ox, SI, 01, BP and the segment
registers are not affected by this function.

874

Abac"", 	 Apptmtl.ix E: EGAlVGA BIOS FlUlClions

Interrupt lOR, function 11R, sub-tunction 11R EGA/VGA
Screen: Load and activate 8x14 character set

Lo$ls the entire 8xl4-pixel character set from EGNVGA ROM-BIOS into one of
the two charactez set tables, and activates it by programming the CRTC registers.

Input: 	 AH= lOH
AL= llH
BL = Character table (0 or 1)

Output: 	 No output

Remarks: 	 The function sets the EGA screen to display 25 lines of text, or sets the
VGA screen to display 28 lines of text.

The starting and ending lines of the screen cursor are automatically
adapted to the height of the new charactez matrix.

The contents of registers BX, CX, DX, SI, DI, BP and the segment
registers are not affected by this function.

Interrupt lOR, tunction 11R, sub-tunction 12H EGA!VGA
Screen: Load and activate 8x8 character set

Loads the entire 8x8-pixel character set from the ROM-BIOS of the EGNVGA
card into one of the two character set tables, and activates it by programming the
CRTC registers.

Input: 	 AH= lOH
AL= 12H

BL= Character table (0 or 1)

Output: 	 No output

Remarks: 	 The function sets the screen to display 43 lines of text (EGA) or 50 lines
of text (VGA).

The starting and ending lines of the screen cursor are automatically
adapted to the height of the new character matrix.

The contents of registers BX, CX, DX, SI, DI, BP and the segment
registers are not affected by this function.

875

http:Apptmtl.ix

Appendix E: EGAlVGA BIOS FlIIICtions 	 PC System Programming

Interrupt IOU, function 11U, sub-function 14U VGA
Screen: Load 3d6 cbaracter set

Loads a complete 8x16 character set from the VGA card BIOS into one of the two
character set tables, and activates it through CRTe register programming.

Input: 	 AH= lOH
AL= 14H
BL = Character table (0 or 1)

Output: 	 No output

Remarks: 	 When this function is called, the VGA card displays 25 lines of text on
the screen.

The starting and ending lines of the screen cursor automatically change to
match the height of the new character matrix.

The contents of registers BX, ex, DX, SI, DI, BP and all segment
registers are not affected by this function.

Interrupt IOU, function 11H, sub-Iunction 30H EGA/VGA
Screen: Get information about tbe cbaracter generator

Returns various information about the current status of the character generator.

Input: 	 AH= llH
AL= 03H
BH = Type of information desired

BH=O: contents of interrupt vector IFH
BH=1: contents of interrupt vector 43H
BH=2: address of the ROM 8x14 character table
BH=3: address of the ROM 8x8 character table
BH=4: address of the second half of the 8x8 character table
BH=5: address of the alternative ROM 9x14 character table
BH=6: Address of the alternative ROM 8x16 character table
BH=7: Address of the alternative ROM 9x16 character table

Output: 	 ex = Height of current character matrix
DL = Number of columns per line - 1
ES = Segment address of the pointer
BP = Offset address of the pointer

Remarks: 	 The contents of registers BX, ex, DX, SI, DI, BP and the segment
registers es, DS and SS are not affected by this function.

876

AbacllS 	 Appendix E: EGAlVGA BIOS FwtCtions

Interrupt IOU, function 12U, sub·function IOU EGA/VGA
Screen: Determine EGA/VGA configuration

Reads the configuration of the EGANGA card.

Input: 	 AlI= 12H
BL= 10H

Output: BH = Monitor connected
BH=O: color or high-resolution monitor
BH=l: monochrome monitor

BL= EGANGA RAM capacity

BL=O:64K

BL=l: 128K

BL=2: 192K

BL=3:256K.

Remarks: 	 The contents of registers OX, SI, 01, BP and the segment registers are
not affected by this function.

Interrupt 10H, function 12H, sub-function 20U EGA/VGA
Screen: Activate, alternate bardcopy routine

Installs an alternative hardcopy routine which prints as many lines as are displayed
on the screen. The hardcopy routine of the nonnal ROM-BIOS always prints 25
lines and is not suited for creating a hardcopy of the EGNVGA modes, which
display more than 25 lines on the screen.

Input: 	 AlI= 12H
BL= 20H

Output: 	 No oulput

Remark: 	 The contents of registers BX, ex, ox, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt IOU, function 12H, sub·function 30H EGA/VGA
Screen: Specify number of scan lines

Selects the number of scan lines on the screen.

Input: 	 AlI= 12H
BL= 30H
AL = Scan line status

AL=O : 200 scan lines (EGA and VGA)
AL=1 : 350. scan lines (EGA and VGA)
AL=2 : 400 scan lines (VGA only)

Output: 	 No oulput

877

Appendix E: EGAlVGA BIOS FlIIICtions 	 PC System Programming

Remarks: 	 The selected number of scan lines can only be displayed when the
appropriate video card and monitor are in use. For example, a CGA
monitor can only display 200 scan lines, even if the video card can
operate in a higher resolution.

The contents of registers BX, CX, DX, SI, DI and BP and all segment
registers are not affected by this function.

Interrupt 10H, function 12H, sub-function 31H VGA
Screen: Toggle palette register loading

Toggles the automatic loading of palette registers in VGA BIOS. The system
either loads alternate display modes when function OOH is invoked, or loads default
values.

Input: 	 AH= 12H
BL= 31H
AL = Automatic palette register loading

AL=O:Yes

AL=l:No

Output: 	 No output

Remarks: 	 The contents of registers BX, CX, OX, SI, 01, BP and all segment
registers are not affected by this function.

Interrupt IOU, function 12U, sub-function 32U EGA/VGA
Screen: Enable/disable CPU access to video RAM

Enables or disables direct CPU access to video RAM and its different I/O ports.

Input: 	 AH = 12H
BL= 32H
AL = Access status

AL=O: Access enabled

AL=1: Access denied

Output: 	 No output

Remarks: 	 The EGA BIOS doesn't recognize this function, but you can still suppress
video card access directly using bit 1 of the output register (port address
3C2H).

The contents of registers BX, CX, DX, SI, 01, BP and all segment
registers are not affected by this function.

878

Abacus 	 Appendix E: EGAJVGA BIOS FJUlCtions

Interrupt 10H, function UH, sub·function 33H VGA
Screen: Enable/disable automatic gray scaling in DAC color registers

Toggles automatic gray scaling in VGA BIOS. This is different from function
10H, sub-function IBH, which enables selective gray scaling in OAC color
registers.

Input: 	 AH= 12H
BL= 33H
AL = OAC color register gray scaling

AL=O:0n

Al...=1: Off

Output: 	 No output

The contents of registers BX, CX, OX, SI, 01, BP and all segment
registers are not affected by this function.

Interrupt 10H, function 12H, sub·function 34H VGA
Screen: Enable/disable text cursor emulation

Toggles text cursor emulation mode. Calling function 01H (for defining the
starting and ending lines of the cursor) doesn't compensate for character matrices in
different resolutions. This function controls that change when in VGA mode.

Input: 	 AH = 12H
BL= 34H
AL = Cursor emulation mode

Al...=0: On

Al...=1: Off

Output: 	 No output

Remarks: 	 The contents of registers BX, CX, OX, SI, 01, BP and all segment
registers are not affected by this function.

Interrupt 10H, function 12H, sub-function 36H VGA
Screen: Suppress screen refresh

Temporarily suppresses screen refresh. Disabling refresh relieves video RAM of
many system level tasks, especially those involving complex screen graphics.

Input: 	 AH= 12H
BL= 36H
AL = Screen refresh

AL--o:On

Al...=1: Off

Output: 	 No output

879

Appendix E: EGAlVGA BIOS Functions 	 PC System Programllling

Remarks: 	 The contents of registers BX. ex. ox. SI. DI. BP and all segment
registers are not affected by this function.

Interrupt IOU, function 13U EGA/VGA
Screen: Display a string

Displays a string at a specified position on the screen. in a specific display page,
The characters are taken from a buffer whose address is passed to the function.

Input: 	 AH= 13H
AL = Output mode (0-3)

AL=O: Attribute in BL, reserve cursor position
AL=1: Attribute in BL. update cursor position
AL=2: Attributes in buffer, reserve cursor position
AL=3: Attributes in buffer, update cursor position

BL = Attribute byte ofcharacters (modes 0 and 1 only)
ex = Number of characters to be printed
OH = Screen line
OL = Screen column
BH = Video page
ES = Segment address of the buffer
BP = Offset address of the buffer

Output: 	 No output

Remarks: 	 In modes 1 and 3 the cursor position is placed after the last character of
the string so that BIOS output will continue at the character after the
string. This does not happen in modes 0 and 2.

In modes 0 and 1 the buffer contains only the ASeII codes of the
characters to be printed. The color of all of the characters in the string is
specified by the BL register. In modes 2 and 3. each character in the buffer
is followed by the corresponding attribute byte. so that each character has
its own attribute. The BL register does not have to be loaded in these
modes. Although the string must be twice as long as the number of
characters to be printed in these modes. the ex register contains just the
number of ASQI characters to be printed, not the string buffer's length.

Control codes such as bell and carriage return are interpreted as control
codes and not as normal ASCII codes. An error occurs when carriage
return and linefeed are printed on a display page other than zero. however.
These characters may be printed on display page O. regardless of the
display page specified in BH.

When the last screen position is reached the screen will move up one line
and the output will continue with the first column of the last screen line.

When printing in the graphic mode the contents of the BL register
determine the foreground color of the character (the background is zero). If

880

Abac"" 	 AppendiJc E: EGAlVGA BIOS FlUfClions

bit seven of the BL register is set, the color value will be XORed with
the old col<r value.

This function can also be used to print characters in the graphic mode, in
which case the.character patterns will be taken from one of the EGNVGA
chamcter tables.

The contents of registers BX, ex, ox, SI, 01, BP and the segment
registers are not affected by this function.

Interrupt IOU, function IAU VGA
Screen: Determine video card type

Determines the existence of the active video card.

Input: 	 AH= 13H
AL= 0

Output: 	 AL= lAH
BL = Device code for active video card
BH = Device code for inactive video card

Remarlcs: 	 If the value lAH is not loaded into the AL register, then the video card in
operation is not a VGA card (the lAH indicates a VGA BIOS). The
function can ret\DTI the following device codes:

FFH =Unknown video card
OOH =No video card
OIH =MDA with monochrome display
02H = eGA with eGA monitor
04H =EGA with EGA or multisync monitor
OSH = EGA - monochrome display
07H =VGA - analog monochrome display
08H =VGA - analog color display (VGA, multisync)

The contents of registers ex, ox, SI, DI, BP and all segment registers
are not affected by this function.

881

Appendix F

Mouse Driver Interrupts

Interrupt 33H, function OOH Mouse
Reset mouse driver

Resets (initializes) the mouse driver.

Input: AX= OOOOH

Output: AX = Mouse installation status
AX=FFF'FH: Mouse driver installed
AX=OOOOH: Error, no mouse driver installed

BX = Number of mouse buttons

Remarks: The reset process executes the following tasks:

Moves the mouse pointer to the center of the screen and clears the pointer
from the screen. When enabled, the default pointer appears as an inverse
video square. The representation is always in display page 0, independent
of the current display mode. The entire screen area becomes the total IaDge
of mouse movement.

Installs the event handler is installed by a program (default is disabled).

Installs lightpen emulation (default is disabled).

Specifies mouse pointer's speed. Default relative speed is 8 mickeys per 8
horizontal pixels and 16 mickeys per 16 vertical pixels.

Specifies maximum mouse speed (default is 64 mickeys per second).

882

Abacus 	 Appendix F: MOIIM DriW!1' Interrupts

Interrupt 338, function 018 Mouse
Display mouse pointer

Displays the mouse pointer on the screen. This pointer follows any movement the
user makes with the mouse device.

Input AX= 000IH

Output: No output

Remarks: This function increments an internal counter which determines whether
the mouse pointer should be displayed on the screen. When the mouse
driver is initialized using function OOH, this pointer contains the value -1
(i.e., the mouse pointer does not appear). If this counter contains the
value 0 after calling function OlH, the mouse pointer appears on the
saeen.

The mouse driver follows the mouse movement even when the mouse
pointer is not displayed on the screen. After calling this function, the
mouse pointer may not appear at the same location as it was when the
pointer was previously removed by calling function OOH or function 02H.

Interrupt 33H, function OlH Mouse
Remove mouse pointer

Removes the mouse pointer from the screen.

Input 	 AX= 0002H

Output: 	 No output

Remarks: 	 This function decrements an internal counter which determines whether
the mouse pointer should appear on the screen. If the counter contains the
value 0, the mouse pointer is displayed on the screen, while the value -1
removes the mouse pointer from the screen.

The mouse driver follows the mouse movement even when the mouse
pointer is not displayed on the screen.

After calling this function, the mouse pointer may not appear at the same
location as it was when the pointer was previously removed by calling
function OOH or function 02H.

883

Appendix F: Mouse Driver Interrupts 	 PC System Programming

Interrupt 338, function 038 Mouse
Get pointer position/button status

Returns the current position of the mouse pointer and the current status of the
mouse buttons.

Input 	 AX= 0003H

Output BX= Mouse button status
Bit 0=1: Left mouse button activated
Bit 1=1: Right mouse button activated
Bit 2=1: Center mouse button activated
Bits 3-15: Unused

ex = X coordinate (horizontal mouse position)
OX = Y cooIdinate (vertical mouse position)

Remarlcs: 	 The coordinates returned in the ex and ox registers refer to the pixel
positions in the virtual mouse display screen rather than physical
positions on the actual display screen.

If the mouse is equipped with only two mouse buttons, the information
about the central mouse button does not have significance.

Interrupt 338, function 048 Mouse
Move mouse pointer

Moves the active mouse pointer to a certain position on the screen.

Input 	 AX= 0004H
ex = X coordinate (horizontal mouse position)
OX = Y coordinate (vertical mouse position)

Output: 	 No output

Remarlcs: 	 The coordinates returned in the ex and ox registers refer to the pixel
positions in the virtual mouse display screen rather than physical
positions on the actual display screen.

If the position indicated is outside the range of movement specified by
functions 07H and OSH, the function adjusts coordinates so that the
mouse pointer remains within this range of movement.

The mouse pointer moves to the new position, even if the mouse is not
currently visible. Once re-enabled, the mouse pointer appears at this new
position.

884

Abacus 	 Appendi:Jc F: Mouse L?river Intemlpts

Interrupt 33H, function OSH Mouse
Determine number of times mouse button was activated

Infonns the calling program of how often a mouse button has been pressed since
the last call of function 05H. Function 05H also infonns the calling program of
the pointer's location on the screen when the button was 1ast activated.

\

Input 	 AX= 0005H
BX = Mouse button activated

BX=O: Left mouse button

BX=I: Right mouse button

BX=2: Center mouse button

Output: BX = Status of all mouse buttons:
Bit 0=1: Left mouse button activated
Bit 1=1: Right mouse button activated
Bit 2=1: Center mouse button activated
Bits 3-15: Unused

BX = Mouse buttons activated since 1ast function call
CX = Horizontal mouse position during the 1ast activation
OX = Vertical mouse position during the last activation

Remarks: 	 The coordinates returned in the CX and OX registers refer to the pixel
positions in the virtual mouse display screen rather than physical
PQsitions on the actual display screen. The activation counter for the
otpuse button addressed is reset to 0 when this function is called.

Interrupt 33H, function 06H Mouse
Determine number of times mouse button was released

Infonns the calling program of how often a mouse button has been released since
the last call of function 06H. Function 06H also infonns the calling program of
the pointer's location on the screen when the button was 1ast activated.

Input 	 AX= 0006H
BX = mouse button addressed

BX=O: Left mouse button

BX=I: Right mouse button

BX=2: Center mouse button

Output: BX = Status of all mouse buttons
Bit 0=1: Left mouse button activated
Bit 1=1: Right mouse button activated
Bit 2=1: Center mouse button activated
Bits 3-15: Unused

BX = Mouse buttons activated since 1ast function call
CX = Horizontal mouse position during the 1ast activation
OX = Vertical mouse position during the last activation

885

Appendix F: Mouse Driver Interrupts 	 PC System Progrtunllling

Rernarlcs: 	 The coordinates returned in the ex and DX registers refer to the pixel
positions in the virtual mouse display screen rather than physical
positions on the actual display screen.

The activation counter for the mouse button addressed is reset to 0 when
this function is called.

Interrupt 338, function 078 Mouse
Set horizontal range of movement

Defines the horizontal range of movement for the mouse pointer. Once set. the
user cannot move the mouse pointer out of this range.

Input 	 AX= 0007H
ex = Minimal horizontal pointer position
DX = Maximum horizontal pointer position

Output: 	 No output

Remarks: 	 The coordinates passed in the ex and DX registers refer to the pixel
positions in the virtual mouse display screen rather than physical
positions on the actual display screen.

If the mouse pointer is outside of this range when function 07H is called.
the mouse driver automatically moves the mouse pointer within the
limits of the range of movement. If the value in the DX register is less
than the value in the ex registers. the two parameters are exchanged.

Interrupt 338, function 088 Mouse
Set vertical range of movement

Defines the vertical range of movement for the mouse pointer. Once set. the user
cannot move the mouse pointer out of this range.

Input 	 AX= OOOSH
ex = Minimum vertical pointer position
DX = Maximum vertical pointer position

Output: 	 No output

Remarks: 	 The coordinates passed in the ex and DX registers refer to the pixel
positions in the virtual mouse display screen rather than physical
positions on the actual display screen.

If the mouse pointer is outside of this range when function 07H is called.
the mouse driver automatically moves the mouse pointer within the
limits of the range of movement

886

Abacus 	 Appendix F: Mouse Driver Inlerrllpts

If the value in the DX register is less than the value in the ex registers,
the two parameters are exchanged.

Interrupt 338, function 098 Mouse
Set mouse pointer (graphic mode)

Defines the appearance of the mouse pointer in graphic mode, as well as the
bitfield which compensates for the pixels around the mouse pointer.

Input 	 AX= 0009H
BX = Pointer width starting at left border of bitfield
ex = Pointer height starting at top border of bitfield
ES = Segment address of bitfield
DX = Offset address of bitfield

Output: 	 No output

Remarks: 	 The bitfield consists of 64 bytes, of which the first 32 are an AND
comparison, and the remaining 32 are an OR combination. Both sets of
bytes are based upon the current pixel pattern.

Interrupt 338, function OAH Mouse
Set mouse pointer (text mode)

Defines the bitmask which specifies the appearance of the mouse pointer in text
mode.

Input AX= OOOAH
BX = Pointer type

BX=O: Software pointer
BX=I: Hardware pointer

CX = AND mask (software pointer) or starting line (hardware pointer)
DX = XOR mask (software pointer) or ending line (hardware pointer)

Output: 	 No output

Remarks: 	 If the software pointer is selected, the code of the character beneath the
mouse pointer and its attribute byte are combined logically with the mask
in the CX register through a binary AND, and then with the value in the
DX register through an exclusive OR (XOR). The attribute byte is
combined with the most significant byte (CH and DH). The character code
is combined with the least significant byte (CL and DL).

The hardware pointer is the same shape as the normal text mode cursor.
Monochrome mode values for the starting and ending lines range from 0
to 13. Color mode values for the starting and ending lines range from 0 to
7.

887

Appendix F: Mouse Driver Interrupts 	 PC System Programming

Interrupt 33H, lunction OBH Mouse
Determine movement values

Detennines the distance between the current mouse position and the mouse
position during the last call of function OBH.

Input 	 AX= OOOBH

Output: 	 CX = Horizontal distance from last point in mickeys
DX = Vertical distance from last point in mickeys

Remarks: 	 These values must be interpreted as signed numbers. Positive values
indicate movement toward the bottom or right border of the screen, while
negative values indicate movement toward the top or left border of the
screen.

These values are given in mickeys.(1 mickey=l/200 inch) rather than in
pixels.

Interrupt 33H, lunction OCH Mouse
Set event handler

Sets the address of an event handler called by the mouse driver when a particular)
mouse event occurs.

Input 	 AX= OOOCH
CX = Events which trigger the call of the event handler (event mask)
Bit 0: Mouse movement
Bit 1: Left mouse button activated
Bit 2: Left mouse button released
Bit 3: Right mouse button activated
Bit 4: Right mouse button released
Bit 5: Center mouse button activated
Bit 6: Center mouse button released
Bits 7-15: Unused
ES = Segment address of handler
DX = Offset address of handler

Output: 	 No output

Remarks: 	 The event handler is called by the mouse driver through a FAR call
assembler instruction, and therefore must be tenninated with a FAR RET
instruction. None of the various processor registers may be returned to the
caller with a changed content.

The mouse driver passes the following information to the event handler
through the processor registers during the call:

AX = 	event mask. The bits correspond to the various events as indicated
in the CX register during the installation of the event handlec. In

888

Abacus 	 Appendix F: MolISe Driver i1tlerrllpts

addition, other bits can be set, since the value reflects the current
status of the mouse driver, and is not limited to the selected events.

BX= mouse button status:

Bit 0 =Left mouse button activated
Bit 1 = Right mouse button activated
Bit 2 = Center mouse button activated

CX = horizontal mouse position.

OX = vertical mouse position.

SI = length of last horizontal mouse movement

DI = length of the last vertical mouse movement.

OS = data segment of the mouse driver.

The coordinates returned in the CX and OX registers refer to the pixel
positions in the virtual mouse display screen rather than physical
positions on the actual display screen.

The values in the SI and DI registers refer to mickeys (one mickey =
11200 inch).

These mickey values must be interpreted as signed numbers. Positive
values indicate movement toward the bottom or right border of the screen,
while negative values indicate movement toward the top or left border of
the screen.

Interrupt 33H, function ODH Mouse
Enable Iightpen emulation

Enables emulation of the lightpen, and simulates a lightpen which if none is
present

Input 	 AX= OOOOH

Output: 	 No output

Remarks: 	 Lightpen emulation only makes sense when used with an application
which supports the lightpen, or makes lightpen reading routines available
(e.g., the PEN command in PC-BASIC).

The lightpen and mouse are closely related in programming: The position
of the mouse pointer is directly related to the lightpen's position on the
screen, and pressing the left and right mouse button has the same result as
pressing the button on the lightpen.

889

Appendix F: Mouse Driver InlemAf)u 	 PC System Programming

Interrupt 338, function OE8 Mouse
Disable Iigbtpen emulation

Disables the lightpen emulation enabled by a previous call to function ODH.

Input 	 AX= OOOEH

Output: 	 No output

Remarks: 	 Lightpen emulation only makes sense when used with an application
which supports the lightpen, or makes Iightpen reading routines available
(e.g., the PEN command in PC-BASIC).

The lightpen and mouse are closely related in programming: The position
of the mouse pointer is directly related to the lightpen's position on the
screen, and pressing the left and right mouse button has the same result as
pressing the button on the lightpen.

Interrupt 338, function OF8 Mouse
Set pointer speed

Defines the relationship between mickeys and screen pixels. This specifies the
sensitivity of the mouse and the speed at which the mouse pointer moves across
the screen.

Input 	 AX= OOOFH
CX = Number of horizontal mickeys
DX = Number of vertical mickeys

Output: 	 No output

Remarks: 	 Values in the CX and DX registers can range from 1 to 32767.

The default setting is 8 horizontal mickeys and 16 vertical mickeys. This
causes the mouse pointer to move twice as fast horizontally as it moves
vertically.

Calling function DOH (Reset mouse driver) changes any previously set
values to the default values.

890

Abacus 	 Appendix F: Mouse Driver InIe","pts

Interrupt 338, function 108 Mouse
Exclusion area

Designates any area of the screen as an exclusion area. The mouse pointer
disappears ifmoved into the exclusion area.

Input 	 AX= 0010H
CX = X-coordinate, upper left comer of exclusion area
DX = Y-coordinate, upper left comer of exclusion area
SI = X-coordinate, lower right comer ofexclusion area
DI = Y-coordinate, lower right comer of exclUSion area

Output: 	 No output

Remarlcs: 	 The coordinates passed in the CX, DX, DI and SI registers refer to the
pixel positions in the virtual mouse display screen rather than physical
positions on the actual display screen.

Calling function OOH (Reset mouse driver) or function 018 (Display
mouse pointer) deletes the exclusion area coordinates.

Interrupt 338, function 138 Mouse
Set maximum lor mouse speed doubling

Sets the maximum limit for doubling mouse speed. If the speed of the mouse
movement exceeds a certain limit, the mouse driver doubles the mouse pointer
speed by doubling the movement's relationship between points and mickeys.

Input 	 AX= 0013H
DX = Limit in mic1ceys per second

Output: 	 No output

Remarlcs: 	 I mickey=1/200 inches.

To prevent doubling of the mouse speed. the limit can be set higher.

Speeds in excess of 5,000 mickeys per second cannot be achieved by
practical means.

891

Appendix F: Mouse Driver Interrupts 	 PC System Programming

Interrupt 338, function 148 Mouse
Exchange event handlers

Installs a new event handler for certain mouse events, but also retains the address
of the old event handler.

Input 	 AX= 0014H
CX = Events which should trigger event handler call
Bit 0: Mouse movement
Bit 1: Left mouse button activated
Bit 2: Left mouse button released
Bit 3: Right mouse button activated
Bit 4: Right mouse button released
Bit 5: Center mouse button activated
Bit 6: Center mouse button released
Bit 7-15: Unused

ES = Segment address of new event handler
DX = Offset address of new event handler

Output: 	 CX = Event mask of the previously installed event handler
ES = Segment address of previously installed event handler
DX = Offset address of previously installed event handler

Remarlcs: 	 The event handler is called by the mouse driver through a FAR call
assembler instruction, and therefore must be terminated with a FAR RET
instruction. None of the various processor registers may be returned to the
caller with a changed content.

The mouse driver passes the following information to the event handler
through the processor registers during the call:

AX = 	event mask. The bits correspond to the various events as indicated
in the CX register during the installation of the event handler. In
addition, other bits can be set, since the value reflects the current
status of the mouse driver, and is not limited to the selected events.

BX = 	mouse button status:

Bit 0 = Left mouse button activated
Bit 1 = Right mouse button activated
Bit 2 = Center mouse button activated

892

Abac/lS 	 Appendix F: MolISe Driver Interr"p1s

ex = horizontal mouse position.

ox = vertical mouse position.

SI = length of last horizontal mouse movemenL

DI = length of the last vertical mouse movement.

OS = data segment of the mouse driver.

The coordinates returned in the ex and OX registers refer to the pixel

positions in the virtual mouse display screen rather than physical
positions on the actual display screen.

The values in the SI and DI registers refer to mickeys (one mickey =

11200 inch).

These mickey values must be interpreted as signed numbers. Positive
values indicate movement toward the bottom or right border of the screen,
while negative values indicate movement toward the top or left border of
the screen.

Interrupt 338, function 158 Mouse
Determine mouse status buffer size

Returns the size of the mouse status buffer, in which a program can store the
complete status of the mouse driver.

Input AX= OOI5H

Output: BX = Mouse status buffer size in bytes

Remarks: Function I6H (Store mouse status) stores the mouse status in the buffer.

Interrupt 338, function 168 Mouse
Store mouse status

Stores mouse status information in a buffer.

Input 	 AX= OOI6H
ES = Segment address of mouse status buffer
ox = Offset address of mouse status buffer

Output: 	 No output

Remarks: 	 The caller is responsible for creating a buffer large enough to contain all
the status information. Before calling this function, call function ISH
(Determine mouse status buffer size) to determine the size of the mouse
status buffer.

893

Appendix F: Mouse Driver Inlerrllpts 	 PC System Programming

This function works well when called before executing a program using
the EXEC function. This allows the mouse status to be saved in
memory. then restored from within the called program.

Interrupt 338, function 178 Mouse
Restore mouse status

Reads all mouse parameters from a buffer where they had been stored by function
16H.

Input 	 AX= 0017H
ES = Segment address of mouse status buffer
DX = Offset address of mouse status buffer

Output: 	 No output

Interrupt 338, function 188 Mouse
Install alternate event handler

This function permits a program to install a limited range event handler. This
handler can be called by the mouse driver when certain mouse events occur in
conjunction with the keyboard

Input 	 AX= 0018H
CX = Events which should trigger the call of the event handler
Bit 0: Mouse movement
Bit 1: Left mouse button activated
Bit 2: Left mouse button released
Bit 3: Right mouse button activated
Bit 4: Right mouse button released
Bit 5: Shift key pressed during mouse button event
Bit 6: Ctrl key pressed during mouse button event
Bit 7: Alt key pressed during mouse button event
Bits 8-15: Unused
ES = Segment address of event handler
DX = Offset address of event handler

Output: AX = Installation status
AX=OO18H: Event handler installed
AX=FFFFH: Event handler could not be installed

Remarks: 	 At least one of bits 5 to 7 must be set in the event mask of the CX
register to ensure that the event reacts to at least one of the control keys.
If the programmer prefers not to read the Shift, Ctrl or Alt keys along
with mouse buttons. use functions OCH or 14H instead.

An error can occur if three alternate event handlers were previously
installed. or if an event handler with the same event mask already exists.

894

Abacus 	 Appenda F: Mouse Driver lnurrMpts

Remarks: 	 The event handler is called by the mouse driver through a FAR call
assembler instruction, and therefore must be terminated with a FAR RET
instruction. None of the various processor registers may be returned to the
caller with a changed content.

The mouse driver passes the following information to the event handler
through the processor registers during the call:

AX = event mask. The bits correspond to the various events as indicated
in the CX register during the installation of the event handler. In
addition, other bits can be set, since the value reflects the current
status of the mouse driver, and is not limited to the selected events.

BX = mouse button status:

Bit 0 = Left mouse button activated
Bit 1 = Right mouse button activated
Bit 2 = Center mouse button activated

CX = horizontal mouse position.

ox = vertical mouse position.

SI = length of last horizontal mouse movement

DI = length of the last vertical mouse movement.

os = data segment of the mouse driver.

The coordinates returned in the CX and OX registers refer to the pixel
positions in the virtual mouse display screen rather than physical
positions on the actual display screen.

The values in the SI and DI registers refer to mickeys (one mickey =
1/200 inch).

These mickey values must be interpreted as signed numbers. Positive
values indicate movement toward the bottom or right border of the screen,
while negative values indicate movement toward the top or left border of
the screen.

895

Appendix F: Mouse Driver Interrupts 	 PC System. Progrt11ll1lling

Interrupt 33H, function 19H Mouse
Determine address of alternate event handler

Returns the address of an alternate event handler to the caller.

Input 	 AX: OOl9H
ex: Event handler event mask

Output: 	 CX: OOOOH: Error
ES = Segment address of event handler
DX = Offset address of event handler

Remarks: 	 See the description of function 18H above for additional information
about the meanings of each bit in the event mask.

The function call fails if no alternate event handler with the indicated
event mask was previously installed.

Interrupt 33H, function lAH Mouse
Set mouse sensitivity

Defines the relationship between physical mouse movement and mouse pointer
movement Also defines the maximum for doubling mouse speed.

Input 	 AX= OOIAH
BX = Number of horizontal mickeys
CX =Number of vertical mickeys
DX = Maximum limit for doubling the mouse speed

Output: 	 No output

Remarks: 	 Values in the CX and DX registers can range from I to 32767.

The default setting is 8 horizontal mickeys and 16 vertical mickeys. This
causes the mouse pointer to move twice as fast horizontally as it moves
vertically.

To prevent doubling of the mouse speed. the limit can be set higher.

Speeds in excess of 5,000 mickeys per second cannot be achieved by
practical means.

Calling function OOH (Reset mouse driver) changes any previously set
values to the default values.

896

AbaclLf 	 Appendix F: Mouse Driver InlerrMpts

Interrupt 33H, function IBH Mouse
Determine mouse sensitivity

Returns the parameters previously set by calling function 1AH or functions OFH
and 13H.

Input 	 AX= OOlBH

Output: 	 BX = Number of horizontal mickeys
CX = Number of vertical mickeys
DX = Maximum limit for doubling the mouse speed

Interrupt 33H, function ICH Mouse
Set mouse hardware interrupt rate

Detennines the frequency at which the mouse hardware reads the current mouse
position and mouse button status.

Input 	 AX= oolCH
BX = Interrupt rate
Bit 0: No interrupts
Bit 1: 30 interrupts per second
Bit 2: 50 interrupts per second
Bit 3: 100 interrupts per second
Bit 4: 200 interrupts per second
Bits 5-15: Unused

Output: 	 No output

Remarks: 	 This function is only available for the Inport mouse.

H more than one bit is set in the BX register, only the least significant
bit which is set counts.

The mouse's resolution increases with the number of interrupts. The
increased number of mouse interrupts decreases the speed of the
foreground program.

Interrupt 33H, function IDH Mouse
Set display page

Specifies the display page on which the mouse pointer appears.

Input 	 AX= OOlDH
BX = Number of the display page

Output: 	 No output

Remarks: 	 Default value is display page O.

897

Appendix F: Mouse Driver Interrupts 	 PC System Progromming

Calling this function only makes sense if the application program wprks
with several display pages, as available on COA, EGA and VGA cards.

Interrupt 33U, function lEU Mouse
Determine display page

Detennines the display page on which the mouse pointer appears.

Input 	 AX= OOIEH

Output: 	 BX = Number of the display page

Interrupt 33U, fundion IFU Mouse
Deactivate mouse driver

Deactivates the current mouse driver and returns the address of the previous
interrupt handlers for interrupt 33H.

Input 	 AX= OOlFH

Output: AX = Error status
AX=FFFFH: Error
AX=OOlFH: O.K.

ES = Segment address of previous event handler
BX = Offset address ofprevious event handler

Remarks: 	 This call releases any previously installed and active mouse driver
interrupt routines. The exception to this is the handler for interrupt 33H.
but the caller can reload this interrupt vector with its original value since
this address is returned in the ES:BX register pair.

Interrupt 33U, function 20U Mouse
Activate mouse driver

Activates a mouse driver previously deactivated by function IFH.

Input 	 AX=0020H

Output: 	 No output

898

Appendix F: Mouse Driver InlerrllplS

Interrupt 338, function 218 Mouse
Reset mouse driver

Resets the mouse driver, disables the mouse pointer and disables the currently
installed event handler.

Input 	 AX= 0021H

Output: AX = Error status
AX=FFFFH: Error
AX=OO2IH: O.K.

BX = Number of mouse buttons

Remarks: 	 Unlike function OOH, this function does not perform a total mouse
hardware reset

'> i

Interrupt 338, function 248 Mouse
Determine mouse type

Determines the type of mouse installed and the version number of the mouse
driver.

Input 	 AX= 0024H

Output: 	 BH = Whole number of the version number
BL = Fraction of the version number
CH = Mouse type

CH=l: Bus mouse

CH=2: Serial mouse

CH=3: Inport mouse

CH=4: PS/2 mouse

CH=5: HP mouse

CL = IRQ number
CL=O: PS/2
CL=2, 3, 4, 5 or 7: IRQ number in the PC

Remarks: 	 If the version number of the mouse driver is for example 6.24, the value
6 is returned in the BH register and the value 24 is returned in the BL
register.

899

Appendix G

Introduction to Number
Systems

Throughout this book we talked about numbers notated in the binary and
hexadecimal systems instead of the normal decimal system. This Appendix
presents a brief introduction to these number systems.

Decimal system

Before explaining the new number systems. you should know the basic concepts
of the decimal system. The decimal number 1989 can also be written as
1*1000+9*100+8*10+9*1. This shows that if you number the digits from right
to left. the ftrst number represents a column of ones. the second number represents
a column of tens. the third number represents a column of hundreds and the fourth
number represents a column of thousands. The numbers increase from right to left
in powers of 10.

The first digit of any number system has the value 1. The factor by which the
value increases from one column to the next differs among the number systems.
This factor corresponds to the numbers with which the number system works. The
factor is 10 with the decimal system because ten different numbers are available for
each digit (0 to 9).

This principle of powers for each column also applies to the binary and
hexadecimal systems.

Binary system

Since a computer recognizes the numbers 0 and 1 on its lowest functional level,
the binary system is essential to computing. The value of the numbers double
from column to column because the binary system only uses powers of two for
each column (i.e., the numbers 0 and 1 instead of the numbers 0 to 9).

900

Abacus Appendix G: InlrodllCtion to Number Systems

Now let's count the binary places starting from right to left as we did in the
decimal example described above. The first (right hand) position counts as one, the
second as two, the third as four and the fourth as eight The places then follow as
16,32,64,I28,etc.

For example, 11001 binary converts to 25 decimal, or the equation
1*16+1*8+0*4+0*2+1*1.

Hexadecimal system

Unlike the binary system. the hexadecimal system operates with more basic
numbers than the decimal system. This system counts single digits from 0 to F.
Since only the ten numbers of the decimal system are able to represent a number,
the numbers from 10 to 15 in hexadecimal use the letters A to F in addition to the
numbers 0 to 9. AH stands for 10, BH for 11, CH for 12, DH for 13, EH for 14
and PH for 15.

By using 16 numbers or letters for each position, the value by which each position
increments is 16.

The first position has the value I, the second 16, the third 256 and the fourth
4,096.

For example, the hexadecimal number FB3H converts into 4,019 decimal, or
15*256+11*16+3*1.

Hex and binary

The hexadecimal system and the binary system are easily converted back and forth.
For example, one four-digit binary number converts to a single-digit hexadecimal
number. Because of this, the hexadecimal system is an important part of assembly
language programming. It's much simpler to convey a byte (an eight-bit number)
using two hexadecimal digits than it is for the developer to compute a 16-bit
binary equivalent.

This book denotes all binary numbers by the letter (b), and all hexadecimal
numbers by the letter H.

The following illustrations should help explain number systems more clearly.

901

Appendix G: IntrodllCtion to Number Systems PC System Programming

Places 5 4 3 2 1

Decimal 10000 1000 100 10 1

Binary 16 8 4 2 1

Hexadecimal 65536 4096 256 16 1

Decimal
0
1
2
3
4
5
6
7
8
9

10
11
12

128
129
256

1024
4096

65535

Number positions in each number system

Binary Hexadecimal
O(b) OH
1 (b) 1H

10 (b) 2H
11 (b) 3H

100 (b) 4H
101 (b) 5H
110 (b) 6H
111 (b) 7H

1000 (b) 8H
1001(b) 9H
1010(b) AH
1011 (b) BH
1100 (b) CH

10000000 (b) 80H
10000001 (b) 81H

100000000(b) 100H
10000000000 (b) 400H

1000000000000 (b) 1000H
1111111111111111(b) FFFFH

Comparing selected numbers in each number system

902

Appendix H

Glossary of T"erms

8086, 8088, 80186, 80286, 80386

Microprocessors manufactured by the Intel Corporation. They are upwardly
compatible, which means that the 80836 can execute any program developed for an
8086, 8088, 80186 or 80286 microprocessor. However, the 8088 can't always
execute an application developed for one of the later microprocessors. The
processors of this family act as main processors for different types of PCs.

Address

The Intel-80xx family of microprocessors form an address from one of the four
segment registers, in conjuQction with another register or a cOnstant. The contents
of the segment register becomes the segment address, and the other register or
constant becomes the offset address. Both addresses are logical addresses that are
related to a physical address (the actual number of a memory location). This
physical address can be determined by multiplying the segment register by 16 and
adding the offset address.

Address area

The number of memory locations addressable by a microprocessor.

Address bus

A line connecting the CPU with memory (RAM and ROM). If the CPU wants to
address a memory location, it must ftrst place its address on the address bus in
order to set the "switches" for access to this memory location.

Arena header

The data structure which precedes the memory area of the TP~ assigned to a
program. DOS uses this area to store the memory area's size and other
information.

903

Appendix H: Glossary o/Terms PC System ProgrQl1fl1ling

ASCII

Abbreviation for American Standard Code for Information Interchange.
ASCII is a standardized assignment of numbers from 0 to 2SS that represents
characters (e.g., letters, numbers). The ASCII codes from 0 to 127 comprise the
standard ASCII character set, while the codes from 128 to 255 comprise the
extended ASCII character set.

Assembly language

A small number of simple instructions that the processor can understand. Every
higher level language program is finally translated into these instructions for
processing by the CPU.

Asynchronous data transfer

Also known as serial transfer. Bytes are transmitted and/or received bit by bit
according to a predetermined transfer protocol

AT

Abbreviation for Advanced Technology. AT computers have an 80286
processor.

Attribute

A byte following each character that defmes the character's color and appearance for
display on the screen.

AUTOEXEC.BAT

Filename for the automatically executing batch fIle for which DOS searches during
the booting process. After DOS is loaded and started, it searches the root directory
of the device from which it booted for a fIle named AUI'OEXEC.BAT. During the
booting process, this batch file executes programs and parameters through the
command processor.

Batch files

Text files saved with the file extension .BAT. These files contain DOS commands
or command sequences. Batch file execution treats these commands as if the user
had entered the commands from the keyboard.

Baud

A measurement of data transfer speed. One baud roughly equals one data bit per
second.

BCD

Abbreviation for Binary Coded Decimal. This number represents a two-digit
decimal number encoded in one byte. The upper four bits represent the most
significant digit and the lower four bits represent the least significant digit.

904

Abac/U Appendix H: Glossary o[Terms

Binary system

The number system understandable by a computer at its lowest level. Binary
notation counts from 0 to 1. The first position of abinary number has the value I,
the second has the value 2, the third has the value 4, the fourth has the value 8,
etc.

BIOS

Abbreviation for Basic Input/Output System. It contains the device drivers
which perform access to the peripheral devices such as the keyboard, monitor, disk
drives, etc. The BIOS is located in addresses FOOO:EOOO--FOOO:FFFF.

BIOS interrupts

Interrupts lOH to 17H and interrupt lAH, through which the many functions of
the ROM-BIOS can be called.

BIOS version

Release date of the BIOS as stored in the eight bytes starting at memory location
FOOO:FFF5. This version appears in the form Month/Day/Year.

Block driver

The device drivers which control access to devices that process data in data blocks
(disk drives and hard disks). Block drivers are addressed through a letter (drive
specifier) which enables one block driver to control several devices with different
letters. The disk driver has the drive specifiers A: and B:, while the hard disk driver
can be addressed with the specifier C:.

Boot sector

Contained on every mass storage medium from which DOS can be booted. Sector
o contains certain information and a short program which loads a DOS boot
routine, then initializes DOS.

Booting

The process that starts after the user has switched on the computer. BIOS tests and
initializes the various circuit chips in the system, then loads the operating system.

BPB

Abbreviation for BIOS Parameter Block. The BPB defines the format and
design of a mass storage device (disk drive and hard disk) for DOS. It is available
in the boot sector of every mass storage device, but must be passed to DOS by the
initialization routine of a block device driver.

CALL

Assembly language instruction that biggers the execution of a subroutine. Mter
the routine ends, a RET instruction executes, which is followed by the instruction
following the initial CALL.

90S

CLI

Appendix H: Glossary o/Terms PC System Programming

Carry nag

Bit 0 in the processor's flag register. Many operating system functions use it to
tell the calling program whether the called function executed correctly, or if an
error occurred. In the latter case, the carry flag is set (1) after the function call.

Character driver

A device driver which controls access to devices that process characters as bytes.
The screen, keyboard and printer are device drivers. Character drivers have their own
names, such as CON, PRN and AUX.

Child program

A program which is called by another program. For example, if the FORMAT
command is called from the DOS level, the parent program is the command
processor.

Clear interrupts instruction. This instruction instructs the CPU to ignore all
subsequent interrupt requests until the S11 (STart Interrupts) instruction re-enables
interrupt response (the NMI [Non-Maskable Interrupt] is exempt from this
instruction).

Clock driver

A character device responsible for getting the time and date from DOS,
incrementing the time and date and p!lSSing the incremented amounts back to DOS.

Clock generator

Produces several million pulses per second and synchronizes various components
of the system wid! each other.

Cluster

Multiple sectors of a mass storage device. Files and subdirectories can be stored in
different clusters. The number of sectors per cluster varies from one device to
another.

COM files

Executable programs which must be stored within a 64K memory segment COM
fIles combine program code, data and stack in this 64K area.

COMMAND.COM

The fIle containing the MS-DOS command processor.

Command line

A line from which program or batch fIle calls can be entered into the command
processor.

906

http:COMMAND.COM

AbaclU Appendix H: Glo&!ary o[Tmns

Command parameters

The name for all characters passed in the command line. following the program or
batch file calls. The EXEC function copies these parameters into the PSP of the
loaded program.

Command processor

Also called shell. The command processor is a part of the operating system which
accepts and processes user input Its main function is to load and start application
programs and batch files.

CON

Abbreviation for CONsole driver. the two device drivers which control the
keyboard and the screen.

CONFIG.SYS

The DOS configuration file. It contains certain commands for configuring OOS. as
well as additional device drivers. CONFIG.SYS loads and executes only once
(dlDing the booting process).

Control characters

ASCII characters which represent certain non-alphanumeric characters. This applies
to all ASCII codes less than 32. The PC only uses ASCII codes O. 7. 8. 9. 10. 11.
12 and 13 as control characters.

Cooked mode

Character mode that checks for certain unusual characters. which are either
converted to other characters or completely filtered out Character drivers operate
either in raw mode or cooked mode.

CP/M·SO

Early operating system. the predecessor of MS-OOS. CP/M is used by computers
that are based upon Z-80 microprocessors.

CPU

Abbreviation for Central Processing Unit. The microprocessor which forms
the "brain" of a computer.

CRC

Abbreviation for Cyclical Redundancy Check. The CRC tests for errors
during data transfer to and from a disk.

907

AppendixH: Glossary ofTums PC System Programming

CRT

Abbreviation for Cathode Ray Tube. A CRT generates a screen display with
the help of an electron beam which sends electrical impulses to a glass screen at
the end of the CRT.

DASD

Abbreviation for Direct Access Storage Device. In DOS and BIOS
terminology this concept is used for disk drives and hatd disks.

Data bus

A data line which connects the CPU with memory (RAM and ROM). Data can be
transmitted between the CPU and memory over this line.

Device driver

Driver systems which interface DOS and hardware by making basic functions
available for communicating with the hardware. Device driver functions can be
called by the higher level DOS functions. DOS differentiates between character
drivers and block drivers.

Disks

Flat plastic materials containing magnetic media for storing data. Formatted disks
are partitioned into tracks and sectors.

Disk controller

Regulates the activities of the disk drive.

Disk status

Lists the status of the last disk operation. It indicates if and when an error occurred
during this disk access.

Disk formats

The PC market supports several disk formats. PC and XT disk drives use 5-1/4"
disks that are formatted on one or two sides. Each side contains 40 tracks with
eight or nine sectors per track (each sector stores 512 bytes). The capacity of these
disks is between 160K (single-sided) and 360K (double-sided). The AT uses 5-1/4"
disks with two formatted sides. each side containing 80 tracks with 15 sectors per
track (each sector stores 512 bytes). The total capacity of these disks is 1.2
megabytes.

The newest disk formats on the market allow the use of 3-1/l" micro floppy disks.

Display page

Also called screen page and video page. Some video cards can control one or more
display pages. Only one of these pages can be displayed on the screen at one time.

908

Abacus AppendixH: Glossary o[Terms

DMA

Abbreviation for Direct Memory Access. Transmits data from the circuit
chips of a peripheral device direcdy into memory. without making a detour
through the CPU. \ .

DMA controller

A chip capable of transferring large amounts of data direcdy into memory without
passing through the CPU. A good example is the access to a disk drive or hard
disk drive.

DOS

Abbreviation for Disk Operating System. DOS sets up basic file handling
tasks for communicating between computer and disk drive(s).

DTA

Abbreviation for Disk Transrer Area. File and directory accesses use the DTA
for disk data transmission. Its size depends upon the current opemtion. where the
calling program must ensure that enough memory exists to accept the transmitted
data. After the start of a program, DOS places the beginning of the DTA into
memory location 128 of the PSP, which makes 128 bytes available.

ECC

Abbreviation for Error Correction Code. ECC is used when data is stored on a
hard disk. Unlike the CRC, the ECC permits the recognition of errors as well as
their correction within certain parameters.

EGA

Abbreviation for Enhanced Graphic Adapter. This is a special, high
resolution variation on the Color/Graphics Adapter (CGA).

EMM

Abbreviation for Expanded Memory Manager. Allows access to EMS memory.

EMS

Abbreviation for Expanded Memory System. This section of RAM goes beyond
the 1 megabyte limit set by PCs and XTs. EMS is only accessible through the
EMM.

End character

Also called return code. The end character is ASCII code O. which is sometimes
assigned the name NUL. It usually indicates the last character in a character string.

909

Appendix H: Glossary o/Terms PC System Programming

Environment block

Every program has an assigned environment block whose address is stored in the
PSP of the current program. The environment block itself consists of a series of
ASCII strings which contain certain infonnation, such as the search path for files
(pATH).

EOI

Abbreviation for End or Interrupt. This insbUction indicates. the completion of
a hardware triggered interrupt to the interrupt handler.

Extended key code

Keys and key combinations that can be entered with a PC keyboard but have no
direct relation to the ASCII character set. They are often entered by pressing and
holding the <All> key, then entering a three-digit number on the numeric keypad

EXE files

Executable programs which can be of any length and can store their code, data and
stack in different memory segments (see also COM files).

EXEC

DOS function for loading and executing programs. The command processor also
uses this function to execute applications programs and batch files.

FAR instructions

Machine language insbUctions that contain an address of a variable or a subroutine
with a segment address and an offset address. They can address variables or
subroutines located in another memory segment (farther away than 64K).

FAT

Abbreviation for File Allocation Table. This is a table located on every
external storage medium (disk and hard disk). It informs DOS which areas of a
storage medium are available, which areas are already occupied with data, and
which areas are useless because of defects. The FAT also links together the
different parts of a file.

FCB

Abbreviation for File Control Block. DOS controls file access to RAM using
FCBs.

Fixed disk

Another term for hard disk.

910

Abacus Apeendix H: Glossary o/Terms

Filter

A program that reads characters from the standard input device, manipulates them
in some desired way, and then displays them on the standard output device.

Flag register

A 16-bit register in which several of these bits indicate certain aspects of the
processor's status.

Function

A routine that can be called with a DOS or BIOS interrupt

Garbage collection

A routine that removes variables which are no longer required from the variable
memory of a BASIC program. Every BASIC interpreter has garbage collection.

GDT

Abbreviation for Global Descriptor Table. The GOT describes the individual
memory segments when the processor is in protected mode.

General registers

The processors of the Intel-80xx family have the following general registers: AX,
BX, CX, OX, 01, SI and BP. They are all 16 bits wide. The AX, BX, CX and OX
registers can be separated into two 8-bit registers. These two half registers are
designated as AH, AL, BH, BL, CH, CL, OH and OL.

Handle

A numerical value that acts as a key for access to files and devices. It is passed by
DOS to a program which calls one of the functions for opening or creating a file
or device.

Hard disk

A mass storage unit consisting of several magnetic media stacked on top of one
another. Unlike disks, hard disks are divided into cylinders and sectors. Each of
these disks can store data on both their top and bottom sides.

Hard disk format

The PC hard disk format consists of 17 sectors per cylinder and 512 bytes per
sector. The number of disks and the number of cylinders per disk may vary.

Hardware interrupt

An interrupt or interrupt request, called by PC hardware, to attract the attention of
the CPU to a device (e.g., the keyboard). Certain devices only call certain
interrupts.

911

Appendix H: Glossary ofTerms PC System Programming

Hexadecimal system

A number system distantly related to the binary system. The basic numbering of
this system goes from 0 to 15, instead of from 0 to 9 (the numbers 10 to 15 are
represented by the letters A, B, C, D, E and F). The first position of a hexadecimal
number bas the value I, the second 16, the thiId 256, the fourth 4,096, etc.

IN

Assembly language instruction to read data from a port into the CPU.

Internal commands

All commands whose code is stored in the ttansient portion of the command
processor, and, therefore, don't have to be loaded from a storage medium (e.g.,
DIR, COpy and VER).

Interrupt

An interruption of a program through an interrupt call, the execution of an
interrupt routine and, finally, the resumption of the interrupted program. The
processors of the Intel-8Oxx family can process 256 different interrupts which are
divided into hardware and software interrupts.

Interrupt controller

Monitors the various interrupt requests within the system and decides which
interrupts to process first.

Interrupt routine

The program called during the appearance of an interrupL Each interrupt has its
own interrupt routine. whose address is stored in the interrupt vector table. The
interrupt routine must be terminated with a machine language IRET instruction.

Interrupt vector table

A table containing the addresses of the interrupt routines, which are called when a
particular interrupt appears. Each entry in this table consists of two words. The
fIrSt word contains the offset address and the following word contains the segment
address of the interrupt routine. The table starts at memory location 0000:0000.
where the address of the interrupt routine for interrupt 0 is stored. The four
following memory locations contain the address of the interrupt routine for
interrupt I, etc.

IRET

The Interrupt RETurn assembly IJmguage instruction. IRET terminates the
execution of an interrupt routine and then continues the execution of the program
at the location following the interruption of the program.

912

Abacus Appendix H: Glossary otTer"",

Keyboard status

Indicates whether the user has pressed the <Shifl>, <Ctrl> or <All> keys, and
whether the <Insert>, <CapsLocb, <NumLocb or <ScrollLock> modes are
active.

Kilobyte

Abbreviated as K. Equals 210 or l,mA bytes.

Math coprocessor
"

Relieves the CPU of the processing of complicated floating-point mathematical
formulas. It also accelerates the processing of worksheets within a spreadsheet
program.

Megabyte

Often abbreviated as meg. Equal to 210 kilobytes or 1,048,576 bytes.

Media descriptor byte

A byte within the File Allocation Table (FAT), which identifies the mass storage
device's current format. DOS can manipulate the various formats of the mass
storage which it supports and also checks the media descriptor byte for the current
format.

Memory allocation

In all pes the lower 640K is assigned to RAM. The video RAM follows, and then
the ROM, which extends to the 1 megabyte memory limit. ATs may have up to
15 megabytes of additional RAM.

Microprocessor

The brain of a computer. Its main task is to execute assembly language
instructions.

Model identification

The type of PC used, as coded into address FOOO:FFFE. FCH stands for AT, FEH
often stands for XT and FFH often stands for PC.

MS-DOS

Abbreviation for MicroSoft Disk Operating System. MS-DOS is the
primary PC operating system.

Multiprocessing

The simultaneous execution of several programs (not supported by DOS at the
time of this writing).

913

Appendix H: Glossary ofTerms PC System Progronuning

NEAR instructions

Assembly language instructions that contain the offset address of only a variable or
a subroutine (no segment address). These insttuctions can address variables or
subroutines located only within the current 64K memory segmenL

Nibble

Also spelled nybble. Bytes can be subdivided into two nibbles. The low nibble
occupies bits 0 to 3 of a byte, while the high nibble occupies bits 4 to 7 of a byte.

NMI

Abbreviation for Non-Maskable Interrupt. The NMI remains constantly
active. It is the only interrupt not affected by the CLI assembly language
instruction.

OUT

An assembly language instruction which sends data to a port.

Overlay

A program loaded into memory allocated for it by another program. The calling
program calls certain routines within this overlay as needed.

Paragraph

A group of 16 bytes in the 8088 which starts at a memory location divisible by 16
(e.g., 0, 16, 32, 48, etc.).

Parent program

A program that can execute another program (see child program) and continue its
own processing after the child program's execution. For example, if a FORMAT
command is called from DOS level, the command processor is the parent program.

Parity

A process used to detect errors during serial data transmission. Either even or odd
parity can be used.

PC

Abbreviation for Personal Computer (i.e., all computers equipped with a 8088
or 8086 processor).

Peripheral interface

Connects the CPU to various peripheral devices (e.g., speaker).

914

Abacus Appendix H: Glossary ofTerms

Ports

The connections between the CPU and various other circuit chips within the
system. Each chip has one or more assigned ports. which have a specific address.
The CPU addresses the individual chips by writing values into the proper port or
by reading values from the proper port.

Printer status byte

Describes the current status of the printer. It can indicate whether the printer is out
of paper. is switched ONLINE or has not responded (time-out).

PRN

The device designation of the printer.

Program counter

Also called IP (Instruction Pointer). The program counter and the CS segment
register combined form the memory address from which the processor will read the
next command to be executed.

Protected mode

Allows multiprocessing, more than 1 megabyte of memory and control over
virtual memory on computers possessing the 80286 and 80386 processors.

PSP

Abbreviation for Program Segment Prefix. The PSP is a 256 byte long data
structure, which is placed in front of every program to be executed but not stored
with the file on disk or hard disk. The program itself or program data start after
this data structure.

RAM

Abbreviation for Random Access Memory. This is the memory that the user
can read from and write to.

Raw mode

Character mode that transmits all characters from a device to the calling program
without any changes (see cooked mode).

Real mode

Forces 80286 and 80386 processors to emulate dual high-speed 8088 processors
incapable of multiprocessing or control of more than 1 megabyte of memory.

Register

Memory locations inside the processor that provide faster access than memory
locations in RAM.

915

Appendix H: Glossary o/Terms PC System Programmillg

Reset

A resetting and reboot of the system. You can trigger a reset by pressing the
<Alt><Ctrl><Delete> key combination.

Resident

Programs that remain in memory after execution without being overwritten by
other programs or data. Resident programs can be recalled later.

ROM

Abbreviation for Read Only Memory. ROM can only be read, not written.

ROM BASIC

A small BASIC interpreter, placed in the ROMs of older PCs starting at address
FOOO:6000. ROM BASIC is called by the system when BIOS fails to load the
operating system.

RS·232

An interface that permits the computer to communicate with other devices over
only one line. The individual data is transmitted serially (i.e .• bit by bit).

RTC

Abbreviation for RealTime Clock. The battery backed clock on the AT.

Scan code

A code passed to the CPU by the keyboard processor when a key is pressed or
released. It indicates the number assigned to the key within the keyboard. For this
reason, the scan codes of the various PC keyboards differ from each other.

Sector

The smallest data division of a disk or hard disk. A sector contains 512 bytes.

Segment descriptor

Describes the location and size of the segment in addition to other information. It
is used in protected mode on the 80286 and 80386 processors. All segment
descriptors are gathered in the global descriptor table (GO'!).

Segment register

The processors of the Intel-SOxx family have four 16-bit segments that define the
beginning of a 64K memory segment. They are named OS, ESt CS and SS.

Software interrupts

An interrupt or interrupt request called by a program using the INT instruction.
Each of the 256 existing interrupts can be called using this instruction.

916

AbaclU Appendix H: Glossary o[Ter"",

Standard input device

The keyboard. The standard input can be redirected to another device ex' a file using
the < character.

Standard output device

The monitor screen. The standard output can be redirected to another device ex' a file
using the > character.

STI

The STart Interrupts assembly language instruction. This instruction disabl~
any previous cr.I command and re-enables all inactive interrupts.

Time-out

Occurs during communication between the CPU and a device when the CPU sends
data to the device and, after a certain amount of time, the device offezs no response.

Timer
L-

Similar to the clock. The timer generates a cyclical signal used to measure time.

TPA

Abbreviation for Transient Program Area. This is the part of RAM below the
1 megabyte limit not occupied by DOS that is used for storing programs and data.

UART

Abbreviation for Universal Asynchronous Receiver Transmitter. A chip
that acts as the controller for the serial interface.

Video controller

Displays a picture on the screen by sending the proper signals to the monitor.

Video RAM
RAM, which is used for storing characters or graphics for display on the screen,
made available by a video card. It can be addressed like normal RAM.

Virtual memory

Pemits program access to memory, which it assumes to be RAM but is actually a
mass storage device. Virtual memory must first be loaded into RAM for access.

Volume

Part of a mass storage device that has files, its own FAT, its own root directory
and its own subdirectories. Each volume can have its own volume name. While
disks can store only one volume under DOS, hard disks can be divided into several
volumes to accommodate several operating systems.

917

Appendix I

Scan Codes

PCIXT keyboard scan codes

AT keyboard scan codes

918

Appendix J

ASCII Character Set

Dec. Dec. Dec. Dec.

r
Hex r ~llr.

0 00
r

Hex r ~r.
32 20

r
Hex r ~r.

64 40 @
r

Hex

r ~.
96 60 .

1
2
3
4
5
6
7
8

01 Q

02 •03 •04 •05 ..
06 •07 •
08 a

33
34
35
36
37
38
39
40

21
22 "
23 #
24 $
25 %
26 &
27 ,
28 (

65
66
67
68
69
70
71
72

41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H

97 61
98 62
99 63

100 64
101 65
102 66
103 67
104 68

a
b
c
d
e
f
q
h

9
10
11

09
OA
OB

0
•
cf

41
42
43

29)
2A *
2B +

73
74
75

49 I
4A J
4B K

105 69 i
106 6A j
107 6B k

12 OC 9 44 2C 76 4C L 108 6C 1
13 00 } 45 2D - 77 4D M 109 6D m
14 OE J.I 46 2E • 78 4E N 110 6E n
15
16
17
18

OF
10
11
12

l:t

~

•
*

47
48
49
50

2F /
30 0
31 1
32 2

79
80
81
82

4F 0
50 P
51 Q
52 R

111 6F 0

112 70 P
113 71 q
114 72 r

19 13 !! 51 33 3 83 53 S 115 73 s
20 14 ! 52 34 4 84 54 T 116 74 t
21
22

15
16

§
_

53
54

35
36

5
6

85
86

55 U
56 V

117 75
118 76

u
v

23 17 t 55 37 7 87 57 W 119 77 w
24 18 t 56 38 8 88 58 X 120 78 x
25
26

19
1A

J.
-+

57
58

39
3A

9 89
90

59
5A

Y
Z

121 79
122 7A

Y
z

27
28
29
30
31

1B
1C
1D
1E
1F

+

~

++

&
•

59
60
61
62
63

3B
3C <
3D =
3E >
3F ?

91
92
93
94
95

5B
5C
5D
5E
5F

[
\
]
A

123 7B
124 7C
125 7D
126 7E
127 7F

{
I
I
}

•
919

Appendix J: ASCII Character Set PC System Programming

Dec. Dec. Dec. Dec.
Hex Hex Hex Hex

r r ~. r r ~. r r ~. r r ~.
L128 80 C; 160 AO a 192 co 224 EO a

J..129 81 ii 161 A1 i 193 C1 225 E1 8
T130 82 e 162 A2 6 194 C2 226 E2 r

131 83 a 163 A3 11 195 C3 I- 227 E3 'Ir

132 84 a 164 A4 ft 196 C4 228 E4 1::
133 85 a 165 A5 N 19~ C5 + 229 E5 a
134 86 a 166 A6 198 C6 230 E6• ~ ~

II135 87 Q 167 A7 199 C7 I~ 231 E7 f'

136 88 e 168 A8 <. 200 C8 II: 232 E8 t
137 89 e 169 A9 - 201 C9 If 233 E9 9
138 8A e 170 AA~ 202 CA:!!: 234 EA n
139 8B i 171 AB ~ 203 CB 'if 235 EB &
140 8C 1 172 AC % 204 CC I~ 236.tEC co
141 80 i 173 AD 205 CO = 237 ED cp
142 8E A 174 AE« 206 CE {~ 238 EE €

143 8F J.. 175 AF » 207 CF ::!:: 239 EF n
144 90 E 176 BO 208 DO JL 240 FO =
145 91 ae 177 B1 ~1~~~~ 209 01 T 241 F1 ±
146 92 If. 178 B2 I 210 02 11" 242 F2 ~

147 93 " 179 B3 I 211 03 11. 243 F3 ~

148 94 6 180 B4 ~ 212 04 b 244 F4 r
149 95 0 181 B5 ~ 213 05 f 245 F5 J
150 96 11 182 B6 ~I 214 06 0" 246 F6 +
151 97 U 183 B7 11 215 07 * 247 F7 ~

0152 98 Y 184 B8 216 08 + 248 F8=t
153 99 6 185 B9 {I 217 09 J 249 F9 .
154 9A U 186 BA II 218 OA r 250 FA
155 9B ¢ 187 BB 11 219 DB. 251 FB J
156 9C £ 188 BC Jl 220 DC • 252 FC 11
157 90 ¥ 189 BO .lI 221 OD I 253 FD 2

:::I158 9E II 190 BE 222 DE I 254 FE •
159 9F f 191 BF 1 223 255 FFOF •

920

Index

Interrupt 13H, f86-00S
6845 index register
8042 keyboard processor
8048 keyboard processor
8086

8088

8253 chip
8259 timer chip
80186

80286

80386

Aborting a program
Absolute disk read
Absolute disk write
Activate character set
Activate mouse driver
Adapt to foreign hard disk
Address
Address bus
Address notation
Address operator &
Address register
Address space
AHregister
Alarm interrupt
Allocate memory
Allocated expanded memory pages
Allocating memory

Basic Input Output System (BIOS)

I, 711, 905

Batch files 54,57, 111-112,904

BIOS configuration functions 713

BIOS date functions 395

BIOS floppy disk functions 713

BIOS hard disk functions 714

BIOS IntemIpts:

Interrupt 1AH, function 02H 760

Interrupt 1AH, function 03H 761

Interrupt 1AH, function O4H 761

Interrupt 1AH, function 05H 762

Interrupt 1AH, function 06H 762

Interrupt 1AH, function 07H 763

Interrupt lOH, function 13H 726

Interrupt 13H, function 15H 734

Interrupt 13H, function 15H 749

Interrupt 13H, function 16H 734

Interrupt 13H, function 17H 735

Alternate hardcopy 877

ANSI.SYS 55, 148, 156

Arena header 903

ASCII 904

Assembly language 1,3,47,904

ASSIGN 149

Asynchronous data transfer 904

52

472

712

712

3,903

3,8,903

449

671, 712

3,903

3,903

3,903

142

844

845

873

898

743

8,903

16,699,903

9

42

8

8

45

397

821

854

121

AT
AT hard disk
ATP
Attribute byte
AUTOEXEC.BAT

Background color
BACKUP
BASIC

904

675

330

459,460,497,904

57,149,199,904

862

203

96

BaOO
BCD format
Binary coded decimal (BCD)

Binary system
BIOS
BIOS architecture
BIOS cassette interrupt

331,904

396,566

396,566,

900,904

900,905

711

220

714

921

Index PC System Programming

Interrupt 15H, fWlction 83H 752
Interrupt I5H, fWlction 84H 753
Interrupt 15H, function 85H 754
Interrupt I5H, fWlction 86H 754
Interrupt 15H, fWlction 87H 754
Interrupt I5H, fWlction 88H 755
Interrupt 15H, fWlction 89H 755

BIOS Interrupts (XT and AT only):
Interrupt 13H, function OOH 736
Interrupt 13H, function OAH 744
Interrupt 13H, fWlction OBH 745
Interrupt 13H, function ODH 746
Interrupt 13H, function 01H 736
Interrupt 13H, function 02H 737
Interrupt 13H, function 03H 738
Interrupt 13H, function 04H 740
Interrupt I3H, function 05H 741
Interrupt 13H, function 08H 742
Interrupt 13H, function 09H 743
Interrupt 13H, function lOH 747
Interrupt 13H, function IIH 748
Interrupt 13H, function 14H 748

BIOS keyboard functions 714
BIOS memory functions 713
BIOS Parallel printer functions 715
BIOS Parameter Block (BPB) 157, 160,

198, 214, 215, 905
BIOS printer interrupt 385, 715
BIOS screen output 226
BIOS serial interface functions 714
BIOS time functions 395
BIOS variable memory 398
BIOS version 223
Bitfield 887
Bitmap mode 460, 721
Bitplanes 521
Blinking attribute 866
Block device driver 150, 156, 171,

194,816,905
Boot sector 59,185,197,905
Booting 221, 715, 759, 905
Bootstrap 198,221
Bonler color 862
BPS-see BIOS Parameter Block
<Break> key 715, 763
Breakpoint 668-669,711
Buffer 814
Buffered input 779

Byte table 840

Clanguage 104
CALL 905
Call ROM BASIC 715, 759
Calling interrupts 27
Cancel all files in print queue 848
Cancel redirection 839
Carry flag 12,37,905
Cassette interrupt 297,336
Cathode ray tube 458
CD-ROM 193-194
CGA 254,463
Change 121
Change directory 93
Change retry COWlt 819
Character device driver 150, 170, 194,

815,906
Character generator 460, 875
Character input 766, 774, 777
Character matrix 469
Character output 70, 767, 774
Character set 265,459,872
Character table 715,765
Child program 110, 906
CHKDSK 201
ClLI 23
Clock 14,906
Close file (FCB) 782
Close file 808
Clusters 198, 906
Code segment 10
Color palette 498, 721,723
Color selection register 504, 871
Color-suppressed mode 498
Color/Graphics Adapter (CGA) 228,

254,497
COM programs 51, 60, 62, 112,

825,906
COM 1 73
Command processor 53, 56, Ill, 907
COMMAND.COM 56, 111,823, 906
Common registers
Compact disk (CD) 193
Compatibility 206
COMSPEC 112
CONFIG.SYS 59, 85, 149, 156,

194,907

911

6

http:COMMAND.COM

Abacus Index

Configuration 289

Configuration register 482

ConlrOl codes 233

Control record access 835

Control register 471

Controller diagnostic 748

Cooked mode 72, ISO, 171,814,907

Country-specific data 769, 770

CP/M 51-52, 70, 84, 687, 907

Create me 786, 806, 835

Create new file 835

Create PSP 793

Create subdirectory 804

Create temporary file 834

Critical error handler 57, 142,800,842

Critical error handler address 843

CRT 458,908

CRT controller (CRTC) 14, 460,

462,857,872

<Ctrl> key 359

<Ctrl><Break> 800

Cursor definition 232,716,856,857

Cursor positioning 232, 717, 857

Cycles 447

Cyclic Redundancy Check 324,907

DAC color register 867

DAC color table 258

DAC mask register 870

DAC register group 868

DASD 908

Data bus 16,699,908

Data segment 10

Data structures 196

Data transfer protocol 330

Date 54,395,715,759-762,

796,797,829

DEBUG program 172

Decimal system 900

Define cursor type 233,716

Delete file (PCB) 784

Delete file 810

Delete subdirectory 805

Determine configuration 727

Determine disk format 735

Determine drive type 734

Determine Format of the Hard Disk 742

Determine Hard Disk type 749

Determine memory size 728, 755

Determine mouse sensitivity 897

Determine mouse type 899

Determine pointer display page 897, 898

Determine processor type 653

Determine video card type 880,881

Device attribute 77, 814

Device close 166

Device driver 148,215,817,908

Device driver lK:CesS 151, 767

Device redirection 838

Devices 53

Digital Research 52

DIR command 96

Direct console I/O 776

Direct Memory Access (DMA) 13, 325,

909

Direct video access 457

Directory lister programs 96

Directory search 93

Disable lightpen emulation 889,890

Disable mouse pointer 883

Disk access 297, 769

Disk change 303, 735

Disk controller 14,908

Disk format 735,742,908

Disk monitor program 305

Disk operating system 51

Disk reset 781

Disk status 730,908

Disk transfer area (DT A) 62,90

Disklhard disk access 769

Display attributes 460

Display modes 458

Display mouse pointer 882,883

Display page 856-858, 908

Division by zero 710

DMA 13,325,909

DOS 4.0 213

DOS 201

DOS buffer 211

DOS flag access 769

DOS functions 96,206

DOS Info Block (DIB) 208

DOS Interrupt 21H, function 5CH 835

DOS kernel 56

DOS version number 799

DOS-BIOS 56

923

Index PC System Programming

Drive infonnation 789

Drive Parameter Block (DPB) 209

Drive table 715, 764

Driver initialization 148, 156

DTA 62,99,768,788,827,909

DUMP program 134

Duplicate handle 820

EGA 254,463,909

EGA attribute controller 865

EGA BIOS 254

EGA character generator 263

EGA functions 856

EGNVGA configuration 856,877

EGNVGA Interrupts:

Interrupt lOH, function OOH 856

Interrupt lOH, function OAH 861

Interrupt lOH, function OBH 862

Interrupt lOH, function OCR 863

Interrupt lOH, function ODH 863

Interrupt lOH, function OEH 864

Interrupt WH, function OFH 864

Interrupt WH, function 01H 857

Interrupt 10H, function 02H 857

Interrupt lOH. function 03H 858

Interrupt WH. function 05H 858

Interrupt lOH, function 06H 859

Interrupt WH. function 07H 859

Interrupt lOH, function 08H 860

Interrupt WH, function O9H 861

Interrupt WH, function 10H

865-866

Interrupt lOH, function I1H

872-874

Interrupt WH, function llH

875,876

Interrupt WH. function 12H

877-878

Interrupt WH, function 13H 880

Electron beam 461

EMM Interrupts:

Interrupt 67H, function 0 854

Interrupt 67H, function 0 854

Interrupt 67H, function 0 855

Interrupt 67H, function 1 849

Interrupt 67H, function 2 849

Interrupt 67H, function 3 850

Interrupt 67H, function 4 850

Interrupt 67H, function 5 851

Interrupt 67H, function 6 851

Interrupt 67H, function 7 852

Interrupt 67H, function 8 852

Interrupt 67H, function 9 853

Enable mouse pointer 882, 883

End character 909

End of Interrupt (EOI) 670, 910

Environment block 112,208, 823, 910

Error Correction Code (ECC) 324. 909

Error display 71

Exchange mouse event handlers 892

Exclusion area 621. 890, 891

EXE programs 51, 60, 66, 112

825.910
EXEC function

60,66,110,132,823.910

Execute overlay 824

Execute program 823

Expanded Memory Manager (EMM)

849, 852,909
Expanded Memory Specification (EMS)

213,909

Expanded memory allocation 850

Expanded memory handles 854

Expanded memory mapping 851

Expanded memory segment address 849

Expanded memory status 849

Extended FCB 88

Extended keyboord codes 360.910

Extended memory allocation 850

Extended memory mapping 851

Extended memory segment address 849

Extended memory status 849

Extended MS system page 850

Extended partitions 688

Extended read 744

Extended write 745

External commands 57

External hardware interrupt 23

Extra segment 11

FAR instruction 115, 910

FAT-see File Allocation Table

FCB functions 84, 91, 206, 768

FCB-see File Control Block

File access (FCB) 768

File access (handle) 768

924

IndexAbacus

File Allocation Table (FAn 53, 194,

198,214,910

File Control Block (FCB) 55, 62, 84,

208

File date 830

File handle 55, 70, 85, 768, 820

File infonnation access 769

File search using PCB functions 94

File search using handle functions 95

File time 830

Filters 132, 911

Fixed disk 54, 741,910

Flag register 6, 12, 911

Flush input buffers 162, 164

Flush output buffers 164

Force duplicate of handle 820

Foreign hard disks 743

FORMAT 202

Fonnat diskette 733

Fonnat hard disk 326, 741

Fonnat hard disk cylinder 741

Function 911

Garbage collection 30,911

GDT 337,911

General registers 911

Get <Ctrl><Break> flag 800

Get allocation strategy 830

Get country 802

Get current directory 93, 821

Get default drive 788

Get device infonnation 813

Get Drive infonnation 789

Get DTA address 798

Get extended error infonnation 832

Get file attributes 811

Get file date and time 829

Get free disk space 801

Get input status 780

Get in«.nm console flag 840

Get machine name 836

Get MS-DOS version number 799

Get pointer position/button status 884

Get print spool install status 846

Get printer setup 837

Get PSP address 839

Get redirection list entry 837

Get return code 826

Get system date/time 796,797

Get verify flag 828

Get video mode 232

GRAFfABL 234, 721, 764

Graphic mode 458

Graphic user interfaces 213

Gray scales 871,878,879

GW-BASIC 28

fWnille 70,815,911
, Hanille functions 96

Hard disk 54, 323

Hard disk error codes 324

Hard disk format 911

Hard disk function calls 325

Hard disk interrupts 674

Hard disk partition support 213,687

Hankopy 670,711

Hardware interrupt 22,667,710,911

Hardware (CPU) Interrupts:

Interrupt OOH 710

Interrupt om 710

Interrupt 02H 711

Interrupt 03H 711

Interrupt 04H 711

Interrupt 05H 711

Interrupt 08H

(8259 interrupt controller) 712

Interrupt 09H

(8259 interrupt controller) 712

Heap 432

Hercules graphic cards 230,255,

463,482

H~ «7

Hexadecimal system 899, 912

Hidden files 96

Hierarchical file system 54

High density disk drives 303

High level languages 3, 711, 712

Hold print jobs for status check 848

Horizontal synchronization signal 472

Hotlcey 408

I/O Control Read 160

I/O Control Write 165

IBMBIO.COM 59,202

IN 464,699,912

Initialize 750

9lS

http:IBMBIO.COM

ImUx PC System Programming

Initialize printer 385, 758

Input buffer 575

Input status 162,817

InstaIlable device drivers 55

Instruction pointer 10

INT instruction 27,47, 711, 712

int86 function (C) 40-41

intdos function (C) 41-42

intdosx function (C) 40,42

Intel Corporation 3,712,903

interim console flag (840

Interleave factor 210

Internal commands 57,912

Internal DOS structure 56

Internal hardware interrupts 23

Interrupt controller 13,670,912

Interrupt requests 13,671

Interrupt routine 20,912

Interrupt vector 801

Interrupt vector table 20,912

Interrupts 19

INTO (INTerrupt on Overflow)

instruction 711

INTR procedure (pascal) 36

IO.SYS 59

IOCTL 165,170,819

IRET (Interrupt RETurn) 19, 711

JOIN 212

Joysticks 753

Keyboard access 72,358,712

Keyboard controller 576

Keyboard output functions 74

Keyboard programming 575

Keyboard status 913

Kilobyte 913

LASTDRIVE 212

Lightpen 713, 882, 889

Logical hard disk 688

Logical sector 216

Low-level formatting 687

Macros 48

Make directory 93

Maskable interrupts 23

Match 826-827

Math coprocessor 14,675,710
711,913

MCB 209

MDA 254,463

Media change 734

Media check 158

Media descriptor 199,210,913

Megabyte 8,291,913

Memory 16, 754

Memory block allocation 822,831,913

Memory Control Block 119, 208, 209

Memory location 16

Memory release 121,822

Memory segments 17

Microprocessor 3, 8, 575, 913

Microsoft Assembler (MASM) 48

Microsoft C compiler 416

Microsoft Corporation 52

Microsoft mouse 617

Mode selection register 501,502

Model identification byte 291,913

Modify allocation (Vers 2 and up) 822

Monochrome Display Adapter (MDA)

226,463,469,482,497
Mouse button activation counter

884,885

Mouse button release counter 885

Mouse button status 883,884

Mouse buttons 618

Mouse event handlers 888,891

Mouse interface 617

Mouse interrupts:

Interrupt 33H, function OOH 882

Interrupt 33H, function OAR 887

Interrupt 33H, function OBH 888

Interrupt 33H, function OCH 888

Interrupt 33H, function ODH 889

Interrupt 33H, function OEH 890

Interrupt 33H, function OFH 890

Interrupt 33H, function 01H 883

Interrupt 33H, function lAR 896

Interrupt 33H, function IBH 897

InteFrUpt 33H, function lCH 897

Interrupt 33H, function lOH 897

Interrupt 33H, function lEH 898

Interrupt 33H, function IFH 898

Interrupt 33H, function 02H 883

Interrupt 33H, function 03H 884

926

Abacus Index

Interrupt 33H, function 04H 884 Open file 807
Interrupt 33H, function 05H 885 Opemting system area 119
Interrupt 33H, function 06H 885 OS/2 687
Interrupt 33H, function 07H 886 Oscillation 447
Interrupt 33H, function 08H 886 OUT 464,699,914
Interrupt 33H, function 09H 887 Output buffer 575
Interrupt 33H, function IOH 891 Output character string 778
Interrupt 33H, function 13H 891 Output status 164,817
Interrupt 33H, function 14H 892 Output until busy 167
Interrupt 33H, function ISH 893 Overlapping segments 11
Interrupt 33H, function 16H 893 Overlays 114,914
Interrupt 33H, function 17H 894 Overscan register 856,866
Interrupt 33H, function 18H 894
Interrupt 33H, function 19H 896 Palette register 865, 877, 878
Interrupt 33H, function 20H 898 Paragraph 914
Interrupt 33H, function 21H 899 Parameter block 111,823
Interrupt 33H, function 24H 899 Parent program 110, 840,914

Mouse pointer 618l622, 882, 883 Parity 332,914
Mouse pointer range of movement Parity bit 331

885,886 Parse filename to FCB 795
Mouse pointer shape 886,887 Partition code 689
Mouse programming 617 Partition sector 688
Mouse speed doubling 891 Partitions 323, 687-689
Mouse status buffer size 893 Pascal 100
MOV instruction 47 Paterson, Tim 52
Move file pointer 810 PATH 112-113
Move memory areas 754 PC 914
Move mouse pointer 884 PC Tools® 213
MS-DOS 51 PC-DOS 51
MSCDEX 195 Periodic interrupt 764
MsDos procedure (Pascal) 36 Peripheral interface 914
MSDOS.SYS 59 Pipe file 134
MUL instruction 711 Pipes 133
Multiprocessing 4,835,913 Pixel 724
Multisync monitor 255 Pointer position 883,884
Multitasking 835 Pointer speed 890

Ports 699,915
NEAR instruction 914 Position cursor 717
Network 819,835-836 Predefined handles 70
Nibble 914 Primary partition 688
Non-destructive read 161 Print queue 847
Non-maskable interrupt (NMI) 23, 710 Print spooler 846-847
Non-overlapping segments 11 print Character 776
Norton Utilities® 208,213 Printer access 384, 758

Printer interrupt 674
Offset address 8,42,903 Printer output functions 73, 76
Open 165 Printer status 385, 758
Open fIle (FCB) 782 Processor registers 219

927

Index PC System Programming

Processor type 291

Program calls 110

Program counter 6, 10

Program Segment PrefIX (PSP) 60, 67

208,769,793,915

Program termination 766

Programmable peripheral interface 13

Programmable timer 448

Prompt 57

Protected mode 337,915

<Prt Sc> key 670

PSP access 769

PTR data type 155

RAM 291,325, 767, 915

RAM control 767

RAM determination 291

Random block read 794

Random block write 795

Random read 790

Random write 791

Raster 462

Raster-scan devices 460

Raw mode 72, ISO, 171,814,915

Read 161

Readchrumcter 720,751,775,860

Read clock count 759

Read control keys 361

Read cursor position 232, 718

Read data from block device 816

Read data from character device 814

Read date from realtime clock 761

Read Disk 730

Read disk status 299

Read display mode 726

Read file 808

Read hard disk 325,326, 736,737

Read hard disk format 328

Read ill-RAM size 337

Read input status 817

Read Interrupt-Vector 801

Read joystick 753

Read Keyboard 361,756,757

Read output status 817f

Read pixel 238, 863

Read printer status 758

Read realtime clock 760

Read status 752

Ready 747

Realtime Clock 336,395-397.563.

674.761-763

Realtime clock register 564

Recalibrate hard disk 329. 748

Receive character 334

Receiver shift register 333

Redirect device 838

Redirection of interrupts 156

Refresh rate 461

Register 6. 35

Relative addresses 8

Release extended memory pages 851

Release memory 822

Relocation factor 114

Removable media 167

Remove directory 93

Remove file from prin~ queue 847

Remove mouse pointer 883

Rename file 787. 828

Re~lVed 846

Reset alarm time 763

Reset disk 729

Reset hard disk 736, 737, 746

Reset input buffer and then input 780

Reset mouse driver. 882, 899

Resident commands 51

Resident interrupt driver 373, 391, 675,

679

Restore mouse status 893,894

ROM BASIC 222, 715/916

ROM cartridges 18

ROM-BIOS 221,254,905

Root directory 202

RS-232card 330,916

Scan code 360,575,916

Scan lines 877

Screen border color 865

Screen controller 14

Screen refresh 879

Scrolling 859

Search directory 768

Search for match (FCB) 783-784

Sector 54,916

Sector interleaving 326

Segment address 8,903

Segment descriptor 338

928

Abacus Index

Segment register 6,8,42,916

Segmented address 8

Segread 40

Select color palette 723

Select Current Drive 781

Select current display page 719

Select drive 781

Select palette 723

Send Character 775

Send character (BIOS printer) 385

Send data to block device 816

Send data to character device 815

Send file to print spooler 847

Sensegraphic pixel 724

Sequential read 785

Sequential write 786

Serial interface 73,330,751

Serial interface functions 73,76,330

Serial port 751

Set <Ctrl><Break> flag 800

Set alarm time 762

Set allocation strategy 831

Set clock count 760

Set country 804

Set cunent directory 805

Set date in realtime clock 762

Set disk type 304

Set display page 233

Set DTA address 788

Set file attributes 812

Set file date and time 829

Set flag after time interval 752

Set graphic pixel 237, 724

Set mouse display page 622

Set mouse event handler 888

Set mouse hardware interrupt rate 897

Set mouse pointer display page 897

Set mouse sensitivity 896

Set pointer shape (text mode) 887

Set printer setup 836

Set random record number 792

Set realtime clock 761

Set system date 797

Set system time 797

Set Verify flag 798

Setting 333

Scan 461

Shell 907

Signal controller 460

Single step 667

Single step interrupt 710

Small registers 7

Software interrupt 22,916

SORT 132

Sound 447451

Sound demonstration program 451

Special keys 358

Stack segment 11

Standard input device 917

Standard output device 917

Status register 503,564,575

STI 23,917

Stop bits 331,332

Subdirectory access 767

SUBST 212

Support chips 13

Switch to protected mode 755

System configuration 292

System Request 754

System request 754

Teletype output 235

Temporary file 834

Terminate address 843

Terminate and Stay Resident (TSR)

407,846

Terminate program 142, 767, 773, 825

Terminate with return code 825

Test for changeable block device 818

Test for local or remote drive 818

Test for local or remote handle 819

Text cursor emulation 879

Text mode 458

Time 395, 759-763, 768, 797, 829

Time and date 767

Time measurement 54, 336, 395

Time-out error 333,384,917

Timekeeping 395

Timer 14,448,673,917

TPA-see Transient Program Area

Trace mode 668

Traditional input/output functions 74

Transfer holding register 333

Transfer shift register 333

Transient commands 51

Transient Program Area (1PA) 119,903

929

Index PC System Programming

Transmit characters 334
TRAP bit 710
Truncateflle 806
TSR 846TSR programs 407
Turbo C Compiler 45,416
Turbo Pascal string 38
Typematic 577-579

UART 332
Undocumented OOS structures 208
Unftltered character input without echo

777
UNIX 54, 70, 84, 196
Upwardly compatible 903
User interface 617

Verify disk 732
Verify flag 798, 828
Verify sector 326, 740
Vertical synchronization signal 483
VGABIOS 254
VGA character generator 263
VGA Interrupts:

Interrupt lOH, function lAH 881
InterruptlOH, function lOH

866-871
Interrupt WH, function IIH

sub-function 04H 874-876
Interrupt lOH, function 12H

sub-function 31H 878-879
VGA video modes 255
Video cards 14,457
Video controller 458
Video controller registers 472
Video functions 713
Video Graphics Array (VGA) 254, 458
Video mode 231, 856
Video page 908
Video RAM 458, 482, 856
Video table 764 715
Virtual memory 4,917
Volume 917

Wait 754
Wildcards 96
Woo 16
Word length 331,332
Write 163

Write character 722, 757, 861, 864
Write character/attribute 721, 860
Write character/color 861
Write to disk 731
Write to flle 809
Write with verify 163

XENIX 196,687

930

Companion Diskette

PC System Programming

Companion diskettes

For your convenience, the program listings contained in this book are available on
two IBM 5 1/4 inch floppy diskettes. You should order the diskettes if you want to
use the programs but don't want to type them in from the listings in the book.

All programs on the diskettes have been fully tested. You can change the programs
for your particular needs. The two-diskette set is available for $19.95 + $2.00 for
postage and handling withing the U.S.A. ($5.00 foreign orders).

When ordering, please give your name and shipping address. Enclose a check,
money order or credit card information. Mail your order to:

Abacus

5370 52nd St. S.E.

Grand Rapids, MI 49512

Or for fast service, call 616/698·0330

For orders only call 1·800·451·4319

931

	Table of Contents
	Chapter 1 -Introduction
	Chapter 2 -The PC's Brain
	Chapter 3 -Introduction to Interrupts
	Chapter 4 - Using Interrupts from High Level Languages
	Chapter 5 - Using Interrupts from Assembly Language
	Chapter 6 - The Disk Operating System
	Chapter 7 - The BIOS
	Chapter 8 - Terminate and Stay Resident Programs
	Chapter 9 - Sound on the PC
	Chapter 10 - Accessing and Programming the Video Cards
	Chapter 11 - Accessing and Programming the AT Realtime Clock
	Chapter 12 - Keyboard Programming
	Chapter 13 - Expanded Memory Specification
	Chapter 14 - Mouse Programmingj
	Chapter 15 - Determining ProcessorTypes
	Chapter 16 - PC Hardware Interrupts
	Chapter 17 - Hard Disk Partitioning
	Chapter 18 - The PC Ports
	Chapter 19 - Interaction between Keyboard, BIOS and DOS
	Appendices
	Appendix A - Important Hardware Interrupts
	Appendix B - BIOS Interrupts and Functions
	Appendix C - DOS Interrupts and Functions
	Appendix D - EMM Functions
	Appendix E - EGA/VGA BIOS Functions
	Appendix F - Mouse Driver Interrupts
	Appendix G - Introduction to Number Systems
	Appendix H - Glossary of Terms
	Appendix I - Scan Codes
	Appendix J - ASCII Character Set
	Index
	Companion Diskette
	[rear cover]

