Developer's Series

System
Programming

An in-depth reference
for the DOS programmer

Abacus

A Data Becker Book

PC ;

SYStem "
Prog rammlng

for developers [

Michael Tischer

A Data Becker Book
Published by

Third Printing, April 1990

Printed in U.S.A.
Copyright © 1989, 1990 Abacus
5370 52nd Street, S.E.
Grand Rapids, MI 49512
Copyright © 1988, 1989, 1990 DATA BECKER GmbH
Merowingerstrasse 30
4000 Duesseldorf, West Germany

This book is copyrighted. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, without the prior written permission of Abacus or Data Becker,
GmbH.

Every effort has been made to ensure complete and accurate information concerning the
material presented in this book. However, Abacus can neither guarantee nor be held legally
responsible for any mistakes in printing or faulty instructions contained in this book. The
authors always appreciate receiving notice of any errors or misprints.

This book contains trade names and trademarks of many companies and products. Any
mention of these names or trademarks in this book are not intended to either convey
endorsement or other associations with this book.

PC-DOS, IBM PC, XT, AT, PS/2, OS/2 and PC-BASIC are trademarks or registered
trademarks of International Business Machines Corporation. Ventura Publisher is a
trademark or registered trademark of Xerox Corporation. GEM and CP/M are trademarks or
registered trademarks of Digital Research Corporation. Microsoft Works, Microsoft Quick
C, Microsoft Windows, MS-DOS, XENIX and GW-BASIC are trademarks or registered
trademarks of Microsoft Corporation. Lotus 1-2-3 is a trademark or registered trademark of
Lotus Development Corporation. dBASE is a registered trademark of Ashton-Tate, Inc.
Sidekick, Turbo C and Turbo Pascal are trademarks or registered trademarks of Borland
International. UNIX is a registered trademark of Bell Laboratories. Mickey Mouse is a
registered trademark of Walt Disney Corporation.

Library of Congress Cataloging-in-Publication Data
Tischer, Michael, 1953~

PC system programming for developers / Michael Tischer.
p. om.

“A Data Becker book."

1. System programming (computer science) 2. Microcomputers-Programming. 1I. Title
QA76.66.T57 1989 005.265--dc20 85-18350

ISBN 1-55755-036-0 (book and disk set)

Table of Contents

21
22
23
2.3.1
2.3.2
233
23.4
235
2.3.6
2.3.7
2.3.8
24

3.1
32
3.2.1
322
33

4.1
4.2
43

5.1
52

6.1
6.2
6.3

INTOAUCHON «..eviviriiiiiiciiieeereeerieitntaeanenesreseeesesststeseessesssessnsssesesersasssssssaonns 1
The PC'S BIAIN.....oociveerieeeiiieiiieieneeeteeeereesensesosssessssssssosssssssssnessansenrsanns 3
BO88 REGISIEIS ... vevururirereririiieeerriisieertrsiereerersasseessrssnenesssrssesssnnnssssessnnsss 6
Segment and Offset AAAressing..........ccevvvuieieiererieereeeerneneneneeere e eerersersenensess 8
The CPU Support Chips........cueurviveieeeeiererieeereaesesssssessonannns SOOTOTURRRPRRN 13
The DMA CONIOLIET...........cuuuiuirriiiiririrereeeeiessnsssessscssoassssssssssssssssseeseesenes 13
The Interrupt CONIOLIETeiiiirieerieirciee e erreeeeeanruessaerennesssenneesesserannens 13
The Programmable Peripheral Interface..........cccceceeeveeeervneneneeneesueceeesersnnenns 13
ThE CLOCK ..ceveuiiieneeeeieeeiiinititt it creeeeeeeeeeeeeeereeestnesaesseseseeseeeeneansssssnsnsesans 14
TRE THMET «cevviitiiiieire ittt ceeeseeeeeeeeeeseaeaaasesseesseeeeaaneansnsssssssesans 14
The Screen CONMIOIIET..........cuevieiieiiiieeeieirireereeeeeiererenesnearesssessssssneessessenns 14
The Disk CONMIOIIETveiirrrriiririrrereieeeereerereeeneeseseesssesossesssssossssssenses 14
The Math Coprocessors (8087/80287/80387)c.ccvevuiuueerereererereenenncnsenennes 14
The CPU and MEMOTYcccuuuireirieneeiieeernniireeeerenoseresananessssnsessssansssssssssases 16
Introduction t0 INEITUPLSceeiieeierieiieecreereeeereeereneananeseneeserereeneassnnnsnense 19
The Structure of the Interrupt Vector Tableccceeevereeueveeeeeeneeneseeeeeaeeees 20
INEEITUPE TYPES ... iiiueiiiiireiiceieireeeeeere e eeeetentesseansseessananssserensssssasaennns 22
SOftware INEITUPLS..........ueurreeereeeereeieeeereaeiesesseesssenssssssssersesssesssssssserssesnans 22
Hardware INECITUPLS........ciivveiiiceiiereciricestee e s sneeeeeesseessesnneaeeesnsnnessessneees 22
Interrupts at @ GIANCe............ccoeeiiieiiniirirecece e eeeeceeeeeeaere e ee e e eeeeneanaasaneaans 24
Using Interrupts from High Level Languagescocovveeeieerreeienressenionnnes 27
Interrupt Calls from BASIC...........coieiiieiiiiicicriiiiiiirereereeereeenssesesesssaeenes 28
Interrupt Calls from Turbo Pascalcuueeeeeeiiiiiiiiiieiiiiereeeeeeeneneaeeneneenens 36
Interrupt Calls from C...........coiviiiiiiiiiiiiieirieereeeeeeereeresieersrersresassssrseseened 40
Using Interrupts from Assembly Languagecccoeeerieeeivennenmmennnanoeermmeeneed 47
Using Assembler Macro FUNCHONS.cccccvvrrveveenevnerirneeesssreseesssenecssnseesseed 48
A SAMPIE MACTO...cciiiiiciiiieiiciceeeiecccneeeereeeeeeeenneesessnaeaeessrssnsesssesannaaaans 49
The Disk Operating SYSIEM.......c.uuuueererueeireerernnieeeernnersessessnsseessssssesssssansen 51
A Short History of DOSccociiiiiiiiiiicicrcece i ceeeeeeneereenneesseeeeee e srsssanens 52
Internal Structure 0f DOScuiiiiiiiiiiiiiiieiicecreeceieecicssesrse e srsseessesessesaes 56
Booting DOS ...ttt sreeece e e ee et ae e aesssasn e ssseesenasaanansrnanes 59

Table of Contents PC System Programming

6.4 COM and EXE PrOZIAMSccvveeeeireeeesreeereiseeessesesesessssesssssssessssaesssssned 60
6.4.1 COM PIOZIAIMS.......ueeerureerreienrieerrecssteesresssseessseesssessssessssaesssesssssesssssesnns 62
6.4.2 EXEPIOZIAMSccccueiriiienrreeiireentrecnieeesneesssseenseeesssesseesssseesssesssesennesesnnd 66
6.5 Character Input and Output from DOScccveeiieerieeenieeereeereveeeeeesneeens 70
6.5.1 Handle FUNCHONS.cccceeeueeeieiecrrecteeeeeectnnecsecesteeesneeesssseessessssaeesesennns 70
6.5.2 Traditional DOS FUNCLONS............cocvveeiueeiiireeeeinreeesreesessnsseeessssessessnens 74
6.6 File Management in DOS..........cccceeeeeeeereinreneneeseeseessesssssessssssssessessesseseas 84
6.6.1 Handle FUNCHONS.ccccceecuueeeuieeiteecaeeeeeeersreesseeessressaeenssseesssesssaessesnnns 84
6.6.2 FCB FUNCHOMS.....c..ccuetirieierrereeerieseesseseesesseesessessessessassassenssssansessassensas 86
6.7 Accessing the DOS DITECIOTYceeeeerevvereeeeersrsreerseenssssseseseesesssssesessssansnns 92
6.7.1 Searching for Files using FCB FUNCHONS............ccceeeueeereeesiueeeseeesneesseeenand 94
6.7.2 Searching for Files using Handle FUNCLONScccovveerveerieeeeueeseeeesueennned 95
6.8 The EXEC FUNCLON.......cocierteereererenreererteeesessessseeseeseessesssensessasssessesnes 110
6.9 Memory Allocation from DOS..........cccccvueiiieiiinreeieiciiirereeeeeesisnseesseeenns 119
6.10 DOS FIlleIS...ccuuiieurereiieniiieeitreenteeeieeesteeesseeesseeessseesseesesseesssessssesssneans 132
6.11 <Crtl><Break> and Critical Error INtEITUPLSceceveeeeeeeireeesureeesseeseennns 142
6.12 DOS DEVICE DIIVETS. ...ccccccureeeerereeeerreeecreeeessreeecesaeessssesesesssassssssessennnns 148
6.12.1 Character DEVIiCe DIIVETScccveeeeiireeeereeeriieeeeisseecissaeeesessessesssssessnnes 150
6.12.2 BlOCK DEVICE DIIVETS.....ccuvtereerreereeireeeereeeresreeseessenessssaeessessessnssassassenes 151
6.12.3 Structure 0f a DEVICE DIIVET..........cveeeeeeriivuereeeersrnrereeesssssreeeseesssssesseesens 151
6.12.4 Device DIiVer FUNCLIONS.........ccceevveeierrenrreneervesseessesssensaesssessesssessessssssnes 155
6.12.5 CIOCK DIIVET......eeeieeuriiiiiiieeeirieeeeiereeeisreseesreecesssesesssssseensseesessnsessssssnes 168
6.12.6 Device Driver Calls from DOS...........cccoocvreirrreiiirrreeiisrreeenrereeeesseesensnnes 169
6.12.7 Direct DEViCe DIIVET ACCESS.......veveerivreeerireeeisreeeesssereesssaeessssreesssssessessnes 170
6.12.8 Tips on Developing Device DIVETS...........eecerirveeerrrvreeriseeeeesreseesesseesesenes 172
6.12.9 Driver EXamPIES..........ccceeveeeeierieeeiireeiinieeeisssieiessreesssaeesssssrsecssssessssnnes 172
6.12.10 CD-ROMS....uuuviiriiiiniieiiieecreeeesteeeesseeeseeeesseecesseesssssssssesesssssesssesssens 192
6.13 DOS MaSS SLOTAZE.....ccceerruiireiereeirreeireinreeesseesseeessesseesssessssssssessssessessssens 196
6.14 Tips on Compatibility between COMPULETS..........c.cvvererrerererrerereeresssserescnes 206
6.15 Undocumented DOS SHUCIUTES...........eecrrvrreerrrreessrvrreecarrecssseseessssesesnnnsnes 208
6.16 DOS 4.0.....uiiiiiiiieeieiitie e creeete e e eeerae e aee s s s e esae e s aeesaeeeraenans 213
7. The BIOS ...ttt et e e eeeaeeeesreecessneesessssae s ssaesessnsasenns 219
7.1 BoOting the SYSteML.........cceveriiirriiirieiiireeeiessiesseeesaeeoeesseessseessseessenses 221
7.2 Determining BIOS VEISION...........cccieeiiiuurreieiiiiireneeeeninieereeeeiessnssseesessnns 223
7.3 Determining the PC TYPE......cocevieierrereerieerrieesecseesseeseesseessesseeseesasssens 224
7.4 BIOS Screen Output FUNCHONS........cccoeeveeruerrenreesenreesesseessessessessassessesssenns 226
7.4.1 The EGAand VGA BIOS..........cocovvrreeeeeeeeinereecinreecnsresessssreeensnsesesssnsans 254
7.5 Determining System Configuration using BIOSccccoveeeeerceneerereneeennns 289
7.6 Determining Available RAM using the BIOS..........cccccceeveveereveresereesenenenes 291
7.7 Accessing the Floppy Disk from the BIOSccuvveeeeeeeeeereeeeeieeeeeseeseennnns 297
7.8 Accessing the Hard Disk from the BIOS............ovueevmieieeeeieeeeeeieeneeeenensnsnsnes 323
7.9 Accessing the Serial Port from the BIOSccceeeuvveeiiuveeeenveeeeenseeeenneens 330
7.10 The Cassette INEITUPL........ccevvrerureerereenreeerueeseeeeesaeesseeessesessessssaesseesnnns 336
7.11 Accessing the Keyboard from the BIOScuvveeeeeeeieeeeeeeieeeeieeeeereeesennns 358
7.12 Accessing the Printer from the BIOScccoovvuvrviieieiviieneeeeeceeerenreereesens 384

iv

Abacus

Table of Contents

7.13 Reading the Date and Time from the BIOS.......c.cceveereerereeerereerreesereserennes 395
7.14 BIOS Variables.....ccccceciiviniiniriiieicriiiiieesressisessesessssesssessssesssessssssessasns 398
8. Terminate and Stay Resident Programs..........cccooceeesscncssecsesssnsnssesiesnsaes 407
9. Sound 0N the PC........eiiiiiiiiiiiiiieicccceecettireeieeeieeeeeeeeeseeseeesese s enssnssenes 447
10. Accessing and Programming the Video Cardscceeeeeeeeeeeeeconiennnnnnnnnnens 457
10.1 Anatomy of @ VIdeo Cardccoevvvvrvrurirniniieeeeeeeerneeeererensnneceeeeseseassens 460
10.2 The IBM Monochrome Card..........ccccoeevuerrrereeeruersuecsuesssessaessaessesssssseenens 469
10.3 The Hercules Graphic Card...........cceeeververrreerenrenveresearsesessesessessesensaeeseens 482
10.4 The IBM ColOr Card........ccceeeeveruererunreneeigreesesseseesessenmssesessesesssssssessssessas 497
10.5 EGA and VGA Cards.........cveveeeeiivereeeeiiniieeeessssivessecesssssssesseerssesssesseses 519
10.6 Determining the Type of Video Card........cccoeeereeerverereereeresenseseesesseersons 537
10.7 Accessing Video RAM from High Level Languagesccceeevereeesruveneesnne 554
11. Accessing and Programming the AT Realtime ClocK...........cceeeeeveeereeeeiennnnen 563
12. Keyboard Programming.............ccceeeeevivveeeeeesesssssnsessesssesssnssseesessossesssnsans 575
13. Expanded Memory SpecifiCationuueeeeiieieieeereerrrennenennieseeeseesseseennens 597
14. Mouse Programming.........ccceeeeeeiieeeeerereresreseneeeeeesseseeeseessssssnnnssssessssaesnes 617
15. Determining ProCeSSOr TYPES....ccveeeerereeririrrnrrrnriesserereerereressssssisseeeesesesens 653
16. PC Hardware INLEITUPLSceevvvrrirereniiiiriseeeeeserrrnnnsensnnnnseneeseesessnsnssnnnnnns 667
17. Hard Disk Partitioning........c.cccceeeereerisceurerieeeereiereseseeeeseesesessesesseessennnnens 687
18. THE PC POILS.....ccueeiiittniiriieeieeeeeee e e creeeesenervvassaesaeeeressaesesessanenaens 699
19. Interaction between Keyboard, BIOS and DOS..........coeeveeeiieceiirecicecenvnes 701
ADPENAICESovvveiiiiiiiieicee e sttt cr s tree e e ee s ebreees e sbeeesessennssareaeessesnrsseaaeessnanes 709
A. Important Hardware INLEITUPLS.......cceeveereereireriererreessesessessessersessnssaessessens 710
B. BIOS Interrupts and FUNCLONS.......c.ccveeirereereesiersersersersesseesersesseeseersessans 713
C. DOS Interrupts and FUNCLONScvvuvetuiiieriieneeerevinenreseseeeeeeeseeeresesens 766
D. EMM FUNCHONS.....eioeeiiseeiereinrnnrrrereeeeeseseeeeseesssssssssssssssnnnnssssnsssssesssnsnes 849
E. EGA/VGA BIOS FUNCHONS......ccceevireiieeeiiiiiierennnnnsnsasseseeesessesssessseseensses 856
F. MoUSE DIVEr INIEITUPLScevvvvrireeeiiiiiieieerrenriieeerraneeeerrranseeesesnesssesennnses 882
G. Introduction to NUmber SySIEmS........cccvververeecrerisreseresensecsoreeseesesnesasenees 900
H. G1OSSATY Of TEeIMS...cereuiireirierireerreeesreessveessseesssaeessseessssesssssesssssenssssnenses 903
L. SCAN COAES...uviiiiiiiiiiieireiiriereereeeeereeeeseerrreeeesessnssnseeesssssssnesessssnssnnes 918
J. ASCII CharaCter SeL.......uvuuuirererierieeieeeieisseeressnsesssnssssssssermmsreresessesearansans 919
INABX ..ot ittt et eeee e e e e e veae bt b eeeeseeseaeae e seaeaeeerann 921

Chapter 1

Introduction

A few years ago, my computer was a small home computer. When I became
interested in the IBM PC, I had to learn a lot of new things. I learned about MS-
DOS and became familiar with 8088 assembly language. I soon reached a point
where I started developing commercial PC programs in partnership with my friend
Axel Sellemerten. All of this happened some time ago, but I still clearly
remember sitting at my desk, looking through dozens of PC books and technical
manuals, trying to find a critical piece of information.

These books and manuals were expensive and hard to find. Besides, none of them
covered all aspects of the PC. Some books tell you about PC hardware or the
BIOS or DOS. I could never find a book that dealt with the PC as a total system.

No single book was able to provide me with a complete system overview.

This book is the result of my experience with all of these references. The three
main areas of the PC (hardware, the BIOS and DOS) are combined in this book
from a software developer’s point of view. This book was written to serve as an
instruction book as well as a reference manual. It is not, and was never intended to
be, a book for the beginner. The book assumes that you’re familiar with MS-DOS
and are able to program in one of the four most popular PC programming
languages (machine language, BASIC, Pascal or C).

Organization

The book is divided into five parts. Part 1 (Chapters 1-5) gives an introduction to
the PC’s internal components. Part 2 (Chapter 6) describes the Disk Operating
System (DOS) and Part 3 (Chapter 7) describes the Basic Input Output System
(BIOS). PC hardware that is not part of the central processor is discussed in Part 4
(Chapters 8-18). Part 5 (Chapter 19) describes the interaction between these
components and the keyboard. The book concludes with a large reference section
(Appendices) containing all functions of DOS and the BIOS, among other things.

To understand the content of this book, you must first know something about the
different number systems used in computers. Readers unfamiliar with the binary

1

1. Introduction PC System Programming

and hexadecimal number systems should read Appendix G (Introduction to Number
Systems) before continuing.

Chapters 2 through 5 contain descriptions of PC microprocessors and interrupts. If
you’re an experienced assembly language programmer you can skip these chapters,
but you may learn something new by reading them anyway.

BASIC, Pascal and C programmers should read Chapters 2 and 3 and should work
through the subsections in Chapter 4 devoted to your preferred language. Chapter 5
is devoted exclusively to assembly language programming and may be skipped.

Chapter 2

The PC's Brain

While working with the PC, many users have wondered about its ability to solve
complex problems. Users often attribute these abilities to the software or operating
system. The fact is, hardware is as important as the software.

Microprocessor

Intel’s

The microprocessor is the brain of the PC. It understands a limited number of
machine language instructions and processes or executes programs in this machine
language. These instructions are very simple and can’t be compared to commands
in high level languages such as BASIC, Pascal or C. Commands in these
languages must be translated into a large number of machine language instructions
that the PC’s microprocessor can then execute. For example, displaying text with
the BASIC PRINT statement requires the equivalent of several hundred machine
language instructions.

Machine language instructions differ for each microprocessor used in different
computers. When you hear someone talk about Z-80, 6502 or 8088 machine
language, these terms refer to the microprocessor being programmed.

80xx series

The PC has its own family of microprocessor chips, all designed by the Intel
Corporation. The figure on the next page describes the Intel 80xx family tree.
Your PC may contain an 8086, an 8088 (used in the PC/XT), an 80186, an 80286
(used in the AT) or even an 80386 microprocessor. The first generation of this
group (the 8086) was developed in 1978. The successors of the 8086 were different
from the original chip. The 8088 is actually a step backward since it has the same
internal structure and instructions of the 8086, but is slower than the 8086. The
reason is that the 8086 transfers 16 bits (2 bytes) between memory and the
microprocessor at one time. The 8088 is slower since it transfers only 8 bits (1
byte) at one time.

2. The PC’s Brain PC System Programming

Multiprocessing

The three other microprocessors of this family are improved versions of the 8086.
The 80186 offers auxiliary functions. The 80286 has additional registers and
extended addressing capabilities. The 80286’s biggest advantages over its
predecessors are its multiprocessing and virtual memory capabilities.
Multiprocessing allows several programs to execute at the same time, such as
compiling a program while using a word processor. This capability, which is
based on the fast switching between the individual programs, can also be
implemented through software (e.g., Microsoft Windows®), but working directly
through the processor is more efficient.

Virtual memory

Virtual memory means that a program appears to use much more memory than is
available in the computer’s RAM. Portions of the programs or data which don’t fit
into memory are temporarily stored on the mass storage device (floppy or hard
disk). The computer loads these sections into RAM as needed. The CPU and the
operating system share the task of virtual memory management. Earlier versions
of MS-DOS don’t support the multiprocessing or virtual memory capabilities of
the 80286, so most AT computers aren’t working to their full potential.

4 80486
20— /C::i
8+ 80386 _9
Relative 80186
power
0188
|] 8086
i
gogo A8
JIJIIllIIIIIIIII’
747576 7778 79 80 81 8283 84 85 86 87 88 89 90
Year

The Intel 80xx processor family

Abacus

2. The PC'’s Brain

The 80386 represents current state of the art technology. It has a more extensive
instruction set than the 80286, and offers additional memory protection features.

These processors are all upwardly compatible with software. This means that
machine language programs developed for the 8086 can be executed on the other
processors of this series. On the other hand, a program written for the 80386 may
not run correctly on the 80286 or the 8088, because instructions available on the
80386 may not be available in the earlier processors.

Throughout this book the PC processor is designated as the 8088, even though
your PC may use a different processor.

2. The PC’s Brain

PC System Programming

2.1

8088 Registers

Registers are memory locations within the processor itself, instead of in RAM.
These registers can be accessed much faster than RAM. In addition, registers are
specialized memory locations. The CPU performs arithmetic and logical operations
using its registers.

AX

Common Registers
1587 0

AH | ALW
BX

BASE

COUNT

DATA

ACCUMULATOR

Segment Registers

DS |DATASEGMENT
ES |EXTRASEGMENT
cs |CODESEGMENT
SS |STACK SEGMENT

DESTINATION INDEX

SOURCE INDEX
STACK POINTER
BASER POINTER

Program Counter

IP

INSTRUCTION
POINTER

15

Flag Register

o[p[I[T[S[zZ

1110 9 8 7 6

8088 registers

All registers are 16 bits (2 bytes) in size. If all 16 bits of a register contain a 1,
this is the largest number that can be represented within 16 bits. This number is
the decimal number 65535. Therefore, a register can contain any value from 0 to

65535.

Register groupings

As shown in the above figure, registers are divided into four groups: common
registers, segment registers, the program counter and the flag register. The different
register assignments are designed to duplicate the way in which a program
processes data—which is the basic task of a microprocessor.

The disk operating system and the routines stored in ROM use the common
registers a great deal, especially the AX, BX, CX and DX registers. The contents
of these registers tell DOS what tasks it should perform and which data to use for

execution.

Abacus

2.1 8088 Registers

These registers are affected mainly by mathematical (addition, subtraction, etc.) and
input/output instructions. They are assigned a special position within the registers
of the 8088 because they can be separated into two 8-bit (1-byte) registers. Each
common register may be thought to consist of three registers: a single 16-bit
register, or two smaller 8-bit registers.

bit 15 bit 8 bit7 bit 0
AH AL
bit 15 bit 0
AX register

The registers have designators of H (high) and L (low). Thus the 16-bit AX
register may be divided into an 8-bit AH and an 8-bit AL register. The H and the L
register designators occur in such a way that the L register contains the lower 8
bits (bit O through 7) of the X register, and the H register the higher 8 bits (bits 8
through 15) of the X register. The AH register consists of bits 8-15 and the AL
register of bits 0-7 of the AX register. However, the three registers cannot be
considered independent of each other. For example, if bit 3 of the AH register is
changed, then the value of bit 11 of the AX register also changes automatically.
The values change in both the AH and the AX registers. The value of the AL
register remains constant since it is made of bits 0-7 of the AX register (bit 11 of
the AX register does not belong to it). This connection between the AX, the AH
and the AL register is also valid for all other common registers and can be
expressed mathematically.

You can determine the value of the X register from the values of the H and the L
registers, and vice versa. To calculate the value of the X register, multiply the
value of the H register by 256 and add the value of the L register.

Example: The value of the CH register is 10, the value of the CL register is
118. The value of the CX register results from CH*256+CL, which
is 10*256+118 = 2678.

Specifying register CH or CL, you can read or write an 8-bit data item from or to
any memory location. Specifying register CX, you can read or write a 16-bit data
item from or to a memory location.

2. The PC'’s Brain PC System Programming

2.2

Segment and Offset Addressing

One of the design goals of the 8088 was to provide an instruction set that was
superior to the earlier 8-bit microprocessors (6502, Z80, etc.). A second goal was
to provide easy access to more than 64 kilobytes of memory. This goal was of
special importance since increasing processor capabilities allow programmers to
write more complex applications, which in turn require more memory. The
designers of the 8088 increased the memory capacity or address space of the
microprocessor by more than 16 times to one megabyte.

Address register

The number of memory locations which a processor can access depends on the
width of the address register. Since every memory location is accessed by
specifying a unique number or address, the maximum value contained in the
address register determines the address space. Earlier microprocessors used a 16-bit
address register enabling access to addresses from 0 to 65535. This corresponds to
the 64K memory capacity of these processors.

To address one megabyte of memory the address register must be at least 20 bits
wide. At the time the 8088 was developed, it was impossible to use a 20-bit
address register, so the designers used an alternate way to achieve the 20-bit width:
the contents of two different 16-bit numbers are used to form the 20-bit address.

Segment register

One of the numbers is contained in a segment register. The 8088 has four segment
registers. The second number is contained in another register or in a memory
location. To form a 20-bit number, the contents of the segment register are shifted
left by 4 bits (thereby multiplying the value by 16) and the second number is added
to the first.

Segment and offset addresses

These addresses are the segment address and the offset address. The segment address
is formed by a segment register and indicates the start of a segment of memory.
During the address formulation, the offsct address is added to the segment address.
The offset address indicates the number of the memory location within the segment
whose beginning was defined by the segment register. Since the offset address can
never be larger than 16 bits, a segment can be no larger than 65,535 bytes (64K).

Segmented address

The segmented address results from the combined segment and offset addresses.
This segmented address specifies the exact number of the memory location which
should be accessed. Unlike the segmented address, the segment and the offset
addresses are relative addresses or relative offsets.

Abacus

22 Segment and Offset Addressing

151413 210 BIT Segment
0]0]0]0
Logical address
address
N 1 0
(16 bits 151413 2 Offset
address
— BIT
[
Physical 14,5, ...210
address
(20 bits)
BIT

Memory structure using segment and offset addresses

A segment cannot start at every one of the million or so memory locations.
Multiplying the segment register by 16 always produces a segment address that is
divisible by 16. For example, it’s not possible for a segment to begin at memory
location 22.

Combining the segment and offset addresses requires special notation to indicate a
memory location’s address. This notation consists of the segment address in four-
digit hexadecimal format, followed by a colon, and the offset address in four-digit
hexadecimal format. For example, a memory location with a segment address of
2000H and an offset address of AF3H would appear in this notation as 2000:0AF3.
Because of this notation, you can omit the H suffix from hexadecimal numbers.

2. The PC’s Brain PC System Programming

10

26008
25FFFH
25FFEH

N%\-\ Offset

17105H address = 11G4H
17104H 4

17103H

N — Offset
\/\

16001H

_ o 16000H
Segment 15FFFH

address = 1600H

1
0

Segment

sossaippe Alowaw pajuawaldy|

Segment and offset address

The 8088 has four segment registers, which have special roles in the execution of
an assembly language program. There are four registers to accommodate the basic
structure of any program. A program consists of a set of instructions (code). There
are also variables and data items that are processed by the program. A structured
program keeps the code and data separate from each other while they reside in
memory. Assigning code and data their own segments conveniently separates
them.

Each needs a segment address and a segment register. The CS (Code Segment)
register uses the IP (Instruction Pointer) register as the offset address. The CS then
determines the address at which the next assembly language instruction is located.
The IP is also called the Program Counter. When the processor executes the
current instruction, the IP register is automatically incremented to point to the
next assembly language instruction. This ensures the execution of instructions in
the correct order.

Like the CS register, the DS (Data Segment) register contains the segment address
of the data which the program accesses (writing or reading data to or from

Abacus

22 Segment and Offset Addressing

memory). The offset address is added to the content of the DS register and may be
contained in another register or may be contained as part of the current instruction.

The SS (Stack Segment) register specifies the starting address of the stack. The
stack acts as temporary storage space by some assembly language programs. It
allows fast storage and retrieval of data for various instructions. For example,
when the CALL instruction is executed, the processor places the return address on
the stack. The SS register and either the SP or BP registers form the address that is
pushed onto the stack.

The last segment register is the ES (Extra Segment) register. It is used by some
assembly language instructions to address more than 64K of data or to transfer data
between two different segments of memory.

ES:FFFF [7
ES:FFFF
%/// Csirer (2
ES: 0000 A . ;17!171’11111111
CS:FFFF Egigggg
CS:0000
SS:FFFF
| 55:FFFF
55:0000 DS:FFFF ooy
DS:FFFF \QQ §5:0000 \Q§§§:<§§i;§
§£:35§§§;;:\ DS: 0000 AN
DS: 0000 [
Non-overlapping Overlapping
segments segments

Overlapping and non-overlapping segments

As the figure above shows, two segment registers can specify areas of memory
which overlap, or are completely different from one another. In many cases, a
program doesn’t require a full 64K segment for storing code or data. You can
conserve memory by overlapping the segments. For example, you can store data
immediately following the program code by setting the DS and CS registers
accordingly.

11

2. The PC’s Brain PC System Programming

12

The flag register is of special importance. Various bits in this register indicate or
signal the special conditions which may occur during execution of an assembly
language instruction. For example, if an arithmetic operation results in a negative
number, the processor sets the S (sign) flag to 1 to indicate this change.

The C (carry) flag is set to 1 if the sum of two 8-bit numbers cannot be
represented as an 8-bit number.

As the figure above shows, the processor doesn’t use all 16 bits of this register.
The unused bits normally contain the value 0.

This ends our short trip into the PC’s brain. If you didn’t quite follow some of
these concepts, the sample application programs in the sections on the BIOS and
DOS functions should help you understand.

Abacus

2.3 The CPU Support Chips

2.3

2.3.1

2.3.2

2.3.3

The CPU Support Chips

The microprocessor is the computer’s brain, and is probably the most intelligent
component in a computer system. However, it cannot supervise all the computer’s
functions on its own. For this reason, other components called support chips
perform many other tasks, leaving the processor to concentrate on its primary task
of executing assembly language programs.

These support chips communicate with and control external peripherals such as a
disk drive or the screen display.

Some of these support chips can be programmed using the assembly language
instructions IN and OUT. Since the programming of most support chips is very
complex, we recommend that you leave this up to DOS, unless you have a
complete understanding of the structure and operation of these chips.

The following sections define the most important support chips in the PC.

The DMA Controller

This chip gets its name from the acronym DMA which stands for Direct Memory
Access. This chip can directly write data to or read data from RAM. The DMA
controller performs disk input/output operations, moving data from RAM to disk
or from disk to RAM. This relieves the processor of this task and accelerates
program execution.

The Interrupt Controller

Interrupts are signals from individual components of the system to get the CPU’s
attention and to initiate certain tasks. Several interrupts or requests for services
from different system components can be outstanding at one time. These requests
are initially handled by the interrupt controller, which passes them on to the CPU.
It assigns priority to every interrupt request according to its source and passes the
request with the highest priority to the CPU. The interrupt controller in the
PC/XT can process up to 8 interrupt requests at the same time. ATs require more
power, so they use two interconnected interrupt controllers which can process up
to 15 interrupt requests simultaneously.

The Programmable Peripheral Interface

This chip provides a link between the CPU and the peripherals such as the
keyboard or an audio speaker. However, it only operates as a mediator, addressed by
the CPU for unit access and transmission of certain signals. You cannot bypass
the PPI for direct communication between the CPU and peripherals.

13

2. The PC's Brain PC System Programming

2.3.4

2.3.5

2.3.6

2.3.7

2.3.8

14

The Clock

If the microprocessor is the brain of the computer, then the clock could be
considered the heart of the computer. This heart beats several million times a
second (about 14.3 megaHertz) and paces the microprocessor and the other chips in
the system. Since almost none of the chips operate at such high frequencies, each
support chip modifies the clock frequency to its own requirements.

The Timer

The timer chip can be used as a counter and timekeeper. This chip transmits
constant electrical pulses from one of its output pins. The frequency of these
pulses can be programmed as needed, and each output pin can have its own
frequency. Each output pin leads to another component. One line goes to the audio
speaker and another to the interrupt controller. The line to the interrupt controller
triggers interrupt 8 at every pulse, which advances the timer count.

The Screen Controller

Unlike the chips discussed up until now, the CRT (Cathode Ray Tube) controller
is separate from the main circuit board of the PC. You’ll find this chip on the
video board which is mounted in one of the computer’s expansion slots. Even
though there are many boards that differ widely in their capabilities (monochrome
display, color display, etc.), all video boards are based on the 6845 CRT controller.
It produces a display on the monitor connected to the computer. The controller has
several internal registers which control the output of the display.

The Disk Controller

This chip is also usually located on an expansion board. It is addressed by the
operating system and controls the functions of the disk drive. It moves the
read/write head of the disk drive over the disk, reads data from the disk and writes
data to the disk.

The Math Coprocessors (8087/80287/80387)

The 8088, 80286 and the 80386 are not capable of performing floating point
arithmetic operations directly. There is a socket on the main circuit board of the
PC for adding a special math coprocessor. The PC/XT uses the 8087, the AT the
80287 and the new 80386 uses the 80387 coprocessor.

While floating point arithmetic can be performed using software routines, a math
coprocessor is up to 100 times faster. The 8087 and the 80287 can perform basic

Abacus

2.3 The CPU Support Chips

math functions such as addition, subtraction, multiplication and division, as well
as the trigonometric functions sine, cosine, etc. They can also compute square
roots of numbers.

In general, only a few application software packages support the math
COpProcessors.

15

2. The PC’s Brain PC System Programming

2.4 The CPU and Memory

While the chips described up until now are intelligent system components,
memory is a passive element. Data can be stored and later retrieved from memory.
Each memory location is used to store one byte (8 bits) of data. Memory locations
are identified by a unique address, starting from zero.

The support chips communicate with memory using a bus or path over which the
electronic signals travel.

Address bus

The address bus carries the number of the memory location to be accessed. The
signals on the bus represent a binary number whose value indicates the memory
location for access. Since only those memory locations represented on the address
bus can be accessed, the number which make up the bus lines determine the
number of addressable memory locations.

. The PC/XT has a 20-bit address l;us and can address a maximum of 2% (about 1

million) different memory locations. The AT has a 24-bit address bus and can
address more than 16 million memory locations.

Data bus

Once the bus knows the address of the memory location to be accessed, data can be
transferred between the individual chips and the memory location over the data bus.
The number of lines in this circuit determine how many bits are transferred to or
from memory simultaneously.

The PC/XT has 8 lines so it can transfer one byte at a time. However, since the
8088 is a 16-bit processor, 16-bit data must often be transferred. There aren’t
enough lines to transfer 16-bit data, so the system divides a 16-bit data item into
two 8-bit numbers. These two 8-bit data bytes are transferred one after the other
along the bus.

The 8086 and 80286 processors can transfer 16 bits simultaneously over their 16-
bit-wide data buses. This is one reason why the AT executes programs faster than
the 8088 processor. The 80386 processor can transfer 32 bits at a time.

Word storage

16

All members of the Intel 80xx processor family share the same method of storing
words (16-bit data) in memory. The lower numbered memory location contains
bits 0-7 (the low byte) and the higher numbered memory location contains bits 8-
15 (the high byte). For example, if you store the word 3F87H starting at address
0000:0400, memory location 0000:0400 accepts the low byte 87H and memory
location 0000:0401 accepts the high byte 3FH.

24 The CPU and Memory

Two details were left out of the discussion of memory so far:

1.) The processor doesn’t care if a memory address is located in a RAM chip
or a ROM chip. The main difference between RAM and ROM lies in the
fact that you can’t write or store new data into ROM (hence its name:
Read Only Memory).

2) The addressable space of the microprocessor (1 megabyte) is allocated into
16 storage segments of 64K each. This is an almost universal division
used on IBM PC/XTs and most compatible machines.

Block |Addresses Description
15 IF000:0000-F0Q0 :FF BIOS ROM
14 |E000:0000-E000 :fW_'F'EE; ROM _cartridge
00—DO00 : F [ROM cartri
00 FFEE _'%j tion .L%sos oM
:FEEE]
0 :FFFF ditional video RAM ‘
3 :FFEF_ up_to 640K
B3] AM up to 576K
333 up to BI2K
:FF AM up to 448K
2 FFFF AM up to 384K
:FFFF |RAM up to 320K
3 PEEE | RAM up to 256K
. :FFFE_|RAM up to 192K
1 :FFFF_|RAM up to 128K
0 |0000:0000-0000:FFFF |RAM up to 64K, CPU vector table,

DOS & BIOS variables

Memory allocation

The first 10 memory segments are reserved for the main RAM memory, limiting
maximum RAM to 640K. A computer’s memory size may differ from one PC
manufacturer to another but has at least 64K installed in segment 0. If you install
additional RAM, its first memory address must immediately follow the last
existing memory address, since no gaps may exist between individual RAM
memory segments. Memory segment 0 has a special role since it contains
important data and operating system routines.

Memory segment A follows the RAM memory. In this case, an EGA (Extended
Graphics Adapter) is installed. This board uses the memory for the screen display
in different graphic modes.

Memory segment B is reserved for a monochrome or color graphics board. They
share the segment as screen memory. The monochrome board uses the lower 32K
and the color board uses the upper 32K. Each board uses only as much memory as
it needs for the screen display. The monochrome board uses 4K; the color board
uses 16K because of the additional color capabilities.

17

2. The PC’s Brain PC System Programming

The next memory segment contains ROM beginning at segment C. Some
computers store the BIOS routines which aren’t part of the original BIOS kernel at
this location. For example, the XT uses these routines for hard disk support. Since
this area isn’t fully utilized, it is possible that BIOS routines supporting future
hardware enhancements will also be placed in this memory range.

ROM cartridges

18

Segments D and E are reserved for ROM cartridges. These cartridges extend the
computer with certain ROM routines. The PC has rarely used them and the area
usually remains unused.

Segment F contains the actual BIOS routines, the system loader and the ROM
BASIC available on many computers.

Chapter 3

Introduction to Interrupts

This chapter presents a view of interrupts, which are vitally important to the
operation of the 8088 processor. An interrupt is a signal from a peripheral device
or a request from a program to perform a specific service. When an interrupt
occurs, the currently executing program is temporarily suspended and an interrupt
routine begins execution to handle the condition that caused the interrupt.

Program Interrupt routine
3 Save register contents
o
E [interrupt]
3
©
X
o
0
%_ Return Restore register contents
=
v IRET
Program interrupt

When a program is suspended, the processor saves the contents of the CS and IP
registers on the stack, and begins the interrupt routine. After the interrupt routine
has completed its task, it issues the IRET (Interrupt RETurn) instruction which
restores the contents of the CS and IP registers from the stack, thus resuming the
program.

The interrupt routine saves and restores contents of the other registers before
returning to the interrupted program.

19

3. Introduction to Interrupts PC System Programing

3.1

20

The Structure of the Interrupt Vector Table

So far we’ve talked about a single interrupt and a single interrupt routine. In fact,
the 8088 has 256 possible interrupts numbered from 0 to 255, not just one.

Each interrupt has an associated interrupt routine to handle the particular condition.
To organize the 256 interrupts, the starting address of the corresponding interrupt
routines are arranged in the interrupt vector table.

When an interrupt occurs, the processor automatically retrieves the starting address
of the interrupt routine from the interrupt vector table.

The starting address of each interrupt routine is specified in the table in terms of
the offset address and segment address. Both addresses are 16 bits (2 bytes) wide.
Therefore each table entry occupies 4 bytes. The total length of the table is 256*4
or 1024 bytes (1K).

Interrupt Purpose

number:
0000:003FE CcS 055 Free
0000:003FC IP
0000: 000E cS .
0000:000C P 3 Breakpoint
0000:000A CcS
0000:0008 IP 2 NMI
0000:0006 cS 1 Sinalo-st
ingle-ste
0000: 0004 IP g P
0000: 0002
€S 0 Division by 0
0000: 0000 IP
|
15 0
Interrupt vector table

The table itself is located in memory from OH to 3FFH. Since the interrupt’s
number is the same as the table entry for the corresponding interrupt routine, the
interrupt routine address for interrupt 0 is the zero table entry in locations OH-3H.

Abacus 3.1 The Structure of the Interrupt Vector Table

Memory locations 4H—7H contain the address for the interrupt routine for
interrupt 1, etc. The last interrupt, interrupt 255, occupies the end of the table at
locations 3FCH—3FFH.

To calculate the starting address of an interrupt, simply multiply the interrupt
number by four.

Advantages

An advantage of using the interrupt vector table is that it’s easy to change an entry
in the table to the starting address of a user-written interrupt routine. This makes a
new interrupt routine available to any program which can invoke the routine
simply by executing the corresponding interrupt instruction.

The next section explains the different types of interrupts and how they are used in
the system.

21

3. Introduction to Interrupts PC System Programming

3.2

3.2.1

3.2.2

22

Interrupt Types

Until now, we haven’t talked about different types of interrupts. There are two
major types of interrupts—hardware interrupts and software interrupts.

The figure below shows the different interrupt types.

i |
Software Hardware
interrupt interrupt
System User [internal| [External]

interrupts | |interrupts

[Suppressible|

|pos||BIOS]|

[Non-suppressible |

Interrupt types

Software Interrupts

A software interrupt is an interrupt called by the INT instruction in a machine
language program. The INT instruction includes the number of the interrupt to be
signalled. For example, the instruction to call interrupt 5, which sends a hardcopy
of the current screen to the printer, appears as INT 5. The INT instruction allows
you to call any one of the 256 interrupts.

Software interrupts make it possible to use many of the basic operating system
services from either the assembler (or machine language) level or from many of the
higher level languages which support interrupt processing.

Hardware Interrupts

A hardware device such as a disk drive or keyboard can trigger a hardware interrupt.
This is a simple and efficient mechanism for handling events which require
attention.

One example is the keyboard. When you press or release a key, interrupt 9 (the
keyboard interrupt) is signalled. The standard DOS interrupt routine responds by
placing the character value corresponding to the key that was pressed into the

Abacus

3.2 Interrupt Types

keyboard buffer following any value which may have been previously there. If the
keyboard buffer is full, the routine generates a short beep. As in any other
interrupt, the original program continues after the completion of the interrupt
routine.

Maskable interrupts

This interrupt is designated as an external hardware interrupt, because it was
triggered by an external device. For these interrupts, a distinction is also made
between maskable and non-maskable interrupts. The keyboard interrupt just
described belongs in the maskable interrupt category. You can mask (disable) this
interrupt by using the assembler instruction STI (SeT Interrupt flag). If you mask
interrupt 9H, the keyboard ignores any characters you type. To reverse this
condition, use the CLI instruction (CLear Interrupt flag) to re-enable the interrupt.

Non-maskable interrupts

In contrast, a non-maskable interrupt cannot be disabled by the STI instruction.
One example is interrupt 2. This interrupt indicates an error in the PC’s memory.
It displays a message on the screen that one or more of the RAM chips is defective
and should be replaced.

The last interrupt type to be described is the internal hardware interrupt. The
processors on the main circuit board of the PC trigger this interrupt. One example
is interrupt 8 which is designated as a timer interrupt. The timer triggers this
interrupt at a rate of 12.8 times per second. It also disables the disk drive motor if
no disk access is in progress.

23

3. Introduction to Interrupts PC System Programming

3.3 Interrupts at a Glance

The tables here show the significance which these interrupts occupy in the control
and use of the PC. The next few chapters explain these interrupts in more detail.

" Nr. Vector Purpose
00 000 - 003 CPU: Division by zero
01 004 - 007 | CPU: Single step
02 008 - 00B | CPU: NMI (Error in RAM chip)
03 00C - O0F | CPU: Breakpoint
04 010 - 013 | CPU: Numeric overflow
05 014 - 017 Hardcopy
06 018 - 01B Unknown instruction (80286 only)
07 01D - 01F | reserved
08 020 - 023 IRQO0: Timer (Call 18.2 per/sec.)
09 024 - 027 IRQl: Keyboard
073 028 - 02B | IRQ2: Second 8259 (AT only)
0B 02C - 02F IRQ3: Serial interface 2
oc 030 - 033 IRQ4: Serial interface 1
0D 034 - 037 | IRQ5: Hard disk
OE 038 - 03B IRQ6: Diskette
OF 03C - 03F | IRQ7: Printer
10 040 - 043 BIOS: Video functions
11 044 - 047 | BIOS: Determine configuration
12 048 - 04B | BIOS: Determine RAM storage size
13 04C - 04F | BIOS: Diskette/hard disk functions
14 050 - 053 | BIOS: Access to serial interface
15 054 - 057 | BIOS: Cassette/enhanced functions
16 058 - 05B | BIOS: Keyboard sensing
17 05C - O5F | BIOS: Access to parallel printer
18 060 - 063 | Call of ROM-BASIC
19 064 - 067 | BIOS: System boot (ALT+CTRL+DEL)
1a 068 - 06B | BIOS: Read time/date
1B 06C - 06F | Break key not activated (not CTRL-C)
1cC 070 - 073 called after every INT 08
1D 074 - 077 | Address of the video parameter table
1E 078 - 07B | Address of the disk parameter table
1F 07C - 07F | Address of the character bit pattern
20 080 - 083 | DOS: Terminate program
21 084 - 087 | DOS: Call DOS function
22 088 - 08B | Address of DOS end of program routine
23 08C - 08F | Address of DOS CTRL-BREAK routine
24 090 - 093 | Address of DOS error routine
25 094 - 097 DOS: Read diskette/hard disk
26 098 - 09B | DOS: Write diskette/hard disk
27 09C - 09F | DOS: End Prg., remain resident
28- 0AQ - Reserved for various, non-
3F - OFF documented DOS functions
40 100 - 103 | BIOS: diskette functions
41 104 - 107 | Address of hard disk table 1

42- 108 - Reserved

45 - 117

46 118 - 11B | Address of hard disk table 2

47- 11c - can be used by application programs
49 - 127 for any purpose

24

Abacus

3.3 Interrupts at a Glance

Nr. Vector Purpose

4a 128 - 12B | Alarm time reached (AT only)
4B- 12¢c - Can be used by application programs
67 - 19F for any purpose

68-| 1A0 - Unused

6F - 1BF

70 1c0 - 1c3 IRQ08: Realtime clock (AT only)
71 1c4 - 1c7 IRQ09: (AT only)

72 1C8 - 1CB | IRQ10: (AT only)

73 1CC - 1CF | IRQ11l: (AT only)

74 1D0 - 1D3 | IRQ12: (AT only)

75 1D4 - 1D7 | IRQ13: 80287 NMI (AT only)

76 1D8 - 1DB | IRQ14: Hard disk (AT only)

71 1DC - 1DF | IRQ15: (AT only)

18- 1E0 - Unused

TF - 1FF

80— 200 - Used by the BASIC

FO - 3C3 interpreter

Fl- 3c4 - Unused

FF - 3CF

General overview—interrupts

25

Chapter 4

Using Interrupts from High
Level Languages

The assembly language programmer can invoke an interrupt by loading the
parameters required by the interrupt routine into designated registers and executing
the INT instruction. Although these capabilities aren’t available in all higher level
languages, some languages such as Turbo Pascal®, Turbo C® and Microsoft C®

have built-in functions, procedures or subroutines to call the interrupt.

A BASIC programmer can call an interrupt using a short assembly language pro-

gram. You’ll find an example of this in Section 4.1.

This chapter provides information on calling interrupts from Pascal, BASIC and
C. Each describes how interrupts can be called in the particular language and the
rules the programmer must observe. Each section concludes with a short

demonstration program.

Read through the section devoted to the language with which you feel most
comfortable. A comparison of the three sample programs could be interesting for
those of you who wish to compare the similarities and differences in the three

languages.

The programs are only examples. Experiment as much as you want-you won’t

damage your computer if you change them a little.

27

4. Using Interrupts from High Level Languages PC System Programming

4.1

28

Interrupt Calls from BASIC

The two most commonly used BASIC interpreters are BASICA (from IBM) and
GW-BASIC (from Microsoft). This book refers to GW-BASIC, since it can be
used on IBM PCs as well as any compatible PC. The command sets of both are
nearly identical.

GW-BASIC does not have a function for calling interrupts. However, the CALL
command can be used to execute a machine language program. You can also use
the CALL command to pass certain parameters to the called program. The called
machine language program must be located in the 64K used by GW-BASIC for
program statements and variable storage. Because of this, the interpreter must be
told to reserve part of program memory for the machine language routine.
Otherwise the program or variables may overwrite the machine language routine,
causing a system crash. You can reserve memory directly when you call BASIC
from the operating system. Enter the name GWBASIC followed by the /M:
parameter. After the colon, enter the highest memory location you want used by
BASIC. For example, since the sample program starts at memory location 60000,
start the GW-BASIC interpreter as follows:

gwbasic /m:60000

This reserves the required memory space. Now you can place the machine language
routine into memory by making it part of the current BASIC program and loading

it into memory using a suitable subroutine. The current BASIC program must

contain the following commands:

60000 RS R R R R g Rt R e ey e e e I s sl
60010 '* initialize the routine for the interrupt call *
60020 ‘'* *
60030 '* Input: none *
60040 '* Output: IA is the Start address of the Interrupt routine *!
60050 RS E R R RS R st s s e e e e e R e Nl
60060 '

60070 IA=60000! 'Start address of the routine in the BASIC segment
60080 DEF SEG 'set BASIC segment

60090 RESTORE 60130

60100 FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT ‘poke Routine
60110 RETURN '‘back to caller
60120

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, 0, 91, 46,136, 71, 66,233,108,255

The DATA statements contain the machine language routine which performs the
interrupt call. The routine is READ and then POKEd into memory. To start this
routine at another memory location, change the value in line 60070. Remember

Abacus

4.1 Interrupt Calls from BASIC

that the parameters used to start GW-BASIC must also be changed so that the
routine cannot be overwritten by the variables of the program.

To use the machine language routine to call an interrupt, this subroutine must of
course be called first. The first line of the user program should therefore be:

100 GOSUB 60000

The actual program which calls the interrupt function during its execution can be
stored between line numbers 100 and 60000. The following program line
demonstrates how this can be done:

200 CALL IA(INTNRS,AHS$,ALS,BH$,BL%, CH$,CL%,DH%, DL%,DI%, SI%, ES$, FLAGS%)

The variables within parentheses are the variables passed to the assembly language
program. All variables must pass true integer variables and not constants. The
variable names mentioned above may be changed but their order must remain
unchanged. Within your program they can have other names.

The first variable in this example, called INTNR %, is the number of the interrupt
you want to call. Be careful to specify the exact interrupt number. Also, avoid
passing a variable which has not been initialized. Otherwise, you may call the
wrong interrupt, which could lead to a system crash. The variables following
INTNR% are copied into the processor registers of the same names. If a register is
not used by an interrupt routine, you can pass any integer variable in the
corresponding register variable. The value of the ES register is treated differently. If
the value of ES% is -1, the contents of the DS register is copied to the ES
register.

Following the completion of the interrupt call, the values are returned in the
designated register variables.

This technique works only with half registers (AH, AL, BH...). It may be
necessary to transform these half registers into a whole register. This can be done
as follows:

300 AX% = AH% * 256 + AL$

On the other hand, a whole register can be split into two half registers with the
following commands:

410 AH% = INT(AX% / 256)
420 AL$ = AX% AND 255

After calling interrupt functions, the carry flag in the flag register indicates if the
called functions were executed correctly. In a BASIC program, it may be necessary
to test the carry or zero flags. Since the content of the flag register is in the
variable FLAGS% after the interrupt call, the status of individual flags can be
inspected through this variable. This is possible with the following program
statements:

29

4. Using Interrupts from High Level Languages PC System Programming

200 IF FLAGSY AND 1=0 THEN PRINT “CARRY-FLAG OFF" ELSE
PRINT "“CARRY-FLAG SET"

210 IF FLAGS% AND 64=0 THEN PRINT "ZERO-FLAG OFF" ELSE
PRINT "ZERO-FLAG SET"

Another problem with interrupt calling is passing variable addresses (e.g., character
string output). BASIC stores this set of characters as a string. To determine the
offset address of such a string (the segment address of all variables is constant), use
the VARPTR function. The LO and HI byte of the offset address can be determined
with the following two program lines:

300 LO=PEEK (VARPTR (STRING_NAME) +1) 'LO-Byte of the Offset address
310 HI=PEEK (VARPTR (STRING_NAME) +2) 'HI-Byte of the Offset address

Garbage collection

30

These addresses should be determined at the beginning of a BASIC program as well
as immediately before each interrupt call, since BASIC frequently performs garbage
collection (removing unused variables and junk data). Garbage collection frees up
variable memory, rearranges remaining data in memory and changes addresses. If a
string address is determined at the beginning of a program, it may change several
times before the interrupt call is made.

Remember to include an end marker (“$” or a CHR$(0)) at the end of the string
(BIOS and DOS functions expect one of these).

Note: Before copying this subroutine and trying it, we have a small
suggestion. During your first attempts something will probably go
wrong. This is perfectly normal, and you can even expect the
computer to crash a couple of times. Save programs
frequently...especially before running the program. This way, you
won’t have to type in the program again from the beginning.

Here is a short sample program which uses the subroutine described above to
display text on the screen with function 9 of interrupt 21H.

POl R R s e e 2]

110 ** INTDOSB *e
120 L3 * 0
130 '* Assignment : outputs as an example of an Interrupt *
140 '+ a String through a DOS function on *
150 ** the display screen *
160 '* Author : MICHAEL TISCHER *
170 '* developed : 07/30/87 *!
180 '* last Update : 04/08/89 *

190 AR R R R S e)
200

210 CLS : KEY OFF

220 PRINT"NOTE: This program can only be started if the GWBASIC was "
230 PRINT"started from the DOS level with the command "

235 PRINT"<GWBASIC /m:60000>."

240 PRINT : PRINT"If this is not the case, please input <s> for Stop."
250 PRINT"Otherwise press any key...";

260 A$ = INKEY$: IF A$ = "s" THEN END

270 IF A$ = "" THEN 260

280 PRINT

290 GOSUB 60000 ‘install function for interrupt call

Abacus

4.1 Interrupt Calls from BASIC

300 T$ = CHR$(13) + CHR$(10) + "this text was output through "

305 T$ = T$ + "Function 9 of Interrupt 21H...$"

310 INRS% = g&H21 ‘Number of interrupt to be called
320 FKT$ = 9 ‘Number of functions to be called
330 OFSLO% = PEEK(VARPTR (T$)+1) 'LO-Byte Offset address to the String
340 OFSHI% = PEEK (VARPTR(T$)+2) 'HI-Byte Offset address to the String
350 CALL IA(INRS,FKT%, 2%, 2%,2%,2%,2%,0FSHI%, OFSLO%, 2%, 2%, 2%, 2%)

360 PRINT : PRINT : PRINT ‘output three blank lines
370 END

380 *

60000 R e e R R eSS S22 s a2 sss sl &l
60010 '* initialize the routine for the interrupt call *
60020 ** *
60030 '* Input : none *

60040 ** Output: IA is the Start address of the Interrupt routine *1
60050 AR AR AR R R AR R AR AR R AR AR R AR R AR KRR R AR R R AR RA AR R AR R AR AR R ARk k kA A kkkk !
60060 '

60070 IA=60000! 'Start address of the routine in the BASIC segment
60080 DEF SEG ‘set BASIC segment
60090 RESTORE 60130

60100 FOR I%$ = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT ‘'poke Routine

60110 RETURN ‘back to caller
60120 *

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118

60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216

60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24

60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18

60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10

60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118

60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118

60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118

60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4

60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93

60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255

How it works

The program is composed of separate parts. Lines 210-290 call the subroutine to
initialize the machine language function for the interrupt call. Then the individual
variables for the interrupt call are loaded. T$ accepts the string to be output.
CHR$(13) and CHR$(10) print a blank line before the output of the actual text.
This text ends with the “$” character because the DOS function which outputs the
string expects this character as an end marker (it will not display this character).
INR% and FKT% contain the interrupt number and the function number to be
called. Besides these two variables, the variables OFSLO% and OFSHI% contain
the offset address of TS.

The CALL command (line 350) calls the interrupt. The first variable passed is
INR% with the number of the interrupt to be called. Then follows FKT%, which
transfers to the AH register before the interrupt call and informs interrupt 21H of
the function number to be called. Several Z% variables follow. These act as
dummy variables for all registers which have no special significance to the
function which is called. The content of Z% is unimportant. The content of the
register into which it is copied is irrelevant for the called function. After the Z%
variables, which determine the contents of the AL, BH, BL, CH and CL registers,
follow the variables OFSHI% and OFSLO%, which set the offset address of the
string in the DX register. The remaining register contents are unimportant for the
function call and are filled with Z%.

31

4. Using Interrupts from High Level Languages PC System Programming

32

To permit the DOS function which is called to output the text, its offset and
segment address must be known. This address is expected in the DS register and
will be set automatically by GW-BASIC.

To conclude this section, here is the listing of the assembler program that we just
used to call an interrupt.

PR AKK KRR KKK KA KA I A AR AR AR KRR KRR KRR KR KKK AR KRR AR KRR AR I AR A AR A AR ARR KA KKK

;* BASINT.ASM: This routine offers the capability of *
;* calling any interrupt from BASICA or *
;* GWBASIC *
i* *
;** * *
;* Ccall: *
;* CALL ADR (INTNRS, AH%,ALS%, BH%, BL$,CH$%, CL%, DH%,DL%,DI%, SI%,ES%, FLAGSS) *
» kK * k
i* On passing control to the machine language program BASIC *
;* deposits the variables on the following positions of the stack *
;* INTNR% = SP+30 AH$% = SP+28 AL$% = SP+26 BHS$ = SP+24 *
;* BL% = SP+22 CH% = SP+20 CL$ = SP+18 DH% = SP+16 *
;* DL% = SP+14 DI% = SP+12 SI% = SP+10 ES$ = SP+8 *
;* FLAGS$ = SP+6 *
s kk * Kk

*

;* for ES the value -1 is passed, then ES is set to DS
;***t**t***ﬁt******t*t*t*t*ﬁ**t*******ﬁ***ﬁ****ﬁ*ﬁ***ﬁ********ﬁ***ﬁ*ﬁ**!

code segment

assume cs:code,ds:code,es:code, ss:code

;-— the Routine for Interrupt call

basint proc far ;GW expected during CALL far procedure
push bp ;GW base pointer saved
mov bp, sp ;Send SP to BP
push ds ;GW dta segment stored
push es ;GW-extra segment saved
mov si, [bp+30] ;Get address of variable INTNR
mov ax, [si] ;Move content of this variable to AX
call set_intnr ;Store interrupt number
ad 1 label near ;Address for SET_INTNR
mov si, [bpt+12] ;Get address of DI% variables
mov ‘di, [si] ;Move content of variables to DI
mov si, [(bp+8] ;Get address of variable ES$
mov ax, [si] ;Move content of variable to AX
cmp ax,-1 ;was -1 passed?
jne setes ;No --> set ES
mov ax,ds ;Set AX to DS and thereby ES = DS
setes: mov es,ax stransfer AX to ES
mov si, [(bp+28] ;Get address of variable AH%
mov ah, [si] ;Move content of variable to AH
mov si, [bp+26] ;Get address of variable AL$
mov al,[si] ;Move content of variable to AL
mov si, [bp+24] ;Get address of variable BH%
mov bh, (si] ;Move content of variable to BH
mov si, [bp+22] ;Get address of variable BL%
mov bl, (si] ;Move content of variable to BL
mov si, [bp+20] ;Get address of variable CH%
mov ch, [si] ;Move content of variable to CH
mov si, [bp+18] ;Get address of variable CL%
mov cl, [si] ;Move content of variable to CL

Abacus 4.1 Interrupt Calls from BASIC

mov si, [bp+16] ;Get address of variable DH$%
mov dh, [si] sMove content of variable to DH
mov si, [bp+l4] ;Get address of variable DL%
mov dl, [si] ;Move content of variable to DL
mov si, [bp+10] ;Get address of variable SI%
mov si, [si] ;Move content of variable to SI
push bp ;Store base pointer

ad_2 label near ;Address for SET INTNR
int 21h ;Call interrupt
pop bp ;Replace base pointer
push si ;Store SI
pushf ;Store flag register
mov si, [bp+12] ;Get address of variable DI%
mov [si],di ;Move content of variable to DI
mov si, [bp+28] ;Get address of variable AH%
mov [si],ah ;Store AH in this variable
mov si, [bp+26] ;Get address of variable AL$
mov ([si],al ;Store AL in this variable
mov si, [bp+24] ;Get address of variable BH$%
mov [si],bh ;Store BH in this variable
mov si, [bpt+22] ;Get address of variable BL%
mov [si],bl ;Store BL in this variable
mov si, [bp+20] ;Get address of variable CH%
mov [si],ch ;Store CH in this variable
mov si, [bp+18] ;Get address of variable CL%
mov [si],cl ;Store CL in this variable
mov si, [bp+16] ;Get address of variable DH$%
mov [si],dh ;Store DH in this variable
mov si, [bp+14] ;Get address of variable DL$
mov [si],dl ;Store DL in this variable
mov si, [bp+8] ;Get address of variable ES%
mov ax,es ;transfer ES to AX
mov [si],ax ;Store ES (AX} in this variable
pop ax ;sMove flag register from stack to AX
mov si, [bp+6] ;Get address of variable FLAGS$
mov ([si],ax ;Store FLAGs in this variable
pop ax ;Move DI register from stack to AX
mov si, [bp+10] ;Get address of variable SI%
mov [si],ax ;Store SI (AX) in this variable
pop es ;Get GW extra segment back
pop ds ;Get GW data segment back
pop bp ;Return GW base pointer
ret 26 sAddresses of variables on the stack

;are no longer needed

basint endp

‘

set_intnr proc near ;stores the interrupt number
pop bx
mov cs:[bx+ad 2-ad 1+1],al
Jmp ad 1

set_intnr endp

’

code ends
end

33

4. Using Interrupts from High Level Languages PC System Programming

34

Some brief notes on this program follow for those not familiar with the calling
and linking of assembly language programs in GW-BASIC: The program first
pushes the base pointer on the stack since it will be reset by the next instruction.
During re-entry into GW-BASIC, the base pointer must have the value it had
during the call of the routine. Then the base pointer is set to the value of the stack
pointer for access to data on the stack. This is necessary for GW-BASIC to pass
the BASIC variables named in the CALL command to the stack. In the next step,
the DS and the ES registers are stored on the stack, because their content may
change during execution of the routine and must be preserved for return to GW-
BASIC.

Now the routine can read in the variables and set the various processor registers. It
is important to note that the stack does not contain variable contents, but their
addresses relative to the DS register. Because of this, the address of the variable
must be loaded first and then the relative value of this address.

Which addresses contain the addresses of the individual variables stored on the stack
can be determined from the header of the assembly language routine. First you
must determine the number of the interrupt to be called. This value must be treated
in a different manner than the other variables on the stack because it isn’t passed in
one of the processor registers, but is a part of the INT instruction which calls the
interrupt. It is indicated as a byte following the code of the INT instruction (CDH).

To set the interrupt number, the number to be passed must be stored following the
CDH code of the INT instruction. This creates a small problem since this routine
can be POKEd by the BASIC program into any memory location. Because of this,
the address of the INT instruction depends on the current starting address of the
routine instead of remaining constant. The routine doesn’t know where the INT
instruction is located.

A small trick can be used to help here. The routine does not know where it is
stored, but the processor knows the location of the INT instruction (it has to
know, otherwise it couldn’t execute the routine). The subroutine SET_INTR is
called after the interrupt number is loaded into the AX register. The processor, as
in any CALL instruction, stores the address where the program execution is to
continue on the stack, before calling any subroutine. This is the instruction which
precedes the label AD_1.

Subroutine SET_INTR gets the address of AD_1 from the stack. While the address
of the INT instruction is still not known, the distance between AD_1 and the INT
instruction remain constant, the address of the INT instruction can be calculated
and the interrupt number can be stored following the instruction. The task ends and
the routine returns to the main program (to the label AD_1).

The rest of the routine consists of repeating instructions which determine the
contents of the different variables and pass them to the corresponding processor

http:Programmi.ng

Abacus

4.1 Interrupt Calls from BASIC

registers. The value for the ES register is given a special test: if it is equal to -1,
the value of the DS register is copied to the ES register.

After all registers are loaded, the interrupt is called and the contents of the
processor registers are transferred back to the corresponding BASIC variables. The
last step is to restore the contents of all registers which had been saved on the
stack. Finally control returns to GW-BASIC.

35

4. Using Interrupts from High Level Languages PC System Programming

4.2 Interrupt Calls from Turbo Pascal
Calling interrupts from Turbo Pascal is very easy. Throughout this book we'll be
using Turbo Pascal Version 4.0.

INTR
Turbo Pascal uses the INTR procedure. Since this parameter can accept any value
between 0 and 255, all available interrupts can be called.

MSDOS

36

A special form of this INTR procedure is the MSDOS procedure. It is called in a
manner similar to INTR:

MsDos (Regs:Registers);

The InterruptNumber parameter needed by Turbo Pascal Version 3.0 isn’t required
in this procedure since it always calls interrupt 21H, through which almost all
operating system functions can be called.

In both procedures, the parameter register is a record type which holds the contents
of the registers to be passed. These are copied into the registers before the interrupt
call.

The DOS unit contains the parameters for the type called Registers:

type Registers = record
case integer of
0 : (AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags : word);
1 : (AL, AH, BL, BH, CL, CH, DL, DH : byte);
end;

Once the DOS unit has been included in a Turbo Pascal source code, the var
statement can be used to define the register variables under the name Regs:

var Regs : Registers;

Now Turbo Pascal can easily communicate with the following processor registers:

Regs.ax,
Regs.bx,
Regs.cx,
Regs.ah, etc.

You then pass the values to the registers through standard assignments. For
example:

Register.ax := 254;

The same method is used with all other registers.

http:Register.ax

Abacus

4.2 Interrupt Calls from Turbo Pascal

Unfortunately, the contents of the half registers AH, AL, BL, etc. can’t be defined
this way. In this case, a trick can be used by defining the half registers as normal
integer or byte variables and then merging them together into a whole register.

In the case of the AX register, this could be done as follows:

var al,
ah : integer;

Register.ax := ah shl 8 + al;

In this statement, the AX register is assigned value composed of the sum of the
AH register multiplied by 256 (shifting a variable left by 8 places is equivalent to
multiplying it by 256) and the AL register.

If you must do this repeatedly in a program, it would be useful to define a small
function for this:

function WholeRegister (Lo, Hi : integer) : integer;

begin
WholeRegister := Lo + Hi shl 8;
end;

Instead of the above, the following could be written:

Register.ax := WholeRegister(al, ah);

Before calling the interrupt, you must first specify the interrupt value in the
register. The contents of all other registers are unimportant here. If the called
interrupt returns values to the calling program through registers, they can be
examined by looking at the individual components of the variable register.

Sometimes individual flags pass information from the interrupt to the calling
program. In most cases, the Carry flag serves this purpose. If an error occurs
during the execution of an interrupt, the flag is set.

To test for a set flag, the following Pascal statements are used. They return TRUE
or FALSE as a result depending on whether the corresponding flag was set or not.

carry flag: (register.flags and 1)
zero flag: (register.flags and 64)
. sign flag: (register.flags and 128)

Often the address of a variable (usually a text buffer) must be passed to an
interrupt. In this case the Turbo functions Ofs and Seg are used to obtain the offset
or segment addresses of a variable. The name of the variable whose address should
be determined is passed to both functions as the argument:

of s (variablename)
seqg (variablename)

Turbo Pascal uses a different format than DOS and BIOS for string storage,
especially for text buffers (mostly variables of type string).

37

http:Register.ax
http:Register.ax

4. Using Interrupts from High Level Languages PC System Programming

38

These formats are illustrated below.

TURBO PASCAL

2 ["P"|"C"|%—No end of string marker

4
DOS & BIOS

String length

vurL | BIOS (and often in DOS)
"e DOS

"P " "C“

f—— End of string marker

No string length parameter

String storage - Turbo Pascal and BIOS-DOS

To convert a Turbo Pascal string into DOS or BIOS format, an end character
(ASCII code 0) or the dollar sign “$” (ASCII code 36) is appended. Which of these
two characters you should use for indicating the end of the string is described
during the discussions of individual interrupts. Regardless of which format you
use, the characters appear as in either of the following commands:

string := string+#0;

string := string+#36;

The address returned by the Ofs function plus 1 must be passed to the interrupt,

otherwise the byte which indicates the length of the string is accepted by the
interrupt as its first character.

Here is the sample program. Just like the example in Section 4.1, it displays text
on the screen using function 9 of interrupt 21H:

[FRARKARRA AR IR AR KK KR RR KRR R AR AR AR AR R KRR KA AR KA RARAK KKK R KRR RA KRR Ak kKKK]
* INTDOS *}

{* + *1
{* Task : as an example this interrupt call outputs *}
{* a string through a function of DOS on *}
(* the display *}
{* *}
{* Author : MICHAEL TISCHER *}
{* developed : 07/30/87 *}
{* last update : 05/04/89 *}

[EFEEAEIAKRARRARR AR AR AR AR AN KRR KR KRR R RR AN RN RN ARAR AR R AR RN AR AR A Ak kR Ak k]

program INTDOSP;

Abacus 4.2 Interrupt Calls from Turbo Pascal

Uses Dos;
var Regs : Registers; { Register variables for interrupt call}
Text : string[128]; { accepts the output text }

{rrr KRR R KRR IR A AR AR AR AR KRR RN R R R AR R AR A KRR AR R AR AR AR AR ARAR KRR Ak kR kR)

{* MAIN PROGRAM *}

{Ar AR KA KRR AR AR AR KRR KKK KR KRR R AR KRR AR ARRR KRR R AR R AR A AR ARAR KK KRR KRR R AR AR Ak k)

begin
Text := #13#10'this text was output with Function 9 of DOS-'+
‘Interrupt 21H ...'#13#10+'S$';
Regs.ah := $09; { Function number 9 in the AH-Register }
Regs.dx := Ofs(Text)}+1; { Offset address of the text }
Regs.ds := Seg(Text); { Segment address of the text }
MsDos (Regs) ; { call DOS-Interrupt 21(h) }

end.

The variable TEXT contains the text to be displayed. The sequence *“#13#10”
places the ASCII code 13, followed by ASCII code 10, at the beginning and the
end of the text, creating a blank line before and after the text. The last character is
the “$” character which indicates the last character of text to DOS.

The number of the function being called (9) is copied to the AH register. Since
Turbo Pascal doesn’t allow access to the AH register alone, the entire AX register
must be addressed. The value 0 is loaded into the AL register, but any other value
could be entered into this register since its content has no significance to the called
function. As a last step, before calling interrupt 21H using the MSDOS procedure,
the segment address of the string is placed in the DS register and the offset address
in the DX register.

39

4. Using Interrupts from High Level Languages PC System Programming

4.3

40

Interrupt Calls from C

The C language is the language of choice for most developers. Since it was
originally designed for operating system development, C has provisions to include
machine language routines, which is a benefit within the scope of this book.

The standard libraries of both the Microsoft C and Borland Turbo C compilers have
a number of functions for calling interrupts.

The following functions are of interest to us in this book:

int86
int86x
. intdos
intdosx
segread

All functions and applicable data structures are declared in the DOS H library file.
A program which wants to access one of these functions must therefore link the
file to the current program using the #include preprocessor command.

The three structures WORDREGS, BYTEREGS and SEGREGS pass register
values. WORDREGS contains the whole registers AX, BX, CX, DX, SI, DI and
the Carry flag. On the other hand, BYTEREGS contains the half registers AH,
AL, BH, BL, CH, CL, DH and DL, while SEGREGS represents the segment
registers DS, CS, SS and ES.

The BYTEREGS and the WORDREGS structures are joined in the union REGS
which lets the programmer work selectively with either half or whole registers.

Using a variable of the type REGS (called register here for simplicity’s sake) gives
us the following:

union REGS register;

This allows access to individual registers:

register.x.ax
register.x.bx etc.
register.h.ah
register.h.al
register.h.bh etc.

BEERE

The carry flag is represented by the variable register.x.cflag. If this variable is equal
to 0, the carry flag remains unset. Any other value sets the carry flag.

In the case of the segment register a representative variable can be defined as
follows:

struct SREGS SegRegister;

http:register.h.bh
http:register.h.al
http:register.h.ah
http:reqister.x.bx
http:register.x.ax

Abacus

43 Interrupt Calls from C

int86

int86x

The individual components of the variables SegRegister.ds, SegRegister.es, etc.,
correspond to the equivalent processor registers.

The functions starting with the characters int all serve to call interrupts. The
SEGREAD function reads the current contents of the segment register.

The functions that call interrupts use different register variables for input to the
interrupt routine, and output from the interrupt routine. There is an advantage to
this method over returning information to the same register variable in that the
input information is not overwritten.

Since the individual functions pass only the address of the variable representing the
register and not the variable itself, it is possible to combine the input and output
registers into a single variable. In this case, the address of one variable is provided
for the variable representing the input and the output registers (this method is used
in the sample program at the end of this section).

Before calling the interrupt, the contents of the input variable are copied to the
corresponding processor registers. Following the interrupt call their contents
become the output variables.

All interrupt functions return the content of the AX register as a result code after
the interrupt call.

Here are the details of the functions and their calls:

The int86 function is called as follows:

int86 (IntNumber, InRegister, OutRegister);

IntNumber is a variable or constant indicating the number of the interrupt to be
called. InRegister and OutRegister contain the address of two (or one) variables of
the REGS type. As the variable name suggests, InRegister contains the register
contents before the interrupt call, and OutRegister contains the register contents
after the interrupt call.

The int86x function differs from the int86 function in that it requires an additional
argument of the SREGS type. Its contents are copied into the segment register
before calling the interrupt, but are not copied back following the call to the
interrupt routine.

The call of the function is as follows:

int86x (IntNumber, InRegister, OutRegister, SegRegister);

41

http:SegRegister.es
http:SegRegister.ds

4. Using Interrupts from High Level Languages PC System Programming

intdos

intdosx

42

The intdos and the intdosx functions differ from the two functions described above,
in that the number of the interrupt to the call is not passed. As the names suggest,
they call DOS interrupt 21H through which most DOS functions can be accessed.

Only the addresses of the input and the output variables representing the processor
registers are passed to the intdos function:

intdos (InRegister, OutRegister);

The intdosx function, like the int86x function, has an additional parameter for the
segment register. The function call is as follows:

intdosx (InRegister, OutRegister, SegRegister);

So far you’ve seen how to call an interrupt from C and how to set the registers.
You also have to determine the address of a variable.

In C, you can easily determine the address of a variable. To do this, use the address
operator &, which returns the offset address of any desired variable. Use the
SEGREAD function mentioned above to determine the segment address of a
variable. The address of a variable of the SREG type is passed to the function
(using the address operator &) into which the content of the segment register can
be copied.

If, for example, the address of the variable SegRegister is passed to the function
and the variable was previously defined by the command:

union SREG SegRegister;

Then the variable SegRegister.ds contains the segment address of the variable
SegRegister, after calling the SEGREAD function.

While C supports interrupt calls with numerous functions, the library of the
Microsoft C compiler library does not have a function to return the contents of a
memory location. Since such a function could be very valuable in some programs,
the assembler program below contains the PEEKB and POKEB functions for
inclusion in programs created with the Microsoft C compiler. PEEK returns the
contents of a memory location (one byte), while the POKE function writes a one-
byte value into a memory location.

Note: If you use the Borland Turbo C compiler, you won’t need to use this
program since the Turbo C library already contains the PEEK,
PEEKB, POKE and POKEB functions. Because of this, linking the
assembler program into the C example programs of this book is

http:SegRegister.ds

Abacus

43 Interrupt Calls from C

unnecessary. Additional information is presented in the header of each
program.

If you are using the Microsoft C compiler, enter the following program with a text
editor and save it under the name PEPO.ASM. It can then be assembled with:

masm pepo;

Here’s the program:

H *tﬁt**t*itt*tt**k*****itﬁ**ti****t*ktkt***ﬁ**t***ﬁitt**tﬁk*tt**t*t***;

PEPO *;

*

P Task

: Makes the PEEKB and POKEB function available for *
inclusion in a C program

*

Fad Author

* developed
last Update

MICHAEL TISCHER
08/13/87
04/08/89

IGROUP
DGROUP

CONST
CONST

_BSs
“Bss

_DATA
_DATA

_TEXT

;-- PEEKB: read a byte from memory

group _text

group const,_ bss,
assume CS:IGROUP, DS:DGROUP,

public _PeekB
public _PokeB

segment word public

ends

segment word public

ends

segment word public

ends

segment byte public

assemble : MASM PEPO;
'-i-ﬁki**ﬂ*-tk*t‘*tttk*‘ﬁk'kk**ﬁk'kk* KRR RIR AR RRARRARRRRRR R AR RARRRR RN AR AR,

_data

'CONST*

'BSs!

‘DATA'

'CODE"

* * % * % *
Ne e Ne Ne Se Se Se oSe Se Se s

;Grouping of program segments
;Grouping of data segments
ES:DGROUP, SS:DGROUP

;Functicns become accessible to
;sother programs

sthis segment accepts all constants
;which are readable

sthis segment accepts all non-
;initialized static variables

sall initialized global and
;static variables are stored in this
; segment

;the Program segment

;-- call of C: int = PeekB(int Segment, int Offset)

_PeekB

_PeekB

;—— POKEB: write a byte into memory

proc near

push bp

mov

bp, sp

push ds

mov
mov
mov
mov
Xor
Jmp

endp

ax, [bp] +4
ds, ax

bx, [bp] +6
al, [bx]
ah,ah

short fctend

;store BP on the stack
;stransmit SP to BP

;store data segment register
;get first argument (Segment)
;set as data segment

;get second argument (Offset)
;read memory location
;HI-byte of INT to O
;terminate function

;—-- Call C: PokeB(int Segment, int Offset, short int Wert)

_PokeB

proc near

push bp

mov

bp, sp

;store BP on the stack
;stransmit SP to BP

43

4. Using Interrupts from High Level Languages PC System Programming

push ds ;store data segment register
mov ax, [bp]+4 ;Get first argument (Segment)
mov ds,ax ;Set as data segment
mov bx, [bp]+6 ;Get second argument (Offset)
mov al, [bp]+8 ;Get third argument (Value)
mov [bx],al ;write into memory location
fctend: pop ds sReturn data segment register
mov sp,bp ;Restore stack pointer
pop bp ;Get BP from stack
ret ;Return to calling C program
_PokeB endp
;
_text ends 7End of the program segment
end ;End of the assembler source

The example program below uses the two functions described above. This next
program examines the model identification number or code of the PC and displays
PC type on the screen using a DOS function:

/i*ﬁ'ii*i*t'*‘ktt't**ﬁ*tt**it-ﬁi*iii*ﬁtﬁt***ﬁ**ﬁi*tttﬁ*i***i*t*tﬁ**ii*tﬁt/

/* INTDOS */
/* */
/* Task : an example of an interrupt call, outputs */
/* a string through a DOS function on */
/* the display screen */
/* */
/* Author : MICHAEL TISCHER */
/* developed : 08/30/87 */
/* last update : 04/08/89 */
/* */
/* (MICROSOFT C) */
/* Creation : MSC INTDOSC */
/* LINK INTDOSC PEPO; */
/* Call : INTDOSC */
/* */
/* (BORLAND TURBO C v2.0) */
/* Creation : through the RUN command in the menu...or... */
/* tcc -K intdosc */
/* Call : intdosc */
/ﬁittﬁt**k*t****ttﬁ****k*kﬁt*ﬁi*itt*ﬁ*ﬁﬁ‘*Qﬁﬁt*ﬁ*ﬁ*ﬁiﬁ*t*ﬁﬁtﬁtiﬂﬁkt‘ﬁi*/
#include <dos.h> /* include header file */
/* Microsoft C user must uncomment the following line */
/* extern short int peekb(); /* PEEKB must be linked to */
/* Microsoft C object code */
/**ﬁt'iktt*ttiﬁii*iﬁﬁ*i*iﬁ'tittﬁtttt*ﬁtﬁ*ﬁ*ik*ﬁkﬁ*i*iﬁﬁtitt**i*itk**iki/
/** MAIN PROGRAM *x/

/t*itki*ikitki*tt*ﬁ*ﬁ**k*ﬁtiittitﬂti*ﬁ*ﬁ*ﬁ*ﬁt*ttt*tkiﬁ*'i*i*tkt**kﬁk*ti/
void main()

{

static char AT[] = “\r\nthis computer is an AT\r\n$%;
static char XT[] = "\r\nthis computer is an XT\r\n$";
static char PC[] = “\r\nthis computer is an PC\r\n$%;

union REGS Register; /* Register variable for interrupt call */

Register.h.ah = 9; /* Function number for output of string */
switch (peekb (0xF000, OXFFFE)) /* detect model of PC */
{
case OxFE : Register.x.dx = (int) XT; /* Address of XT text */
break;

44

http:Register.x.dx

Abacus

4.3 Interrupt Calls from C

case 0xFC : Register.x.dx = (int) AT; /* Address of AT text */
break;
case OxFF :
default : Register.x.dx = (int) PC; /* Address of PC text */
}
intdos (¢Reglister, &Register); /* Call DOS interrupt 21H */

}

The main function defines three CHAR pointers which point to the text for each
PC type. Each of them starts and ends with an ‘“‘n” character. This creates a blank
line before and after the text itself.

In the first instruction of the main program the AH register is loaded with the
DOS function number for string output on the screen. Then the model
identification byte is read from memory location FOO0:FFFE using the PEEKB
function. Depending on the value read, the offset address of the accompanying text
is transferred to the DX register where it is expected by the interrupt 21H function.

In addition to this offset address, the function also requires the segment address of
the text in the DS register. Since the compiler automatically sets this register, you
don’t have to be concerned with the segment address. The last instruction of the
program calls the INTDOS function which in turn calls interrupt 21H with the
registers which were defined earlier.

The file header states how it can be executed: If you are using the Microsoft C
computer, then it is important that you link the file with the previously assembled
PEPO program so that the new program contains the PEEKB and POKEB
functions. These can then be called from the C program.

The integrated environment of the Turbo C compiler requires a different procedure.
Compiler options must be set to default values except for under "code generation.”
You must set "default char type" to "unsigned”, then select Run from the menu.
The options file appears on the disk under the filename INTBSPC.TC.

A small comment about using Borland Turbo C compiler. Several programs in
this book include assembly language routines within the programs. Since Turbo C
differentiates between upper and lowercase characters in function names, you may
have problems compiling programs as entered from this book. To avoid this,
select the OPTION command, then the LINKER command in the command line of
Turbo C before creating a program. The lowest line in the window displays the
option “Case sensitive link”. Select OFF here to avoid difficulties with upper and
lowercase letters.

45

http:INTBSPC.TC
http:Register.x.dx
http:Register.x.dx

Chapter 5

Using Interrupts from
Assembly Language

Unlike programmers using any of the higher level languages, the assembly
language programmer doesn’t have to rely on complicated functions or procedures
to call an interrupt. The MOV instruction loads the input parameters into the
registers provided, and the INT instruction calls the interrupt.

Certain interrupts, or the functions hidden behind these interrupts, are called
frequently in many programs. An example of this is interrupt 21H function 9,
which displays text on the screen. You call it by placing function number 9 in the
AH register and the offset address of the text you want displayed in the DX
register. This process looks like this in assembly language:

mov ah,9 ;load function number 9
mov dx,offset Text ;load offset address of text
int 21h scall DOS interrupt 21h

Even if you call the function very frequently, it doesn’t pay to write a subroutine
for it since the address of the text to be displayed must be passed. All that remains
is to load the value 9 into the AH register and to call the interrupt. You’ll find the
three program lines described above included for every function call in a program in
this chapter.

47

5. Using Interrupts from Assembly Language PC System Programming

5.1

Macros

48

Using Assembler Macro Functions

An alternative to this method are macros which most assemblers support.

A macro is a “shorthand” way to write a series of assembly language instructions.
It has a name and may have one or more parameters. During assembly, if the
macro name is encountered, the series of instructions and parameters replace the
macro.

Below is an example of defining and calling a macro using the Microsoft
Assembler (MASM). See your assembler’s reference manual for information on
macro handling (and whether your assembler supports macros). Since this macro
displays text, we’ve named the macro PRINT:

print macro string ;Macro header with Name and Parameter
mov ah,9 ;load function 9
mov dx,offset string ;load offset address of the text
int 21h ;call DOS interrupt 21h
endm ;the endm command terminates a macro

The first line declares the macro name (PRINT). In this case, the macro also has
one parameter (string). The assembly language instructions follow in successive
lines until the ENDM instruction terminates the macro.

Now you can use the macro to display text:

print Message

In this example, Message is the name of a variable contairing the text to be
displayed. In the macro declaration, string is a parameter. During assembly, string
is replaced by Message and creates the following program lines:

mov ah,9

mov dx,offset Message
int 21h

Abacus 52 A Sample Macro

5.2 A Sample Macro

The following program demonstrates the macro just described.

;t***t**i**tt***i***tt******t***t**ﬁ******ti*ﬁ**t**t*tﬁ*t***t*t*t****t;

i* MACRO *;
-k *’-
i* Task : in this Program a Macro is used for output *;
Hd of a String with Function 9 of Interrupt 21H *;
-k *e
; ;
* Author : MICHAEL TISCHER *2
o * developed : 08/30/87 *3;
i last Update : 04/08/89 *3
-k *e
; H
* assembly : MASM MACRO; *;
* ¢ LINK MACRO; *7
i* *;
Hl Call: : MACRO *3

;*t***t**t*******t***ﬁ****t*********t******************t*****tt*t**t**;

;== Macro
Print macro String sthis is the macro
mov ah,9 ;load function number
mov dx,offset String sload offset address of text
int 21nh ;call DOS interrupt
endm ;End of macro

;== Constants

CR equ 13 ;ASCII-Code of carriage return
LF equ 10 ;ASCII-Code of linefeed

TEND equ "s$" ;End of a character string

;== Data

Data segment
Text db CR,LF,"This is how MACROS are used",CR,LF,TEND

Data ends

;== stack
stack segment STACK

dw 64 dup (?)
stack ends

;== Code

Program segment
assume CS:Program, DS: Data, SS:stack
Start proc far ;program starts here

mov ax,Data ;set data segment register
mov. ds,ax

Print Text ;Macro inserted here
mov ax,4C00h ;Program terminated with call of a
int 21h ;DOS function with return of error-code 0O

49

5. Using Interrupts from Assembly Language PC System Programming

50

Start endp ;End of procedure

’

Program ends
end Start sbegin with START

After you enter the source program, it can be assembled, linked and executed as
indicated in the header.

Most of the lines in this listing have nothing to do with the actual program but
are definitions and declarations for the assembler,

The macro and constants are defined in the first part of the program, which helps to
make the listing more understandable to the reader. The definition of the data
segment follows, where the string to be displayed is stored as a character string. It
is preceded and followed by a carriage return and a linefeed to display a blank line
before and after the actual text. The text ends with the character “$” (the DOS
function used for text display always looks for this as the last character in a
string).

Following the data segment is the stack segment, which controls the stack during
program execution. Since the program is not very large, the stack can be fairly
small. The last segment is the code segment which contains the program
instructions. It consists of only five commands: The first two instructions
initialize the program. They load the segment address of the data segment into the
DS register to provide access to the text in this segment. Then the macro PRINT
is called, and the text is passed to it.

The following instructions terminate the program by calling a DOS function.

Note: You may find it useful to group together certain macros into a file or
library. When one of these macros will be used in a program, the
library may be linked or included with the assembly language code.

Chapter 6

The Disk Operating System

The following chapter discusses the PC’s operating system, which the PC loads
from floppy diskette or hard disk. It is commonly referred to as PC-DOS, MS-
DOS or just DOS.

What is DOS?

Most users only know the user interface of DOS, with which you run programs,
format disks, etc. In the following sections, however, you'll view DOS from an
angle you may not have known existed.

Beneath the surface of DOS many processes takes place. DOS uses a large number
of different routines (called functions) to accomplish its tasks. These functions are
available to the user as well as to DOS. The main focus is on how these functions
can be used in practical applications.

This chapter includes a historical sketch of the development of DOS, highlighting
its origins in the CP/M operating system. You’ll learn the differences between
transient and resident commands, COM and EXE files, and DOS file access.

The data structures which act as the connecting link between the different DOS
functions will also be examined in this chapter. These data structures make mass
storage devices such as floppy disks and a hard disk possible.

Finally, this chapter discusses each DOS function in detail, and includes a brief
look at DOS Version 4.0.

51

6. The Disk Operating System PC System Programming

6.1 A Short History of DOS

DOS appeared in 1980, at a time when 8-bit systems and CP/M 80 operating
systems made up the majority of microcomputers. A few years before, Intel had
designed the 8086 microprocessor, the first generation of 16-bit microprocessors.

In April 1980 the CP/M-86 operating system announced by Digital Research for
use on the 8086 processor was unavailable. A programmer named Tim Paterson
began developing a new operating system. This system is the ancestor of the
current MS-DOS.

At this time a lot of software was available for CP/M-80 systems. The
development of new software for an 8086 operating system would have required
enormous expenses and effort. Paterson’s goal was to allow easy conversion of
existing software from CP/M-80 to the new operating system. He tried to include
the functions and the most important data structures of the CP/M-80 operating
system, while removing the weak points of CP/M-80. The finished product was an
operating system that required only 6K of memory. Programs developed for CP/M-
80 could also be converted with little effort to the 8086. The new system was
named 86-DOS.

Meanwhile IBM was developing a 16-bit microcomputer. Microsoft offered to
develop an operating system for it. Microsoft obtained a prototype of the new
computer from IBM, bought the rights to Paterson’s operating system, and made
some enhancements to the software. Even though Paterson was participating in the
project, the strict security provisions of IBM prevented him from seeing the
machine for which he had developed an operating system. Despite this, the
development work was concluded in August of 1981. The new operating system
was released for the IBM PC under the name MS-DOS.

Many changes have been made to DOS since 1981. Because these changes are of
great significance to the DOS programmer, this chapter contains a segment for
each major version of DOS. Each segment lists changes from preceding versions
with explanations. Many components of DOS are explained here, which will give
you some idea of the complexity of an operating system.

Version 1.0

52

This version represented a compromise for Microsoft. They had relied heavily on
CP/M-80 and needed to transfer existing programs quickly and easily. This can be
seen in the fact that the file names (eight-character filename, three-character
extension) was identical with CP/M-80. Also, the designation of the disk drives
and the internal structure had many similarities to the successful 8-bit operating

-system.

Abacus

6.1 A Short History of DOS

During this time many improvements and enhancements of the hardware occurred,
such as more RAM and faster disk drives. Microsoft decided to make DOS more
hardware independent by removing the association between physical file length and
logical file length.

In CP/M-80 every disk was divided into 128-byte units which could only be
accessed as a whole. This is why you couldn’t access individual bytes on the disk
(this created a programming problem that shouldn’t have existed in the first place).
DOS solved this problem by making the logical and physical data length
independent of one another. In addition, functions were implemented to permit
reading or writing of more than one data set of a file on a disk. Treating the input
and output devices like files achieved hardware independence. These input and
output devices were assigned their own names:

CON (Keyboard and Display)
PRN (Printer)
AUX (serial Interface)

If you used one of these three names instead of a filename to access a file with a
DOS routine, then the computer addressed the corresponding device and not the
disk drive. This also permitted redirecting input and output from the keyboard or
screen to a file or other device.

Before this time, DOS only supported program files which loaded and executed
from a fixed location in memory. This proved to be impractical, and so Version
1.0 introduced a new program file type. This new file type had a file extension of
.EXE instead of .COM. An .EXE file could be stored and executed from almost
any memory location.

Two changes were made to the command processor, the part of the operating
system which accepts commands from the user and controls the execution of these
commands. The first change was to store the command processor in a separate file
named COMMAND.COM. This allowed programmers to develop a customized
command processor and link it to the system.

The second change was to divide the command processor into a resident and a
transient portion. This approach was taken because early PC systems contained
only a small amount of memory. The resident portion was written to be as small
as possible. Many DOS commands were stored on disk and loaded and run only
when required, hence the name transient. Examples of transient commands are
DISKCOPY and FORMAT.

A major innovation that took MS-DOS Version 1.0 beyond CP/M-80 was the
introduction of the FAT (file allocation table) on disk. Every entry in this table
corresponds to a data area of 512 bytes (called a sector) on the disk. The FAT
indicates whether the sector is allocated to a file or is still available.

53

http:COMMAND.COM

6. The Disk Operating System PC System Programming

The FAT has special significance in connection with the directory entry which
exists for every file type. Besides the filename and other information, it also
indicates the number of an entry in the FAT which corresponds with the first
sector of a file on the disk. This FAT entry points to another FAT entry which
indicates the next sector which was allocated to the file. The other FAT entries on
a disk perform the same task.

In conclusion two additional developments should be mentioned which make work
with the PC easier for the user:

The introduction of batch processing offers the user the option of placing several
DOS commands into one file. When you “run” this file (which has a file extension
of .BAT), DOS executes the individual commands from this file as if you had
entered the commands from the keyboard, thus saving the user time in entering
frequently used groups of commands repeatedly.

The current date and time follows every filename. DOS includes this data to help
the user determine the last time a file was modified.

When IBM introduced a new PC in 1982 which used both sides of a disk for data
storage, Microsoft released DOS Version 1.1.

Version 2.0

54

IBM announced a new personal computer in March of 1983, called the PC XT,
which in addition to the floppy disk drive also had a hard disk (also called a fixed
disk). The enormous capacity of this hard disk (10 megabytes) allowed the user to
store several hundred files on one unit, but created some problems for the operating
system. The largest problem was that DOS could only handle one directory for
each storage unit. It would be nearly impossible for the hard disk user to maintain
hundreds of files in a single directory. Microsoft had two options to solve this
problem: They could either borrow an idea from the CP/M-80 operating system, or
from the UNIX operating system.

CP/M views a hard disk as several individual disk drives which share the total
storage on the hard disk, each with only one directory.

UNIX uses a hierarchical file system, in which every storage unit has a root
directory which can contain subdirectories as well as files. Every one of these
subdirectories can have subdirectories within them. This creates a directory tree
whose trunk is the root directory and whose branches are represented by the
individual subdirectories.

Microsoft chose the hierarchical file system, which has since become a popular
component of DOS. This was another step away from CP/M-80 toward an
efficient 16-bit operating system. With the introduction of an hierarchical file
system some major changes had to be made in the area of file control by DOS.
Before this time, file access was conducted through a file control block or FCB.

Abacus

6.1 A Short History of DOS

This file control block had been introduced for compatibility with CP/M-80. The
FCB contained important information about the name, size and location of a file
on disk. This CP/M would not allow access to a file in another directory.

The DOS developers standardized file access through DOS functions. The access to
a file occurs exclusively through the file handles. A handle is a numerical value
passed to the program as soon as it opens a file through a DOS function. The
FCBs were not eliminated, but the programmer no longer came in contact with
them since DOS took over the control block manipulation.

An important innovation was the introduction of installable device drivers. They
offer the programmer the capability of easily including different devices in DOS,
such as an exotic hard disk, a mouse or a tape drive. Version 2.0 introduced the
display device driver ANSL.SYS which gave the programmer flexibility in cursor
positioning and color selection through DOS functions.

Version 2.0 added the option of formatting the individual tracks of a disk with nine
sectors instead of eight. This increased the storage capacity of a single-sided disk
from 160K to 180K, and the capacity of a double-sided disk from 320K to 360K.

Version 3.0

Version 3.0, like Version 2.0, was developed for a new PC, the IBM PC AT. It
was released in August of 1984 and supported the 20 megabyte hard disk of the
ATs as well as the high capacity 1.2 megabyte floppy disk drive. Many changes
occurred in DOS’s internal routines. They contributed to faster execution of certain
operations, but are transparent to the programmer.

Version 4.0

DOS 4.0 appeared on the market in August 1988. Before this, Microsoft released a
new multiprocessing operating system called OS/2. Before OS/2, multiprocessing
was unknown to MS-DOS.

The user can easily see the changes to DOS 4.0 over earlier versions of DOS. In
place of the line-oriented command line interpreter used by DOS versions 3.3 and
earlier, DOS 4.0 has a Shell allowing user-defined menus, easy selection of
applications, files and directories from both mouse and keyboard.

Most important are the unseen changes made to DOS, particularly in adapting the
operating system to the new hardware standards on the market. As the operating
system has grown in power, it has also grown in complexity and memory use. For
example, earlier versions of DOS were limited to "only" 640K of RAM and a 32
megabyte hard disk. However, DOS 4.0 handles the Expanded Memory System
(EMS) following the LIM standard, normal RAM capacity of up to 8 megabytes,
and hard disks up to 2 gigabytes (2048 megabytes) capacity.

55

6. The Disk Operating System PC System Programming

6.2 Internal Structure of DOS
Several major components comprise DOS, each with a certain task within the
system. The three most important components are the DOS-BIOS, the DOS kernel
and the command processor. Each appear in a separate file.
DOS-BIOS
DOS-BIOS is stored in a system file which appears under various names
(IBMBIO.COM, IBMIO.SYS or 10.SYS). This file has the file attributes Hidden
and Sys, which means this system file doesn't appear when the DIR command is
entered. The DOS-BIOS contains the device drivers for the following units:
CON (Keyboard and Display)
PRN (Printer)
AUX (Serial Interface)
CLOCK (Clock)
Disk drives and/or hard disks which have the unit
designations A, B and C
If DOS wants to communicate with one of these, it accesses a device driver
contained in this module, which in turn uses the routines of ROM-BIOS. The
DOS-BIOS (i.e., the connection between individual device drivers and other
hardware dependent routines) are the most hardware dependent components of the
operating system, and vary from one computer to another.
Do not confuse the device drivers in this module with the installable device drivers.
The DOS-BIOS device drivers cannot be changed by the user.
DOS kernel

The DOS kernel in the IBMDOS.COM or MSDOS.SYS file is normally invisible
to the user. It contains file access routine handles, character input and output, and
more. The routines operate independent of the hardware and use the device drivers
of DOS-BIOS for keyboard, screen and disk access. The module can be used by
different PCs without being limited to one machine. User programs can access
these functions in the same manner as the ROM-BIOS functions: every function
can be called with a software interrupt. The processor registers pass the function
number and the parameters.

Command processor

56

Unlike the two modules described above, the command processor is contained in
the file named COMMAND.COM. It displays the “A>" or “C>" prompt on the
screen, accepts user input and controls input execution. Many users wrongly think
that the command processor is actually the operating system. In reality it is only a
special program which executes under DOS control.

http:IBMDOS.COM
http:IBMBIO.COM

Abacus

62 Internal Structure of DOS

Batch

The command processor, also called a shell in programmer's terminology, actually
consists of three modules: A resident portion, a transient portion and the
initialization routine.

The resident portion (the part that always stays in the computer’s memory)
contains various routines called critical error handlers. These allow the computer to
react to different events, such as pressing the <Ctrl><C> or <Ctrl><Break> keys
or errors during communication with external devices (e.g., disk drives and
printers). The latter cause the message:

Abort, Retry, Ignore
or
Abort, Retry, Fail

The transient portion contains code for displaying the (A>) prompt, reading user
input from the keyboard and executing the input. The name of this module is
derived from the fact that the RAM memory where it is located is unprotected, and
can be overwritten under certain circumstances. When a program ends, control
returns to the resident portion of the command processor. It executes a checksum
program to determine whether the transient portion was overwritten by the applica-
tion program. If so, the resident portion reloads the transient portion.

The initialization portion loads during the booting process and initializes DOS.
This part of the command processor will be examined in detail in the next chapter.
When its job ends, it is no longer needed and the RAM memory it occupies can be
overwritten by another program. The commands accepted by the transient portion
of the command processor can be divided into three groups: internal commands,
external commands and batch files.

Internal commands lie in the resident portion of the command processor. COPY,
RENAME and DIR are internal commands.

External commands must be loaded into memory from diskette or hard disk as
needed. FORMAT and CHKDSK are external commands.

After execution the command processor releases the memory used by these
programs. This memory can then be used for other purposes.

files

A batch file is a text file containing a series of DOS commands. When a batch file
is started, a special interpreter in the transient portion of the command processor
executes the batch file commands. Execution of batch file commands is the same
as if the user entered them from the keyboard. An important batch file is the
AUTOEXEC.BAT file which executes immediately after DOS is first loaded.

Like all commands of a baich file, these commands are checked for internal
commands, external commands or calls to other batch files. If the first is true, the

57

6. The Disk Operating System PC System Programming

58

command executes immediately, since the code is already in memory (in the
transient part of the command processor). If it is an external command or another
batch file, the system searches the current directory for the command. If such a file
doesn’t exist in this directory, all directories specified in the PATH command are
searched in sequence. During the search, only files with the .COM, .EXE or .BAT
extensions are examined.

Since the command processor cannot search for all three extensions at the same
time, it first searches for files with .COM extensions, then for .EXE files and
finally for .BAT files. If the search is unsuccessful, the screen displays an error
message and the system waits for new input.

Abacus

6.3 Booting DOS

6.3

Booting DOS

When a PC is turned on, the program contained in ROM begins executing. This
ROM program is sometimes called the ROM-BIOS, POST (power-on self test),
resident diagnostics or bootstrap ROM. It performs several tests on the hardware
and memory and then starts to load the DOS.

First the PC checks for a disk in the floppy disk drive. If a disk exists in the
floppy disk drive, the PC checks the disk for the boot sector. If a disk is not in the
drive, the PC searches for a hard disk from which to boot DOS. If no hard disk
exists, the PC displays an error message asking the user to insert a system disk.

The first sector on a bootable floppy disk or hard disk is called the boot sector. The
program in the boot sector is read into memory and executes. First it checks for
the presence of two files: IBMBIO.COM (sometimes called 10.SYS) and
IBMDOS.COM (sometimes called MSDOS.SYS). A bootable floppy disk or hard
disk must contain these two files or an error message is displayed. Next these
program files are loaded into memory.

The program file IBMBIO.COM consists of two modules. The first contains the
basic device drivers—keyboard, display and disk. The second contains the
initialization sequence for DOS. When the IBMBIO.COM program executes it
continues to initialize the system by moving the DOS kernal (loaded in the
IBMDOS.COM program file) to the last available memory location.

The DOS kernal builds several important tables and data areas, and performs
initialization procedures for individual device drivers which were loaded with the
IBMBIO.COM program file.

Next, DOS searches the boot disk for a file named CONFIG.SYS. If found, the
commands contained in the file are executed. These commands add device drivers to
DOS, allocate disk buffers and file control blocks for DOS and initialize the
standard input and output devices.

Lastly the command processor COMMAND.COM (or other shell specified in the
CONFIG.SYS file) is loaded and control is passed to it. The booting process ends
and the initialization routines remain as “garbage” data in memory until
overwritten by another program.

59

http:COMMAND.COM
http:IBMBIO.COM
http:IBMooS.COM
http:IBMBIO.COM
http:IBMBIO.COM
http:IBMDOS.COM
http:IBMBIO.COM

6. The Disk Operating System PC System Programming

6.4

EXEC

60

COM and EXE Programs

DOS recognizes three types of “program” files: those with file extensions of BAT,
COM and EXE.

This section describes the structure and functions of these last two program types.

One difference between COM and EXE program files is in the size limitation for
each type of program. A COM program cannot exceed 64K in size. An EXE
program can be as large as the memory capacity available to DOS.

In a COM program, the program code, data and stack are stored in one 64K
partition. All of the segment registers are set at the start of the program and remain
fixed for the duration of the program execution. They point to the start of the 64K
memory segment. The contents of the ES register may be changed however, since
it has no direct effect on program execution.

In an EXE program, the code, data and stack may be stored in different segments,
and depending on program size, may be distributed over several segments.

While a COM program file is stored on disk as an image copy of RAM memory,
an EXE program file is stored in a special format that will be described shortly.

Both program types can be loaded and started using the DOS EXEC function. Any
user can access this, but the command processor uses it for executing external
commands. Before the EXEC function loads the program into memory, it reserves
the RAM memory to hold the program. At the beginning of this memory the
EXEC function stores a PSP (program segment prefix) data structure. The program
is then loaded immediately following the PSP. The segment registers and the stack
are initialized and the program is given control. Later, when the program ends, the
memory is released based on the contents of the PSP.

Abacus

6.4 COM and EXE Programs

+ QOH Interrupt 20H call (2 bytes)
+ 02H | Segment address of memory (1 word)
allocated for a program
+ 04H | Reserved (1 byte)
+ 05H | Interrupt 21H call (5 bytes) RAM
+ OAH Copy of interrupt (2 words) 0000:0000
vector 22H
+ OEH Copy of interrupt (2 words)
vector 23H
+ 12H Copy of interrupt (2 words) |
vector 24H
+ 16H | reserved (22 bytes) |
+ 2CH Segment address of (1 word)
environment block
+ 2EH reserved (46 bytes)
+ S5CH FCB 1 (16 bytes)
+ 6CH | FCB 2 (16 bytes)
+ 80H Number of characters (1 byte)
in command line
+ 81H Command line (ended by CR) (127 bytes)

Structure of the PSP

The PSP itself is always 256 bytes long and contains information important for
DOS and the program to be executed.

Memory location 00H of the PSP contains a DOS function call to terminate a
program. This function releases program memory and returns control to the
command processor or the calling program. Memory location 05H of the PSP
contains a DOS function call to interrupt 21H. Neither of these are used by DOS,
but are leftovers from the CP/M system.

Memory location 02H of the PSP contains the segment address to the end of the
program. Memory location 0AH contains the previous contents of the program
termination interrupt vector. Memory location OEH contains the previous contents
of the <Ctrl><C> or <Ctrl><Break> interrupt vector. Memory location 12H
contains the previous contents of the critical error interrupt vector. For each of
these memory locations, the program changes one of the corresponding vectors
during execution; DOS can use the original vector in the event that it detects an
eror.

Location 2CH contains the segment address of the environment block. The
environment block contains information such as the current search path and the
directory in which the COMMAND.COM command processor is located on disk.

61

http:COMMAND.COM

6. The Disk Operating System PC System Programming

Memory locations SCH through 6CH contain a file control block. This FCB is
not often used by DOS since it does not support hierarchical files (paths) and is
also left over from CP/M.

The string of parameters that are entered on the command line following the
program name is called the command tail. The command tail is copied to the
parameter buffer in the PSP beginning at memory location 81H and its length is
stored at memory location 80H. Any redirection parameters are eliminated from the
command tail as it is copied to the parameter buffer. The program can examine the
parameters in the parameter buffer to direct its execution.

The parameter buffer is also used by DOS as a disk transfer area (DTA) for
transmitting data between the disk drive and memory. Most DOS programs do not
use the DTA contained in the PSP because it is another leftover from CP/M.

SS:0000
DS:0000_ ES:0000_,,
ES:0000 DS:0000
CS:0000 PSP (256 BYTES) PSP (256 BYTES)
CS:IP —»
Code
Code, data
and stack in (Address defined
one 64K segment by the END
CS:IP=»{ command in an
) assembler
SS:SP Stack adjusts program)
to the direction
SS:FFFF of data and code| DS:0000—
CS:FFFF - Data
DS:FFEFE $S:0000—
ES:FFFF
Stack
SS:Sp—w

A comparison of COM and EXE programs in memory

6.4.1 COM Programs

62

COM program files are stored on disk as an image copy of memory. Because of
this, no further processing is required during loading. Therefore COM programs
load faster and start execution faster than EXE programs.

A COM program loads immediately following the PSP. Execution then begins at
the first memory location following the PSP at offset 100H. For this reason, a
COM program must begin with an executable instruction, even it if is only a
jump instruction to the actual start of the program.

Abacus 6.4 COM and EXE Programs

COM program memory limits

As described in the previous section, a COM program is limited to 64K (65,536
bytes) in length. The PSP (256 bytes) and at least 1 word (2 bytes) for the stack
must be reserved from this total. Even though the length of the COM program can
never exceed 64K, DOS reserves the entire available RAM for a program.
Therefore DOS can allocate no further memory, and the COM program cannot call
another program using the EXEC function. This limitation can be overcome by
releasing the unused memory for other uses with a DOS function.

When control is turned over to the COM program, all segment registers point to
the beginning of the PSP. Because of this, the beginning of the COM program
(relative to the beginning of the PSP) is always at address 100H. The stack pointer
points to the end of the 64K memory segment containing the COM program
(usually FFFEH). During every subroutine call within the COM program, the
stack is adjusted by 2 bytes in the direction towards the end of the program. The
programmer is responsible for preventing the stack from growing and overwriting
the program, which would cause it to crash.

There are several ways to end a COM program and return control to DOS or the
calling program:

If the program runs under DOS Version 1.0, it can be terminated by calling
interrupt 21H function 0, or by calling interrupt 20H. It can also be terminated by
using the RET (RETurn) assembler instruction. When this instruction executes,
the program continues at the address which is at the top of the stack. Since the
EXEC function stored the value 0 at this location before turning control over to
the COM program, program execution continues at location CS:0 (the start of the
PSP). Recall that this location contains the call for interrupt 20H which
terminates the program. ‘

Programs that run on versions later than DOS Version 1.0, are terminated using
interrupt 21H function 4CH. The terminating program can pass a numeric return
code to the calling program. For example, a value of 0 may indicate that the
program executed successfully, while a non-zero value indicates an error during
execution.

Next we’ll talk about a few of the details that the assembly language programmer
will have to take care of in developing a COM program. Note that the high level
language programmer is usually insulated from these details by the compiler or
interpreter, so you may want to skip ahead.

A COM program is limited to a 64K size. The code and data for the program must
be contained within a single segment and addressed through NEAR procedures.
Therefore an assembly language program that is to become a COM program may
not contain any FAR procedures.

63

6. The Disk Operating System PC System Programming

64

Before calling a COM program, DOS reserves all available memory for the
program even though it normally uses only one 64K segment and indicates this by
setting memory location 2 in the PSP. Usually the program terminates and the
memory is made available to DOS again.

In some circumstances you may want to write a program which is to remain
resident after execution. But DOS thinks that there isn’t any memory available.
This prevents other programs from loading and executing.

In other circumstances you may want to execute another program from this COM
program using the EXEC function. Again, since DOS thinks that memory is
unavailable, it won’t allow the new program to run.

Both of these problems can be circumvented by freeing up the unused memory.

There are two approaches in doing this: release only the memory outside of the
64K COM segment or release memory outside of the 64K COM segment plus any
unused memory within the 64K COM segment. This creates more memory for
other programs, but relocates the stack outside the protected COM segment
memory, leaving it open to be overwritten by other programs. Because of this, the
stack must be relocated to the end of the code segment before releasing the
memory. The stack must have a certain limit in size (in most cases 512 bytes will
be more than enough).

The following sample program can serve as an example for developing a COM
program. A small (init) routine relocates the stack to the end of the code segment
after the start of the program and releases all remaining memory. Even when this
program loads another program, it remains resident. This routine can be useful to
applications, and can be part of any COM program.

;testcom.asm
code segment para ‘'CODE* ;Definition of CODE-segments

org 100h ;starts at Address 100H
;directly behind the PSP

assume cs:code, ds:code, es:code, ss:code

;all segments point to the CODE
; segment

start: jmp init ;Call of the Initialization Routine

;== Data

;-—- Data, Buffers and -========-
;-- Variables can be stored here

;== Program
prog proc near sthis Procedure is the actual

;Main program and is executed after
sthe Initialization

mov ax,4C00h ;Terminate Program through calling a

Abacus 6.4 COM and EXE Programs

int 21h ;DOS function on error code 0

prog endp ;End of the PROG procedure

;-- Initialization

init: mov ah,4Ah ;Change Function number for memory size
mov bx,offset endp ;Calculate number of paragraphs (16 byte
mov cl,4 ;each) available to the program
shr bx,cl
inc bx
int 21h ;Call function through DOS-Interrupt
mov sp,offset endp ;Set new stack-Pointer
jmp prog

init_end label near

;== stack

dw (256-((init_end-init) shr 1)) dup (2)

;the stack has 256 Words, but includes
;the code of the INIT-Routine which
;after its execution is no longer needed

endp equ this byte ;End of memory used by this
;program
;== End
code ends ;End of the CODE-segment
end start ;End of the Assembler-Program. For

;execution use START command

First you must assemble the source program using the assembler. In the following
example, we are using the Microsoft assembler. Following assembly, you then
link the object code using the LINK program. When you execute the LINK
program, the following message appears:

Warning: no stack segment

You can disregard this message. If the program contains no errors, the LINK
program creates an EXE file. Since you want a COM program and not an EXE
program developed, you must run the EXE2BIN program as the last step. This
converts EXE programs into COM programs. Here are the steps for preparing an
assembly language program using the Microsoft assembler. The program to
assemble is named TESTCOM.ASM.

masm testcom;
link testcom;
exe2bin testcom.exe testcom.com

If all steps were carried out correctly, the program TESTCOM.COM can be
executed from DOS by simply typing TESTCOM.

65

http:TESTCOM.COM
http:testcom.com

6. The Disk Operating System PC System Programming

6.4.2 EXE Programs

EXE programs have an advantage over COM programs because they are not
limited to a maximum length of 64K for code, data and stack. The disadvantage of
this is the greater complexity of these files. This means that in addition to the
program itself, other information must be stored in an EXE file.

EXE vs. COM

66

EXE programs contain separate segments for code, data and stack which can be
organized in any sequence. Unlike a COM program, an EXE program loads into
memory from disk and undergoes processing by the EXEC function and then
finally begins execution. This is necessary because of the limitations already
described for COM programs.

EXE programs aren’t limited to loading at a fixed memory location, but to any
desired location in memory that’s a multiple of 16. Since an EXE program can
have several segments, this requires the use of FAR machine language
instructions. For example, a main program can be in one segment and call a
subroutine in another segment. The segment address must be provided for this
FAR instruction in addition to the offset for the routine to be called. The problem
is that the segment address may be different for every execution of the program.

COM files avoid this problem since the program size is limited to 64K, which
makes the use of FAR commands unnecessary. EXE programs solve this problem
in a more complex way: the LINK program places a data structure at the beginning
of every EXE file which contains the addresses of all segments, among other
things. It contains the addresses of all memory locations in which the segment
address of a certain segment is stored during program execution.

If the EXEC function loads the EXE program, it knows the addresses where the
various segments should be loaded. It can therefore enter these values into the
memory locations at the beginning of the EXE file. Because of this, more time
elapses between the initial program call and when the program actually begins
execution than for a COM program. The EXE program also occupies more
memory than a COM program. The following illustration shows the structure of
the header for an EXE file.

Abacus

6.4 COM and EXE Programs

EXE flle header structure
Address|Contents Type
+00H EXE program ldentifier (5A4Dh) 1 WORD
+02H file length MOD 512 1 WORD
+04H file length DIV 512 1 WORD
+06H Number of segment addresses for passing|l WORD
+08H Head size in paragraphs 1 WORD
+0AH Minimum no. of extra paragraphs needed |1 WORD
+0EH Maximum no. of extra paragraphs needed |1 WORD
+10H SP register contents on program start 1 WORD
+12H Checksum based on EXE file header 1 WORD
+14H IP register contents on program start 1 WORD
+16H Start of code segment in EXE file 1 WORD
+18H Relocation table address in EXE file 1_WORD
+1AH Overlay number 1 WORD
+1CH Buffer memory 1 WORD
+2?H Address of passing segment addresses 1 WORD
(relocation table)
+?2?2H Program code, data and stack segment 1 WORD

EXE file header construction

After the segment references within the EXE program have been resolved to the
current addresses, the EXEC function sets the DS and the ES segment register to
the beginning of the PSP which also precedes all EXE programs in memory.
Because of this, the EXE program can access the information contained in the
PSP, such as the address of the environment block and the parameters contained in
the command line (command tail). The stack address and the contents of the stack
pointer are stored in the EXE file header and accessed from there. This also applies
to the code segment address containing the first instructions of the program, and
the program counter. After the values have been assigned, the program execution
starts.

To ensure compatibility with future DOS versions, an EXE program should
terminate by calling interrupt 21H function 4CH.

Of course, memory must be available for the EXE program. The EXE loader
determines the total program size based on the size of the individual segments of
the EXE program. Then it can allocate this amount of memory and some
additional memory immediately following the EXE program. The first two fields
of the EXE program file header contain the minimum and maximum size of
memory required in paragraphs (1-6 bytes).

First, the EXE loader tries to reserve the maximum number of paragraphs. If this
is not possible the loader tries to reserve the remaining memory which may be no
smaller than the minimum number of paragraphs. These fields are determined by
the compiler or assembler, not the linker. The minimum is O and the maximum

67

6. The Disk Operating System PC System Programming

68

allowed is FFFFH. This last number is unrealistic in most cases (it adds up to 1
megabyte) but reserves the entire memory for the EXE program.

This brings us back to the same problem as in COM programs. EXE files make
poor resident programs, but an EXE program may need to call another program
during execution. This is possible only by first releasing the additional reserved
memory. The following program below contains a routine which reduces the
reserved memory to a minimum,

The program uses separate code, data and stack segments. It can serve as a model
for other EXE programs that you can write.

; testexe.asm

;== stack

stack segment para stack ;Definition of the stack-segment
dw 256 dup (?) sthe stack has 256 Words

stack ends ;End of the stack-segment

;== Data

data segment para 'DATA‘ ;Definition of the Data-segment

;all data, buffers and variables can be stored here

data ends ;End of the Data segment
;== Code
code segment para 'CODE’ ;Definition of the CODE-segment

assume cs:code, ds:data, ss:stack

;CS defines the Code, DS
;the Data and SS the stack
; segment

prog proc far ;this procedure is the actual
;Main program and is executed after
;the program start

mov ax,data ;Load segment address of the Data segment into
mov ds, ax ;the DS-Register
call setfree ;release memory not needed

;store application program here

mov ax,4C00h ;terminate with call of DOS function
int 21h ;on return of error code 0
;terminate
prog endp ;End of PROG Procedure
;—— SETFREE : release memory storage not occupied ======--—-—————

;
;—— Inputt : ES = Address of PSP

;—— Output { none

;== Register : AX, BX, CL and FLAGS are changed

;-- Info : Since the stack-segment is always the last segment in an
; EXE file, ES:0000 points to the beginning and SS:SP

; to the end of the program in storage. Because of this the
; length of the program can be calculated.

Abacus

6.4 COM and EXE Programs

setfree proc near
mov bx,ss ;subtract the two segment addresses
mov ax,es ;from each other. The result is the
sub bx,ax ;number of paragraphs from PSP to

sthe beginning of the stack

mov ax,sp ;since the stackpointer is a the end
mov cl,4 ;of the stack segment, its content
shr ax,cl ;gives the length of the stacks
add bx,ax ;add to the present length
inc bx ;one more paragraph as a precaution
mov ah,4ah ;pass new size to DOS
int 21h
ret ;sback to calling program

setfree endp

;== End

code ends ;End of the CODE-segment
end prog ;End of the Assembler program.

;Start execution with the PROG procedure

To develop an EXE program, it must be assembled like a normal program with an
assembler. Then it is linked with the LINK program. If the program contains no
errors, the LINK program creates an EXE file.

Here are the individual steps for preparing an EXE program from the assembly
language source named TESTEXE.ASM.

masm testexe;
link testexe;

If all these steps were executed correctly, the program TESTEXE.EXE can be
started from the DOS level by typing TESTEXE.

69

6. The Disk Operating System PC System Programming

6.5

6.5.1

70

Character Input and Output from DOS

When first learning a programming language, many beginners learn the basic input
and output instructions of the language. In much the same way, programmers get
their experience writing DOS accessible programming by using the functions for
character input and output. For this reason, this book starts with these input and
output functions instead of more complex functions. These input and output
functions can address the keyboard, screen, printer and serial interface.

The functions can be divided into two types: those carried over from the CP/M
operating system and those borrowed from the UNIX operating system. While the
two types of functions can be intermixed, we recommend that you use one type of
function throughout a program for the sake of consistency.

The UNIX type functions use a handle as an identifier to a device. Because of
recent DOS trends to move closer to UNIX, you may want to give the handle
functions precedence.

Handle Functions

The handle functions perform file access as well as character input to or output
from a device. DOS recognizes the difference by examining the name assigned by
the handle. If the handle is a device name, it addresses the device; otherwise it
assumes that file access should occur. The device names are as follows:

CON Keyboard and display

AUX Serial Interface

PRN Printer

NUL Imaginary device (nothing happens on access)

Output and input go to and from the AUX, PRN and NUL devices. For the device
CON, output is sent to the screen and input is read from the keyboard.

When DOS passes control to a program, five handles are available for access to
individual devices. These handles have values from O to 4 and represent the
following devices:

Standard input (CON)

Standard output (CON)

Standard output for error messages (CON)
Standard serial interface (AUX)

Standard printer (PRN)

slwinrlo

Here is a short example to help demonstrate the use of this table:

Abacus 6.5 Character Input and Ousput from DOS

Display error message

If a program wants to accept input from the user, the handle function 0 indicates
this during the call since the standard input device is addressed. Handle 0 normally
represents the keyboard, permitting user input from the user to the program. Since
the user can redirect standard input, you can redirect input to originate from a file
instead of the keyboard. This redirection remains hidden from the program.

Before discussing these devices, here are some functions used to access any device.

Function 40H of interrupt 21H sends data to a device. The function number (40H)
is passed in the AH register and the handle is passed in the BX register. For
example, to display an error message, the value 2 indicates the handle for
displaying the error message (this device cannot be redirected, so handle 2 always
addresses the console). The number of characters to be in the error message is
passed in the CX register. The characters making up the message are stored
sequentially in memory whose segment address is stored in the DS register and
offset address in the DX register.

Following the call to the function, the carry flag signals any error. If there was no
error, the carry flag is reset and the AX register contains the number of characters
that were displayed. If the AX register contains the value 0, then there was no
more space available on the storage medium for the message. If the carry flag is
set, the error message was not sent and an error code is indicated in the AX
register. An error code of 5 indicates that the device was not available. An error
code of 6 indicates that the handle was not opened.

Function 3FH of interrupt 21H reads character data from a device and has many
similarities to the previous function. Both functions have identical register usage.
The function number is passed in the AX register and the handle in the BX
register. The number of characters read is passed in the CX register and the
memory address of the characters transferred are passed in the DS:DX register pair.

Following the call to the function, the carry flag also signals any error. Again, any
error code is passed in the AX register. Error codes 5 and 6 have the same meaning
as when using function 40H. If the carry flag is reset, then the function executed
successfully. The AX register then contains the number of characters read into the
buffer. A value of 0 in the AX register means that the data to be read should have
come from a file, but that this file contains no more data.

As we already mentioned, it’s possible to redirect the input or output when
accessing DOS. For example, a program that normally expects input from the
keyboard can be made to accept the input from a file. So, to avoid having input or
output redirected, you can open a new handle to a specific device which insures that
the transfer of data to or from the desired device takes place instead of to or from a
redirected device.

Use function 3DH of interrupt 21H to open such a device.

71

6. The Disk Operating System PC System Programming

The function number 3DH is passed in the AH register. The AL register contains 0
to enable reading from the device, 1 to enable writing to the device and 2 for both
reading and writing to the device. The name of the device is placed in memory
whose address is passed in the DS:DX register pair. So that the DOS can properly
identify the device name, the names must be specified in uppercase characters. The
last character of the string must be an end character (ASCII value 0).

Following the function calls the status is indicated by the carry flag. A reset flag
means that the device was opened successfully and the handle number is passed
back in the AX register. A set flag indicates an error and the AX register contains
any error code.

The handle is closed using function 3EH of interrupt 21H. The function number is
passed in the AH register and the handle number is passed in the BX register. The
carry flag again indicates the status of the function call. A set carry flag indicates
an error.

You can also close the predefined handles 0 through 4 using this function. But if
you close handle 0 (the standard input device) you’ll no longer be able to accept
input from the keyboard.

Let’s examine the special characteristics of each device.

Keyboard

72

The keyboard can perform only read operations. The results of the read operations
depend on the mode in which the device was addressed. Here DOS differentiates
between raw and cooked. In the cooked mode DOS checks every character sent to a
device or received from a device to see if it is a special control character. If DOS
finds a special control character, it performs a certain action in response to the
character. In raw mode the individual characters are passed through unchecked and
unmanipulated. DOS normally operates the device in cooked mode for character
input and output. However, you can switch to raw mode within a program (see
below).

The difference between cooked and raw mode can be best explained by an example
of reading the keyboard. Assume that 30 characters are read from the keyboard in
cooked mode. As you enter the characters DOS allows you to edit the input using
several of the control keys. For example <Ctrl><C> and <Ctrl><Break> abort the
input. <Ctrl><S> temporarily halts the program until another key is pressed.
<Ctrl><P> directs subsequent data from the screen to the printer (until <Ctrl><P>
is pressed again). <Backspace> removes the last character from the DOS buffer. If
the <Enter> key is pressed, the first 30 characters (or all characters input up to
now if there are less than 30) are copied from the DOS buffer into the input buffer
of the program without the control characters.

In raw mode all characters entered (including control characters) are passed to the
calling program without requiring the user to press the <Enter> key. After exactly

Abacus

6.5 Character Input and Output from DOS

Screen

Printer

30 characters, control passes to the calling program, even if you pressed the
<Enter> key as the second character of the input.

To display characters on the screen, handle 1 is usually addressed as the standard
output device. Since this device can be redirected, output through this handle can
pass to devices other than the screen. On the other hand, you cannot redirect the
standard error output device (handle 2), so error messages that pass through this
handle always appears on the screen. This handle is recommended for character
display on the screen only.

The screen is normally addressed in cooked mode—every character displayed on the
screen is tested for the <Ctrl><C> or the <Ctrl><Break> control characters. This
test slows down the screen output, so sometimes changing to raw mode decreases
program execution time.

Unlike the keyboard and screen, printer output cannot be redirected—at least not
from the user level. An exception to this rule is redirecting output from a parallel
printer to a serial printer. Characters ready to print can be sent to a buffer before
they are sent to the printer. Handle 4 is used to address the standard printer. There
are three standard printer devices LPT1, LPT2 and LPT3. Device PRN is
synonymous with LPT1. When this handle is opened the device name is specified
as one of the three: LPT1, LPT2 or LPT3.

Serial interface

Much of the information that applies to the printer also applies to the serial
interface. For example, serial input and output cannot be redirected to another
device (e.g., from a serial printer to a parallel printer). The programmer can use the
predefined handle 3 for serial access, through which you can address the standard
serial interface (AUX).

Handle 3 is used to address the standard serial device. The two are names COM1
and COM2. A PC can have multiple serial interfaces. Only the first two (COM1
and COM2) are supported by DOS. Since the system doesn’t know exactly which
interface to access during AUX device access, you should open a new handle for
access to the specific device.

Errors during read operations in DOS mode are returned to the serial interface in
cooked mode. The number returned to the AX register will not match the number
of characters actually read. We recommend that you operate the serial interface in
the raw mode, even if this mode ignores control characters such as <Ctrl><C> and
EOF (end-of-file).

73

6. The Disk Operating System PC System Programming

6.5.2 Traditional DOS Functions

The DOS functions for input and output aren’t based on the handle oriented
functions. If you use these functions you won’t need to specify a handle, since
each function pertains to a specific device.

Below are the various input and output devices and the way in which these
functions work with them.

Keyboard

74

There are seven DOS functions for addressing the keyboard but they differ in many
ways. For example, they respond differently to the <Ctrl> <Break> key. Some
functions echo the characters on the screen; others don’t.

You can use DOS functions 01H, 06H, 07H and 08H to read a single keyboard
character. The function number is passed in the AH register. Following the call,
the character is returned in the AL register.

For DOS function 01H, DOS waits for a keypress if the keyboard buffer is empty.
When this happens, the character is echoed on the screen. If the keyboard buffer is
not empty, a new character is fetched and returned to the calling program. DOS
function O6H can be used for both character input and output. To input a character
a value of FFH is loaded into the DL register. This function doesn’t wait for a
character to be input but returns immediately to the calling program. If the zero
flag is set, a character was not read. If the zero flag is reset, a character was read and
returned in the AL register. The character is not echoed on the screen.

DOS functions 07H and 08H are used to read the keyboard similar to function 1.
Both either fetch a character from the keyboard buffer or wait for a character to be
entered at the keyboard. Neither echo the character to the screen. They differ in that
function O8H responds to <Ctrl><C> and function 07H does not.

By using function OBH, a program can determine whether one or more characters
are in the keyboard buffer before calling any functions that read characters. After
calling this function, the AL register contains 0O if the keyboard buffer is empty,
and FFH if the keyboard buffer is not empty.

DOS function OCH is used to clear the keyboard buffer. After it is cleared, the
function whose number was passed to function 0CH in the AL registered is
automatically called.

DOS function OAH is used to read a string of characters. Again this function
number is passed in the AH register. In addition, the memory address of a buffer
for the character string is passed in the DS:DX register pair. This buffer is used to
hold the character string. The first byte of the buffer indicates the maximum
number of characters that may be contained in the buffer.

Abacus

6.5 Character Input and Output from DOS

When this function is called, DOS reads up to the maximum number of characters
and stores them in the buffer starting at the third byte. It reads until either the
maximum number of characters is entered or the <Enter> key is pressed. The
actual number of characters is stored in the second byte of the buffer. Extended key
codes which occupy two bytes each in the buffer may be entered. The first byte of
the pair (ASCII value 0) signifies that an extended key code follows. This means,
for example, that for a maximum buffer size of 10 bytes, only five extended
characters may be entered.

The following table illustrates how the various functions respond to <Ctrl><C>
or <Ctrl><Break>, and provides a quick overview of the individual functions for
character input.

Fet. Task <Ctrl><C> Echo
01H Character input yes yes
06H direct character input o o

07H Character input o no

08H Character input yes o

OAH Character string input yes o

OBH Read input-status _yes o

OCH Reset input-buffer then input varies varies

Screen output

There are three DOS functions for character output.

DOS function 02H outputs a single character to the screen or standard output
device. The character is passed to the DL register.

DOS function 06H which is multi-purpose is also used to output a single
character. The character is passed in the DL register. You can see that the character
whose value is 255 cannot be output since this indicates that the function is to
perform an input operation. Output using this function is faster than using
function 02H since it doesn’t test for the <Ctrl><C> or <Ctrl><Break> keys.

DOS function 09H is used for string output. Again, the function number is passed
in the AH register. The address of the string is passed in the DS:DX register pair.
The last character of the string is a dollar sign. In addition, the following control
codes are recognized.

Code] Operation

7 "Bell", rings the bell on the PC

8 "Backspace", erases the preceding character and moves the cursor
back by one character

10 "Line Feed", (LF) moves the cursor one line down

13 "Carriage Return", (CR) moves the cursor to the beginning of the
current line

As with function O2H, this function also checks for <Ctrl><C> or
<Ctrl><Break>.

75

6. The Disk Operating System PC System Programming

Printer

DOS function O5H is used to output a single character to the printer. If the printer
is busy, this function waits until it is ready before returning control to the calling
program, During this time, it will respond to the <Ctrl><C> and <Ctrl><Break>
keys.

The function number is passed in the AH register. The character to output is
passed in the DL register. The status of the printer is not returned. Most
programmers will elect to use the BIOS function instead of the DOS function for
printer output since you can specify the exact printer device and determine the
printer status using the BIOS version. See Section 7.12 for more detailed
information.

Serial interface

There are two DOS functions for communicating using serial interface—one for
input and one for output. Both functions respond to <Ctrl><C> and
<Ctrl><Break>, but they don’t return the status of the serial interface, nor do they
recognize transmission errors.

DOS function 03H is used to input data from the serial interface. The character is
returned in the AL register. Since the data is not buffered, the data can overrun the
interface if the interface receives data faster than this function can handle it.

DOS function 04H is used to output data over the serial interface. The character to
output is passed in the DL register. If the serial interface is not ready to accept the
data, this function waits until it is free.

Again, most programmers prefer to use the BIOS equivalent functions (see Section
7.9) to perform serial data transmission because of their more complete data
handling capabilities.

Demonstration programs

76

Earlier we mentioned that it was possible to switch a device from cooked mode to
raw mode and back. The BASIC, Pascal and C programs that follow show you
how to do this. They use the IOCTL functions which permit access to the DOS
device drivers (see Section 6.11.7 for details on this routine). These are routines
which serve as interfaces between the DOS input/output functions and the
hardware. The IOCTL functions in these programs tell the CON device driver
(responsible for the keyboard and the display) whether it should operate in the
cooked mode or in the raw mode.

To demonstrate how differently characters respond in the two modes, the programs
switch the CON driver into raw mode first. Then this driver displays a sample
string several times. Unlike cooked mode, pressing <Ctrl><C> or <Ctrl><S> in
raw mode has no effect on stopping program execution or text display.

Abacus

6.5 Character Input and Output from DOS

BASIC

After the program finishes displaying the sample string, the driver switches to the
cooked mode. The sample string is displayed again several times. When you press
<Ctrl><C> the program stops (Turbo Pascal version). For the BASIC and C
versions, you can press <Cirl><C> to stop the program, or press <Ctrl><S> to
pause or continue the display.

Switching between the raw and the cooked mode does not take place directly
through a function. First the device attribute of the driver is determined. This
attribute contains certain information which identifies the driver and describes its
method of operation. One bit in this word indicates if the driver operates in raw or
cooked mode. The programs set or reset this bit, depending on the mode you want
running the driver.

listing: RAWCOOK.BAS

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

PARAKKR AR KRR IR R AR R AR R AR R AR A AR AAR A AR AR R A Rk ke kkkhkkhkh o
'* RAWCOOKX *
. x1
'* Task : make two subroutines available *
‘* to switch the character driver into RAW- or *
A COOKED mode *
'* Author : MICHAEL TISCHER *0
** developed : 07/23/87 *
'* last Update : 04/08/89 *

TRAR RN RN KRR R AR RN R AR N R AR R AR AR R AN R AN AN N AN ANR AN R RN R AR AR IR AR AR N AN R NAR
'

CLS : KEY OFF

PRINT"WARNING: This program can only be started if the GWBASIC was"
PRINT"started from DOS with the command <GWBASIC /m:60000>.%

PRINT : PRINT"If this is not the case, please input <s> for Stop."
PRINT"Otherwise press any key...";

A$ = INKEY$: IF A$ = "s" THEN END

IF 'A$ = "" THEN 260

GOSUB 60000 ‘Install function for interrupt call
CLS ‘erase display
HANDLES = 0 ‘handle is connected with console driver
PRINT"RAWCOOK (c) 1987 by Michael Tischer" : PRINT

PRINT"The Console driver (Keyboard and Display) is now in RAW-*
PRINT"Mode so that during input and output no control characters *
PRINT"are recognized."

PRINT"Because of this not even <CTRL> + <S> can stop the "
PRINT"following output."

PRINT"Try it ..." : PRINT

PRINT "Press any key to start output ..."

GOSUB 25000 'Clear keyboard buffer
A$ = INKEY$: IF A$ = "" THEN 370 ‘walt for a key
GOSUB 52000 *Switch console driver into RAW mode
GOSUB 50000 ‘Output Test-String
CLS

PRINT"The Console driver (Keyboard and Display) 1s now in *

PRINT"COOKED mode. Control characters will be recognized during *
PRINT*input /output.”

PRINT"The following output can be stopped with <CTRL> + <S>."
PRINT*"Try it ..." : PRINT

717

6. The Disk Operating System

78

450 PRINT “Press any key to start the output..."

455 GOSUB 25000 ‘Clear the keyboard buffer
460 AS$ = INKEY$: IF A$ = "" THEN 460 'wait for a key
470 GOSUB 51000 ‘change console driver to the COOKED mode
480 GOSUB 50000 'output Test-String
490 CLS
500 END
510
25000 A$ = INKEY$: IF A$ = "% THEN RETURN 'Clear the keyboard buffer
25010 goto 25000
50000 AR R R AR AR AR AR AR AR AR AR AR R AR R AR AN AR AR R AR R R AR AR AR AR AR R R R R AR A Ak k&
50010 '* outputs a Test-String on the Standard output device *
50020 *'* *0
50030 '* Input : none *
50040 '* Output: none *
50050 TR A EAR AR IR AR R AR R R R R AR N AR AR AN R AR AR AR AR R A AR R AR AR AR A AR A AR hkh
50060 '
50070 T$ = “Test.... " 'Output Test-String
50080 FOR I = 1 TO 250 1250 times
50090 FCT$ = &H40 : FCT1% = 0 'Write function number for handle
50100 INR% = &H21 ‘Call DOS-Interrupt 21H
50110 ADRLO% = 9 : ADRHI% = 0 ‘output 9 characters at a time
50120 OFSLO% = PEEK(VARPTR(TS$)+1) ‘'LO-byte of offset address of string
50130 OFSHI% = PEEK (VARPTR(TS)+2) ‘HI-byte of offset address string
50140 HANDLO% = 1: HANDHI% = 0 ‘address the standard output device
50150 CALL IA(INR%,FCT%, FCT1%, HANDHI%, HANDLO%, ADRHI%, ADRLO%, OFSHI%,
OFSLO%, 2%, 2%, 2%, 2%)
50160 NEXT ‘next run
50170 PRINT
50180 RETURN ‘back to caller
50190 *
51000 AR I R AR AR KRR R AR R R AN R A A NR AR AR AR AR AR AR R AR AR R AR RA AR RAR N AN R A A AR AN
51010 *'* change device driver to COOKED mode *
51020 ** *
51030 '* Input : HANDLE$ = handle connected with the driver *
51040 *'* Output: none *
51050 TR AN AR IR KRR AT AR R AR R R AR R RN AR RN AN R AR AR A AR R R AR KA N RN AN RAN R AR AR AR IR
51060 *
51070 GOSUB 53000 'Get device attribute of driver
51080 ATTRIB% = ATTRIBS AND 223 ‘Find COOKED-Bit
51090 GOSUB 54000 ‘Set device attribute of driver
51100 RETURN '‘back to caller
51110
52000 AR AR IR R R AR R AR AR KRR AR AR R AR AR AR AR KRR AR AR AR AR R AR RN AR RAR A RN AR AR R A
52010 '* change device driver to RAW mode *e
52020 ** *
52030 '* Input : HANDLE% = handle connected to the driver *e
52040 '* Output: none *!
52050 TR AR AR AN R RA N AN AR RN R AR AN RN RN AR RAR AR R A AR AR N A RN AN RAR R RR RN A AR AR
52060 *
52070 GOSUB 53000 'Get device attribute of driver
52080 ATTRIB% = ATTRIB% OR 32 'Set RAW-Bit
52090 GOSUB 54000 ‘Set device attribute of driver
52100 RETURN 'back to caller
52110 *
53000 AR AR AR AR R AR R R R AR AR AR AR AR AR AR R AR AR R R AR A AR R AR R AR A ARARAN AR AR AR A AR
53010 '* Get device attribute of a driver *
53020 '* *0
53030 '* Input : HANDLE$% = handle connected with a driver >
53040 '* Output: ATTRIB% = Attribute of driver >
53050

'* Info : 2% used as Dummy-Variable *

PC System Programming

Abacus 6.5 Character Input and Output from DOS

53060 ** only Bits 0 to 7 of the device attribute *
53070 ** determined *t
53080 TR R AR R AR R AR AR AR AR AR AR R R AR R IR R AR IR R AR A AR AR AR AR AR A Ak Ak hkhhk k& !
53090 °*

53100 FCT%$=&H44 ‘Function number for IOCTL
53110 FCT1%=0 '‘Read Function number for IOCTL: Read device attribute
53120 INR%=&H21 ‘Call DOS-Interrupt 21H
53130 HANDHI% = INT (HANDLE%/256) '‘HI-byte of the handle
53140 HANDLO% = HANDLE$ AND 255 'LO-byte of the handle
53150 CALL IA{INRS,FCT$,FCT1%, HANDHI%, HANDLOS, 2%, 2%, 2%, ATTRIBS, 2%, 2%, 2%, 2%)
53160 RETURN ‘back to caller
53170

54000 AR AR AR AR AR AR AR AR KRR KRN R AR RN R AR AR AR AR AR A RRA AR RARR R R AR AR A ARk A Ak k!
54010 '* Set device attribute of a driver *
54020 *'* *e
54030 ** Input : HANDLE% = handle connected to a driver *
54040 ** ATTRIB% = the attribute of the driver *!
54050 '* Output: none *e
54060 '* Info : 2% used as Dummy-Variable *
54070 AR R AR AR R R AR R AR AR AR R AR AR AR R AR KRR ARRNR AR AR R ARNR AR KRR AR AR AR ANk Ak k&
54080

54090 FCT$=gH44 ‘Function number for IOCTL
54100 FCT1%=1 ‘Set function number for IOCTL: device attribute
54110 INR%=&H21 *Call DOS-Interrupt 21 (h)
54120 HANDHI% = INT (HANDLE%/256) ‘HI-byte of the handle
54130 HANDLO% = HANDLE$ AND 255 'LO-byte of the handle
54140 ATHI% = INT (ATTRIB%/256) 'HI-byte of the Attribute
54150 ATLO% = ATTRIB% AND 255 'LO-byte of the Attribute
54160 CALL IA(INRS,FCT$,FCT1$%, HANDHI%,HANDLOS, 2%, 2%,ATHI%, ATLO%, 2%, 2%, 2%, 2%)
54170 RETURN 'back to caller
54180

60000 TR AR AR KRR R AR A A AR AR AR RN AR R AR A AR R R AR AR KRR AN AR R AR R RARRR KRR AR AR AR AR A
60010 ** Initialize the Routine for Interrupt Call *
60020 '* *
60030 ** Input : none *!

60040 ** Output: IA is the Start address of the Interrupt-Routine e
60050 TR AR AR R R AR R AR AR AR R R R R AR R R AR AR AR R R RARARARR KRR R AR AR AR R AR N AR R A Ak ke ko

60060 *
60070 IA=60000! 'Start address of the routine in the BASIC-Segment
60080 DEF SEG 'Set BASIC-Segment

60090 RESTORE 60130

60100 FOR I%$ = O TO 160 : READ X% : POKE IA+I%,X% : NEXT ‘'Poke Routine
60110 RETURN ‘back to caller
60120

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255

79

6. The Disk Operating System PC System Programming

Pascal listing: RAWCOOK.PAS

(iit*itiit**i**iii**i*itiii**i****ii***t**ii*i***ittiiiki*ii**tif**iii!

{* RAWCOOK *}
{* *}
{(* Task : provide two functions to switch *}
{* a character device driver to the RAW- *}
{* or the COOKED mode *}
{* *}
{* Author : MICHAEL TISCHER *}
{* developed : 08/16/87 *}
{* last Update : 05/11/89 *}

{*tﬁt*Q*i*tiﬁktﬁti't'*kitfkt****ﬂ***t***tﬂ*t**t**tti*tki'*tikttﬁi**t*t}

program RAWCOOKP;

Uses Crt, Dos; { CRT and DOS units

const STANDARDIN = 0; { handle 0 is connected with Standard input
STANDARDOUT = 1; { handle 1 is connected with Standard output

var Keys : char; { only needed for Demo program }

[Frr AR R KRR KRR IR KA K R AR AR AR R KRR KRR AR AR KRR AR KRR AR R KRR AR KRRk ARk kh k]

{* GETMODE: read attribute of device driver in *}
{* Input : the handle passed must be connected to device addressed *}
{* Output : the device attribute *}

(*ﬂi*"*iﬁ*tﬁ**ﬂ*ﬁ**i*#*'*'*ﬁ*ﬁ*ﬁ*'i***ﬁ*ﬁ*t*t*'*'i*'*'t**i*'t'*t'*t*ﬁ)

function GetMode (Handle : integer) : integer;

var Regs : Registers; { register-Variable for Interrupt call }
begin

Regs.ah := $44; { Function number for IOCTL: Get Mode }
Regs.bx := Handle;

MsDos(Regs); { Call DOS-Interrupt 21H }
GetMode := Regs.dx { Pass device attribute }
end;

[FrH I AR KKK AR KRR KR KA KA R AR AR RN R AR KRR AR KRR KR A AR AN AR KRR ARk R AR Rk Ak]

{* SETRAW : Change a character driver into RAW-Mode *}
{* Input : the handle passed must be connected with *}
{* addressed device *}
{* Output : none *}

[K Ar KA AR AR KK RR KRR KRR KK AR KRR AR KRR KRR KA KK AR KA R KR AR KRR KA AR kA kA k|

procedure SetRaw(Handle : integer);

var Regs : Registers; { register-Variable for Interrupt call }
begin

Regs.ax := $4401; { Function number for IOCTL: Set Mode }
Regs.bx := Handle;

Regs.dx := GetMode (Handle) and 255 or 32; { new device attribute }
MsDos(Regs); { Call DOS-Interrupt 21H }
end;

(AR R KR AR RRR IR KKK AR IR AR KR KA KRR AR RRRR R KRR A AR AR KR KKK R AR R AR AR KR Ak }

{* SETCOOKED : Change a character driver into the COOKED-Mode *}
{* Input : the handle passed must be connected with the *}
{* device addressed *}
{* Output : none *}

(KA R RA KRR KRR KKK KRR R AR AR R KRR AR KRR KR AR RR KRR R AR A AR KA KK KARR AR AR AR A AR A A Kk)

procedure SetCooked(Handle : integer);

var Regs : Registers; { register-Variable for Interrupt call }

80

Abacus

6.5 Character Input and Output from DOS

begin
Regs.ax := $4401;
Regs.bx := Handle;

{ Function number for IOCTL: Set Mode }

Regs.dx := GetMode (Handle) and 223; { new device attribute }

MsDos(Regs);
end;

{ Call DOS-Interrupt 21H }

(ttﬁtt**tt*ﬁt*t*ti****t*t********ﬁ*******t*t**ﬁ****t*****ﬁ*ﬁ*ttt*ﬁ*ﬁ**)

{* TESTOUTPUT : Output a Test-String 1000 times on the Standard *}
{* output device *}
{* Input : none *}
{* Output : none *}

(AR NI AR R KRR KA I AR KRR K AR K KARK A KRR KRR AAK AR RR AR KRR R A A hkh kA kA Nk h AN K]

procedure TestOutput;

var Regs : Registers;
LoopCnt : integer;
Test : string[9];

begin
Test := 'Test.... ';
= STANDARDOUT;

Regs.bx :

Regs.cx := 9;

Regs.ds := Seg(Test);
Regs.dx := Ofs(Test)+1;

for LoopCnt := 1 to 1000 do
begin
Regs.ah := $40;
MsDos(Regs };
end;
writeln;
end;

{ register-Variable for Interrupt call
{ Loop variable
{ The Test-String for output

—

{ output on the Standard output device
{ Number of characters

{ Segment address of the text

{ Offset address of the text

-

{ Write function number for handle }
{ call DOS-Interrupt 21H }

(******k******t*******t*t*t***t****ﬁt*tﬁttt*t***tt************t**t****)

(*

MAIN PROGRAM *}

(tti******t*t****i****t**t*t**ﬁ*****tttttit*i*t*k*********itt*t**t***ﬁ)

begin
Clrscr;

{ Clear screen }

writeln('RAWCOOK (c) 1987 by Michael Tischer'#13#10);
writeln(*'The Console driver is now in RAW-Mode. Control keys such as <Ctrl><C>');
writeln('are not recognized during output. Press a key to display a text on

'$13410) ;

writeln('the screen, and try stopping the display by pressing <Ctrl><C>');

Keys := ReadKey;

SetRaw (STANDARDIN) ;

TestOutput;

ClrScr;

while KeyPressed do
Keys := ReadKey;

{ walt for key

{ Console driver in RAW mode }

{ Output Test-String 1000 times }
{ Clear Screen }

—

{ Empty keyboard buffer }

writeln('The Console driver is now in COOKED mode. Control keys such as');
writeln (*<CTRL><C> are recognized during output');
writeln('Press a key to start, then press <Ctrl><C> to stop the display');

Keys := ReadKey;
SetCooked (STANDARDIN) ;
TestOutput;

end.

{ Wait for key }

{ Output Test-String 1000 times }

81

6. The Disk Operating System

C listing: RAWCOOK.C

82

/’k**i**********t*iiitktii****tt***ti*******ﬁ*i*ttk*tttt*ti*ﬁ*ﬁ**t*tt**/

/* RAWCOOK */
/* */
/* Task : provides two functions for */
/* switching a character device driver into the RAW */
/* or into the COOKED mode */
/* */
/* Author : MICHAEL TISCHER */
/* developed on : 08/16/87 */
/* last Update : 04/08/89 */
/* */
/* (MICROSOFT C) */
/* Creation : MSC RAWCOOKC; */
/* LINK RAWCOOKC; */
/* Call : RAWCOOKC */
/* */
/* {(BORLAND TURBO C) */
/* Creation : through command RUN in the menu */

JRRR AR KAk R AR AR R AR kA h Ak AR R kAR R AN AR AR A AR AR N RN AR AN RN RN AR ANk k [

#include <dos.h> /* include Header files */
#include <stdio.h>
#include <conio.h>

#define STANDARDIN 0O /* handle 0 is the Standard input device */
#define STANDARDOUT 1 /* handle 1 is the Standard output device */

/*i**t*ﬁﬁ*t*tﬁtﬁiﬁitﬁ*ﬁtﬁtﬁtﬁt*t*tﬁtﬁt**ﬁtﬁtﬁ*itﬁt*t*tﬁ*tﬁﬁﬁﬁtt*t*t*ﬁt/
/* GETMODE: read the attribute of an device driver */
/* Input : the handle must be connected with the addressed device */

/* Output : the device attribute */
/**ﬁ*ﬁ**ﬁ*********ﬁ****ﬁtﬁﬁﬁkt*ﬁt*tﬁﬁﬁt*tﬁ*******'******ﬁ**ﬁ**ﬁ*ﬁ*****/

int GetMode (Handle)

int Handle; /* points to the character driver */
{

union REGS Register; /* register-Variable for Interrupt call */
Register.x.ax = 0x4400; /* Function number for IOCTL: Get Mode */
Register.x.bx = Handle;

intdos (sRegister, &Register); /* Call DOS-Interrupt 21H */
return (Register.x.dx); /* Pass device attribute */

}

[R AR IR IR AR R R AN R AR A AR AR R A AR A AR AR AN KA RR KRR KA NN A AR KRRk k ok ok /

/* SETRAW : Change a character driver into RAW mode */
/* Input : the handle passed must be connected with the addressed */
/* device */
/* Output : none */

JREr kR kR kR kAR A AR R RN AR AR R R AR R AR AR R AR AR AN R AR R AR AN R RN AR R AN A RN AN R AN Xk [

int SetRaw (Handle)

int Handle; /* points to the character driver */
{

union REGS Register; /* register-Variable for Interrupt call */
Register.x.ax = 0x4401; /* Function number for IOCTL: Set Mode */

Register.x.bx = Handle;
Register.x.dx = GetMode (Handle) & 255 | 32; /* new device attribute */
intdos (¢Register, &Register); /* Call DOS-Interrupt 21H */

PC System Programming

http:Register.x.dx
http:Register.x.bx
http:Register.x.ax
http:return(Register.x.dx
http:Register.x.bx
http:Register.x.ax

Abacus 6.5 Character Input and Output from DOS

/ttttttttt*i*it*t*ti*tittttttttt*t*ttttttttt*ttttttttt***ttttttt*t*tttl

/* SETCOOKED: Changes a character driver into the COOKED mode */
/* Input : the handle passed must be connected with the device */
/* addressed */
/* Output : none */

/tttttt*ttttttttttttttttttttttt*t*t*t*ttttttt***ttttttt**t*ttttt*t*ttt/

int SetCooked (Handle)

int Handle; /* points to the character driver */
union REGS Register; /* register-Variable for Interrupt call */
Register.x.ax = 0x4401; /* Function number for IOCTL: Set Mode */
Register.x.bx = Handle;
Register.x.dx = GetMode (Handle) & 223; /* new device attribute */
intdos (sRegister, &Register); /* Call DOS-Interrupt 21H */

}

/ttttt****t*tt*t**t**t'ttt*'t'tt*ttttt*ttttt*t*t*tttttt*t*t*ttttttt*tt/

/* TESTOUTPUT: outputs a Test-String 1000 times on the Standard */
/* output device */
/* Input : none */
/* Output : none */

/*t****t*****t***t*t*t*tttiﬂ*t*ﬁ*k*ﬁ*i*i*ﬂtttﬂ*t***tt*tttt****tttt*tii/
void TestOutput ()

{

int 1; /* Loop Variable */

static char Test([] = "Test.... *; /* the text for output */

printf (“\n");

for (1 = 0; 1 < 1000; i++) /* output 1000 times */
fputs (Test, stdout); /* Output String on the Standard output. */

printf (*\n");

}

/**it*tt*t**t*t*ﬂtttttttﬂtittt**t*t*ﬂ*t*t*i*tttiit*ttt*ttttt*t*tttttttl

/** MAIN PROGRAM **/

/tiﬂttttttttttttii**i***t***ﬂtttt*ttttﬂtttt***ititttﬂt*t*tttiﬂt*t*t*ti/
void main()

{
printf ("\nRAWCOOK (c) 1987 by Michael Tischer\n\n");

printf ("The Console Driver (Keyboard, Display) is now in *);

printf ("RAW Mode.\nDuring the following output control characters,\n");
printf (“such as <CTRL-S> will not be recognized.\n%);

printf (*Try it.\n\n%);

printf ("Please press a key to start...");

getch(); /* walt for key */
SetRaw (STANDARDIN) ; /* Console driver into RAW mode */
TestOutput () ;

while (kbhit()) /* in the meantime remove key codes from */
getch(); /* keyboard buffer */

printf (“\nThe conscle driver is now in COOKED mode. "“);

printf ("Control keys such as\n<CTRL-S> are recognized during *);
printf (*output and answered accordingly!\n");

printf (“Please press a key to start ...");

getch(); /* wait for key */
SetCooked (STANDARDIN) ; /* Console driver in the COOKED mode */
TestOutput () ;

83

http:Register.x.dx
http:Register.x.bx
http:Register.x.ax

6. The Disk Operating System PC System Programming

' 6.6

File Management in DOS

The DOS file management functions are among the most basic available to the
programmer. These functions are used to:

. Create and delete files
. Open and close files
. Read from and write to files

Operating systems such as DOS provide the programmer with functions for file
management. For example, DOS provides functions which return special file
information or functions to rename a file. One peculiarity of DOS is that these
functions exist in two forms because of the combined CP/M & UNIX
compatibility. For every UNIX compatible file function, there is also a CP/M
compatible file function.

FCB functions

The CP/M compatible functions are designated as FCB functions since they are
based on a data structure called the FCB (File Control Block). DOS uses this data
structure for information storage during file manipulation. The user must reserve
space for the FCB within this program. The FCB permits access to the FCB
functions which open, close, read from and write to files.

Since the FCB functions were developed for compatibility with CP/M's functions,
and since CP/M has no hierarchical file system, FCB functions do not support
paths. As a result, FCB functions can only access files which are in the current
directory.

UNIX handle functions

6.6.1

84

The UNIX compatible handle functions don't have this problem. With these
functions, a handle is used to identify the file to be accessed. The DOS stores
information about each open file in an area that is separate from the program.

Handle Functions

It is easier for the programmer to access a file using the handle functions than to
access a file using the FCB functions. The handle functions do not require a
programmer to use a data structure for file access like the FCB functions do. In a
manner similar to the functions of the UNIX operating system, file access is
performed using a filename. The filename is passed as an ASCII string when the
file is opened or first created. This must be performed before the first write or read
operation to the file. In addition to the filename, it may contain a device
designator, a pathname and a file extension. The ASCII string ends with the end

Abacus

6.6 File Management in DOS

FILES

character (ASCII code 0). After the file is opened, a numeric value called the handle
is returned. Any further operations to this file are performed using this 16-bit
handle. For a subsequent read or write operation, the handle and not the filename is
passed to the appropriate function.

For each open file, DOS saves certain information pertaining to that file. If the
FCB functions are used, DOS saves the information in the FCB table within the
program's memory block. When the handle functions are used, the information is
stored in an area outside of the program's memory block in a table that is
maintained by the DOS. The number of open files is therefore limited by the
amount of available table space. The amount of table space set aside by DOS is
specified by the FILES parameter of the CONFIG.SYS file:

FILES = X

In DOS Version 3.0, this maximum is 255. If you change the maximum number
of files in the CONFIG.SYS file, the change will not go into effect until the next
time that DOS is booted.

While the FILES parameter specifies the maximum number of open files for the
entire operating system, DOS limits the number of open files to 20 per program.
Since five handles are assigned to standard devices such as the keyboard, monitor
and line printer, only 15 handles are available for the program. For example, if a
program opens three files, DOS assigns three available handles and reduces the
number of additional handles available by three. If this program calls another
program, the three files opened by the original program remain open. If the new
program opens additional files, the remaining number of handles available is
reduced even further.

In addition to the standard read and write functions, there is also a file positioning
function. This lets you specify an exact location within the file for the next data
access. Knowing both a record number and the length of each data record allows
you to specify the position to access a particular data record:

position = record number * length of record

This function is not used during sequential file access since DOS sets the file
pointer during opening or creation of a file to the first byte within the file. Each
subsequent read or write operation moves the file pointer by the number of bytes
read towards the end of the file so that the next file access starts where the previous
one cnded.

The following table summarizes the handle functions. For a more detailed
description of these functions, see Appendix C.

85

6. The Disk Operating System PC System Programming

6.6.2

86

Function No. | Operation
3CH Create file
3DH Open file
3EH Close file
42H Move file pointer/determine file size
43H Read/Write file attribute
56H Rename file
57H Read/Write modifications & date/time of file

Here are a few general rules to follow when using these functions:

Functions which expect a filename or the address of a filename as an argument
(e.g., Create File and Open File) expect the segment address of the name in the DS
register and the offset address in the DX register. If the function successfully
returns a handle, it is returned in the AX register.

Functions which expect a handle as an argument expect it in the DX register. After
the call, the carry flag indicates if an error occurred during execution. If an error
occurs, the carry flags is set and the error code is returned in the AX register.

Function 59H of DOS interrupt 21H returns very detailed information concerning
errors which occur during disk operations. This function is available only in DOS
Versions 3.0 and higher.

FCB Functions

As discussed earlier, DOS uses an FCB data structure for managing a file. The
programmer can use this data structure to obtain information about a file or change
information about a file. For this reason we shall examine the structure of an FCB
before discussing the individual FCB functions.

The FCB is a 37-byte data structure which can be subdivided into different data
fields. The following figure illustrates these fields.

Abacus

6.6 File Management in DOS

RAM

+ OOH | Device name (1 byte) 0000:0000
+ 01H | Filename (8 bytes
+ O09H | File mode (3 bytes)
+ OCH | Current block number (1 word) |
+ OEH | Data record size (1 word)
+ 10H | File size (2 words)
+ 14H | Modification date (1 word) +
+ 16H | Modification time (1 word)
+ 18H | Reserved (8 bytes)
+ 20H | Current data record number (1 byte)
+ 21H | Data record number for (2 words)

random access

Structure of an FCB

Notice that the name of the file is found beginning at offsets 01H through OBH of
the FCB. The byte at offset 0 is the device indicator, 0 is the current drive, 1 drive
A, 2 drive B, etc.

The filename which begins at offset 1 is an ASCII string. It may not contain a
pathname since it's limited to 8 characters. For this reason, the FCB functions can
access only files in the current directory. Filenames shorter than eight characters
are padded with spaces (ASCII code 32). The file extension, if any, occupies the
next three bytes of the FCB.

At offset 0CH of the FCB is the current number of the block for sequential file
access. The two bytes at offset OEH are the record size. The four bytes at offset
10H are the length of the file.

The date and time of the last modifications to the file are stored beginning at offset
14H of the FCB in encoded form.

87

6. The Disk Operating System PC System Programming

1514 13 121110 9 8 7 6 5 4 3 2 1 0 bit

[(TTTITTTTTTI I I d Il
\ T AL T AL T 7
Hour Minute Seconds in

2-second
increments (e.g.,
13 means 26)

1514 13 1211 10 9 8 7 6 5 4 3 2 1 0 bit

(T TTTTTTTT I hlg]

|\ A A v

L | |
Year (relative to 1980) Month Day of month

Format of time and date stamps in the FCB

An eight-byte data area follows and is reserved for DOS (no user modifications
allowed). The use of this area varies from one version of DOS to another.

Following this reserved data area is the current record number which is used in
connection with the current block number to simulate CP/M operations.

Random files

The last data field of the FCB is used for a type of access in which the data within
the file may be retrieved or written in a non-sequential order. This field is four
bytes long. If a record is equal to or larger than 64 bytes, only the first three bytes
are used for indicating the current record number. All four bytes of this field are
used for records smaller than 64 bytes.

Extended FCB

88

Besides a standard FCB, DOS also supports the extended FCB. Unlike normal
FCBs, extended FCBs access files with special attributes, such as hidden files or
system files. Furthermore, they permit access to volume names and subdirectories

(this doesn't mean that you can access files in other directories besides the current
directory).

An extended FCB is similar to a standard FCB, but it's seven bytes larger. These
seven bytes are located at the beginning of the data structure. All subsequent fields
are therefore displaced by seven bytes.

Abacus

6.6 File Management.in DOS

RAM

L 008 | FF (1 byte) § [0000:000(
+ 01H Reserved (0) (5 bytes)
+ 06H File attribute {1 byte
+ O7H Device name (1 byte) |
+ O8H Filename (8 bytes)
+ 10H File extension (3 bytes)
+ 13H Current block number (1 word)
+ 15H File record size (1 word) |
+ 17H File size (2 words)
+ 1BH Modifications-date (1 word)
+ 1DH Modifications-time (1 word)
+ 1FH Reserved (8 bytes)
+ 27H Current data record number (1l byte)
+ 28H Data record number (2 words)

Structure of an extended FCB

The first byte of an extended FCB always contains the value 255 and identifies this
as an extended FCB. Since this address contains the device number in a normal
FCB and can therefore not contain the value 255, DOS can tell the difference
between a normal and an extended FCB. The next five bytes are reserved
exclusively for the use by DOS. They should not be changed. The seventh byte is
a file attribute byte. See Section 6.1.2 for the details of the file attribute byte.

Now that you're familiar with the FCB structures, the next section focuses on
using FCBs for accessing files.

FCB and file access

Before accessing a file, an FCB must be built in the program’s memory area. The
area can be reserved within the data segment of the program or by allocating
additional memory using another DOS function (see Section 6.9).

Although it is possible to write the data directly into the FCB, it is better to use
one of the appropriate DOS functions to do this.

For example, to set the filename in the FCB you can use DOS function 29H. The
function number is passed in the AH register. The address of the FCB is passed in
the ES:DI register pair. The address of the filename is passed in the DS:SI register
pair. The filename is an ASCII string terminated by the end character (ASCII code
0). The AL register contains flags for converting the filename and are discussed in
more detail in Appendix C.

Open FCB

After the FCB is properly formatted the file can be opened or created using a DOS
function. When this happens DOS stores information about that file in the FCB

89

6. The Disk Operating System PC System Programming

DTA

such as the file size, date and time of file creation, etc. At this point the FCB is
considered opened.

By default, the record length is set to 128 bytes when the FCB is opened. To
override this record length, store the desired record length at offset OEH of the FCB
after it is opened. Otherwise the default length will be used.

For record lengths greater than 128 bytes, the record buffer also known as the
DTA, or Disk Transfer Area must be moved to accommodate the longer record
size. Normally, DOS builds the DTA in the PSP (Program Segment Prefix).
Accessing the file using the default DTA for a record length greater than 128 bytes
would overwrite some of the other fields in the PSP.

The most convenient way to select a new DTA is to reserve the space in the
program'’s data segment. To change the address of the DTA use DOS function
1AH. The address of the new DTA is passed in the DS:DX register pair. DOS
assumes that you have set aside an area large enough to accommodate your largest
record length so you don't have to specify the new length.

File access

90

For sequential file access, processing begins at the first record in the file. DOS
maintains a record pointer in the FCB to keep track of the current record within the
file. Each time the file is accessed, DOS advances the pointer so that the second,
third, fourth, etc record is processed in order.

For random file access, the records can be processed in any order. The position of
each record relative to the beginning of the file determines its record number. This
record number is then passed to DOS to access a specific record. The last field of
the FCB is used to specify the record number to DOS.

It's also possible to change from sequential access mode to random access mode
and vice versa since processing depends on a specific DOS function to access the
file. In effect, there are two sets of independent functions, one for sequential access
and one for random functions.

Following is a list of all of the FCB functions of DOS interrupt 21H. A more
detailed description of the functions is found in Appendix C.

Function No, Task

OFH Open file

10H Close file

13H Delete file

14H Sequential read
15H Sequential write
16H Create file

17H Rename file

Abacus

6.6 File Management in DOS

Function No. Task
1AH Set DTA address
21H Random Read (of record)
22H Random Write (of record)
23H Determine file size
24H Set record number for random access
27H Random read (one or more records)
28H Random write (one or more records)
29H Enter filename into FCB

Some basic rules about these functions should be mentioned here:

Using the FCB functions, you can access several files, each with their own unique
FCB. To tell DOS which file is to be accessed, pass the address of the file's FCB
in the DS:DX register pair.

Most of the functions return an error code in the AL register or the value zero if
the function was successfully completed. For functions which open, close, create
or delete a file, a code of 255 is returned if an error occurs. The other functions
return specific error codes. More detailed information about these errors can be
determined by calling DOS function 59H but is available only in versions of DOS
V3.0 or later.

Handles vs. FCBs

After the two groups of functions made available by DOS have been presented, the
advantages and disadvantages of the individual functions should be discussed
briefly. For those who want to convert a program from the CP/M or UNIX
operating systems into DOS, the choice will be easy, but for those who want to
develop a new program under DOS, this discussion can help in your deciding on
which set of functions to use.

Handles

There are two main advantages to using handle functions. The first is the
capability to access a file in any subdirectory of the disk. The second is that the
handle functions are not limited to the number of FCBs which can be stored in a
program's memory space.

There are a number of additional considerations. You can access the name of a disk
drive only by using an FCB. When the FCB is opened, you can easily determine
its file size and the date of the last modification. The handle functions
automatically provide an area large enough to accommodate the records in the file.

As you can see there are arguments for and against using either the FCB functions
or the handle functions. For future versions of DOS, the handle functions will play
a more important role and the importance of the FCB functions will diminish.
This is reason enough to use the handle functions for your new program
development.

91

6. The Disk Operating System PC System Programming

6.7 Accessing the DOS Directory

92

There are two groups of DOS functions for working with directories. The first
group is used to manipulate the subdirectories and the second to search for files on
the mass storage devices.

With DOS Version 2.0 came the introduction of subdirectories. A mass storage
device could be logically divided into smaller subdirectories which could in turn be
further subdivided. In effect this organization created a directory tree.

Main directory

AUTOEXEC.BAT| |ICOMMAND.COM

START.BAT INSTALL.BAT

WKSHT1 WKSHT2

= Directory, subdirectory

Directory tree

In this directory tree, the names and numbers of subdirectories are not static.
Therefore there must be a way to add, change and delete entries on the tree. Other
functions must be available to set the current directory so that a complete
pathname is not required for all file accesses.

At the user level the MD, RD and CD commands can be used to make a directory,
remove a directory and change a current directory. Internally, these commands are
performed with functions 39H, 3AH and 3BH of DOS interrupt 21H.

All three functions use identical calling conventions.

The function number is passed in the AH register. The address of the path is passed
in the DS:DX register pair. The path is a string and may be a complete path
designation including a preceding drive letter followed by a colon (a device name)
and terminated by ASCII code 0. If the device name is omitted, the current device
is the default.

Abacus

6.7 Accessing the DOS Directory

Following execution, the carry flag indicates the return code. If the carry flag is
reset (0), then execution was successful. If the carry flag is set, then an error
occurred and the error code is passed back in the AX register.

Function 39H creates or makes a new directory (Make Directory). The name for the
new directory is specified as the last element in the path. An error will be returned
by the functions if one or more of the directories specified in the path do not exist,
if the new directory name already exists or if the maximum number of files in the
root directory is exceeded.

Function 3AH deletes or removes a directory (Remove Directory). An error will be
returned by the function if the target directory is not empty or the specified
directory does not exist in the current path.

Function 3BH changes the current directory (Change Directory). An error is
returned if the directories named in the path do not really exist.

Function OEH sets the default disk drive. Besides the function number in the AH
register, only the device code of the new current device must be passed in the DL
register. Code 0 stands for the device A, 1 for B, 2 for C, etc.

Directory specification

Before specifying the current directory using function 3BH, it is sometimes
necessary to find the current directory. DOS makes function 47H available to the
programmer for this purpose. Since it can return the path of the current directory
for any device, the device number must be passed to the function. If this is the
current device, the value 0 must be passed in the DL register. For all other devices,
the value 1 must be passed for drive A, 2 for B, 3 for C, etc.

Besides the device code, the function must also have the address of a 64-byte buffer
within the user program. The DS register contains the segment and the SI register
holds the offset address of this buffer. After the function call this buffer contains
the path designation of the current directory, terminated with the end character
(ASCII code 0). The path designation cannot be preceded by the device name or the
\ character. If the current directory is the root directory, the buffer contains only the
end character. If a device code unknown to DOS was passed during the function
call, the carry flag is set and the AX register contains the error code OFH.

Let's consider the functions for searching for one or more files in the current
directory on the current device. Again the parallel between handle and FCB
functions appears. Two function groups exist to search for files. The group of
FCB functions has the disadvantage that they limit the search to files in the current
directory of a certain device, while handle functions allow searching for files in any
directories of any devices. The term "handle" functions doesn't really fit these
functions since they are not addressed with a handle. This designation originated
with the introduction of subdirectories (and therefore the handle functions) in DOS
Version 2.0. Version 1.0 offered only the FCB functions.

93

6. The Disk Operating System PC System Programming

6.7.1 Searching for Files using FCB Functions

94

This method of file search uses functions 11H and 12H. Using them you can
search for files with a fixed name or files with a filename extension. Function 11H
finds the first file in the current directory. Function 12H finds all other additional
files. The FCBs play a significant role since they mediate between the calling
program and the two functions. Let's see how we can search for files in a directory:

First the program must reserve space for two FCBs. This is done either by
reserving memory in the data area of the program, or by requesting memory from
DOS using function 48H. The programmer can use either normal or extended
FCBs. Extended FCBs offer the advantage of being able to search for files with
special attributes (system or hidden), volume names and subdirectories. The
filename for which the search will be made is specified in one of the FCBs. DOS
places the name of the file(s) that it finds in the other FCB. To differentiate
between the two FCBs, they are designated with the names Search FCB and Found
FCB.

The address of the Found FCB must be passed to DOS using function 1AH. The
Found FCB becomes the new data transmission area (DTA) when this function call
occurs. This area is important for these two functions as well as all other functions
which transfer data between computer and disks. For this reason function 2FH
should determine the address of the current DTA before activating the new DTA,
When the file search ends, the DTA can be restored to its original state using
function 1AH.

After the DTA is set to the Found FCB, the next step is to place the name of the
file you are looking for into the-Search FCB. For a more general search, the
wildcards * and ? may be used. You can transfer the filename directly or transfer it
using function 29H. If you want to search through all files, use the filename *.*.
If an extended FCB is used, you may insert an additional value into the attribute
field of the Search FCB to limit the search to files with certain attributes only (see
Section 6.12 for more information on the various attributes).

This concludes the preliminary work. The file search can begin with the current
directory. For this purpose, function 11H is called with the function number in the
AH register, the segment address of the Search FCB in DS and the offset address in
the DX register. If the system finds a file with the indicated name, the AL register
contains the value 0 after the function call. If the filename wasn't found, the AL
register contains a value of 255. The found filename and its attributes (if extended
FCBs are used) can be read from the Found FCB. For additional searches, function
12H (not function 11H) is called. Function 12H's register contents during call and
return are similar to function 11H. If it returns the value 255 in the AL register
during one of the calls, the search has ended.

Abacus

6.7 Accessing the DOS Directory

6.7.2 Searching for Files using Handle Functions

Working with handle functions is easier than working with the FCB functions.
There are functions for searching for the first file (the 4EH function) and
subsequent files (the 4FH function). Both functions return the information to the
DTA. For this reason the DTA should be moved into an area accessible to the
current program before calling either of these functions. This area must have at
least 43 bytes available. As mentioned in connection with the FCB functions, the
DTA should be restored to its original address after the search ends.

During the call of the 4EH function, the function number is passed in the AH
register, the attribute in the CX register and the address of the file to be found in
the DS:DX register pair. The filename is a series of ASCII characters, terminated
with an end character (ASCII code 0). In addition to a device name, you may add a
complete path designation and the wildcard characters * and ?. If a path is not
specified, DOS assumes that the search should be made in the current directory of
the indicated device. If a device is not specified, the search proceeds on the current
device. After the function call, the carry flag indicates whether a file was found. If
the file couldn't be found, the carry flag is set, and the AX register contains an
error code. An error code of 2H is returned if the indicated path does not exist. If no
file could be found, an error code of 12H is returned. If the carry flag is reset, the
DTA contains the information about the file found. It has the following structure:

Address Contents Type
+00H reserved for DOS 21 bytes
+15H Attribute of file found 1 byte
+16H Time of last modification 1 word
+18H Date of last modification 1 word
+1AH low word of file size] 1 word
+1EH high word of file size 12 bytes

Function 4FH executes any further searches. The function number is passed in the
AH register, and no other parameters are required. The carry flag indicates if there
are additional files in the current directory to which the search may be applicable.

95

6. The Disk Operating System PC System Programming

Demonstration programs

The three programs below read directory entries and display them on the screen
using one of the handle functions. You'll find the display more user friendly than
the DOS DIR command: the files appear in a window, and the filename display
stops as soon as the window is filled with filenames. This permits easy reading of
filenames. By pressing any key, the program displays any additional pages of
filenames.

All three programs are designed on the same basic principle: first the main
program determines the search path. It contains the names of the directories in
which the search should be made for the files, the names of the files and the device
where the directory is located. This name can contain wildcards (* and ?) to search
for several files at the same time. If the user does not indicate a search path, the
program defaults to the search path "**", This displays all files in the current
directory of the current device, as well as the hidden attribute files.

After the program determines the search path, a routine coordinates the loading and
display of individual directory entries. First a routine creates the display window on
the screen for individual entry output. Then a search proceeds for the first entry
using DOS function 4EH. If an entry is found, the screen displays the entry.
Function 4FH searches for all subsequent entries and displays them in the window.

The bottom line of the display window moves up one line with each new line
displayed. Once the entire window fills with data, any further display of entries
stops until the user presses a key. After all entries in the selected directory have
been displayed, the number of files is displayed and the program ends.

BASIC listing: DIRB.BAS

96

100 ARk Ak Rk kR A A AR AR R R R R R R R AR R AR AR R AR R R AR R AR AR AR R AR KRR AR R AR AR A AR Ak O

110 ** DIRB *
120 ** *0
130 *'* Task : display all files in a directory *
140 ** in a window on the display *
160 ** Author : MICHAEL TISCHER *
170 ** developed : 07/23/87 *!
180 ‘* last Update : 04/08/89 >
190 AR AR R AR R A AR R AR R R AR R AR R AR R AR AR AR R R R AR AR AR R AR AR AR A AR A AR R AR A AR ARk ko
200

210 CLS : KEY OFF

220 PRINT"WARNING: This program can be run only if GWBASIC was started"
225 PRINT* from the *

230 PRINT"DOS level with the <GWBASIC /m:60000> command.* : PRINT

240 PRINT*If this is not the case, please enter <s> for Stop."

250 PRINT : PRINT*Otherwise press any key ...";

260 AS$ = INKEY$: IF A$ = “s" THEN END

270 IF A$ = “* THEN 260

280 GOSUB 60000 *Install function for calling interrupt
290 CLS

300 PRINT *"DIR (c) 1987 by Michael Tischer"

310 PRINT

320 PRINT"Please input the search path for the file.®

330 PRINT"Example: If all files with the extension .BAT in the Root"

340 PRINT* directory of the disk in drive A should be displayed,*
350 PRINT™ then please input A:*,BAT."

360 PRINT"With a blank input, all files in the current directory "

6.7 Accessing the DOS Directory

370 PRINT"are displayed."™ : PRINT
380 INPUT “Search Path: “,DIRS$ *Input Search Path

390 IF DIR$ = “* THEN DIRS = %% #w ‘search in current directory
400 ENTRYS = 14 ‘14 Display entries in window
410 GOSUB 50000 ‘Input Directory and output
420 END

430 °*

50000 (R e e R R e S 222222222222 s s s Al
50010 ** Input one Directory and display *
50020 ** *
50030 '* Input: DIR$ = the search path *
50040 ** ENTRY$ = Number of entries in the window *0
50050 ** Output: none *

50050 TRk R Ak R AR R AR R AR A AR A AR A AR R AR A AR A AR AR R AR A ARk A ARk Ak kA ke
50070 *

50080 DIM MONTH$([11] ‘accepts names of months
50090 RESTORE 50600

50100 FOR I% = 0 TO 11 : READ MONTH$[I%] : NEXT

50110 INR% = &H21 ‘Call DOS-Interrupt 21H
50120 FCT$ = &H2F ‘Get function number for DTA
50130 CALL IA(INRS,FCT$%,2%,0FSHI%,OFSLO%,2%,2%,2%,2%,2%,2%, DTASEGS,2%)
50140 DTAOFS% = OFSLO% + OFSHI% * 256

50150 CLS

50160 OFFSET% = INT((20 - ENTRY%) / 2) + 1 ‘Start line of window
50170 LOCATE OFFSETS%,14

50180 PRINT TAB(14)"[. T T T T T
50190 PRINT TAB(14)*| Filename | Size | Date | Time | RHSVD| "
50200 PRINT TAB(14)"| + + + + | ™
50210 FOR I% = 1 TO ENTRY$% ‘output a line for every entry

50220 PRINT TAB(14)"| | | | | |*
50230 NEXT ‘output next line
50240 PRINT TAB(14)“L -1 -1 -1- -1 J"
50250 NUMWINDS = -1 ‘Number of entries in window
50260 NUMFND$ = 0 ‘Number of entries found up to now
50270 ATTRIBUTES = 255 ‘search for files with any Attribute
50280 GOSUB 51000 ‘search for first entry
50290 IF NOT (FOUNDIT%) THEN 50500 ‘no entry found --> finished
50300 NUMFND$ = NUMFND$% + 1 ‘Increase number of entries found
50310 NUMWINDS$ = NUMWINDS + 1 ‘Increase number of entries in window
50320 IF NUMWIND$ <> ENTRY$ THEN 50410 ‘window full?
50330 LOCATE OFFSET$+ENTRY$+4,14 ‘Set Cursor to line under window
50340 COLOR 0,7 ‘switch on inverse character display
50350 PRINT" Please press any key ";

50360 A$ = INKEY$: IF AS= ““ THEN 50360 ‘wait for a key
50370 LOCATE ,14 ‘Cursor in line under window
50380 COLOR 7,0 ‘switch on normal character color
50390 PRINT STRINGS$(S51," “);

50400 NUMWINDS = -1 ‘the next entry is the first in the window

50410 NUMBERS = 1 : COLOURS = 7
50420 ULR% = OFFSET% + 2 : LRR% = OFFSET$+ENTRY$ + 1
50430 UIC% = 14 : LRC% = 62

50440 GOSUB 54000 *scroll window up
50450 LOCATE OFFSETS$+ENTRY$+2,15 ‘Set Cursor to last window line
50460 PRINT * | | | | "

50470 GOSUB 53000 ‘Output entry
50480 GOSUB 52000 ‘Get next entry
50490 IF FOUNDITS THEN 50300 ‘continue if no entry is available
50500 LOCATE OFFSET$+ENTRY$+4,14 ‘Cursor in line under the window
50510 COLOR 0,7 ‘switch on inverse character display
50520 PRINT STRING$(S51," *);

50530 LOCATE ,14 ‘Cursor in line under window

50540 IF NUMFND$ = O THEN PRINT" no file found"; : GOTO 50570

50550 IF NUMFND$ = 1 THEN PRINT" found one file"; : GOTO 50570

50560 PRINT NUMFND$;"files found";

50570 COLOR 7,0 ‘*switch on normal character color
50580 RETURN

50590 *

50600 DATA “JAN",“FEB",“MAR",“APR", "MAY", *JUN*, “JUL", *AUG", “SEP"

50610 DATA “OCT", *NOV*, “DEC*

97

6. The Disk Operating System PC System Programming

50620 *

51000 R s s e R e e I R RSS2 22 s NI
51010 '* Search for first entry in a Directory *
51020 ** *e
51030 ** Input: DIRS = Search path *e
51040 ** ATTRIBUTE$ = Attribute of file *!
51050 ** Output: FOUND_IT% = -1 if entry found, otherwise 0 **
51060 '* Info : the Directory entry is entered into Variable DTA$ *'
51070 ** *
51080 ** 2% is a Dummy-Variable *
51090 R 2 2t s e e Y Ty e T e TSI S22 s Xl
51100 *

51110 DIR$ = DIR$ + CHRS$(0) ‘Put End character on search path
51120 FCT$ = &HA4E *Search function number for first entry
51130 INR% = &H21 ‘Call DOS-Interrupt 21H
51140 ATLO% = ATTRIBUTE$ AND 255 ‘10-Byte of Attribute
51150 ATHI% = INT (ATTRIBUTES / 256) ‘HI-Byte of Attribute
51160 OFSLO% = PEEK (VARPTR (DIRS)+1) ‘LO-Byte of Offset address
51170 OFSHI% = PEEK (VARPTR(DIRS)+2) ‘HI-Byte of Offset address
51180 CALL IA(INRS,FCT$%,2%,2%,2%,ATHI%,ATLO%, OFSHI%,OFSLOS%, 2%, 2%, 2%, FLAGS%)
51190 FOUNDITS = ((FLAGS% AND 1) = 0) ‘Test Carry-Flag
51200 RETURN ‘return to calling program
51210 *

52000 TR R AR R AR A AN A AR R A A AR AN AN AR R AR AN AN AR R AR R AN AN RN R AN R AN Ak kA ko
52010 ** find next entry in Directory *e
52020 ** *
52030 '* Input : DIRS = Search path *
52040 *'* ATTRIBUTE$ = Attribute of file *e
52050 '* Output: FOUNDITS = -1 if file found, otherwise O *
52060 '* Info : the Directory entry is read into Variable DTA% *e
52070 ** *
52080 ** 2% is a Dummy-Variable >
52090 Ak AR AR A R A A AR A AR R R AR AN A AR AN AR AN AR AR A RAN AR A AN AR AN AR R AR R R Ak Ak k¢
52100 °*

52110 FCT$% = &HAF ‘Find function number for next entry
52120 INR% = &H21 ‘Call DOS-Interrupt 21H
52130 CALL IA(INRS,FCTS%,2$%,32%,2%,2%, 2%, 2%, 2%, 2%, 2%, 2%, FLAGSS)

52140 FOUNDITS = ((FLAGS% AND 1) = 0) ‘test Carry-Flag
52150 RETURN ‘back to calling program
52160 °*

53000 AR RS R s T R L]
53010 ** Output a Directory entry from the DTA to the display *e
53020 ** *
53030 '* Input: OFFSET$ = first line of the Directory window *
53040 '* ENTRY$ = Number of entries in the Directory window **'
53050 *'* DTAOFS% = Offset address of the DTA *
53060 *'* MONTH$ = contains the names of months *
53070 '* Output: none >t
53080 TR AR AR R R AR R AR AR R R A AR ARk kA Ak A kA ke kA kA AN Rk kA ARk A A A Ak Ak ko k
53090 °*

53100 DEF FNDTA(X) = PEEK(DTAOFS% + X)

53110 DEF SEG = DTASEG% 'Set Segment address of the DTA
53120 LOCATE OFFSET$+ENTRY%+2,15 ‘Output in the last line of the window
53130 I%$ = 30 '‘Offset address in DTA for file names
53140 WHILE FNDTA(I%) <> 0 ‘the END character terminates the name
53150 PRINT CHRS (FNDTA (I%)); ‘output a character of the file name
53160 I% = I% + 1 ‘next character
53170 WEND ‘End of Loop
53180 LOCATE OFFSET$+ENTRY%+2, 28 'Set Cursor to column 28

53190 PRINT USING "#######"; FNDTA(26) + FNDTA(27) * 256! + FNDTA(28) *
4096! + FNDTA (29) * 65536!;

53200 DATE = FNDTA (24) + FNDTA(25) * 256 'Get Date
53210 LOCATE OFFSET%+ENTRY%+2,36 'Set Cursor to Column 36
53220 PRINT MONTHS$[(INT(DATE / 32) AND 15) - 1]; ‘Output name of month
53230 PRINT"/“;:PRINT USING "##";DATE AND 31; ‘Output day of month
53240 PRINT USING “/####“;INT(DATE / 512) + 1980; 'Output year
53250 LOCATE OFFSET$+ENTRY$+2,49 ‘Set Cursor to column 49
53260 FTIME = FNDTA(22) + FNDTA(23) * 256 ‘Get time
53270 PRINT USING "#4";INT(FTIME / 2048); 'Output hour

53280 PRINT *":%;

98

Abacus

6.7 Accessing the DOS Directory

53290 PRINT USING "##";INT(FTIME / 32) AND 63; 'Output Minute
53300 LOCATE OFFSET$+ENTRY%+2,59 tSet Cursor to column 59
53310 FOR I% = 0 TO 4 ‘test Bits O to 4 of file attribute
53320 IF (FNDTA(21) AND (2~I%)) <> O THEN PRINT"X"; ELSE PRINT" *;
53330 NEXT I% ‘test next Bit
53340 DEF SEG : RETURN ‘back to calling program
53350 *

54000 PARR AR ARAR AR AR RN AR AR AR R RN AR R R KRR RARRRARR AR RRARRR AR AR RA AR R AR A AN R AR AR
54010 ** Scroll current display page up or erase *
54020 *'* *
54030 ** Input : NUMBER% = how many lines scrolled *e
54040 ** UICS = column upper left *
54050 ** ULR$% = line upper left *e
54060 ** LRCS = column lower right *
54070 ** LRRS = line lower right *
54080 *'* COLOR% = color of erased line *
54090 ** Output: none *e
54100 *'* Info : If 0 is given for NUMBER%, the screen area *e
54110 ** indicated is erased *
54120 ** the Variable 2% is a Dummy *

54130 "AAhKARAAIAR KRR RRRRRR R AR AR AR KRR AR AR R AR KRR AR ARk Ak AR XA A RR A Ak Rk k)

54140 *

54150 FCT%$=6 'Function number for scrolling up
54160 INR$=&H10 'Call BIOS-Video-Interrupt 16H
54170 CALL IA(INRS,FCT$%, NUMBER%,COLOURS, 2%, ULR%, ULC%, LRRS, LRC%, 2%, 2%, 2%, 2%)
54180 RETURN '‘back to calling program
54190 °*

60000 PR R AR R AR R AR R AR R RAR AR R AR A AR R AR R R AR kAR AR AR R AR AR AR Rk A Ak Ak kkkkkkkh o
60010 '* Initialize Routine for Interrupt call *
60020 ** *
60030 *'* Input : none *

60040 *'* Output: IA is the Start address of the Interrupt-Routine *
60050 TRk R R AR R R AR KRR R AR R AR AR RR AR R AR KRR AR R RARR R AR KRR RR A AR R AR AR R ARk

60060 °*

60070 IA=60000! ‘Start address of the Routine in the BASIC-Segment
60080 DEF SEG *Set BASIC-Segment
60090 RESTORE 60130

60100 FOR I$ = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT ‘Poke Routine
60110 RETURN ‘back to calling program
60120 °*

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255

One problem in the BASIC version of the directory listing occurs during the
directory output. Functions 4EH and 4FH read the entry into the DTA. It would
make more sense to move the DTA to a variable within the program (an integer
array would be best) to make it easier for the routine which outputs the entry to
access the data. BASIC's garbage collection feature makes this difficult. The
integer array containing the DTA moves periodically in storage and the address of
the DTA, stored internally in DOS, no longer corresponds with the address of this
integer array.

For this reason, the DOS function 2FH determines the DTA address. As the entries
are displayed, this address accesses the DTA to determine the file information.

99

6. The Disk Operating System PC System Programming

Pascal listing: DIRP.PAS

(*t*t**t**t*t***t*****‘k***i***-k*-k*-ki*****i**i*************i**t********}

{* DIRP *}
{* *}
{* Task : Display all files of any Directory, *}
{* including Subdirectories and *}
{* Volume Names *}
{* *}
{* Author : MICHAEL TISCHER *}
{* developed on : 7.8.87 *}
{* last Update : 9.21.87 *}

{rrr R IR RIRRIKIR IR AR A KRARRARNK KRR AR A AR AAAAAA R AR AR NI RR R h R h A Ik kh kK |

program DIRP;

Uses {Turbo 4.0 Units}
crt,
Dos;
const ENTRY = 14; { Number of entries visible }
type RegTyp = record

ax, bx, cx, dx, bp,
di, si, ds, es, flags : integer;
{! Turbo 4.0 owners should use the Registers type from the DOS unit.}
end;

{** this 1s the format of a Directory entry *****}
{** as returned by the functions 4EH and 4FH }
DirBufTyp = record

Reservebuf : array [1..21] of char;
Attribut : byte;
Ztime : integer;
Zdate : integer;
Datgrlo : integer;
Datgrhi : integer;
DatName : array [1..13] of char
end;
Path = string[65];
var DirBuf : DirBufTyp; { accepts a Directory entry }
DatName : Path; { Files to be found }

[HH R KRR I KKK ARKKIKAK I KRR KA R KRR KRR KK AR AR RAEARRRR I KA K ARRRA KRR KRR K AR A}

{* GETFIRST: read in the first Directory entry *}
{* Input : none *}
{* Output : true or false, depending if an entry was found *}
{* *}
{* Info : the entry is stored in Variable DIRBUF *}

[KRR KR I IRIKIKRRA A AR KKK KRR AR KRR KRR R KRN RARAK KRR KRR AKX ARRRI KRR KRR KA AR K]

function GetFirst (DateiName : Path; { files to be found }
Attribute : integer) : boolean; { search Attribute }
var Register : regtyp; { Register-Variable for call of Interrupt }
begin
DateiName := DateiName + #0; { terminate filename with NUL }
Register.ax := $4E shl 8; { Function number for search of first }
Register.cx := Attribute; { Attribute, for which search is performed }
Register.ds seqg(DateiName) ; { Segment address of filename }
Register.dx := succ(ofs (DateiName)); { Offset address of filename }

msdos (Dos.Registers (Register));{ Call DOS Interrupt 21H (Turbo 4.0)}
{NOTE:Turbo 3.0 users should change previous line to read msdos (Register);}
{ defined in DOS unit.}
i1f (Register.flags and 1) = 0 { Test Carry-Flag }

100

http:Register.dx
http:Register.ds
http:Register.cx
http:Register.ax

Abacus 6.7 Accessing the DOS Directory

then GetFirst := true { Equal to 0 : file found }
else GetFirst := false; { no file found }
end;

{rr AR R IR AR R AR KRR IR IR AR AR AR R AR R R AR AR IR R KRR AR AR AR AR R RR AR A AR K}

{* GETNEXT : read in the following Directory entry *}
{* Input : none *}
{* Output : true or false, depending if another entry was found *}
{* *}
{* Info : this function can only be called after a successful *}
{* call of the function GETFIRST *}
{* the entry is stored in the Variable DIRBUF *}

(ﬁ*t*ﬁ**ﬁt**iﬁ***ﬁiﬁ**ﬁ*i**ﬁﬁtikit'*ittti**ﬁ*tﬁ*ﬁt*ﬂ**i**ﬁitt****t**i’

function GetNext : boolean;

var Register : regtyp; { Register-Variable for interrupt call }
begin
Register.ax := $4F shl 8; { Function number for next search }

msdos (Dos.Registers (Register)); { Call DOS Interrupt 21H V 4.0}
{NOTE: Turbo 3.0 users should change the previous}
{line to read msdos(Register);}

if (Register.flags and 1) =0 { Test Carry-Flag }

then GetNext := true { Equal to 0 : File found }

else GetNext := false; { otherwise no file found }
end;

(t'****tit***'ﬂ*tk*t*i****ﬁ*it***ﬁtk**t****kﬁtt*iﬁ****it*t*tﬁ*t*t*t*)

{* PRINTDATA: Output information on an entry *}
{* Input : none *}
{* Output ! none *}
{* Info : the information about the entry are taken by this *}
{* procedures from Variable DIRBUF *}

(***Q*t*******it't'tﬁt't*ﬁ**tiﬁt'*ii**t*ﬁ**ﬁﬁ**i*'ﬁii’*ﬁi***i**”tﬁt)

procedure PrintData;

var Counter : byte;
DatalLenghtl, { both Variables are used }
DatalLenght2 : real; { to calculate file length }
begin
writeln; { the window is scrolled up by one line }
Counter := 1; { begins with the first character of the name }
while (DirBuf.DatName[Counter]<>#0) do { repeat up to NUL }
begin
write (DirBuf.DatName [Counter]); { output characters of name }
Counter := succ(Counter) { process next character }
end;
gotoxy (13, ENTRY);
DataLenghtl := DirBuf.Datgrhi; { determine file length }

if DataLenghtl < 0 then Datalenghtl := 65536.0 + DataLenghtl;
Datalenght2 := DirBuf.Datgrlo;

if DatalLenght2 < 0 then Datalenght2 := 65536.0 + Datalenght2;
write('|', DataLenghtl * 65536.0 + DatalLenght2:7:0);

gotoxy (21, ENTRY);

write('[');

case (DirBuf.Zdate shr 5 and 15) of { determine month
write ('Jan');

write ('Feb');

write ('Mar');

write (‘'Apr');

write (‘'May');

write ('Jun'
write (‘*Jul’
write ('Aug’
write ('Sep'
write ('Oct');
write ('Nov');
write ('Dec')

101

http:Register.ax

6. The Disk Operating System PC System Programming

end;

write('/',DirBuf.zdate and 31:2,'/'); { determine day }

write (DirBuf.Zdate shr 9 + 1980:4); { determine year }

gotoxy (34, ENTRY);

write('|', DirBuf.2time shr 11:2, ':'); { determine hour }

write (DirBuf.2time shr 5 and 63:3); { determine minutes }

gotoxy (44, ENTRY); { evaluate file attribute }

write('|*); { separator to preceding field }

if (DirBuf.Attribut and 1)<>0 then write('X"') { Read-only? }
else write(' ');

if (DirBuf.Attribut and 2)<>0 then write('X"') { hidden? }
else write(' ');

if (DirBuf.Attribut and 4)<>0 then write('X') { system? }
else write(' ');

if (DirBuf.Attribut and 8)<>0 then write('X') { Volume-Label? }
else write(' ');

if (DirBuf.Attribut and 16)<>0 then write('X') { Directory? }
else write(' ');

write (*]'); { right border of window frame }

end;

[rFrrrr AR K AR KRR KK I AR ARK AR AR KA A RI AR AR AR AR AR AR kAR AR AR AN KK}

{* SETDTA : set Address of DTA *}
{* Input : see above *}
{* Output : none *}

(i*i**ti*i**t‘kt***t**ﬁi'*.**#*t*tt**t*ttt******t***tt*******i********ttt)

procedure SetDTA (Segment, { new Segment address of the DTA }
Offset : integer); { new Offset address of the DTA }

var Register : regtyp; { Register-Variable for call of the Interrupt

begin
Register.ax := $1A shl 8; { Set Function number for DTA }
Register.ds := Segment; { Segment address into DS register }
Register.dx := Offset; { Offset address into DX register }
msdos (Dos.Registers (Register)); { Call DOS-Interrupt 21H }
{NOTE: Turbo 3.0 users should change the previous}
{line to read msdos (Register);}
end;

[HAFRERRRR KRR A AR AR AR AR AR AR R R KRR R AR AR AR R AR R AR AR KA AR R AR AR AR AR AN A K]

{* BUILDSCREENDISPLAY: prepares the display for output of the *}
{* Directory *}
{* Input : none *}
{* Output : none *}

[HR KR IR KA A I KA R KA A K AR KRR A RK R AR R AR K ARRRA AR R AR AK KA AR AR AR AR A AKX}

procedure BulldScreenDisplay;

var Counter : integer;

begin
clrscr; { clear display }
window (14, (20-ENTRY) shr 1+1, 64, (20-ENTRY) shr 1 +S5+ENTRY);
gotoxy (1,1); { Cursor to left upper corner of window }
write (' T T - T T "y ;
write('| Filename | Size | Date | Time |RHSVD| ') ;
write('| + + + + 1)
for Counter := 1 to ENTRY do
write('| | | | | 1') 7
write ('L L -1 1- 1 Jvy;
window (15, (20-ENTRY) shr 1+4,66, (20-ENTRY) shr 1 +3+ENTRY);
gotoxy (1, ENTRY); { Cursor to upper left corner of window }
end;

{rrA I IR AR A AK AR KA AAI AR AR KRR AR R KR KRR AR AR RN IR R AR AR AR Ak h ok kkkkk)

{* DIR: controls the input and output of Directories *}
{* Input : none *}

102

http:Register.dx
http:Register.ds
http:Register.ax

Abacus

6.7 Accessing the DOS Directory

{* Output : none *
(*ttt**ﬁt*t*t**tﬁ*ttt*tkﬁ*tttﬁtt**tttk*tt**t***tttttttt**ttt**t*tt*ttt

procedure Dir;

var NumEntries, { Total number of entries found

Numwind : integer; { Number of entries in window
KeyPress : char; { wait for key activation
begin
SetDTA (Seg (DirBuf), Ofs(DirBuf)); { DirBuf is the new DTA
clrscr; { clear display
writeln('DIR (c) 1987 by Michael Tischer'#13#10);
writeln('Please indicate search path for files ')

}
}

——

writeln(*Example: if all files with the extension .BAT in the root ');

writeln('directory of the disk drive should be displayed please input
writeln(" A:*.BAT.');

‘)

writeln(* If no search path is indicated, all files in the current')

writeln(* directory are displayed.'#13410);

write('Which files are to be displayed: ');

readln (DatName) ; { read in filenames

if DatName = '' then DatName := ‘'* *'; { search for all files
BuildScreenDisplay; { Construct display for output
Numwind := -1; { no entry in window yet

NumEntries := 0;
if GetFirst (DatName, 255) then

{ no entry found
{ search for first entry
{ Attribute does not matter
repeat
NumEntries := succ(NumEntries);
Numwind := succ (Numwind);

{ found another entry
{ one more entry into window

—

if Numwind = ENTRY then { window full ?
begin { Yes
window (14, (20-ENTRY) shr 1 +5+ENTRY, 66, (20-ENTRY) shr 1 +6+ENTRY);
gotoxy (1, 1); { Cursor to last line of window }
textbackground(7); { white background }
textcolor(0); . { black characters}
write (" Please press a key ')

repeat until keypressed;
{read (kbd, KeyPress);}

{ wait for key press
{ read key code
{ otherwise it remains in the buffer

gotoxy(l, 1); { Cursor to the upper left corner of the window
textbackground (0) ; { black background
textcolor(15); { white characters
write (' ‘):

window (15, (20-ENTRY) shr 1+4,65, (20-ENTRY) shr 1 +3+ENTRY);
gotoxy(1l, ENTRY); { return Cursor to old position

Numwind := 0; { start count with 0 again
end;
PrintData; { output data of entry

until not (GetNext); { does another entry exist 2
window (14, (20-ENTRY) shr 1 +5+ENTRY, 65, (20-ENTRY) shr 1 +6+ENTRY);

gotoxy(1l, 1); { Cursor to the upper left corner of window
textbackground(7); { white background
textcolor(0); { black characters
write (" B H

gotoxy (2, 1);
case NumEntries of
0 : write('no file found ');
1 : write('found a file ');
else write (NumEntries,' files found ')
end;
window(l, 1, 80, 25);
end;

{ set whole display as window

—-——

}

(it*iti*ti***tt****i**ttit*t*ikt*t*t****t***t*ﬁt*tﬁ**ﬁ**t**tttﬁtiﬁ**t*)

{** MAIN PROGRAMM *x

}

(*i***t****t***i***tit*i*i***ttitt'*t**tit**itittti**t*it****tittit*tt]

begin
Dir; . { Load Directory and display

}

’

7

103

6. The Disk Operating System

PC System Programming

end.

In the above Pascal program and in the following C program, accessing the DTA
is much easier than in the BASIC version of the same program. RECORD or
STRUCT defines the structure of the directory entry into the DTA, and the
programs implement a variable of this type. DOS function 1AH then transfers the
DTA to this variable. All the information in a directory entry can be easily
accessed. With Turbo Pascal, the display design is particularly easy. Turbo Pascal
also has a procedure to define any display area as a window. However, the C
language program uses the scroll function of the BIOS interrupt 10H to scroll the

directory window one line upward.

C listing: DIRC.C

104

[RR K AR ARk KRR AR AR AR AR R AR KRR KR KK KRR A AR KRR R KRR KR RR KRR A KRR AR A RR AR KRR N)

/*
/*
/*
/*
/*

/*
/*
/k
/*
/*
/*
/*
/*
/*
/t
/i
/*
/*
/*
/ﬁ
/*
/*
/*
/*

DIRC

Task : Displays all files in any Directory,
including Sub-Directories and volume names
on the screen.

Author : MICHAEL TISCHER

developed on : 08/15/87

last Update : 04/08/89

(MICROSOFT C)

Creation : MSC DIRC;
LINK DIRC;

Call : DIRC

{BORLAND TURBO C)

Creation : With the RUN command in the command line

Info Arguments can be passed to the program with
the OPTION/ARGS command in the command line
of TURBO C

or
Creation : TCC DIRC
Call : DIRC

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/**t**t**ﬂ*tttttt***tt*t*t*t***t*ttkt*****t*t*t*t*t****t*t*t*t*t******/

#include <dos.h> /* include Header files
#include <io.h>
#include <string.h>

#define FALSE 0O /* Constants make reading of
#define TRUE 1 /* Program text easier
#define byte unsigned char

#define ENTRY 14 /* this many directory entries fit on the screen
#define EZ (20-ENTRY >> 1) /* first line of Directory window
#define NRM 0x07 /* white characters on black background

#define INV 0x70 /* black characters on white background (inverted)

/*-- this is the format of a Directory entry returned by = -———-=--
/*-- the functions 4EH and 4FH
struct DirStruct {

byte Reservebuf[21];
byte Attribute;
unsigned int Ftime;

unsigned int Fdate;

unsigned long Fsize;

char Fname[13];

¥z

*/

*/
*/

*/
*/
*/
*/

*/

Abacus 6.7 Accessing the DOS Directory

SRR KRR AR AR KRR AR R AR R A AR R AN AR A RN R R AN R AR IR R AR AR A RN R AR AR AR NN AR KA/

/* GETPAGE : gets the current display page */
/* Input : none */
/* Output : see above */

JRRKRRR AR I AA KRR KRNI RN R AR AR AN AR KRR AR R AR AR KRR RRRRAR AR R AR K AR A ARk hhh ok /

byte GETPAGE ()}

{

union REGS Regilster; /* Register-Variable for Interrupt call */
Register.h.ah = 15; /* Function number */
int86 (0x10, &Register, &Register); /* Call Interrupt 10H */
return(Register.h.bh); /* Number of current display */

}

/ttﬁ*tﬁ*t*t'k*t*ﬁ**ﬁ**ﬁt**t*t*t**t*ﬁ*ﬁ*i*t*t*tﬁ*t*t*ﬁ*ﬁ*****t*t*ttt**t*/

/* SCROLLUP: moves a display area one or more lines */
/* upward or erases it */
/* Input : see above */
/* Output : none */
/* Info : 1f 0 is passed as number, the display area */
/* is filled with blanks */

SRR R AR AR R AR K AR RN KRR AR AR AR K AR A KK R AR KRR AR RRR AR AR AN AR RN AN K AR AR AR AR A K/

void ScrollUp(Number, Color, ColumnUL, LineUL, ColumnLR, LineLR)

int Number; /* Number of lines to be scrolled */
int Color; /* Color or attribute for blanks */
int ColumnUL; /* Column in the upper left corner of display area */
int LineUL; /* Line in the upper left corner of the display */

int ColumnLR;/* Column in the lower right corner of the display area */
int LinelLR; /* Line in the lower right corner of the display area */

{

union REGS Register; /* Register-Variable for Interrupt call */
Register.h.ah = 6; /* Function number */
Register.h.al = Number; /* Number of lines */
Register.h.bh = Color; /* Color of blank line(s) */
Register.h.ch = LineUL; /* Coordinates of the scroll */
Register.h.cl = ColumnUL; /* end or erase */
Register.h.dh = LineLR; /* Set display window */
Register.h.dl = ColumnIR;

int86 (0x10, &Register, &Register); /* Call Interrupt 10H */

}

SRR AR AR R AR R AR R AR R AR AR R A A RN R A AR R AR R R AR AR AN R KRR IR AN RN R AN R XA IR AR/

/* SETPOS : sets the position of the cursor in current display page */
/* Input : see above */
/* Output : none */
/* Info : the position of the blinking display cursor is changed */
/* by the call of this function only when the */
/* display page indicated is the current display page */
/* */

SRR AR AR AR AR AR AR A RN R AR AR R AR KN RN KRR AR A KRR A KK AR AR R ARKRARAANARNARR N RN K /

vold SetPos(Column, Line)

int Column; /* new Cursor column */
int Line; /* new Cursor line */
{

union REGS Register; /* Reglster-Variable for Interrupt call */
Register.h.ah = 2; /* Function number */
Register.h.bh = GETPAGE (); /* Display page */
Register.h.dh = Line; /* Display line */
Register.h.dl = Column; /* Display column */
int86 (0x10, &Register, &Register); /* Call Interrupt 10H */

105

http:Register.h.dl
http:Register.h.dh
http:Register.h.bh
http:Register.h.ah
http:Register.h.dl
http:Register.h.dh
http:Register.h.cl
http:Register.h.ch
http:Register.h.al
http:Register.h.ah
http:return(Register.h.bh
http:Register.h.ah

6. The Disk Operating System PC System Programming

/**t*tttt*****t******t*****t**t*****iﬁiﬁiﬁ*ﬁ***ﬁ*ﬁ*ﬁ‘kit**ﬁt*ﬁtt**ttﬁ‘kt/

/* GETPOS : Get the position of the Cursor in current display page */
/* Input : none */
/* Output : see below */

[REI KRR AR A AR KA R RR KA RK R AR A RKAKARKRK AR KRR AR R RRR K AR R IR IR I ANk ke ok d sk /

void GetPos(Column, Line)

int *Column; /* Column where the Cursor is located */
int *Line; /* Line where the Cursor is located */
{

union REGS Register; /* Register-Variable for Interrupt call */
Register.h.ah = 3; /* Function number */
Register.h.bh = GETPAGE (}; /* Display page */
int86 (0x10, &Register, &Register); /* Call Interrupt 10H */
Column = Register.h.dl; / Read result of the Function */
Line = Register.h.dh; - / from the Reglisters */

}

JREARR AR R AR R AR KA R R AR AR R AR KA AR R KR RR AR KR AR KRR R AR AR AR R AR AR R KA K kAR Rk Ik /

/* WRITECHAR: writes a character with an attribute to the current */
/* cursor position on the current display page */
/* Input : see below */
/* Output : none */

JREIRK A KRR AR KRR KRR R IR A AR AR KRR KR AR R AR AR Ak Ak hh kR Rk A AR IR A KA AN KA AKX Ik K/

void WriteChar(Character, Color)

char Character; /* Character for output */
int Color; /* its Attribute or color */
{

union REGS Register; /* Register-Variable for Interrupt call */
Register.h.ah = 9; /* Function number */
Register.h.al = Character; /* character for output */
Register.h.bh = GETPAGE(); /* Display page */
Register.h.bl = Color; /* Color of character for output */
Register.x.cx = 1; /* output character only once */
int86 (0x10, &Register, &Register); /* Call Interrupt 10H */

}

JRrR AR AR I AR AR AR R AR AR R AR AR AR AR KRR KRR AR KA A RN AR R AR R AR A AR AR R kA Kk ok /

/* WT : writes a character string with constant color starting */
/* at a specified position on the current display page. */
/* Input : see below */
/* Output : none */
/* Info : Text is a Pointer to a character Vector, which contains */
/* the text to be output and is terminated with a *\0°* */
/* character. */

R I R Ak Ak A AR AR KRR KRR KRR KRR KRR R AR AR R AR R AR AR R AR AR A AR AR AR A AN A Ak K/

void WT(Column, Line, Text, Color)

int Column; /* Display column for output */
int Line; /* Display line for output */
char *Text; /* Text for output */
int Color; /* Color/Attribute of the Text */
{
union REGS Register; /* Register-Variable for Interrupt call */
SetPos (Column, Line); /* Set Cursor */
while (*Text) /* Output Text up to '\0' character */
{
WriteChar(* ', Color); /* Indicate color */
Register.h.ah = 14; /* Function number */
Register.h.bh = GETPAGE(); /* Display page */
Register.h.al = *Text++; /* of character to be output */
int86 (0x10, &Register, &Register); /* Call Interrupt */

106

http:Register.h.al
http:Register.h.bh
http:Register.h.ah
http:Register.x.cx
http:Register.h.bl
http:Register.h.bh
http:Register.h.al
http:Register.h.ah
http:Register.h.dh
http:Register.h.dl
http:Register.h.bh
http:Register.h.ah

Abacus

6.7 Accessing the DOS Directory

}

/ﬁ**tk*tﬁt*i*ﬁﬁﬁ*t*tt*t'ttﬁ*t*ttﬁtﬁ**t****ﬁ*ﬁ*iﬁi******ﬁ*itttt*t*i*iﬁt/

/* CLsS : Clear current display and set Cursor into upper left */
/* corner */
/* Input : none */
/* Output : none */

SRR R R kR R kAR AR R AR AR R KRR AR R AR R AR R AR AR R AR R KRR IR R AR R AR AR AR AR AR AKX/

void Cis{()

{

ScrollUp(0, NRM, O, O, 79, 24); /* Clear Screen */
SetPos (0, 0); /* Set Cursor */

}

/**i*t*tﬂ'iﬁitﬁ*ittit#tt*'**t**ﬁttitﬁttti***ﬁ*iﬁit*ttt*tttt***i*i*tttt/

/* BUILDSCREENDISPLAY: prepares the display for the output of the */

/* Directory. */
/* Input : none */
/* Output : none */

JEE ARk AR AR AR R RN A AR A AR A AR R AR R R IR ARRRR AR R AR R AR RN AR AR R A A kA Ak ko hkk /

void BuildScreenDisplay ()

{
byte 1; /* Loop Counter */
Cls(); /* Clear Screen */
wr (14,82, T T I T T+, NOF) ;
WT(14,EZ+1,%| Filename | Size | Date | Time | RHSVD | %, NOF) ;
WT (14,EZ2+2,"| + + + } |*,NOF);
for (1 = E2+3; 1 < EZ+3+4ENTRY; i++)
WT (14,1, | | | | | |",NOF) ¢
WT (14, EZ+ENTRY+3, . 1 A 1- 1- I ,

NOF) ;
}

SRR IR AR AR A AR NN AR AR R A AN R AR R R R AR R A AR R AN KRR AN R AR R AR A KR AR R AR AR ANk h N %/

/* PRINTDATA: Output information about an entry */
/* Input : see below */
/* Output : none */

[I IR KRR IR IR R KA RN I A AR KRR RR R AR R AR AR RN AR AR KRR AR A AR R AR AR AR A RN AN N AR N/

vold PrintData(DirEntry, Line)

struct DirStruct *DirEntry; /* a Directory entry */
byte Line; /* Display line of entry */
{

byte 1; /* Loop Counter */
static char *Month[] = /* Vector with Pointer to name of month */

{
llJANII’ “FEB", HMAR“, IIAPRIII IIMAY", llJUNII,
IIJ'ULHI “AUG", IISEPII' uochl' ICNOVUI' HDECH
}:

SetPos (15, Line); /* Set Cursor position for file name */

for (1=0; (*DirEntry).Fname[i] && i<15 ; printf("%c", (*DirEntry).Fname[i++])}
7

SetPos (28, Line); /* Set Cursor position for file size */

printf("%$71u", (*DirEntry).Fsize); /* Output file size */

SetPos (36, Line); /* Set Cursor position for Date */

printf ("$s-%2d-%4d", Month{ ((*DirEntry).Fdate >> 5 & 15) - 1],
(*DirEntry) .Fdate & 31, ((*DirEntry).Fdate >> 9) + 1980);

SetPos (49, Line); /* Set Cursor position for Time */
printf (“%$2d:%2d", (*DirEntry).Ftime >> 11, (*DirEntry).Ftime >> 5 & 63);
SetPos (59, Line); /* Set Cursor position for Attribute */

for (1 = 1; 1 <= 16; i <<= 1)
if ((*DirEntry).Attribute & i) printf ("X%);
else printf(* “);

107

6. The Disk Operating System PC System Programming

}

/**#*********t*ti***ti*ikﬁ*t*ﬁ*tttﬁt#k**itﬁitt*t*****t*ktti***ti*k*tit/

/* GETNEXT : read the following Directory entry */
/* Input : none */
/* Output : TRUE, when an entry was found, otherwise FALSE */
/* Info : the entry is read into DTA rem */

/tt*ﬂ*t***tt***ﬁ*t*****ﬁ**ktti**kik**k’ktiii*#t***t**ﬁ**iﬁ*ii*k********/
byte GetNext ()

{
union REGS Register; /* Register-Variable for Interrupt call */

Register.h.ah = Ox4F; /* Function number for Search of next entry */
intdos (¢Register, &Register); /* Call DOS-Intr. 21H */
return(!Register.x.cflag); /* Carry-Flag = 0: file found */
}

JRRIRK AR K R AR AR KRR AR KRR KRR AR KRR KRR KRR R KRR AR KRR AR AR KRR KRk kA Ak Rk k/

/* GETFIRST : read the first Directory entry */
/* Input : none */
/* Output : TRUE, if entry was found, otherwise FALSE */
/* Info : Entry is read into the DTA */

/**tk*ﬁ**kﬁﬂ**ki***i*****i*t*tktkt*itt*****i*tﬁtit*t******t******tt**t/

byte GetFirst (Sname, Attribute)

char *Sname; /* file to be found */
unsigned int Attribute; /* the Search Attribute */
{

union REGS Register; /* Register-Variable for Interrupt call */
struct SREGS Segmente; /* accepts Segment register */
segread (&Segmente) ; /* Read in content of Segment register */
Register.h.ah = Ox4E; /* Function number for search of first */

Register.x.cx = Attribute; /* Attribute, for which search is made */
Register.x.dx = (unsigned int) Sname; /* Offset address search path*/
intdosx (&Register, &Register, &Segmente); /* Call DOS-Intr. 21H */
return(!Register.x.cflag); /* Carry-Flag = 0: file found */
}

/******ttk**t****ﬁ*t***t**t*tt*itttﬁ**kititi*t*******ﬁ*ttt***tﬁ*t*ttt*/

/* SETDTA : sets the DTA to a Variable in the Data Segment */
/* Input : see below */
/* Output : none */

JRRRRR KA I AR KKK RK IR RRRRRRR KR KRR KRR RRR AR AR KRR AR kAR A AR AR A kK& /

void SetDTA (Offset)

unsigned int Offset; /* new Offset address of the DTA */
{

union REGS Register; /* Register-Variable for Interrupt call */
struct SREGS Segment; /* accepts the Segment register */
segread (&Segment) ; /* Read in content of Segment register */
Register.h.ah = 0x1A; /* Set Function number for DTA */
Register.x.dx = Offset; /* Offset address into DX-Register */
intdosx (&Register, &Register, &Segment); /* Call DOS-Intr. 21H */

}

/**ti*******t****i****#t*****ﬁ**tk******iti*ﬁk*tﬁ**t*k***tt**iﬁ**tﬁ**t/

/* DIR : controls the input and output of Directories *x/
/* Input : see below */
/* Output : none */

/******k**t*k*i*ﬂk*tkﬁ*tt*ﬂ*t***t*ttkﬁ***t*ﬁ*i*tt*tt*ﬁ*t*i*t*ti'**t**i/
void Dir(Sname, Attribute)

char *Sname; /* Pointer to Character Vector, containing search path */
int Attribute; /* Attribute of file to be found */

108

http:Register.x.dx
http:Register.h.ah
http:Register.x.dx
http:Register.x.ex
http:Register.h.ah
http:Register.h.ah

Abacus

6.7 Accessing the DOS Directory

int NumEntries, /* Total number of entries found
Numwind; /* Number of entries in display

struct DirStruct DirEntry; /* a Directory entry

SetDTA (&DirEntry); /* DIRENTRY is the new DTA

BuildScreenDisplay(); /* Construct display for new Directory output

Numwind = NumEntries = 0; /* no entry displayed in the window
/* no entry found

if (GetFirst (Sname, Attribute)) /* search for first entry
{
do
{
PrintData (&DirEntry, EZ+ENTRY+2); /* output entry
if (++Numwind == ENTRY) /* Window full 2
{
Numwind = 0; /* £111 a window
WT (14, EZ+4+ENTRY,
" Please press a key *,INV);
getch(); /* wait for key
WT (14, EZ+4+ENTRY,
" ",NRH),‘

}
ScrollUp(l, NRM, 15, EZ+3, 63, EZ+2+ENTRY);
WT (15, EZ+2+ENTRY,
" | | | | *,NOF) ;
++NumEntries;
}
while (GetNext ());
}
SetPos (14, EZ+4+ENTRY);
switch (NumEntries)
{
case 0 : printf("no files found ");
break;
case 1 : printf(“one file found *);
break;
default : printf(“$d files found ", NumEntries);
}
}

*/
*/

*/
*/

*/

*/
*/

*/
*/

*/

*/

/itﬁtittit*ktttttt*tt*t*tﬁit'ttttkktittk*ktttt*kt*t*kk*ktttﬁt*ttkkikt*/

/** MAIN PROGRAM *

*/

[AR KRR KRR R AR KRR KR AR R AR R KRR AR R AR KRR KRR KR AR KKK AR KA RR A AR KRR K AR KRR KX/

void main(Number, Argument) 7~

int Number; /; Number of Arguments + 1 passed
char *Argument(]; /* Vector with pointer to Arguments
{
switch (Number) N /* react according to
{ /* Arguments passed
case 1 : Dir("*.*", ~0); /* Display-all files in current
break; /* Directory
case 2 : Dir(Argument[1], ~0); /* Display all files in indicated
break; /* Directory

default : printf(“Invalid number of Parameters\n");
}
}

*/
*/

*/
*/
*/
*/
*/
*/

109

6. The Disk Operating System PC System Programming

6.8 The EXEC Function

The EXEC function has been mentioned briefly several times before in relation to
the command processor. We’ll examine the EXEC function more fully here and
describe its operation.

Parent/child

The EXEC function is one of the many DOS functions which can be called with
interrupt 21H (function 4BH). Generally speaking, this function lets a parent
program (main program) call a child program (secondary program). The child
program is loaded from a mass storage device into memory and then executes. If
this child program doesn’t become resident, the memory occupied by the child is
released following program execution. The child program can also call another
program which works with the parent program. This creates a type of program
chaining limited only by the amount of available RAM.

One example of the EXEC function is the command processor. Using the EXEC
function, the command processor executes user-specified programs and becomes the
parent program. Some programs (such as Microsoft Word®) permit the user to
execute DOS commands from the main program using this function.

The parent program can pass parameters to the child program in the command line
and can also pass parameters using the environment block. It can also transfer
information to the child program within the PSP, Since the child program, like all
executable programs, has a PSP preceding it, information can be entered into the
two FCBs within this PSP and made accessible to the child program.

Child program

110

After transferring control to the child program, it can access all files and devices
previously opened by the parent program (or one of the parent programs) with a
handle function. This allows the child program to read information from a file or
write information to a file whose handle is known (the child program doesn’t need
to know the filename). This is only possible if the handle was passed by the parent
program in one of the three methods described, or if the child program refers to one
of the five handles which are always open. These file accesses affect the file
pointer. Since values are not reset, these file accesses become “visible” to the
parent program when control returns to the parent program.

After execution of the child program, control returns to the parent program and
execution continues. To pass information (e.g., an error that occurred during the
execution of the child program), the child program can pass a numeric value at the
end of its execution. This can be done using DOS function 4CH, which terminates
a program and returns a code to the parent program.

The communication between parent and child program functions only if both
programs agree on this return value. After control returns to the parent program, it

Abacus

6.8 The EXEC Function

can determine the code using function 4DH of interrupt 21H. To use function 4DH
only the function number is passed in the AH register. The code passed by the
child program is returned to the calling (parent) program in the AL register.

Ending the child program

EXEC

In addition, the contents of the AH register indicate how the child program
terminated. The value O indicates a normal termination, while 1 shows that the
child program terminated when the user pressed <Control><C> or
<Control><Break>. If an error during access to a mass storage device forced the
child program to terminate, a code of 2 is passed in the AH register. Finally the
value 3 indicates that the child program terminated from a call to function 31H, or
interrupt 27H; the child program then becomes resident in memory.

As mentioned previously, the EXEC function can only load the child program if
enough memory is available. While DOS can estimate the memory needed for
EXE programs fairly accurately, it cannot do the same for COM programs. For
COM programs DOS reserves all unused memory. Because of this, a COM
program cannot call another program with the EXEC function, since DOS reserves
no extra memory. The same is true for many EXE programs. If a call to a child
program is necessary, the required memory space must be released from the calling
program before calling the EXEC function (see Sections 6.4.1 and 6.4.2 for
explanations on how this is done).

If the EXEC function is called, the various parameters are loaded into the registers
before calling interrupt 21H. Function number 4BH is passed in the AH register.
A value of 0 or 3 is passed in the AL register. A value of 0 indicates that the
EXEC function is to load and execute the program while a value of 3 indicates that
the program is loaded as an overlay (without executing it). The address of the name
of the program to be loaded or executed is passed in the DS:DX register pair. And
the address of the parameter block is passed in the ES:BX register pair.

The program name is specified as an ASCII string and ended with a null character
(ASCII code 0). The program name can include the device name and a complete
path description. Its last element is the program name which, besides the name
itself, must have the extension .COM or .EXE. If the device name or path
designation are omitted, the system searches for the program in the current
directory of the current device. Since the EXEC function cannot execute a batch
file directly, the program name passed cannot contain the extension .BAT.

Batch child

If a batch file is to be executed, the COMMAND.COM (command processor) file
must be invoked first. To indicate that a batch file should be executed, the
parameter /c followed by the name of the batch file to be executed is included on
the command line. Besides the ability to execute a batch file, calling the command

111

http:COMMAND.COM

6. The Disk Operating System PC System Programming

processor with the /c parameter offers the option of calling any other program, and
even internal DOS commands such as DIR.

Besides calling a program directly, it’s possible to specify program names without
file extensions during a command processor call. The command processor searches
for an EXE file; then a COM file; and finally a BAT file. If none of these files
exist in the current directory, it searches all directories specified in the PATH
command. This chain of events is not followed during a direct program call
without the addition of the command processor.

The directory which contains the command processor should be specified. If not
specified, it will be loaded from the path indicated by the COMSPEC environment
string of the SET command.

Parameter blocks

Parameters can be passed to the command processor in the parameter block
following the program name. These parameters are identical to the parameters
entered from the keyboard when the program is called. How these parameters affect
the EXEC function will be seen shortly, but first take a look at the parameter
block’s structure when the AL register contains the value 0. This block’s address is
passed to the EXEC function in the register pair ES:BX.

0-1 Segment address of the environment block
2-3 Offset address of the command parameter
4-5 Segment address of the command parameter
6-7 Offset address of the first FCB

8-9 Segment address of the first FCB
10-11 Offset address of the second FCB
12-13 | Segment address of the second FCB

~Sjoajunlasjwinge

Field 1 indicates the Segment address of the child program’s environment block.
This block doesn’t require an offset address since it always starts at a location
divisible by 16, and therefore its offset address is always to 0.

Environment block

112

The command processor and other programs obtain information from the
environment block. The environment block is a series of ASCII character strings.
This information can include paths for file searches. Each string has the following
syntax, terminated by a null character (ASCII code 0):

Name = Parameter

The individual strings follow each other sequentially (i.e., the null character of one
string is immediately followed by the beginning character of the next string). The
environment block ends with a null character. Any environment block has a
maximum length of 32K.

Abacus

6.8 The EXEC Function

The environment block can be changed or modified by the user using the DOS
SET and PATH commands. Programs which remain resident after execution are
unaffected by any changes made to the environment block through these two DOS
commands once made resident.

If the parent program wants to pass information to the child program using the
environment block, it can either construct a new environment block or supplement
its own environment block with this information. In the first case, the segment
address of the new environment block is specified in the first field of the parameter
block. If the child program should have access to the environment block of the
parent program, specify a value of 0 in this field. Before turning over control to
the child program, the EXEC function stores the segment address of the
environment block in the memory location at address 2CH of the child program's
PSP.

If the child program is to use a new environment block, it should contain at least 3
strings which are normally part of the environment block of the parent program,
and are important to the command processor:

COMSPEC = Parameter

PATH = Parameter
PROMPT = Parameter

If a child program modifies its environment block, the parent program’s
environment block remains unchanged after the child program completes its
execution.

Fields 2 and 3 indicate the command parameters’ address which is passed to the
PSP of the program starting at address 80H. They must have the same structure in
memory as expected by DOS in the PSP. The first byte indicates the number of
command characters minus 1, then follows the command characters as normal
ASCII codes. The command parameters terminate with a carriage return (ASCII
code 13) which is not included in the character count. The first character in the
string should be a space for compatibility with COMMAND.COM.

To call a batch program (called DO.BAT) using the command processor, the
following command parameters must be specified as a string in memory:

DB 10," /C DO.BAT",13

The EXEC function copies the command parameters in a controlled fashion into
the PSP of the program to be executed. It removes all parameters which would
redirect the input or output, since a redirection of the standard input/output can
only be performed by the parent program. The child program can still use
input/output redirection if the standard input/output handles have been redirected by
the parent program (see Section 6.10 for more detailed information and an example
of this process).

113

http:COMMAND.COM

6. The Disk Operating System PC System Programming

Fields 6, 7, 10 and 11 indicate two FCBs installed in the PSP at address SCH or
6CH. If this is not required, specify -1 (FFFFH) in these two fields. If program
execution requires it, enter the first two command parameters in the two FCBs
with DOS function 29H. Before passing control to the child program, the EXEC
function copies these two FCBs into the PSP of the child program.

Even though all registers and the parameter block now have the required values, the
EXEC function cannot be called yet. Since it destroys the contents of all registers
up to the CS and IP registers during execution, the contents of all registers must
be placed on the stack before it is invoked. Then the contents of the SS and SP
registers must be stored within the code segment. Only then can interrupt 21H
function 4BH be called to activate the EXEC function. After the EXEC function
ends, the carry flag signals if the function executed normally. Before program
execution can continue, the value of the SS and SP registers must be restored,
from the code segment. Then the contents of the other register can be restored
again from the stack.

The EXEC function serves a different purpose when a value of 3 appears in the AL
register. In this case, it loads a COM program or an EXE program into memory
without executing. After the target program is loaded, control immediately returns
to the calling program. In contrast with sub-function 0, the program loads to a
memory address indicated by the calling program instead of loading to any non-
specific location. Since no parameters are passed to the loaded program, the
parameter block has a different structure during the call of sub-function 3 than
during the call of sub-function 0:

Field] Byte Purpose
1 0-1 Segment address where overlay is loaded
2 2-3 Relocation factor

Before the function is called, the segment address to which the program should be
loaded is specified in the first field of the parameter block. If the calling program
doesn’t have enough memory available for loading the external program, it should
request additional memory with one of the DOS memory management functions.
The loaded program loads directly to the segment address indicated with the offset
address O since no PSP precedes the program.

Relocation

114

The relocation factor adjusts the segment address of the called program. Since this
factor applies only to EXE programs (COM programs cannot have specific
segment assignments), the relocation factor for COM programs should always be
equal to 0. The relocation factor for EXE programs should indicate the segment
address where the program will be loaded to confirm to the program’s segment
assignments.

After the program is loaded, its routines are ready to be accessed. The routines of
the loaded program should always be treated as subroutines; and therefore, called

Abacus

6.8 The EXEC Function

with the machine language CALL instruction. It must always be a FAR type
instruction even though the loaded program may be located immediately following
the calling program, but can never have the same segment address. The offset
address for CALL is always 100H for a COM program, since execution always
starts immediately following the PSP at address 100H. This creates a problem.
Sub-function 3 prevents the PSP from loading. Therefore the code segment of the
COM program starts at address 0, not at the offset address 100H (relative to the
load segment). Since all jump instructions and accesses to data within the COM
program are relative to address 100H and not address 0, you cannot execute a FAR
CALL instruction with the address of the load segment as the segment address, and
address O as the offset address. The segment address for the FAR CALL must
indicate the address of the load segment minus 10H and the address 100H as the
offset address.

If the COM program specifically acts as an overlay for another program, entry
addresses other than address 100H are possible. In such a case, only the offset
address for the FAR CALL instruction changes. The segment address must remain
10H smaller than the address of the load segment.

EXEC and memory

The problem is different for EXE programs. If they are loaded for execution using
sub-function 0, the EXEC function sets the code segment and the instruction
pointer to the instruction which was declared as the first instruction in the
assembler source. This address, however, is unknown to the program which loaded
the EXE program as an overlay. This can easily be remedied by placing the first
executable instruction in the EXE program at the beginning of the EXE program.
This makes its offset address 0. The EXE program source must not be in the
normal sequence with the stack first. In this case, the code segment must be the
first segment in the source to ensure that it begins the EXE program.

The FAR CALL uses the address of the load segment as the segment address, and
address 0 as the offset address.

While BASIC, Pascal and C have commands or procedures to call a program from
another program, assembly language routines must use DOS function 4BH. To
help you further understand this function, here is an example program.

The framework of the EXE program listed in Section 6.4.2 acts as the basis for
this program. The EXEPRG procedure performs the actual dirty work in this
program. It calls the new program using function 4BH. Two strings which contain
the name of the program to be called and the necessary parameters are passed to it.
Both strings end with the null character (ASCII code 0). All variables required by
EXEPRG for execution can be found in the code segment. This offers the
advantage that the lines from the code segment only must be copied into one of the
application programs to use this routine. After calling EXEPRG, the carry flag
signals if an error occurred. If true (carry flag=1), the AX register contains the error

115

6. The Disk Operating System PC System Programming

code as returned by the EXEC function of DOS. If the called program executed
correctly, the carry flag is reset (0) and the termination code of the called program,
as returned by DOS function 4DH, is returned by the AX register.

Within this program, EXEPRG displays the current directory using the command
processor. The command processor defaults to the current directory of the current

;Q'iﬁ’ii*iﬁﬁ**ﬁt'tﬁi"ﬁi*t*tﬁlﬁ'ﬁ*iﬁl**ittttitttitﬁtttttitﬁtt*itﬁt**tﬁ;
i* EXEC *;
it *;
it Task : Calls a program with the help of the *;
i EXEC function of DOS. In this example *;
i program the content of the current *;
i* Directory of the current device is displayed. *;
-k *e
; ;
* Author : MICHAEL TISCHER *2
i* developed on : 08/01/87 *;
* last Update : 04/08/89 *;
.k *e
’ ’
* assembly : MASM EXEC; *;
it LINK EXEC; *;
it *;
it Call : EXEC *:
’-Qﬁ'*i'itwi**ti*ﬂﬁ**ﬁ*ﬁ*ﬁiﬁittﬁtﬁ*i*ﬁt'iﬁt'tttttt*ﬁ**tﬁ*iﬁﬁt'*ﬁt*ﬁ**tﬁ;
;== data

data segment para °‘DATA‘ ;Definition of the data-segment
prgname db “\command.com",0 ;Name of the program to be called
prgpara db */c dir",0 ;Parameters passed to program

data ends ;end of data-segment

;== code

code segment para ‘CODE* ;Definition of the CODE-segment

assume cs:code, ds:data, ss:stack

exec proc far
mov ax,data ;Load segment address of the data segment
mov ds,ax ;into the DS-register
call setfree ;release unused memory

mov dx,offset prgname ;offset address of program name
mov si,offset prgpara ;offset address of command line

call exeprg ;Call program
mov ax,4C00h ;end program with call of a DOS function
int 21h ;on return of error-code 0

exec endp

;—— SETFREE: Release memory not used =——===——=—————---

;-- Input : ES = address of PSP

;=- Output : none

;-- Register : AX, BX, CL and FLAGS are changed

;—- Info : Since the stack-segment is always the last segment in an
; EXE-file, ES:0000 points to the beginning and SS:SP

H to the end of the program in memory. Through this the

; length of the program can be calculated

setfree proc near

116

6.8 The EXEC Function

mov bx,ss ;first subtract the two segment addresses
mov ax,es ;from each other. The result is
sub bx,ax ;number of paragraphs from PSP
;to the beginning of the stack
mov ax, sp ;since the stackpointer is at the end of
mov cl,4 ;the stack segment, its content indicates
shr ax,cl ;the length of the stack
add bx,ax ;add to current length
inc bx ;as precaution add another paragraph
mov ah, 4ah ;pass new length to DOS
int 21h
ret ;back to caller

setfree endp

;-- EXEPRG: call another program

;== Input : DS:DX = address of the Program Name

P DS:SI = address of the Command Line

;=— Output : carry flag = 1 : Error (AX = Error-code)

;—— Register : only AX and FLAGS are changed

;-- Info : Program name and Command Line must be ASCII-String
;- and terminated with ASCII-code 0

exeprg proc near

;Transmit Command Line into own buffer --
sand count characters -

push bx ;Store all registers which are
push cx ;destroyed by the call to the
push dx ;DOS EXEC function

push di

push si

push bp

push ds

push es

mov di,offset comline+l ;address of chars in Command Line.

push cs ;CS to stack
pop es sback as ES
xor bl,bl ;Set character count to 0
copypara: lodsb ;read a character
or al,al ;1is it a NUL-code (end)
je copyend ;Yes --> copied enough
stosb ;store in new buffer
inc bl ;increment character count
cnp bl, 126 ;Maximum reached?
jne copypara ;No --> continue
copyend: mov cs:comline,bl ;store number of characters

mov byte ptr es:[di],13 ;finish command line

mov cs:merkss,ss ;SS and SP must be stored in
mov cs:merksp, sp ;variables in code segment

mov bx,offset parblock ;ES:BX points to parameter block

mov ax,4B00h ;function number for EXEC function
int 21h ;Call DOS-function

cli ;Set interrupts for a moment from
mov ss,cs:merkss ;stack segment and stackpointer to
mov sp, cs:merksp ;their old values

sti ;Switch interrupt on again

pop es ;Get all Registers from stack again
pop ds ~

pop bp

117

6. The Disk Operating System

PC System Programming

118

pop si

pop di

pop dx

pop cx
pop bx

jc exeend
mov ah, 4dh
int 21h

exeend: ret

sErrors? YES --> end
;no errors, sense end-code of the
;program which was executed

sback to caller

;-= Variables of this routine only addressable through CS --

merkss dw (2?) ;accepts SS during program call
merksp dw (?) saccepts SP during program call
parblock equ this word ;Parameter block for EXEC function
dw 0 ;environment block
dw offset comline ;offset and segment address of
dw seg code ;modified Command Line
dd 0 ;no data in PSP #1
dd 0 ;no data in PSP #2
comline db 128 dup (?) ;accepts modified Command Line
exeprg endp
;== stack
stack segment para stack ;Definition of the stack-segment
dw 256 dup (?) ;the stack has 256 Words
stack ends ;End of the stack-segment
;== End
code ends ;End of the CODE-segment

end exec

;for execution start with EXEC

Abacus

6.9 Memory Allocation from DOS

6.9

Memory Allocation from DOS

DOS subdivides the maximum 640K of memory into roughly two areas. The first
area is designated as the operating system area. It begins at memory location
0000:0000 and contains the interrupt vector table, some internal tables, buffers,
variable memory and the operating system code. This code retains the resident
portion of the command processor and the resident and installable device drivers.
The size of this area varies with the version of DOS in use, the sizes of the device
drivers installed, and other factors such as the number of disk buffers available.

The second area is designated as the TPA (Transient Program Area). It contains
programs and their environment blocks for execution. The TPA starts after the end
of the operating system area. Depending on the memory requirements of the
individual programs, DOS assigns them different amounts of memory administered
through a special data block preceding every memory range and connected with the
data block of the next memory range. This also applies to memory not assigned to

a program.

This data block, called a memory control block (or MCB) is a 16-byte block
containing a variety of information. An MCB begins at one of the addresses
divisible by 16, and controls memory allocation. DOS looks for the segment
address of the allocated memory range, and is helped in this task through the MCB.
The following table shows the structure of an MCB in memory:

Address| Contents Type

+00H ID ("Z2"=last MCB, "M"=another MCB follows) 1 byte

+01H Segment address of corresponding PSP 1 word

+03H Number of paragraphs in allocated range 1 word

+05H unused 11 bytes
+10H Allocated memory range X paragraphs

As the table above illustrates, the MCB contains three fields. The first field
indicates whether any MCBs follow the current MCB under analysis. The letters
"M" (more MCBs to follow) and "Z" (last MCB) are the initials of one of the
creators of MS-DOS, Mark Zbikowski.

The second field specifies the segment address of the corresponding program's PSP.
This only applies when memory allocation becomes a part of the environment of
the program being handled, in which case the PSP is indicated by the contents of
this field. In most cases, this field simply points to the memory range needed by
the program.

The third field of the MCB specifies the size of the corresponding memory range in
paragraphs. Next follows the memory range itself, then any further MCBs after
that (provided that the first field contains an "M" ID letter). MCBs can be linked
together to create a group, as shown in the figure below:

119

6. The Disk Operating System PC System Programming

120

Start of memory 1
(0000:0000) T

Start of TPA Memory Control Block 1

Controlled by Memory Control Block 1

Memory Control Block 2
Controlled by Memory Control Block 2
Memory Control Block 3

Controlled by Memory Control Block 3

Memory Control Block 4 (last MCB)

Controlled by Memory Control Block 4

End of TPA
End of memory [

Memory allocation

If the DOS EXEC loader loads and executes a program, this function immediately
requests two data areas through another DOS function. The first of these two areas
stores the environment block, while the second accepts the current program and the
program's PSP. The size of the area made available to a program is difficult to
estimate from the EXEC loader. This is even more difficult for COM programs
than for EXE programs since COM programs are copies of memory contents and
have no information preceding them. DOS therefore defaults to the maximum and
reserves the total available memory for a COM program.

This method worked well in the early days of DOS, but has created other
problems. While only one program could exist in memory at a time in the early
days of DOS, now it’s common for one program to load and run a second program,
or even make one of the programs permanently resident in memory. This can’t be
done if no memory exists, as would be the case after loading a COM program.
This is why a COM program should always release the memory it no longer needs
after it starts (see Section 6.4.1 for details on how this happens).

A COM program can only load when a memory range large enough to
accommodate the COM program exists (plus 256 bytes for the PSP and at least 2
bytes for the stack). The COM program ensures that enough memory is available.
Under the minimum conditions presented above, the program probably won’t run
without errors, since few programs can operate with only a 2-byte stack.

EXE program files have a set of information created by the linker. The EXEC
loader can determine the amount of memory required for code segment, data and
stack from this information. The start of the EXE program itself contains
additional information about the amount of memory needed for the program. This
amount defines an upper and lower limit of the additional memory, rather than a
specific number of bytes. The EXEC loader tries to reserve the upper limit of

Abacus

6.9 Memory Allocation from DOS

memory if it can. If this is not possible, the EXEC loader uses the lower limit or
reserves the remainder of memory. If the lower limit of memory cannot be
allocated, the loading process aborts and control returns to the program which
called the EXEC loader (in most cases, the command processor).

The same occurs after program execution when the EXEC loader releases the
reserved memory space for further use, unless prevented by function 31H of
interrupt 21H, called from the program.

Now that you know some of the theoretical aspects of DOS memory management,
here are descriptions of the most important of these DOS functions. Functions
48H, 49H and 4AH are all called through interrupt 21H. The function number is
passed in the AH register.

Function 48H allocates memory. The function number is passed in the AH register
and the number of paragraphs to be reserved (16 bytes per paragraph) is passed in
the BX register. If the requested number of paragraphs can be reserved, the function
returns with the carry flag clear. The AX register indicates the segment address of
the reserved memory. Therefore, it starts at address AX:0000. If the program
required more memory than was available, the carry flag is set following the call to
the function and the AX register contains an error code. The BX register contains
the maximum memory available in paragraphs.

Function 49H performs the reverse of function 48H. This function releases
memory previously reserved through function 48H. The segment address of the
memory area to be released is passed in the ES register. This segment address was
originally passed in the AX register when function 48H was called. Normally
function 49H should execute without errors and the carry flag should be reset after
the function call. If this is not the case, it could be caused by either a destroyed
data block (placed ahead of a memory area by DOS), or a segment address passed in
the ES register which doesn’t match a reserved memory area.

A third function changes the size of memory area which had been previously
reserved. The memory area can be either enlarged or reduced by using function
4AH. The segment address of the area to be modified is passed in the ES register.
The BX register reserves the number of paragraphs (16-byte units) which the
memory area should contain. The register contents following the call to the
function are identical to those of function 48H.

Since calling DOS functions is relatively easy as far as memory management is
concerned and no special tricks are required, the following program is dedicated to a
different topic, which also relates to DOS memory management. We're talking
about a program that pokes around the system and checks all allocated memory as
well as its contents. The program is intelligent enough to differentiate between
storage areas that contain the environment of a program, a PSP, or other
information.

121

6. The Disk Operating System PC System Programming

122

The assignment of this program is to go through the memory from MCB to MCB
and examine the allocated storage areas. In order to move to the next MCB each
time, it uses the third field within an MCB, which helps it point to the next
MCB. This sets up a loop which will run until the last MCB is discovered, which
will have the letter "Z" in its ID field.

But in order to move through the chain of MCBs, the address of the first link, that
is the first MCB, must be known. DOS lists this within an internal structure
called DIB (DOS Information Block), which is not normally accessible to
application programs, i.e. this represents an undocumented DOS feature (see also
Section 6.15). However, we can find out the address of this structure with the help
of function 52H, which will output the address to the ES:BX register pair when
called.

Curiously, this address points to the second field in the MCB rather than the first.
But since it's the first field that contains the address of the first MCB, the
information we're looking for is behind the pointer. Since the pointer on the first
MCB consists of an offset address and a segment address, it is four bytes long and
can therefore be found at the address ES:(BX-4). But be careful with the address
statement, because it makes it seem as though all you have to do is subtract 4
from the contents of the BX register in order to get the effective address of the
desired information in the ES:BX register pair. This will only be successful if the
offset address in the BX register is greater than or equal to 4. But if it is less than
4, the consequences are disastrous, because this leaves a negative number. There is
no such thing as a negative memory address. Let's use an example to make this
clear:

If the value 0 is returned to the BX register as the offset address of the DIB, the
subtraction would give the value OFFFCH. With arithmetic operations, this is
interpreted quite correctly as -4. However, during memory access, this will not
point to the address -4, but rather right to OFFFCH, and therefore to the end rather
than the beginning of the accompanying segment. Of course, you won't find what
you're looking for there.

The program will help you here, first of all by decrementing the delivered segment
address by 1. This reduces the effective address, which you get by appending the
segment address and the offset address, by 16. Finally, by adding 12 to the offset
address, the effective address is reduced by only 4 and points to the desired memory
location. The address of the first MCB can then be taken from this memory
location without any problems.

The loop which runs through all MCBs and analyzes them begins with this
address. First, some status information on the MCB and the memory it controls is
given. This includes:

. the MCB number
. its address in memory

Abacus 6.9 Memory Allocaiion from DOS
. the address of the memory it controls
. the contents of the ID field ("M" or "Z")
. the address of the accompanying PSP (independent of whether it
even exists)
. the size of the accompanying storage area in paragraphs and bytes

Next, the contents of the storage area that belongs to it are examined. We get its
address by incrementing the segment address of the MCB by 1. The first thing
we'll determine is whether we're dealing with an environment block in this storage
area. We'll know for sure if we find the string COMSPEC= at the beginning of the
arca. This string starts every environment block. If this string is found, the
program proceeds as though this were indeed an environment block, and it lists the
individual environment strings. In front of these, it lists the name of the program
the environment block belongs to, which is located at the end of the environment
block for DOS version 3.0 and higher.

If the storage area cannot be identified as an environment block, we could possibly
be dealing with a PSP, and therefore a transient or resident program. The program
will start from here if it finds the machine language command INT 20H (code
OCDH, 020H) in the first two positions of the memory range. This command
starts every PSP.

If the program also does not run into this, it can't tell if the memory range
contains program code, data, or whatever. In this case, the program will send the
first 80 bytes of the storage area to the screen as a hex and ASCII dump, in order
to give you a chance to figure it out for yourself.

After this, the user is prompted to strike any key. When the keystroke is received,
the next MCB is examined, and the program will finally end when the last MCB
has been handled.

The following programs in Pascal and C produce the MCB dump. A BASIC
version could not be implemented here because this program works its way
through the entire memory, and BASIC offers only the DEF, SEG and PEEK
commands for this purpose. The use of these commands is too awkward in this
case and would detract from the real task of the program.

Since both programs are very similar in terms of the logic, function calls, and
variables used, they are described together in the following section.

Both access memory with FAR pointers, since the storage areas to be addressed are
outside of their data segments. While Turbo Pascal automatically uses FAR
pointers, C requires selection of the appropriate memory configuration through
Compact, Huge, Large or with the help of Cast operations, each of which
explicitly defines the task with a FAR pointer. This program goes the latter way,
so that it may also be compiled in a memory configuration that works with NEAR
pointers by default (Tiny, Small, Medium).

123

6. The Disk Operating System PC System Programming

Pascal

124

Converting separately retrieved offset and segment addresses to one FAR pointer
presents a problem in both languages. This can be done in C with a macro, which
is already defined in the Include file DOS.H in Turbo C, but is missing in
Microsoft C. For this reason, the macro is defined within the C program, in case it
hasn't been previously defined. In Pascal, the address conversions happen with the
help of a small inline procedure, that enters both addresses directly into the
memory locations that form the pointer.

Beyond these brief remarks, the listings should be able to speak for themselves,
since they are fully documented.

listing: MEMP.PAS

{*ﬁ****ﬁttﬁ*iﬁ**iﬁi"ﬁ'***ﬂi'i'itttt'Qﬁti'*k'tﬁﬁﬁﬁﬁki*ﬁﬁii**'i'*ttiﬁi'k}
{* MEMP *}
(* *}
{(* Description : displays the memory blocks allocated by DOS. *}
(t ‘]

{* Author : MICHAEL TISCHER *}
{(* developed on : 08/22/1988 *}
(* last update : 08/22/1988 *})

[rr Rk kR Rk kAR AR KA A AR AR KRR KRR KRR AR AR AR R AR R AR A AR AR AR Rk h A Ak)

program MEMP;

uses DOS, CRT; { bind in the DOS and CRT units }
type BytePtr = “byte; { pointer to a byte }
Range = array[0..1000] of byte; { an area, anywhere in RAM }
RngPtr = “Range; { pointer to an area }

MCB = record { a memory control block }
IdCode : char; { "M" = a block follows, "2" = end }

PSP : word; { segment address of the PSP }

Distance : word; { number of paragraphs - 1 }

end;

MCBPtr = ~MCB; { pointer to an MCB }
MCBPtr2 = ~MCBPtr; { pointer to an MCBPtr }
HexStr = string([4]; { stores a four-digit hex string }

var CvHStr : HexStr; { stores the converted hex string }

(ﬁi*ﬁi*i*tiﬁtﬁi*'*'tt**ﬁ****.kt**tﬁ*ﬁ'ti*tkttttiﬁiﬁ*ﬁﬁt*iﬁi'**ﬁ*ﬁt*tﬁ'ﬁ}
{* GetDosVer: determines the DOS version *}
{* Input : none *}
{* Output : the DOS version number (30 for DOS 3.0, 33 for 3.3 etc.) *}

[rr R Rk ke kAR R R KRR A AR AR AR AR AR KRR AR AR AR AR R AR R AR AR AR RN Rk k kA A kk |

function GetDosVer : byte;

var Regs : Registers; { stores the processor registers }
begin
Regs.ah := $30; { function no. for “Get Dos Version" }
MsDos(Regs); { call DOS interrupt $21 }
GetDosVer := Regs.al * 10 + Regs.ah; { get version number }
end;

[AR R A AR AR R AR R KRR AR AR AR R AR AR AR R AR AR AR R AR AR AR R AR AR AR AR AR R AR R AN]

{* MK FP: creates a byte pointer out of the segment and offset *}
{(* addresses passed. *}
{* Input : - Seg = segment to which the point should point *}
{* - Ofs = offset address to which the pointer should point *}
{* Output : the pointer *}

Abacus 6.9 Memory Allocation from DOS

{* Info : The pointer returned can be cast to any type pointer *}
(it*itttﬁ*iti*ﬁ*ﬁ**ititit*ﬁﬁittiitittt*ttii*ﬁ*ﬁ*ﬁ*ﬁ*ﬁttitititﬁ*ﬁ*ﬁktﬁtﬁ)
{$F+) { This routine is intended for the FAR model and is }

{ also suited for binding into a unit. }

function MK FP(Seg, Ofs : word) : BytePtr;

begin
inline ($8B / $46 / $08 / (mov ax, [bp+8] (get segment address)
$89 / $46 / SFE / { mov [bp-2],ax (and put in pointer)
$8B / $46 / $06 / { mov ax, [bp+6] (get offset address)
$89 / $46 / $FC); { mov [bp-4],ax (and put in pointer)

—

end;

{$F-} { NEAR routines possible again }

(ii**ﬁ*****'k*ﬁ**iiiitﬁ*ﬁﬁ*iii*ﬁ*i*ititﬁ*ﬁ*ﬁ**ﬁﬁ*ﬁ*tttﬁtittiitittititﬁﬁi)
{* HexString: creates a 4-digit hex string out of the number passed *}
{* Input ! - HexVal = the number to be converted *}
{* Output : the hex string *}

[FRA IR IR R AR AR A A AR R AR AR AR AN A AR A AI AR AR RN AR AN IR N kRN RN RNk kN k kN)

function Hexstring(HexVal : word) : HexStr;

var Counter, { loop counter }
Nibble : byte; { the lowest nibble of the word }
begin
CvHStr := ‘'xxxx'; { initialize the string }
for Counter:=4 downto 1 do { run through the 4 digits of the string }
begin
Nibble := HexVal and $000f; { leave just the lower 4 bits }
if (Nibble > 9) then { convert to a letter? }
CvHStr[Counter] := chr(Nibble - 10 + ord('A'}) { yes }
else { convert to a number }
CvHStr[Counter] := chr(Nibble + ord('0'});
HexVal := HexVal shr 4; { shift HexVal 4 bits to the right }
end;
HexString := CvHStr; { return the created string }
end;

[Balahalalohabolobelo bbb bbb A A S A AR S SRR LA S SRR S S A S a e ittt st bttt ittty

{* FirstMCB: Returns a pointer to the first MCB. *}
{* Input : none *}
{* Output : pointer to the firs MCB *}

{tiitﬁttt*itiiﬁtﬁtiti*ﬁ**ﬁtitﬁ**titittiiﬁitttitittiittitiittiitititt*tt’

function FirstMCB : MCBPtr;

var Regs : Registers; { stores the processor registers }
begin
Regs.ah := $52; { ftn. no.: get address of the DOS info block }
MsDos (Regs); { call DOS interrupt $21 }
{*-- ES: (BX-4) points to the first MCB, create pointer ———-—--———————-*}

FirstMCB := MCBPtr2(MK FP(Regs.ES-1, Regs.BX+12))*;
end;

(*ﬁﬁ*ﬁtttt*tt*i***tttt*i**tt*tt*ttﬁttttt*tti*ttttt*ttt*ﬁi***ittttittta*)

{* Dump: outputs hex and ASCII dump of a memory block. *}
{* Input : - DPtr = pointer to the memory block to be dumped *}
{* - Num = number of lines to dump (16 bytes each) *}
{* Output : none *}

[Rl bbbl bbb A LA S AR AL ES LS AT RS AL AL AL SR A ELE LRttt iit sl ittty

procedure Dump(DPtr : RngPtr; Num{Num} : byte);

125

6. The Disk Operating System

PC System Programming

126

type HBStr = string(2]; { stores
var Offset, { offset
2z : integer;
HexStr : HBStr;

procedure HexByte(HByte : byte);
begin
Hexstr(l] := chr((HByte shr 4) + ord('0'));
if Hexstr([l] > '9' then
Hexstr([l] := chr(ord(Hexstr(l]) + 7);
HexStr(2] := chr((HByte and 15) + ord('0'));:
if Hexstr[2] > '9*' then

HexStr([2] := chr(ord(HexStr[2]) + 7);
end;
begin
HexStr := ‘'zz';
writeln;

write (*DUMP | 0123456789ABCDEF
writeln(' 09 OA OB OC OD OE OF');

2-digit hex numbers

in the memory block
{ loop Counter

{ stores a hex number for hex dump

{ first digit
convert to letters?
{ yes

{ second digit

{ convert to letters?
{ yes

{ initialize the hex string

00 01 02 03 04 05 06 07 08');

write (' +
writeln(* ');
Offset := 0;
while Num>0 do
begin
write (Hexstring (Offset), ' | ');
for Z2:=0 to 15 do
if (Dptr~[Offset+Z] >= 32) then
write(chr(Dptr~[Offset+2]))
else
write(*' *);
write(' '):
for 2:=0 to 15 do
begin
HexByte(Dptr~[Offset+Z]);
write(Hexstr, * *);
end;
writeln;
Offset := Offset + 16;
Dec(Num);
end;
writeln;
end;

{ start with the first byte in the block
{ run through the loop ANZ times

{ process 15 bytes

{ valid ASCII character?
{ yes, output character

{ no

{ output space instead of character
{ set cursor to the hex portion

{ process 15 bytes

{ convert byte to hex
{ output hex string

{ set offset in the next line
{ decrement number of remaining lines

-

-~

(Qtt*ﬁ***ttttl**t'kt*ﬁt**t!t*t*tttt*'tttttﬁtk*t*t*ﬁt*t*ﬁ*ﬁtiﬁt**t*kﬁt*',
*}
*}

{* TraceMCB: runs through the list of MCB's.
{* Input : none
{* Output : none

*}

‘tititt**tt***itt*ttttt*it't**t*ttt**t*t'**ﬁﬁ***tttttttttt*ﬁ*******tt**)

procedure TraceMCB;

const ComSpec : array(0..7] of char = 'COMSPEC=';
var CurMCB{CurMCB} : MCBPtr;

Done : boolean;

Key : char;

NrMCB,

2 : integer;

MemPtr : RngPtr;

DosVer : byte;
begin

DosVer := GetDosVer;
Done := false;
NrMCB := 1;

CurMCB := FirstMCB;
repeat

{ number of current MCB

{ loop counter

{ DOS version number

{ get DOS version

{ the first MCB is number 1
{ get pointer to the first MCB
{ follow the MCB chain

~——

—~

—

Abacus

6.9 Memory Allocation from DOS

if CurMCB*.IdCode = '2' then { last MCB reached? }
Done := true; { yes }
writeln('MCB number = ', NrMCB);
writeln(*MCB address = ', HexString(seg(CurMCB*)), ':*,
HexString (ofs (CurMCB*)));
writeln('Memory addr. = ', HexString(succ(seg(CurMcCB*))), ':*,
HexString (ofs (CurMCB*)) };

~

writeln('ID = ', CurMCB*.IdCode);
writeln('PSP address = ', HexString(CurMCB~.PSP), ':0000');
writeln('size = *, CurMCB~.Distance, ' paragraphs °,

*(', longint (CurMCB~.Distance) shl 4, ' bytes)');
write('Contents =1');
{*-- is it an environment? *})
2 :=0; { start the comparison at the first byte }

MemPtr := RngPtr (MK _FP (succ(Seg(CurMCB*)), 0)); { pointer in RAM }
while ((2<=7) and (ord(ComSpec(Z]) = MemPtr*([2])) do

Inc(2); { set 2 to the nest character }
if 2>7 then { was the string found? }
begin { yes, this is an environment }

writeln(‘environment');
MemPtr := RngPtr (MK FP (succ(Seg(CurMCB*)), 0));

if DosVer>= 30 then { DOS Version 3.0 or higher? }
begin { yes, get program name }
write('Program name = ');
Z :=0; { start with the first byte }
while not ((MemPtr~[2]=0) and (MemPtr”~(2+1]=0)) do
Inc(2); { search for empty string }
2 :=2 + 4; { set 2 to the start of the prog name }
if MemPtr~[Z2]<>0 then { is there a prog. name here? }
begin
repeat { run through the program name }
write(chr (MemPtr~([2])); { output characters }
Inc(2); { process the next character }
until MemPtr~([2]=0; { to the end of the string }
writeln;
end
else { program name not found }
writeln ('unknown');
end;
{*—— output the environment strings *}
writeln (#13,#10, ‘'Environment strings‘);
2 :=0; { start with the first byte in the allocated block }
while MemPtr~[2]<>0 do { repeat until empty string }
begin
write(* B H
repeat { output a string }
write(chr (MemPtr~([2])); { print a character }
Inc(2); { process the next character }
until MemPtr*{Z2]=0; { to the end of the string }
Inc(2); { set to the start of the next string }
writeln; { end line }
end
end
else { no envrionment }
begin
{*-- is it a Psp? *}
{*=-- (starts with command INT 20 (code=$CD $20)) =-—==--—————-- *}

MemPtr := RngPtr (MK_FP (succ(seqg(CurMCB*)), 0)); { set pointer }
if ((MemPtr~[0]=$CD) and (MemPtr”~{1]=$20)) then

begin { it*'s a PSP }
writeln(*PSP (with program following)');
end
else { the command INT 20 was not found }

127

6. The Disk Operating System PC System Programming

begin
writeln(‘unidentifiable (program or data)‘');
Dump (MemPtr, 5); { dump the first 5x16 bytes }
end;
end;
write(* 9;

writeln (' ===ms=mz=z=====z= Press a kxey ===');
if (not Done) then

begin { set pointer to the next MCB }
CurMCB := MCBPtr (MK_FP (seg (CurMCB*) + CurMCB~.Distance + 1, 0));
Inc (NIMCB); { increment the number of the MCB }
Key := ReadKey;
end;
until (Done) { repeat until the last MCB is processed }

end;

(tttt**tt*ﬁﬁ*ttt*ﬁtt*tt*ttt*tt**ttﬁﬁ*tﬁttt**ttt**ttﬁtt**tﬁttttt*ttttt**)

{** MAIN PROGRAM **)
(t***ttﬁﬁttt*t*ﬁ*ttﬁ*t***tﬁt****t*t*t**t*it****ﬁt*****tti***t******t***)

begin
Clrscr; { clear the screen }
TraceMCB; { run through the MCBs }
end.

C listing: MEMC.C

[HERR KKK R KRR KRR R KRR AR KA AR R AR RN R AR K AR AR R R AR AR AR AR AR A AR AR RN AR A AR A AR kN [

/* MEMC */
/* */
/* Description : Displays the memory blocks allocated by DOS */
/* */
/* Author : MICHAEL TISCHER */
/* developed on : 08/23/1988 */
/* last update : 05/12/1989 */
/* */
/* {MICROSOFT C) */
/* creation : CL /AS /2p memc.c */
/* call : MEMC */
/* */
/* (BORLAND TURBO C) */
/* creation : via the Compile-Make command */
/* (no project file) */

[AR AR R R R A KR K AR AR KRR R KRR AR R AR R AR R AR R KRR AR R AR AR R AR R R AR R AR R AR AR R ARk Ak &/

/*== Include files */

#include <dos.h>
#include <stdlib.h>

/*== Typedefs */
typedef unsigned char byte; /* bulild ourselves a byte */
typedef unsigned segadr; /* a segment address */
typedef byte boolean;
typedef byte far *FB; /* FAR pointer to a byte */
/*== Constants */
#define TRUE 1 /* needed for working with boolean */
#define FALSE 0
/*== Structures and unions */
struct MCB ({ /* describes an MCB in memory */
byte id_code; /* *M* = a block follows, 'Z' = end */
segadr psp; /* segment address of the PSP */
unsigned distance; /* number of paragraphs reserved */

128

Abacus

6.9 Memory Allocation from DOS

}:

typedef struct MCB far *MCBPtr; /* FAR pointer to an MCB */
/*== Macros */
#ifndef MK FP /* was MK FP defined already? */

#define MK FP(seg, ofs) ((void far *) ((unsigned long) (seg)<<16] (ofs}})
#endif

[R AR R R AR AR R AR K AR AR R AR R KRR IR R AR AR R AR AR AR IR Rk AR kR Ak ko x
kkkxk

* Function :FIRST_MCB
* %k * &
* Description : Returns a pointer to the first MCB.
* Input parameters : none

* Return value : Pointer to the first MCB *
KRR R AR R R R R R R R AR R R R AR R R A AR AR R A AR A AR R AR KRR R AR A AN ARR AR AR R KRR AR AR A ARk

*ﬁ**/

MCBPtr first mcb()
{

union REGS regs; /* stores the processor registers */
struct SREGS sregs; /* stores the segment registers */
regs.h.ah = 0x52; /* ftn. no.: get address of the DOS info block */
intdosx(®s, ®s, &sregs); /* call DOS interrupt 0x21 */
/*-— ES: (BX-4) points to the firs MCB, create pointer ---—--—=-—-—---- */

return{ * ((MCBPtr far *) MK FP(sregs.es-1, regs.x.bx+12 }) };
}

/*****************#****************k**ﬁ*****ﬁ******ﬁ*********ﬁ**********
* Function :DUMP *
**k * &

* Description Outputs hex and ASCII dump of a memory range. *
*

* Input parameters - bptr : pointer to a memory area
* - num : number of dump lines (each 16 bytes) *
* Return value : none *

KRR KRR AR AR AR R AR AR AR R AR R AR AR KRR AR IR AR KRR AR RN AR AR AR AR AR AR AR AR AR A kX [

void dump(FB bptr, byte num)
{

FB lptr; /* running pointer for printing a dump line */
unsigned offset; /* offset address relative to BPTR */
byte 1i; /* loop counter */
printf (“\nDUMP | 0123456783ABCDEF 00 01 02 03 04 05 06 07 08%);
printf(* 09 OA OB OC OD OE OF\n");

printf (" + "),
printf(*———-—=————eeee——\n");

for (offset=0; num-- ; offset += 16, bptr += 16)
{ /* run through the loop NUM times */
printf (*$04x | ", offset);
for (lptr=bptr, i=16; i-- ; ++lptr) /* print character as ASCII */

printf("$c*, (*1lptr<32) 2 * * : *lptr);

printf (* "),

for (lptr=bptr, i=16; i-- ;) /* output character as hex */
printf ("$02X %, *1ptr++);

printf ("\n%); ’ /* move to the next line */

/*k*******t********t*t*****t*i*******t*t*t*t*t****f*t*ttit*t**********ﬁt
* Function :TRACE _ MCB *

** *k

129

http:regs.h.ah

6. The Disk Operating System PC System Programming

* Description ¢ Traces the chain of MCB's. *
* Input parameters : none *
* Return value : none *

Rk Rk kR R AR R R R kR kA kAR R AR R R KRR KR KRR AR R RRRR AR KRR AR AR R NN/

void trace mcb()

{

static char fenv{] = { /* first environment string */
‘C*, '0', 'M', 'S*, 'P', 'E', 'C*, ‘=

MCBPtr cur_mcb; /* pointer to the current MCB */
boolean done; /* TRUE if the last MCB was found */
byte nr_mcb, /* number of the current MCB */
i; /* loop variable */
FB lptr; /* running pointer in the environment */
done = FALSE; /* now we get going */
nr_mcb = 1; /* the first MCB is number 1 */
cur_mcb = first mcb(); /* get pointer to the first MCB */
do /* process the individual MCB's */
{
if (cur_mcb->id_code == ‘'2') /* last MCB reached? */
done = TRUE; /* yes */
printf (*MCB number = $d\n", nr_mcb++);
printf ("MCB address = %Fp\n*, cur_mcb);
printf (*Memory addr. = %Np:0000\n", FP_SEG(cur_mcb)+1);
printf (*ID = %c\n", cur_mcb->id_code);
printf (“PSP address = $Fp\n", (FB) MK_FP (cur_mcb->psp, 0));
printf (“Size = $u paragraphs ($lu bytes)\n*,
cur_mcb->distance, (unsigned long) cur_mcb->distance << 4);
printf (“Contents = ");
/*-- 1s it an environment? */

for (i=0, lptr=(FB)cur_mcb+16;/* compare first ENV string with FENV */
(i<sizeof fenv) && (*(lptr++) == fenv[i++]) ;)

’
if (1 == sizeof fenv /* was a string found? */
{ : /* yes, it's an environment */
printf ("environment\n*);
if (_osmajor >= 3) /* DOS version 3.0 or higher? */
{ /* yes, get program name */
printf ("Program name = “);

for (; !(*(lptr++)==0 && *1lptr==0) ;)

; /* find last ENV string */
if (*{(lptr += 3)) /* is there a program name here? */
{ /* yes */
for (; *lptr ;) /* run through the program name */
printf(“$c", *(lptr++)); /* output a character */
}
else /* no program name was found */
printf ("unknown");
printf (*\n"); /* move to the next line */
}
/*-- output the environment strings */

printf(“Environment strings\n");
for (lptr=(FB) cur mcb +16; *lptr ; ++lptr)
{ /* output a string */

printf(* "y,
for (; *lptr ;) /* run through the string to a NUL character */
printf(“$c®, *(lptr++)); /* output a character */
printf ("\n"); /* move to the next line */
}
}
else /* no envrionment */

130

Abacus

6.9 Memory Allocation from DOS

/*- is it a PSP? */
/*-- (introduced with the command INT 20 (Code=0XCD 0x20)) —-—----=%/

if (*((unsigned far *) MK FP(cur_mcb->psp, 0)) == 0x20cd)
printf (*PSP (with subsequent program)\n"); /* yes */
else /* the command INT 0x20 was not found */
{
printf(*unidentifiable (program or data)\n");

dump((FB) cur mcb + 16, 5); /* dump the first 5x16 bytes */
}
}
printf (" "):
printf ("==========<==== Please press a key ===\n");
if (tdone) /* another MCB? */
{ /* yes, set pointer to the next MCB */

cur_mcb = (MCBPtr)
MK_FP(FP_SEG(cur_mcb) + cur_mcb->distance + 1, 0);
getch(); /* wait for a key */
}
}
while (!done); /* repeat until the last MCB has been processed */
}

/***ﬁiiitt*t****ﬁiit'i***iﬁ**titit**ttt*t*t**t**ﬁtﬁ***ti*i**ﬁit*t****t*/

/** MAIN PROGRAM **/

/*****ﬁtiit***t*k*ﬁik*k*****ﬁ*ﬁtt**ttt*tt*k*t'**t***tt**k'ii*i*tt*kktﬁt/
void main()

{

printf ("\nMEMC (c) 1988 by Michael Tischer\n\n");

trace_mcb(); /* trace the chain of MCB's */
}

131

6. The Disk Operating System PC System Programming

6.10 DOS Filters

SORT

132

Filters are programs, routines or utilities which accept input and modify the data
for output. Filters do the same on the operating system level: characters are passed
to these filters as input, the filters modify the characters then send the modified
characters as output. This manipulation takes many forms. Filters can sort data,
replace certain data with other data, encode data or decode data.

DOS has three basic filters available:

FIND searches input for a specified set of characters
SORT arranges text or data in order

MORE formats text display

These filters perform simple redirection of standard input/output. They read
characters from the standard input device, manipulate the characters as needed, then
display them on the standard output device. The standard input device under DOS is
the keyboard, and the standard output device is the monitor. DOS versions of 2.0
and higher allow the user to redirect the standard input/output to files. Therefore, a
filter can read characters from the keyboard or from a file, depending on the standard
input device selected. This is possible by using a filter in conjunction with one of
the DOS handle functions for reading and writing. DOS offers five handles:

0 Standard input CON (Keyboard)
1 Standard output CON (Screen)
2 Standard error output CON (Screen)

3 Standard serial interface AUX

4 Standard printer PRN

If the user calls a program from the DOS level, the < character redirects input and
the > character redirects output. In the following example, the input comes from
the file IN.-TXT instead of the keyboard. The output is written to the file
OUT.TXT instead of the screen:

sort <in.txt >out.txt

After the user enters the above command, DOS recognizes that a program named
SORT should be called. Then it encounters the expression <IN.TXT which
redirects the standard input. This occurs by assigning the handle 0 (standard input,
which formerly pointed to the keyboard) to the file IN.-TXT. The expression
>OUT.TXT resets handle 1 to the OUT.TXT file instead of the screen. The affected
handle is first closed, and then the redirected file is opened.

Abacus

6.10 DOS Filters

Pipes

Once the command processor finishes with the command line it calls the SORT
program using the EXEC function (DOS function 4BH). Since the program called
with the EXEC function has all the handles of the calling program available, the
SORT program can input/output characters to handles 0 and 1. Where the
characters originate is unimportant to the program.

After the SORT program completes its work, it returns control to the command
processor. The command processor resets the redirection and waits for further input
from the user.

The filter principle as supported by DOS becomes especially powerful through
pipes. This expression comes from the idea of a pipeline used for transporting oil
or gas. DOS pipes have a similar function: they carry characters from one program
to another and permit the connection of various programs with each other.

When this happens, characters output from one program to the standard output
device can be read by another program from the standard input device. As in the
redirection of the standard input/output, the two programs do not notice the
pipelines. The difference between the two procedures is that under redirection of the
standard input/output devices, data can be redirected only to one device or file,
while the use of pipes allows data transfer to another program.

Combined filters

Pipes allow the user to connect multiple filters. The pipe character | is inserted
between the programs to be connected. An example should make this more
understandable: A text file named DEMO.TXT is sorted and then displayed on the
screen in page format. Even though this task appears to be very complicated at
first, it can be performed easily using two DOS filters: SORT and MORE. SORT
sorts the file and MORE displays the file on the screen in page format.

The question is, how can you tell the command processor to do these things? First
SORT is used. This filter is told to sort the file DEMO.TXT. The redirection of
standard input can be used as illustrated at the beginning of the chapter:

SORT <DEMO.TXT

After the user enters this command, SORT sorts the file DEMO.TXT then
displays the file on the screen. This display would be much easier to read in page
format. Formatted output can be implemented by redirecting the output from
SORT to a file (for example TEMP.TXT) and displaying this file using the
MORE command. The following sequence of commands do this:

SORT <DEMO.TXT >TEMP.TXT
MORE <TEMP.TXT

133

6. The Disk Operating System PC System Programming

134

You can use a pipe to connect the SORT filter and the MORE filter, saving the
user typing time. The following command line sends the output from SORT
directly to MORE and immediately displays the sorted file in page format:

SORT <DEMO.TXT | MORE

Any number of filters can be connected using pipes. DOS always executes these
pipelined filters from left to right. It sends the output from the first program as
input to the second program, the second program's output as input to the third
program, etc. The last program can again force the redirection of the output with
the > character so that the final result of the whole program or filter chain travels
to a file or other device instead of the screen.

Note: DOS cannot send data from one filter directly to another because it
would have to execute both filters simultaneously, and the current
version of DOS doesn't have multiprocessing capabilities. Instead,
the following method is used. The input calls the first filter and
redirects its output to a pipe file. After the first filter ends its
processing, it calls the second filter but redirects its input to the pipe
file to read in the output from the first filter. This principle applies
to all filters. The pipe file is stored in the current working directory.

The word "dump" is a computer buzzword for a way to display the contents of a
file in ASCII characters and/or hexadecimal numbers. The DUMP programs below
performs this task as a filter. As the contents are displayed in ASCII format,
DUMP differentiates between normal ASCII characters (letters, numbers, etc.) and
control characters such as carriage return, linefeed, etc. These control characters are
displayed in mnemonic form (e.g., <CR> for carriage return and <LF> for
linefeed). This DUMP filter is fairly simple in structure, yet it can be very useful
to quickly examine a file's contents.

The structure of the DUMP program is typical for a filter. Since DUMP displays a
maximum of nine ASCII characters and/or héxadecimal codes per line, it asks for
nine characters by using the read function from the standard input device. If not
enough characters are available, it reads what characters are available. DUMP
places these characters in a buffer, then converts the characters into ASCII
characters and hex codes. This buffer will accept a complete line of 78 characters.
When the buffer processing finishes, the filter uses the handle to write to the
standard output device. This process is repeated until no more characters can be read
from the standard input device.

The following programs are written in Pascal, C and assembly language. Note that
there isn't a BASIC version. The reason is that BASIC, as an interpreted language,
is unsuitable for developing a filter which can be called from the DOS level. A
BASIC compiler would be required for this task.

http:comple.te

Abacus 6.10 DOS Filters

Pascal listing: DUMPP.PAS

(*t*******t****t**t*******k********t*t***************t***************)

{* DUMPP *}
{* *}
{* Task : a Filter, which reads in characters from the *}
{* Standard input device and outputs them *}
{* as Hex and ASCII dump on *}
(* the Standard output device *}
{* *}
{* Author : MICHAEL TISCHER *}
{* developed on : 08/08/87 *}
{* last Update : 05/04/89 *}
{* *}
{* Info : This program can only be called from the *}
{* DOS level after compiling to an EXE file *}
{* with TURBO *})

(**l**ﬂ*****ti*ﬂ**ti*t***itt*t**Q**t**ﬂ****ﬁ**i*****Q****k**ﬁit******}

program DUMP;

Uses Dos; { Add DOS unit }
{$Vv-} { suppress length test on strings }

const NUL = 0; ASCII-Code NUL-character

{ }

BEL = 7; { ASCII-Code Bell character }

BS = 8; { ASCII-Code Backspace }

TAB = 9; { ASCII-Code Tab }

LF = 10; { ASCII-Code Linefeed }

CR = 13; { ASCII-Code Carriage Return }

EOF = 26; { ASCII-Code End of File }

ESC = 27; { ASCIlI-Code Escape }

type SZText = string[3]; { passes the name of a speclal character }
DumpBf = array(l..80] of char; { accepts the output Dump }
{**tﬂ"t****Qt**tiQti**‘h***t**tiﬁ**tti*ﬁi&ti***&****ﬁ**t*tit**i****i**’
{* sz : writes the name of a control character into a Buffer *}
{* Input : see below *}
{* Output : none *}
{* Info : after the call of this procedure the pointer *}
(* which was passed, points behind the last character of *}
{* the control character name in the Dump-Buffer *}

(TR R A Ak A Ak AR RRAR KRR RER IR AR AR AR R RAAI AR ERAR AT RIRR AR AR AR AR ARk kkk |

procedure SZ({var Buffer : DumpBf; { Text entered here }
Text : SiText; { Text to be entered }

var Pointer : integer); { addr. of text in buffer }

var Counter : integer;

begin

Buffer[Pointer] := ‘'<'; { leads control character }

for Counter := 1 to length(Text) do { transfer Text to Buffer |}

Buffer[Pointer + Counter] := Text [Counter];

Buffer [Pointer + Counter + 1] := '>'; { terminates control char }

Pointer := Pointer + Counter + 2; { Pointer to next character }

end;

[Fr R Ak AR AR AR AR AR AR AR AR AR AR IR AR ARFRAN AR IR R IR R AR R Rk h ko kK)

{* DODUMP : reads characters in and outputs them as Dump *}
{* Input : none *}
{* Output : none *})

[Hd e dh ok AR A Ak Ak kA KRR AR AR KA IR IR AR AR AR AR AR A AR AR AR AIRR AN AR AR R AR Ak)

procedure DoDump;

135

6. The Disk Operating System

PC System Programming

136

Endc := false;

repeat

Regs.ah := $3F;

Regs.bx := 0;

Regs.cx := 9;

Regs.ds := seg(NewByte);
Regs.dx := ofs (NewByte);

MsDos(Regs);
if (Regs.ax = 0) then Endc
if not (Endc) then
begin
for Counter := 1 to 30
do DumpBuf [Counter] := ‘'
DumpBuf [31] := #219; {
NextA := 32;
for Counter := 1 to Regs.ax do
begin
HexChr := ord (NewByte[Counter]) shr 4 + 48;
if (HexChr > 57) then HexChr := HexChr + 7;
DumpBuf [Counter * 3 - 2] := chr (HexChr);
HexChr := ord (NewByte[Counter]) and 15 + 48;
if (HexChr > 57) then HexChr := HexChr + 7;
DumpBuf [Counter * 3 - 1] := chr (HexChr);
case ord(NewByte[Counter]) of

= true;

‘e
’

NUL : SZ(DumpBuf, °'NUL‘', NextA);
BEL : SZ (DumpBuf, °‘BEL', NextA);
BS : SZ(DumpBuf, ‘BS* , NextA);
TAB : SZ (DumpBuf, 'TAB', NextA);
LF : SZ(DumpBuf, ‘'LF' , NextA);
CR : SZ(DumpBuf, °‘CR' , NextA);
EOF : SZ(DumpBuf, ‘EOF', NextA);
ESC : SZ (DumpBuf, ‘'ESC', NextA);
else
begin
DumpBuf [NextA] := NewByte[Counter];
NextA := succ (NextA)
end
end;
end;
DumpBuf [NextA] := #219;
DumpBuf [NextA+1] := chr(CR);
DumpBuf [NextA+2] := chr(LF);
Regs.ah := $40;
Regs.bx := 1;
Regs.cx := NextA+2;
Regs.ds := seg(DumpBuf);
Regs.dx := ofs(DumpBuf);
MsDos(Regs);
end;
until Endc;

end;

{ not the End

{ Function number for reading handle

{ the Standard input device is handle 0

{ read in 9 characters

{ Segment address of the buffer

{ Offset address of the buffer
{ Call DOS-Interrupt 21H

{ no character read?

{ NO

{ Fill buffer with blanks

Place Separator between Hex and ASCII
{ ASCII-characters follow separator
{ start processing characters

{ read in

{ Hex top 4 bits
{ convert char

{ store in buffer
{ Hex bot. 4 bits
{ convert number
{ store in buffer
{ test ASCII-Code
{ NUL-character

{ Bell character
{ Backspace

{ Tab

{ Linefeed

{ Carriage Return
{ End of File

{ Escape

{ normal character
{ Store ASCII-character
{ Set pointer to next character

{ Set End character
{ Carriage-Return followed by Line-
{ feed to buffer end
{ Function number for writing handle
{ Standard output device is handle 1
{ Number of characters
{ Segment address of the buffer
{ Offset address of the buffer

{ Call DOS-Interrupt 21H

{ repeat until no more characters are available

- —— - — -—

[ArERR R IR R AR AR AR KRR R KRR KRR AR R RR AR K AR AR AR KRR RRA KRR AR KRR R AR AR IR AR A AKX)

{ Output Dump

*}

}

* MAIN PROGRAM
(tﬁ't**tttﬂt'tt*'ittttQt**t*ﬂ*t*tﬂttﬁttt*iﬂttﬁtittﬁt*t**ttt**t*ﬁ*ﬂt*t)
begin

DoDump;
end.

Abacus 6.10 DOS Filters

C listing: DUMPC.C

/****ﬁ*ttttt*ir***k*i***tﬁ**ﬂ'***'k***t******t*i**t#**k*i*****kt**tt***k/

/* DUMPC */
/* */
/* Task : a Filter which reads in characters from the */
/* Standard input and outputs them as */
/* Hex and ASCII-Dump on */
/* the Standard output device */
/* */
/* Author : MICHAEL TISCHER */
/* developed on : 08/14/87 */
/* last Update : 04/08/89 */
/* */
/* (MICROSOFT C) */
/* Creation : MSC DUMPC; */
/* LINK DUMPC; */
/* Call : DUMPC [<Input] [>Output] */
/* */
/* (BORLAND TURBO C) */
/* Creation : tcc dumpc */
/* Call : DUMPC [<Input] [>Output] */

JERRER KRR KRR AR AR AR AR RKR AR A AR AR R KR AR A ARKR K AR AR A KK A KR AR KRR KRR ARk /

#include <stdio.h> /* include Header-files */
#include <dos.h>

#define byte unsigned char

#define NUL 0 /* Code of NUL-character */
#define BEL 7 /* Code of Bell */
#define BS 8 /* Code of Backspace-key */
#define TAB 9 /* Code of Tab-key */
#define LF 10 /* Code of Linefeed */
#define CR 13 /* Code of Return-key */
#define ESC 27 /* Code of Escape-key */

#define tohex(c) (((c)<10) 2 ((c) | 48) : ((c) + ‘A*' - 10))

/******ﬁﬂ**ﬂ***tﬁt**'ﬁ*****'*i**ﬁk*****kﬂk*t**ﬁ***k***t**‘k*******k*k*/
/* GETSTDIN: reads a certain number of characters from the Standard */

/* input device into a Buffer */
/* Input : see below */
/* Output : Number of characters read */

JERRRRARRR KRR KRR AR KRR R AR AR R AR AR AR RN RN KRR AR AR KARA KRR AR KRR R AR KRR AR AR AR K /

unsigned int GetStdIn(Buffer, MaxChar)

char *Buffer; /* Pointer in Character-Vector, which accepts data */
unsigned int MaxChar; /* maximum of characters to be read in */
{

union REGS Register; /* Register-Variable for Interrupt-Call */
struct SREGS Segment; /* accepts the Segment register */
segread (&Segment) ; /* read content of Segment register */
Register.h.ah = 0x3F; /* Function number for */
Register.x.bx = 0; /* the Standard input device is handle 0 */
Register.x.cx = MaxChar; /* Number of Bytes to be read */
Register.x.dx = (unsigned int) Buffer; /* Offset address of Buffer */
intdosx (&Register, &Register, &Segment); /* Call Interrupt 21H */
return (Register.x.ax); /* Number of Bytes read to caller */

}

[AR AR A AR KRR R AA KRR AR AR KRR R KRR KR AR AR AR KRR AR AR RRRR AR KRR RN RA KRR KR KA KA AR K/

/* STRAP : Attach character to string */
/* Input : see below */
/* Output : Pointer behind the last added character */

JEERRRARRK AR KA AR RRR KR AR AR KA RR KRR RR AR KRR KRR AR R KK AR AR KRR R AR AR KA KKK /

137

http:return(Register.x.ax
http:Register.x.dx
http:Register.x.cx
http:Register.x.bx
http:Register.h.ah

6. The Disk Operating System PC System Programming

char *Strap(String, Textpointer)

char *String, /* the source string */
Textpointer; / Pointer to the text to be attached */

{
while (*Textpointer) /* repeat until *\O' detected */
*String++ = *Textpointer++; /* transmit character */
return (String); /* Pass Pointer to calling function */

}

SRR R R KRR R R R KRR AR AR RN AR AR AR R AR AR AR AR KRR KRR AR KRR KR AR R AARARAR KKK/

/* DODUMP : reads the characters in and outputs them as Dump */
/* Input : none */
/* Output : none */

/t****t*ﬁiﬁitti***k***tkt AhkAAKAk A AR AA R AR AR K t*t*kikttt*t*i*t******i*ii*/
void DoDump ()}

{

char NewByte[9], /*Accepts the characters read */
DumpBuf [80], /* accepts a line of DUMP */
NextAscii; / points to next ASCII-character in the buffer */
byte i, /* Loop counter */
Readbytes; /* Number of bytes read in */
DumpBuf [30] = 219; /* Set separator between Hex and ASCII */
while ((Readbytes = GetStdIn(NewByte, 9)) != 0)
/* as long as characters are available */
{
for (1 = 0; 1 < 30; DumpBuf[i++] = * '};
/* Fill buffer with spaces */
NextAscii = &DumpBuf([31]; /* ASCII-characters start here */

for (1 = 0; i < Readbytes; i++)
/* process all characters read in */

DumpBuf[i1*3] = tohex((byte) NewByte[l] >> 4);
/* convert Code in Hex */
DumpBuf [{*3+1] = tohex ((byte) NewByte(i] & 15);
switch (NewByte[i]) /* evaluate ASCII-Code */
{
case NUL : NextAscil = Strap(NextAscii, “<NUL>%);

break;

case BEL : NextAscii = Strap (NextAscii, “<BEL>");
break;

case BS : NextAscii = Strap(NextAscii, “<BS>");
break;

case TAB : NextAscil = Strap(NextAscii, “<TAB>");
break;

case LF : NextAscii = Strap(NextAscii, “<LF>");
break;

case CR : NextAscii = Strap(NextAscii, "<CR>");
break;

case ESC : NextAscii = Strap(NextAscii, “<ESC>");
break;

case EOF : NextAscii = Strap(NextAscii, “<EOF>");
break;

default : *NextAscii++ = NewByte[i];
}
}

NextAscil = 219; / End character for ASCII representation */
* (NextAscii+l) = *\r'; /* Carrlage-Return to End of buffer */
* (NextAscii+2) = '\0'; /* NUL converted to LF on output */
puts (DumpBuf) ; /* Write String on Standard output device */

}
}

SRRk ARk R AR KRN KRR R AR R KRR KRR AR R KRR KK KRR AR KKK AR KRR KRR R AR AR AR R RR AR/

/x> MAIN PROGRAM *x/

J KRRk R R kR R Rk kAN Kk kR kAR KK AR R AR R KRR K AR R AN KRR RR KA RN RNAR KRR KRR A RN,/

138

Abacus

6.10 DOS Filters

void main()

{

DoDump () ;

}

Assembler listing: DUMP.ASM

/* Character input/output */

FREERAK KRR RK A KRR AR AR KA KR AR R AR AR KR AR KRN A AR AR R A IR KR ARk Ak k ke khd ko
DUMP *:

o * Task : A Filter which reads

characters from the Standard input *;

o * and outputs them as Hex- and ASCII-Dump on *;
i* the Standard output device *;
-k *e

;
P Author : MICHAEL TISCHER *:
* developed on : 08/01/87 *;
% last Update : 04/08/89 *;
- %k * e
r ’
i* assemble : MASM DUMPA; *;
o LINK DUMPA; *:
* (important) ... EXE2BIN DUMPA DUMP.COM *;
-k * e
; ;
* Call : DUMP [<Input] [>Output] *:

;*tﬁt'**fi****it**'**itﬁt*t***tﬁit'iﬁt*t*a*'t*iititiiﬁﬁt***fii*t*tiﬂiﬁ;'

;== Constants

NUL
BEL
BS
TAB
LF
CR
EOF
ESC

;== Program starts here

code

;—— Start

dump

dodump:

equ 0
equ 7
equ 8
equ 9

equ 10
equ 13
equ 26
equ 27

;ASCII-Code NUL-Character
;ASCII-Code Bell
;ASCII-Code Backspace
;ASCII-Code Tabulator
;ASCII-Code Linefeed
;ASCII-Code Carriage Return
;ASCII-Code End of File
;ASCII-Code Escape

segment para ‘CODE'
org 100h

assume cs:code, ds:code,

;Definition of CODE-Segments

es:code, ss:code

routine

label near

;—— Read in 9 Bytes from Standard input device —---——-==—=—=—--

xor bx,bx

mov cx,9

mov dx,offset newbyte
mov ah,3Fh

int 21h

or ax,ax

jne dodump

jmp dumpend

mov dx,ax

;—- Fill output buffer with Spaces

mov cx,15
mov ax,2020h
mov di,offset dumpbuf

rep stosw

;Standard input has the handle 0
;read in 9 characters

;Address of the buffer

;Function code for handle reading
;Call DOS-Function

;characters read in2

;YES --> process line

;NO --> DUMPEND

;record number of characters read

;15 Words (30 Bytes)

;ASCII-Code of " " to AH and AL
;the Address of the output buffer
sincrement on String commands
;Fill buffer with Spaces

139

http:DUMP.COM

6. The Disk Operating System

PC System Programming

140

bytein:

sotest:

noso:

hex:

nobal:

hexout :

’
mov
mov

mov
mov

mov
push
mov
mov
add
lods!
cmp
je
cmp
jne

;-

Construct Output Buffer

cx,dx

di,offset
bx,offset
si,offset

ah, [bx]
si
si,offset
dx,offset
dx, 6
b

al, 255
noso
ah,al
sotest

Code was a

;Get number of characters read in
dumpbuf+31 ;Position Ascii-Codes in the buffer
newbyte ;Pointer to input buffer
dumpbuf ;Position for Hex-Codes in Buffer

;Read in Byte
;store SI on the Stack
sotab ;Address of special character table
sotext-6 ;Address of special character text
;next entry in special text
;Load code from special char table
;Reached end of table?
;YES --> no special character
;do codes agree?
;NO --> test next table element

special character

push cx ;Store Counter

mov si,dx ;copy DX to SI

lodsb ;read number of char control codes
mov cl,al ;transfer number of characters to CL
rep movsb ;copy designation into buffer
pop cx ;get counter

pop si ;return SI from Stack

mov al,ah ;copy character to AL

jmp short hex ;calculate Hex-Code

pop si ;return SI from Stack

mov al,ah ;copy character to AL

stosb ;store in buffer

mov al,ah ;Code of character to AL

and ah,111lb ;mask upper 4 Bit in AH

shr al,l ;shift AL right 4 Bits

shr al,l

shr al,l

shr al,1l

or ax,3030h ;convert AH and AL into ASCII-Codes
cmp al, "9 ;is AL a letter ?

jbe nobal ;NO --> no correction

add al,“"A"-"1"-9 scorrect AL

cmp ah,"9" ;1s AH a letter ?

jbe hexout ;NO --> no correction

add ah,"A"-"1"-3 ;correct AH

mov [si],ax ;store Hex-Code in buffer
add si,3 ;point to next Position

inc bx ;set pointer to next Byte
loop bytein ;process next Byte

mov al,219 ;set separator

stosb

mov ax,LF shl 8 + CR ;CR and LF terminate buffer
stosw swrite in buffer

mov
mov
sub
mov
mov
int
Jmp

Send Dump to the Standard output device ————==c———c—ew——-

bx, 1
cx,di
cx,offset
dx,offset
ah,40h
21h

dump

;Standard output is handle 1
;determine number of characters to be
dumpbuf ;transmitted
dumpbuf ;Address of buffer
;Function code for handle
;call DOS-function
sread in next 9 Bytes

Abacus

6.10

DOS Filters

dumpend

;== Data
newbyte
dumpbuf

sotab

sotext

;== End

code

label near

mov ax,4C00h

;Function number for ending program

int 21h ;end program with End code
db 9 dup (?) ;the 9 Bytes read in

db 30 dup (2), 219 ;the output buffer

db 49 dup (?)

db NUL, BEL, BS, TAB ;Table of control characters

db LF,CR,EOF,ESC
db 255

equ this byte
db 5, “<NUL>*

db 5, “<BEL>"
db 4,%<BS> *
db 5, “<TAB>*
db 4,"<LF> *
db 4,%“<CR> "
db 5, “<EOF>"
db 5, “<ESC>*

;Text of special characters
;NUL

sBell

;Backspace

;Tabulator

;Linefeed

;Carriage-Return

;End of File

;Escape

ends
end dump

;End of CODE-Segment

141

6. The Disk Operating System PC System Programming

6.11 <Ctrl><Break> and Critical Error Interrupts

DOS offers two ways of stopping a program during execution. These situations
occur when the user hits <Ctrl><Break> (<Ctrl><C>), or when a critical error
occurs during access to an external device (i.e., printer, hard disk, disk drive, etc.).
Although the key combination varies with the PC configuration, we'll use
<Cutrl><Break> consistently in this section.

<Ctrl><Break>

Pressing <Ctrl><Break> to stop a program during execution can have some
serious consequences. After the user presses this key combination, DOS abruptly
takes control from the program without allowing the program to perform any
"housekeeping” that may be needed. Files are not closed properly, diverted interrupt
vectors are not reset, and allocated memory is not released. The final result can
range from a loss of data to a system crash.

In order to prevent this, DOS calls interrupt 23H. This interrupt is also known as
the <Ctrl><Break> interrupt. When a program is started, this interrupt points to a
routine which brings about the end of the program. But a program is free to select
a routine of its own, thus maintaining control of what occurs when the user
presses <Ctrl><Break>.

However, the interrupt routine doesn't execute immediately. The break flag
controls when the interrupt routine occurs. This flag can be set at the DOS prompt
using the BREAK (ON/OFF) command from DOS, or with the help of DOS
function 33H, sub-function 1. If the break flag is on, every time a function of
DOS interrupt 21H is called, the keyboard buffer will be checked to see if either
<Ctrl><Break> or <Ctrl><C> has been pressed. If the break flag is off, this check
will be made only when calling the DOS functions that access the standard input
and output devices.

If this test finds the appropriate key combination, the processor registers are loaded
with the values contained in the DOS function to be executed. Only after this is
interrupt 23H called.

If a program directs this interrupt to a routine of its own, there are several ways to
react. For example, the program could open a window on the screen which asks if
the user would like to end the program. It can also decide for itself whether or not
the program should end.

Maintenance

142

If the program chooses to halt execution, some form of clean-up routine should
follow. A routine of this type closes all open files, resets any changed interrupt
pointers, and releases any allocated memory. After this, function 4CH can end the
program without returning control to the interrupt 23H caller.

Abacus

6.11 <Ctrl><Break> and Critical Error Interrupts

If <Curl><Break> is to be ignored, then the IRET assembly language instruction
must return control to DOS. The program must then ensure that all processor
registers contain the same values they had when interrupt 23H was invoked.
Otherwise, the DOS function that was originally called cannot be completed
without error.

Both ways of handling this situation will be demonstrated in an example at the end
of this section.

Critical error interrupt

Unlike the <Ctrl><Break> interrupt, the critical error interrupt call is rarely a
reaction to something the user does intentionally. It is usually a reaction to an
error that occurs when accessing an external device, such as a printer, disk drive, or
hard disk. While the user can correct the error in many cases (e.g., printer not
turned on), other errors can be caused by hardware failures that require repairs (e.g.,
read error while accessing hard disk).

To make allowances for the various kinds of errors, the critical error interrupt
(interrupt 24H) normally points to a DOS routine that displays the following or a
similar message on the screen and waits for input from the user:

(A)bort (R)etry (I)gnore (F)ail

This clears the screen of the program currently under execution. In addition, this
interrupt doesn't provide a "clean" program end. Like <Ctrl><Break>, the program
is in a situation where files are not properly closed, allocated memory is not
released, etc.

Installing an interrupt handler in a program to replace the DOS handler can help
here, too. DOS enlists the help of a processor register to pass this handler various
information when it is called. This helps the interrupt handler locate the source of
the error. Bit 7 in the AH register indicates either a floppy or hard disk access error
(bit 7 off), or some other error (bit 7 on). In addition, the BP:SI register pair
points to the head of the device driver that was being called when the error
appeared. A detailed error code is contained in the lower 8 bits of the DI register,
and the contents of the upper 8 bits are undefined. This returns the following error
codes:

143

6. The Disk Operating System PC System Programming

Error Codes Passed to the Critical Error Handler

Code Meaning

00h Disk is write protected
0lh Access to an unknown device
02h Drive not ready

03h Unknown command

04h CRC error

05h Wrong data length

06h Seek error

07h Unknown device type

08h Sector not found

0%h Printer out of paper
0Ah Write error

0Bh Read error

0Ch General error

When called, the critical error handler can respond by opening a window on the
screen that asks the user to decide to ignore the error, retry the access, or abort the
program. The latter option can only instruct the interrupt to call DOS functions
O1H to OCH. This means that the program ends abruptly, similar to pressing
<Curl><Break>. While it is true that calling other DOS functions within the
handler causes no errors in itself, the return to DOS causes a system crash. Such
handlers are also not allowed to end a program through the use of DOS function
4CH. Instead the handler must return to its caller with the help of the IRET
command. With that, DOS expects a code in the AL register that will show it how
to react to the error. It interprets the contents of the AL register as follows:

Output Codes of a Critical Error Handler

144

Code Meaning

00h Ignore the error

01lh Retry the operation

02h End program with Interrupt 23h
03h End function called with an

error |(DOS 3.0 up only)

The last output code in the above list represents the most sensible reaction to an
error that can't be fixed by repeating the operation (as in the example where the
printer needs to be turned on). The receipt of this code invokes the normal ending
of the function call in which the error occurred. The function then sets the carry
flag to signal the error. While this makes a "critical" error and a "normal” error
indistinguishable to the program, it's possible to tell them apart by setting a flag
within the critical error handler.

FRR R R ARk kAR R AR R AR AR K KRR AR A AR KRR AR AR KRR R AR R AR KRR AR R KRR AR R AR N AR A AR K KRR Ao

;
Hd CE_HAND W
i* *;
* Description : Forms the basic structure of an assembler *;
Had program, in which the DOS Ctrl-Break and *;
> Critical Error Interrupt are captured *>
.k * e
; ;
s * Author : MICHAEL TISCHER *3;
;* developed on : 9/5/1988 *;
I last update : 4/8/1989 W

Abacus 6.11 <Ctrl><Break> and Critical Error Interrupts

* call : CE_HAND *:
Hd (please leave the disk drive open so that a *;
* Critical Error occurs.) *;

’-**ﬁﬁit**t**iﬁiit******ﬁittittttt*t*itit**ﬁi*iiiitﬁiﬁi****ii*titﬁ**titt;

;== constants

;== stack
stack segment para stack ;definition of the stack segment
dw 256 dup (?) ;the stack is 256 words
stack ends ;end of the stack segment
;== data
data segment para ‘DATA‘ ;definition of the data segment
cr_err d 0 ;goes to 1, if a critical error occurs

;during access to a peripheral device
; (floppy, hard disk, or printer)
cr_typ do 0 ;error number of the critical error
cr_mes db “Critical error! (A)bort or (R)etry: $"
next_line db 13,10,"$"

end_mes db “Program ended normally.$"
brk_mes db “Program aborted.$"
dat_nam db “A:TEST.DAT“,0 ;name of the test file
data ends ;end of the data segment
;== code
code segment para ‘CODE‘ ;definition of the CODE segment
assume cs:code, ds:data, ss:stack
start proc far
;-- install both Interrupt Handlers
push cs ;put CS on the stack
pop ds ;and return as DS
mov ax,2523h ;fct.no.: set Ctrl-Break Handler
mov dx,offset cbreak ;DS:DX now contains the address of H.
int 21h ;call DOS Interrupt
mov al,24h ;now set Interrupt 24h
mov dx,offset cerror ;DS:DX contains the address of the new H.
int 21h ;call DOS Interrupt
mov ax,data ;load segment address of the data segment in
mov ds,ax ;in the DS register
7-— you can add your program here
;
’
H
;—— for a demonstration, try to open a file =-=-=—=-———————e--
s—— on the opened disk drive @ = =———eeemmemmmeee—o
dat_open: mov ah,3dh ;function number: open file
mov al,0 ;file mode: read only
mov dx,offset dat_nam ;DS:DX = addresse of the filename
int 21h ;call DOS Interrupt 21h
jnc exit ;no error? NO --> END
cmp cr_err,0 ;jceritical error?
je exit ;NO --> END
call crit_err ;ja critical error occured
Jmp dat_open JCRIT_ERR returns only if the operation
;should be retried
; (IGNORE is not possible)
;== the handler must not be re-installed before the end ------
;—— of the program, since this is done by DOS = = = ——=——-
exit: mov ah,9 ;function number: pass string
mov dx,offset end mes ;DS:DX = address of the message
int 21n ;call DOS Interrupt
mov ax,4CO00h ;function no.: end program (ERRCODE=0)
int 21h ;call DOS Interrupt and end the program
;with it
start endp
;== CRIT_ERR: called within the program after discovery of a =--—-—--——-
2 critical error ————————

crit_err proc near
;—— output message and ask for user input

ask: mov ah,9 ;function number: output string
mov dx,offset cr_mes ;DS:DX = address of the message
int 21h ;call DOS Interrupt

145

6. The Disk Operating System

PC System Programming

146

mov ah,1
int 21h
push ax

mov ah,9

;function number: input character
;call DOS Interrupt

;note the input

;function number: output string

mov dx,offset next_line;DS:DX = address of the message

int 21h

;=- interpret the user's input

pop ax

cmp al,"A“
Je end_up
cmp al,"a"
je end_up
cmp al,*r"
je crend
cmp al,"R"
jne ask

crend: ret

crit_err endp

;=— END _UP: executes a "clean" ending

end_up proc near

;call DOS Interrupt

sretrieve the input

;abort?

;go to “clean-up" procedure
sabort?

;go to "clean-up" procedure
;retry?

;go to end of procedure
;retry?

;no, ask again

;return to caller

;—— all opened files can be closed and the system memory ----
;-— allocated by the program can be freed here ———

mov ah,9

mov dx,offset brk_mes
int 21h

mov ax,4CO00h

int 21h

end_up endp

;-— CBREAK: the new Ctrl-Break Handler

cbreak proc far

eSS

;function number: output string
;DS:DX = address of the message
;call DOS Interrupt

;end the program normally with the
;4Ch function

;-- all registers altered within this routine (excluding ----
;-- the Flag Register) have to be secured on the stack -——

push ds
mov ax,data
mov ds,ax

;-- for example, you can open a window here in which the

;——- user is asked if he

jmp go_on
;-- 1f the user decides

;load the segment address of the
;data segment in the DS-Register

really wants to end the program

YRR

;don't end program
to end the program, a routine with ---

;-- which the program can be ended can be started here -—

jmp end_up

;prepare termination of the program

;-- the program should not be aborted, continue normal ------

;-- execution
go_on: pop ds
iret

cbreak endp

;—— CERROR: the new Critical Error Handler

cerror proc far

;restore saved register
;back to DOS, where the interrupted
;function is continued normally

;-- each of the registers (Ss, sp, DX, ES, DX, CX und BX) ----
;—- that was altered within this routine must be saved ——

;—— on the stack
sti
push ds

;allow interrupts again

Abacus

6.11 <Ctrl><Break> and Critical Error Interrupts

mov ax,data ;load segment address of the data segment
mov ds,ax ;in the DS-Register
mov cr_err,1 ;point to critical error
mov ax,di ;error number to AX
mov cr typ,al ;note error number
mov al,3 send function call with error
pop ds ;fetch DS again
iret
cerror endp
;
code ends ;end of the code segment
end start ;start program execution with

;the START procedure

147

6. The Disk Operating System PC System Programming

6.12 DOS Device Drivers

A device driver is the part of the operating system responsible for the control of,
and the communication with, the hardware. It represents the lowest level of an
operating system, and permits all other levels to work independent of hardware.
When adapting an operating system to various computers, this is an advantage.
The entire operating system doesn't have to be changed, only the various device
drivers.

In earlier operating systems, device drivers resided in the operating system code.
This meant that changes or upgrades of these routines to match new hardware were
very difficult, if not impossible. DOS Version 2.0 introduced a flexible concept of
device drivers. This makes it possible for the user to adapt even the most exotic
PC clone to DOS.

Custom drivers

Since communication between DOS and a device driver is based on relatively
simple function calls and data structures, the assembly language programmer can
develop a device driver to adapt DOS to any device. Unfortunately, device drivers
cannot be programmed in a higher level language.

When developing the code for a driver, the same rules are observed as for
developing a COM program (no direct segment access). The difference is that a
device driver starts at offset address OH, and not at 100H. The end of this section
explains the assembly language implementation in detail.

Drivers

During the DOS boot process, the drivers NUL, CON, AUX, PRN and the drivers
for the disk drives and hard drive (if needed) are loaded and installed. They are
arranged sequentially in memory and connected to each other. If the user wants to
install his own driver, he has to inform DOS using the CONFIG.SYS file. This
text file contains the information which DOS requires for configuring the system.
Contents of the CONFIG.SYS file are read and evaluated during the boot process
after linking the standard drivers. If DOS finds the DEVICE= command, it knows
that a new driver should be included. The name of the driver and perhaps a device
and path designation are indicated after the equal sign.

ANSI.SYS

148

The following command sequence includes the ANSL.SYS driver, which is
supplied with DOS. This driver makes enhanced character output and keyboard
functions available:

DEVICE=ANSI.SYS

Abacus 6.12 DOS Device Drivers
The new driver is added to the chain immediately following the NUL device driver
(the first driver in the chain). The ANSLSYS driver replaces the default CON
driver. To ensure that all function calls for monitor or keyboard communication
operate through ANSL.SYS, the ANSI.SYS driver is placed first in the device
group, and the CON driver is moved farther down the chain of devices. Since the
operating system moves from link to link during the search, it finds the new CON
driver (ANSI.SYS) first and uses it. Therefore, the system ignores the old CON
driver as seen in the illustration below:

Before adding After adding | pata
new CON Data 5 new CON
driver] driver
] Code
@ Data
a 0
3 Code
% Data
<
§ Code
3 Data
§ f
@ Code
Data
CLOK CLOC
Coce] ¥ Code
Data
0
Code
The driver chain
ASSIGN

Not all drivers can be replaced with new ones. The NUL driver is always the first
driver in the chain. If you add a new NUL driver, the system ignores the new driver
and continues accessing the original NUL driver. This also applies to the drivers
for floppy disk drives and hard drives. The reason for this is that disk drives have
drive specifiers instead of names such as CON (e.g., A:). A new disk drive can be
added to the system, but since DOS may assign it the name D:, it may not be
addressed by all programs which want to access device A:. This problem can be
avoided by redirecting all device accesses using DOS's ASSIGN command. You
can make the ASSIGN command part of the AUTOEXEC.BAT file. It executes
after adding drivers and executing the CONFIG.SYS file. To redirect all accesses
from drive A: (the first disk drive) to device D: (in this case, a new driver for a new
disk drive), the AUTOEXEC.BAT file must contain the following command
sequence:

149

6. The Disk Operating System PC System Programming

6.12.1

ASSIGN A=D

The drivers for mass storage devices and the drivers such as PRN are handled
differently. DOS has two kinds of device drivers:

. Character device drivers
. Block device drivers

Character device drivers communicate with the keyboard, screen, printer and other
hardware on a character by character (byte by byte) basis. Block device drivers can
transmit an entire series of characters during each function call (disks, hard disks,
etc.). The two driver groups differ somewhat through the ways each supports
different functions.

Character Device Drivers

Let's start with character device drivers because their structure is simpler than block
device drivers. Character device drivers transmit one byte for every function call.
They communicate with devices such as the keyboard, display, printer and modem.
A device driver can service only one device. Therefore, individual drivers for
keyboard, display, printer, etc., exist in DOS after booting.

Character devices can operate in either cooked mode or raw mode.

Cooked mode

In cooked mode, the device driver reads characters from the device and performs a
test for certain control characters. DOS then passes the character to an internal
buffer. DOS also checks to determine whether any <Enter>, <Ctrl><P>,
<Ctrl><S> or <Ctrl><C> characters exist. If the system detects the <Enter>
character, it ignores any further input from the device driver, even if the specified
number of characters has not yet been read. Then the characters read are copied from
the internal buffer to the buffer of the calling program. If characters are output in
cooked mode, DOS tests for <Ctrl><C> or <Ctrl><Break>. If one of these
combinations is detected, the currently running program stops. Pressing
<Ctrl><S> temporarily stops the program until the user presses any other key.
<Ctrl><P> redirects the output from the screen to the printer (PRN). Pressing
<Curl><P> a second time redirects the output from the printer back to the screen.

Raw mode

150

In raw mode, the device driver reads all characters without testing. If a program
wants to read in 10 characters, it reads exactly 10 characters, even if the user
presses the <Enter> key as the second character of the string. Raw mode transmits
the characters direct to the calling program'’s buffer, instead of using an internal
DOS buffer. During character output, raw mode doesn't test for <Ctrl><C> or
<Ctrl><Break>.

Abacus

6.12 DOS Device Drivers

6.12.2

DOS function 44H of interrupt 21H defines the mode of the character device driver
(see the end of this section for a detailed description of this interrupt).

Block Device Drivers

A block device driver normally communicates with mass storage devices such as
floppy or hard disks, or high speed cassette tapes. For this reason, they
simultaneously transmit a number of characters which are designated as a block. In
some cases, a single call to a function transmits several blocks of data. The sizes
of these blocks can differ from one mass storage device to another, as well as
within one particular mass storage device.

How block device drivers work

Access

6.12.3

Unlike character device drivers, a block device driver can control several devices at
the same time. You can even divide one device into several logical units. For
example, a 40 megabyte hard disk can be divided into two 20 megabyte hard disks
with the names C and D. These logical devices have single-letter specifiers instead
of device names or filenames. The device designation depends on its position in the
chain of device drivers. If a device driver supports several logical devices, single
letters can be used as specifiers in sequential order. This is why the example above
lists two logical drives named C and D instead of C and F.

Every one of these devices must have a file allocation table (FAT) and a root
directory. Block device drivers make no distinction between cooked and raw modes.
They always read and write the exact number of blocks unless an error is detected.

There are several ways to access a device driver. Character device drivers are
accessed using the normal FCB or handle functions by simply indicating the name
of a driver (e.g., CON: instead of a filename). A block device driver is accessed
using the normal DOS functions (file, directory, etc.) by using the drive designator
assigned by DOS during the boot process.

Functions 1H through CH of interrupt 21H invoke read and write operations in a
device driver. Two other options exist for accessing device drivers. These will be
discussed shortly.

Structure of a Device Driver

Even though the two types of device drivers differ in some important details, they
do have similar structures. Each has a device header, a strategy routine and an
interrupt routine (a different kind of interrupt from the ones you've read about up
until now).

151

6. The Disk Operating System

PC System Programming

Device header

152

The device header appears at the beginning of each device driver and contains

information needed by DOS for implementing the driver.’

The first two fields are the link to the next driver (offset and segment address) in
the chain of device drivers. The memory locations required for these link fields
must be reserved by the programmer, but DOS fills in when the driver is installed
in the system. The next field of the device header is the attribute word. The
attribute word describes the device driver and tells DOS, among other things, if it

is a block or character device driver.

0000

+ 00QH Offset address of pext driver (1 word) |

+ 02H Segment address of next driver (1 word)

+ 04H | Device attribute _(1 word)

+ 06H | Offset address of strategy routine (1 word)

+ 08H Offset address of interrupt routine (1 word)

+ OAH Driver name from character driver (8 bytes)
or number of devices used by block driver

Device driver header

Abacus

6.12 DOS Device Drivers

151413121110 9 8 76 54 3 2 1 0 bit

LT DX XXX [T T

1=cument standard
output device

{

_1=curen§sla1dad

1=curent
dock device

1=cument
NUL device

T

1=Medium

recognized
1=non-IBM

] B
L

1=output untl
(character driver)

1=IOCTL
support

Y

O=block driver
| 1=character driver

Structure of the device attribute

Only bits 11 through 15 are used by a block driver. The IOCTL bit tells DOS if
this driver supports the IOCTL function of DOS. The end of this chapter and the
descriptions of functions 3 and 12 describe this function in greater detail. Bit 11
first appears in DOS Version 3 and should be 0 in earlier versions. A block driver
indicates whether a medium change is recognized on the device supported (e.g., a
floppy disk drive). If the bit is set, the driver must support a few additional
functions.

The next two fields contain the offset address of the strategy routine and interrupt
routine. The last field contains the name of the device driver if it is a character
device driver. If the name is less than eight characters in length, blank spaces
(ASCII code 32) pad the remaining characters. If it is a block device driver, the first
byte of this field contains the number of logical devices supported by the driver.
The remaining seven bytes of this field remain unused and contain the value 0.

Strategy routine

DOS calls the strategy routine first to initialize the driver, then repeatedly before
each subsequent 1/O request from the driver's interrupt routine. The address of a data

153

6. The Disk Operating System PC System Programming

Status

154

structure which contains information about the operation to be performed (the
request header) is passed by DOS to the strategy routine in register pair ES:BX.
The double word pointer to the data block is stored, and control immediately
returns to DOS. DOS then calls the interrupt routine of the driver to perform the
actual operation.

The request header, whose address is passed to the strategy routine, always contains
at least 13 bytes and contains information which tells the driver how to perform
the upcoming operation. Depending on the operations performed, further
information can be added to the end of the request header which differs depending on
the operation.

+ 00H |JData block length in bytes (1 word) RAM

+ 01H Device number in communication (1 word) 0000:0000
+ 02H Command code (1 word)

+ 05H Reserved (8 bytes)

+ ODH Media descriptor (1 byte)

+ OEH |Buffer offset address (1 word)

+ 10H Buffer segment address (1 word)

+ 12H Number (1 word) v

+ 14H Starting sector (8 bytes)

Structure of the request header

DOS calls the interrupt routine immediately after calling the strategy routine. Its
first task is to save the processor registers that will have their contents changed by
the various functions of the driver to the stack. Then it obtains the command code
from field 3 of the request header and calls the appropriate command code routine.
After executing the routine, it fills in the status field of the request header and
restores the processor registers from the stack. As a last step it returns control to
the calling DOS function.

field

The value of the status field specifies whether the function executed without error,
or if an error occurred during execution. For this reason, every driver function must
set the DONE bit (bit 8) in the status field. This DONE bit must be set even if the
function is a dummy (non-performing) function.

Abacus

6.12 DOS Device Drivers

8 7 6 5 4 3 2 1 0 bit

(1’:?r|:or Error code when bit 15=1:
- O=medium write protected
1=ready | —m8m —— 1=unknown device
2=drive not ready
1=busy 3=unknown command

4=read (CRC-) error
S5zparameter data block
has a false length
6=search error
7=unknown medium
8=sector not found
9=printer out of paper
10=write error

11=read error
12=common error
13=illegal medium change

Status field error codes

6.12.4 Device Driver Functions

Under DOS Version 2, any installable device driver must support 13 functions,
numbered from O to 12, even if their only action consists of sctting the DONE
flag in the status word. DOS Versions 3 and 4 include four additional functions
which can be supported, but are not required. Some of these functions concern one
of the two driver types, while others apply to both driver types (e.g.,
initialization). Unused functions must at least set the DONE flag of the status
word. Let's look at the various functions in detail according to their function
numbers.

Request header

Every function described here receives its arguments from the request header (whose
address is passed by DOS to the strategy routine) and stores its "results” in the
request header. For this reason, the offset address to the arguments, relative to the
beginning of the request header, is passed to the specified function. These
arguments are later transferred to variables. Besides this offset address, a flag
indicates whether this information consists of a byte, word or PTR. The PTR data
type represents a pointer to a buffer and consists of two adjacent words. The first
word is the offset address of the buffer. The second word is the segment address of
the buffer.

155

6. The Disk Operating System PC System Programming

Function 0: Driver Initialization

DOS calls this function during the system boot procedure to initialize the device
driver. This function can involve hardware initialization, setting various internal
variables to their default values, or the redirection of interrupts. Since the entire
operating system has not been completely initialized at this point, the
initialization routine can only call functions 1 through OCH and 30H of DOS
interrupt 21H. These functions can be used to determine the DOS version number
and to display a driver identification message on the screen. Even if the newly
linked driver is a CON driver, the output to the display occurs through the old
CON driver, because there are no new drivers linked into the system after
completion of the initialization routine.

Initialization and the request header

The initialization routine can obtain two pieces of information from the request
header. The first item is the memory address containing the text following the
equal sign on the line in the CONFIG.SYS file that loaded the driver into the
system.

A typical line in a CONFIG.SYS file can look like this:

DEVICE=ANSI.SYS

In this case, the device name is ANSL.SYS, which assigns the standard ANSI
escape sequences for screen control to the PC. The memory address passed to the
initialization routine points to the character following the equal sign (in this case,
the A of ANSLSYS). This makes it possible to store additional information
following the name of the device driver. This information is ignored by DOS, but
can be read by other routines.

Logical device designation

156

The second item is only available under DOS Version 3.0 and higher, and only if
the driver is a block device driver. This is the letter designation of the first logical
device of the driver. The value O stands for A, 1 for B, 2 for C, and so on.

The initialization routine must return four parameters to the calling DOS function.
The first parameter is the status of the function, i.e., the indication of whether the
function has executed correctly. For a block device driver, the number of logical
devices supported must also be passed. This information could also be obtained
from the device driver's header, but is ignored by DOS.

Abacus

6.12 DOS Device Drivers

BPB

The next parameter that the device driver must pass to DOS is the highest memory
address which it occupies or uses. This lets DOS know where the next device
driver can be installed.

If the driver is a block device driver, the last argument passed must be the address
of an array which contains an entry for every logical device. This array contains the
addresses of BIOS parameter blocks (BPBs). The address is passed as two words,
the first word contains the offset, and the second word contains the segment address
of the array. The first two words within this table are the address for the first
logical device supported. The next two words indicate the address for the second
logical device, etc. The BPB, described in detail in Section 6.12, is a data block
containing information which describes a logical device. If all or some of the
logical devices have the same format, all entries in the BPB address table can point
to a single BPB.

+ 00H Bytes per sector (1 word)
+ 02H Sectors per cluster (1 byte)
+ O3H Reserved sectors (including boot sectors) (1 word)
+ O5H Number of FATs (1 byte)
+ 06H Maximum number of entries in root directory (1 word)
+ 08H Total number of sectors (1 word)
+ OAH Media descriptor (1 byte)
+ OBH | Number of sectors per FAT (1 word)
BIOS Parameter Block design

F8H = hard disk

F9H = 5,25" diskette, double-sided, 15 sectors per track
FCH = 5.25" diskette, single-sided, 9 sectors per track
FDH = 5,25" diskette, double-sided, 9 sectors per track
FEH = 5,25" diskette, single-sided, 8 sectors per track
FFH = 5.25" diskette, double-sided, 8 sectors per track

Media descriptor byte

157

6. The Disk Operating System PC System Programming

Calling parameters of function 0:

Offset 2 (byte) | Function number (0)

Offset 18 (ptr) | Address of character that follows the equal sign after the

DEVICE command in the CONFIG.SYS file

Offset 22 (byte) | Device number of the first device supported by the driver
(0=A, 1=B...) (applies to block device drivers from DOS
Version 3.0 up only)

Returned parameters of function 0:

Offset 3 (word) | Status word

Offset 13 (byte) | Number of devices supported (block devices only)

Offset 14 (ptr) | Address of first available memory location following the
driver

Offset 18 (ptr) | Address of array containing the addresses of BPB (block
devices only)

Function 1: Media Check

158

This function is used only with a block device driver. A character device driver
should merely set the DONE flag of the status word and exit. This function is used
by DOS to determine whether the media (diskette) has changed. It is often used
when examining a disk directory. If the disk medium was not changed since the
last access, DOS still has this information in memory, otherwise DOS must reread
the information from the media which delays the execution of the current task.

In some cases, as with floppy disks, the answer to the question is fairly
complicated. For this reason DOS permits function 1 to answer not only with
"yes" and "no", but also with "don't know." In any case, the answer affects further
DOS activity.

If the media is unchanged, access to the media can take place immediately. If the
media was changed, however, DOS closes all internal buffers related to the current
logical device. This causes the loss of all data which should have been transmitted
to the media. Then it calls function 2 of the current device driver, loads the FAT
and the root directory. If the media check function answers with "don't know," the
additional steps taken by DOS depend on the status of the internal buffers related to
the current logical device. If these internal buffers are empty, DOS assumes that
the media was changed and acts as if function 1 answered "yes." If the buffers
contain data which should have been transmitted to the media, DOS assumes that
the media is intact and writes the data. If the media was indeed changed, the data
written to a changed media may damage the new diskette's file structure.

Since subsequent processing depends on the response from the media check
function, the driver should handle the response carefully. Before enabling the
mechanism used by the function to respond, the function examines the parameters
passed to it. If the driver supports several logical devices, the first parameter is the

Abacus

6.12 DOS Device Drivers

number of devices. Next is a media descriptor code. This code contains information
about the type of media last used in the current logical device. Only devices which
can handle several different formats can use this task. For example, AT disk drives
which can use both 360K and 1.2 megabyte diskette formats.

If the media check function determines that the medium in a device is non-
removable (e.g., a fixed disk), it can always respond "not changed”. If, on the other
hand the device media can be changed (e.g., a disk), the correct response can only
be determined by fairly complex procedures. If these procedures are not used, the
response should be "don't know".

For the sake of completeness, here are the three procedures which provide fairly
accurate results.

Since a device with changeable media has an opening and closing mechanism, the
function should check to determine whether the media was removed. However, it
cannot determine if the removed media is identical to the newly inserted medium.

If the media has a name, the function should read this name to determine whether
the media was changed. This procedure only makes sense if every media has a
unique name.

The disk drive procedure used by DOS hinges on the fact that changing medium
takes some time. DOS assumes that even a user that can move fast needs about
two seconds to remove a diskette from a drive and insert a new diskette in the same
drive. If two consecutive diskette accesses occur less than two seconds apart, DOS
assumes that no diskette change occurred.

A byte in the data block is used to indicate changes. The value -1 (FFH) means
"changed”, 0 means "don't know" and 1 means "not changed".

If the media was changed, the device driver signals a media change (bit 11 in the
device attribute = 1), the address of a buffer must be passed to DOS Version 3 and
newer, which contains the volume name of the previous media. This name must
be stored there as an ASCII string and terminated with an end character (ASCII
code 0).

Calling parameters of function 1:
Offset 1 (byte) | Device number
Offset 2 (byte) | Function number (1)
Offset 13 (byte) | Media descriptor byte

159

6. The Disk Operating System PC System Programming

Returned parameters of function 1:

Offset 3 (word) | Status word

Offset 14 (byte) | Was media changed ?

FFH = yes, 00H = don't know, 01H = no

Offset 15 (ptr) | Address of buffer containing the previous volume name
(only if device indicates a media change)

Function 2: Build BIOS Parameter Block (BPB)

This function is used only by block device drivers. A character device driver should
just set the DONE flag of the status word and exit. DOS calls this function when
the media check function determines that the media was changed. This function
returns a pointer to a new BPB for the media.

As you can see by the layout of the calling parameters, the device number media
descriptor and a pointer to a buffer are passed to this function by DOS. If the
device is a standard format (bit 13 of the device attribute =0), then the buffer
contains the first sector of the FAT.

Calling parameters of function 2:

Offset 1 (byte) | Device number

Offset 2 (byte) | Function number (2)

Offset 3 (byte) | Media descriptor byte

Offset 14 (ptr) | Address of a buffer containing the FAT (see above)

Returned parameters of function 2:
Offset 3 (word) | Status word
Offset 18 (ptr) | Address of the BPB of addressed device

Function 3: 1/O Control Read

160

This function passes control information from the character or block device driver
to the application program. It can only be called through function 44H of interrupt
21H if the IOCTL bit in the device attribute word in the device driver header is set.
Different parameters are passed to the function, depending on whether the driver is
a caaracter or a block device driver.

A character device driver is passed the number of characters to be transferred and the
address of a buffer for the transfer of the data.

A block device driver is passed the device number, the media descriptor byte, the
address of the buffer to be used for the data transfer, the pointer to the first sector to
be read and the number of sectors to be read.

Abacus 6.12 DOS Device Drivers

Calling parameters of function 3:

Offset 1 (byte) | Device number (block devices only)

Offset 2 (byte) | Function number (3)

Offset 13 (byte) | Media descriptor byte (block devices only)

Offset 14 (ptr) | Address of buffer into which data should be transmitted
Offset 18 (word) | Number of sectors to be read (block device) or

Number of characters to be read (character device)
Offset 20 (word)| First sector to be read (block devices only)

Returned parameters of function 3:

Offset 3 (word) | Status word

Offset 18 (word)| Number of sectors read (block device)
Number of characters read (character device)

Function 4: Read

This function reads data from the device to a buffer specified in the calling
parameter. Should an error occur reading the data, the error status must be set.
Additionally the function must report the number of sectors or bytes read
successfully. Simply reporting an error is not good enough.

Calling parameters of function 4:

Offset 1 (byte) | Device number (block device only)

Offset 2 (byte) | Function number (4)

Offset 13 (byte) | Media descriptor byte (block device only)

Offset 14 (ptr) | Address of buffer to which data should be read
Offset 18 (word) | Number of sectors to be read (block device) or
Number of characters to be read (character device)
Offset 20 (word)] First sector to be read (block device only)

Returned parameters of function 4:

Offset 3 (word) | Status word

Offset 18 (word) | Number of sectors read (block device) or

Number of characters read (character device)

Offset 22 (ptr) | Pointer to volume ID on return of error OFH (Version 3.0
and higher)

Function 5: Non-destructive Read

This function is used by a character device driver to test for unread characters in the
input buffer. A block device should set the DONE flag of the status word and exit.

DOS tests for additional characters using this function. If more characters exist, the
busy bit must be cleared (set to 0) and the next character passed to DOS. The
character that is passed remains in the buffer so that a subsequent call to a read

161

6. The Disk Operating System PC System Programming

function will return this same character. If no additional characters exist, the busy
bit must be set (set to 1).

Calling parameter of function 5:

Offset 2 (byte) | Function number (5)

Returned parameters of function 5:

Offset 3 (word)

Status word

Offset 13 (byte)

The character read

Function 6: Iinput Status

This function is used to determine if a character is waiting to be read from the
input buffer of a character device. A block device driver should set the DONE flag
of the status word and exit.

If a character is waiting to be read from the input buffer, the busy bit is cleared (set
to 0). If a character is not in the input buffer, the busy bit is set (set to 1).

When a character is waiting to be read, the Input Status function (06H) resets the
status word busy bit to 0 and returns the character to DOS. The character is not
removed from the buffer and is therefore non-destructive. This function is
equivalent to a one-character look ahead.

| Calling parameter of function 6:

Offset 2 (byte) | Function number (6)

Returned parameters of function 6:

Offset 3 (word)

Status word: Characters already in buffer = 0; Read request to
physical device = 1

Function 7: Flush Input Buffers

162

This function clears the internal input buffers of a character device driver. Any
characters read but not yet passed to DOS are lost when this function is used. A
block device driver should set the DONE flag of the status word and exit.

Calling parameter of function 7:

Offset 2 (byte) | Function number (7)

Returned parameter of function 7:

Offset 3 (word) | Status word

Abacus 6.12 DOS Device Drivers

Function 8: Write

This function transfers characters from a buffer to the current device. If an error
occurs during transmission, the status word is used to indicate this error. Both
block and character devices use this function.

The parameters used for this function depend on whether the driver is for a character
or block device. Both pass a buffer address from which a certain number of
characters should be transferred. A character device driver is passed the number of
bytes to be transferred in addition to this information.

A block driver is passed the number of sectors to transfer (not the number of
characters), the number of the device to be addressed, its media descriptor and the
address of the first sector on the medium.

Should an error occur writing the data, the error status must be set. Additionally
the function must report the number of sectors or bytes written successfully.
Simply reporting an error is not good enough.

Calling parameters of function 8:

Offset 1 (byte) | Device number (block drivers only)

Offset 2 (byte) | Function number (8)

Offset 13 (byte) | Media descriptor of device addressed (block device only)
Offset 14 (ptr) | Address of the buffer containing data

Offset 18 (word) | Number of sectors to be written (block device)
Number of characters to be written (character device)
Offset 20 (word)| first sector to be written (block device only)

Returned parameters of function 8:

Offset 3 (word) | status word

Offset 18 (word)| Number of sectors written (block device)

Number of characters written (character device)

Offset 22 (ptr) | Pointer to volume ID on return of error OFH (Version 3.0
up)

Function 9: Write with Verify

This function is similar to function 8, but with the difference that the characters
written are reread and verified.

Some devices, especially character devices such as a monitor or a printer, do not

require verification since either no errors occur during transmission (monitor) or
the data cannot be verified (printer).

163

6. The Disk Operating System

PC System Programming

Calling parameters of function 9:

Offset 1 (byte) | Device number (block drivers only)

Offset 2 (byte) | Function number (9)

Offset 13 (byte) | Media descriptor of device addressed (block device only)

Offset 14 (ptr) | Address of the buffer containing data

Offset 18 (word) | Number of sectors to be written (block device)
Number of characters to be written (character device)

Offset 20 (word)| First sector to be written (block device only)

Returned parameters of function 9:

Offset 3 (word) | Status word

Offset 18 (word)| Number of sectors written (block device)
Number of characters written (character device)

Offset 22 (ptr) | Pointer to volume ID on return of error OFH (Version 3.0
up)

Function 10: Output Status

This function indicates whether the last write operation to a character device is
completed or not. A block device should set the DONE flag in the status word and

exit.

If the last write operation is complete then the busy bit of the status word is
cleared; otherwise the busy bit is set to 1.

Calling parameter of function 10:

Offset 2 (byte) |

Function number (10)

Returned parameter of function 10;

Offset 3 (word)

Status word: The busy bit is 1 if the last character output
has not been completed

Function 11: Flush O

utput Buffers

This function completely clears the output buffer even if it contains characters

waiting for output.
and exit.

A block device should set the DONE flag on the status word

Calling parameter of function 11:

Offset 2 (byte) |

Function number (11)

Returned parameter of function 11;

Offset 3 (word) |

Status word

164

Abacus 6.12 DOS Device Drivers

Function 12: 1/0 Control Write

This function passes control information from the application program to the
character or block device driver. It can only be called through function 44H of
interrupt 21H provided the IOCTL bit in the device attribute word in the device
driver header is set. Different parameters are passed to the function, depending on
whether the driver is a character or a block device driver.

A character device driver is passed the number of characters to be written and the
address of the buffer from which these characters are transferred.

A block device driver is passed the device number (in case the driver services
logical devices), the media descriptor byte, the address of the buffer from which the
data is to be written, the number of the first sector to be written and the number of
sectors to be written.

A character device driver returns the number of bytes written. A block device driver
returns the number of sectors written.

Calling parameters of function 12:

Offset 1 (byte) | Device number (block device only)

Offset 2 (byte) | Function number (12)

Offset 13 (byte) | Media descriptor of addressed device (block device only)
Offset 14 (ptr) | Address of buffer from which data should be read
Offset 18 (word)| Number of sectors to be written (block device)
Number of characters to be written (character device)
Offset 20 (word)] First sector to be written (block device only)

Returned parameters of function 12:

Offset 3 (word) | Status word

Offset 18 (word) | Number of sectors written (block device)
Number of characters written (character device)

The following four functions are supported by DOS version 3.0 and higher.

Function 13: Open

This function can be used only if the OCR (Open/Close/RM) bit in the device
attribute word in the device driver header is set. Its task differs, depending whether
it is a character or block driver.

A block driver uses this function every time a file is opened. This function
determines how many open files exist on this device. Use this command carefully,
since programs which access FCB function calls tend not to close open files. This
problem can be avoided by assuming during every media change that no files

165

6. The Disk Operating System PC System Programming

remain open. For devices with non-changeable media (e.g., a hard disk) even this
procedure may not help.

Within a character driver, this function can send an initialization string to the
device before transmitting the data. This is an advantage when used for
communication with the printer. The initialization string should not be included in
the driver, but can be called, for example, with the IOCTL function of interrupt
21H, which calls function 12 of a driver to transmit it from an application
program to the driver. The function can also be useful because it can prevent two
processes (in a network or in multiprocessing) from both accessing the same
device.

For the devices CON, PRN and AUX, this function is not called since they are
always open.

Calling parameters of function 13:
Offset 1 (byte) | Device number (block device only)
Offset 2 (byte) | Function number (13)

Returned parameter of function 13:
Offset 3 (word) | Status word

Function 14: Device Close

166

This function is the opposite of function 13. This function can only be addressed if
the OCR bit in the device attribute word of the device driver header is set. Its task
differs, depending whether it is a character or block driver.

A block driver calls it after closing a file. This can be used to decrement a count of
open files. Once all files on a device are closed the driver should flush the buffers
on removable media devices, because it is likely that the user is about to remove
the media.

A character driver can use this function to send some closing control information
to a device after completing output. For a printer this could be a formfeed. As in
function 13, the string could be transmiited from an application program using the
IOCTL function.

Calling parameters of function 14:
Offset 1 (byte) | Device number (block device only)
Offset 2 (byte) | Function number (14)

Returned parameter of function 14:
Offset 3 (word) | Status word

Abacus 6.12 DOS Device Drivers

Function 15: Removable Media

This function indicates if the media in a block device can be changed or not. This
function is used only if the OCR bit in the device attribute word of the device
driver is set. A character device driver should set the DONE flag in the status word
and exit.

If the media can be removed, the busy bit is cleared; otherwise it is set to 1.

Calling parameters of function 15:
Offset 1 (byte) | Device number (block device only)
Offset 2 (byte) | Function number (15)

Returned parameter of function 15:
Offset 3 (word) | Status word: If the media can be removed, the busy bit must
contain the value 0

Function 16: Output until Busy

This function transfers data from a buffer to an output device until the device is
busy (i.e., can no longer accept more characters). As this function is supported by
character devices, a block device driver should set the DONE flag on the status
word and exit.

This function works particularly well with print spoolers, through which files can
be sent to a printer as a background activity while a program executes in the
foreground. It is possible that not all of the characters in the transfer request will
be sent to a device during this function call. This is usually not an error, it could
be the result of the device becoming busy. The function is passed the number of
characters to be transmitted as well as the buffer address. If the output device
indicates during transmission that it can no longer accept additional characters, it
indicates the number of characters successfully transferred and returns control to the
device driver.

Calling parameters of function 16:

Offset 2 (byte) | Function number (16)

Offset 14 (ptr) | Address of buffer from which data should be read
Offset 18 (word)| Number of characters to be read

167

6. The Disk Operating System PC System Programming

6.12.5

Clocks

168

Returned parameters of function 16:
Offset 3 (word) | Status word
Offset 18 (word)] Number of characters written

Clock Drlver

The clock driver is a character device driver whose only function is to pass the date
and time from DOS to an application. The clock driver can also have a different
name, since DOS identifies it by the fact that bit 2 in the device attribute word of
the device driver header is set to 1, instead of by name. Bit 15 must also be set
since the clock driver is a character device driver. Functions 2AH to 2DH of DOS
interrupt 21H read the date and time and call the driver. A clock driver must
support only functions 4, 8 and 0 (initialization). During the call of function 4
(reading), the date and time pass from the driver to DOS. DOS can set a new date
and time with function 8. Both functions have the time and date passed in a buffer
of 6 bytes in length.

RAM
+ 00H Number of days since Jan.l1,1980 (1 word)
0000:0000
+ 02H Minutes (1 byte)
+ 03H Hour (1 byte)
+ 04H | Hundredths of seconds (1 byte) $
+ O5H Seconds (1 byte)

Passing date and time to a clock driver

The date format is unusual. Instead of passing the month, day and year separately,
DOS passes the number of days elapsed since January 1, 1980 as a 16-bit number.
A fairly complex formula converts this number into normal date format, taking
leap years into account. The clock driver normally uses function 0 and 1 of the
BIOS interrupt 1AH to read and set the time.

on AT models

AT and AT-compatible computers have a battery powered realtime clock.
Functions 0 and 1 of interrupt 1AH use a software controlled time counter and not
the battery powered realtime clock. When the computer is rebooted, the date and
time previously set with driver function 8 is cleared. You can use the clock driver
to access the realtime clock using functions 2 and 5 of interrupt 1AH instead of
function 0 and 1.

Abacus

6.12 DOS Device Drivers

6.12.6 Device Driver Calls from DOS

Open

Block

Now that you have some familiarity with the functions of the different device
drivers, you can look toward developing your own personal device driver. Here are
the steps which take place before and after calling a device driver function.

A chain of events begins when a DOS function which handles input and output is
called using interrupt 21H. Calling one of these functions can in turn call a series
of other functions and corresponding read and write operations.

One example of this is when the Open function 3DH is called to open a file in a
subdirectory. First of all, before it can be opened, DOS must find the file. This
may require the searching of a set of directories instead of just reading in the FAT.
During each access of interrupt 21H, DOS determines which of the available device
drivers should be used to read or write characters. When this happens, DOS sets
aside an area in memory to store the information required by the device driver.

For files, DOS must convert the number of records to be processed into logical
sector numbers. DOS then calls the strategy routine of the device driver, to which
it passes the address of the newly created data block (request header). Then the
interrupt routine of the driver is called, which stores all registers. It isolates the
function code of the requested function from the data block and starts to process the
function.

If the addressed driver is a character device driver, the function only has to send the
characters to the hardware or request the characters to be read.

devices

For a block device (e.g., a mass storage device such as a floppy or hard disk) the
logical sector number must be converted into a physical address before a read or
write access. The logical sector number is broken down into a head, track and
physical sector number.

After the read or write operation ends, the driver function must place a result code
in the status field of the request header to be returned to the calling DOS function.
Next the contents of all registers are restored and control is returned to the calling
DOS function, which, depending on the result of the driver function, sets or resets
the carry flag and places any error code into the AX register. The interrupt function
then returns control to the routine which called interrupt 21H.

169

6. The Disk Operating System PC System Programming

6.12.7 Direct Device Driver Access: I0CTL

Here we discuss IOCTL in detail, since it offers an alternate method of
communicating with the device driver. You can only use these functions if the
IOCTL bit of the device attribute is set.

The IOCTL function itself is one of many functions addressable from DOS
interrupt 21H. Its function number is 44H. Three groups of sub-functions are
accessible:

. Device configuration
. Data transmission
. Driver status

The number of the desired sub-function is passed to the IOCTL function in the AL
register. After the function call, the carry flag indicates whether the function
executed correctly. A set carry flag indicates the occurrence of an error and the error
code can be found in the AX register.

Character device driver status

170

The number of the desired sub-function is passed to the IOCTL function in the AL
register. After the function call, the carry flag indicates whether the function
executed correctly. A set carry flag indicates the occurrence of an error and the error
code can be found in the AX register.

Sub-functions 6 and 7 can determine the status of a character device driver. Sub-
function 6 can determine if the device is able to receive data. Sub-function 7 can
determine if the device can send data. The handle of this device is passed in the BX
register.

If the device is ready, both functions 6 and 7 return the value FFH in the AL
register.

Sub-function 2 reads control data from the character device driver. The handle is
passed in the BX register and the number of bytes to be read is passed in the CX
register. In addition, the DS:DX register pair contain the address of the buffer into
which the data will be read. If the carry flag is clear, then the function was
successful and the AX register contains the number of characters read. If the carry
flag is sct, then there was an error and the AX register contains the error code.

Sub-function 3 writes control information from a buffer to the character device
driver. Again, the handle is passed in the BX register, the number of bytes to be
written in the CX register and the address of the buffer in the DS:DX register pair.

Abacus 6.12 DOS Device Drivers

The return codes are the same as for sub-function 2. These two sub-functions are
used to pass information between the application program and the device driver.

Block device driver status

Sub-functions 4 and 5 have the same task as sub-functions 2 and 3. However, they
are used for block devices and not character devices. Instead of passing the handle in
register BX, you pass the drive code (0=A, 1=B, etc.) in the BL register.

Sub-function 0 is used to get device information for a specified handle. The sub-
function number is passed in the AL register and the handle in the BX register. The
function returns the device information word in the DX register.

For block devices:

bits 8-15 = reserved
bit 7 = 0 if a block device
bit 6 = 0 if file has been written
1 if file has not been written
bits0-5 = drive code (0=A, B=1, etc.)

For character devices:

bit 15 = reserved

bit 14 = 1 if device supports IOCTL sub-functions
0 if device does not support IOCTL sub-
functions

bits 8-13 = reserved

bit 7 = if a character device

bit 6 = 0 if end of file for input device

bit 5 = 0 if cooked mode
1 if raw mode

bit 4 = reserved

bit 3 = 1 if clock device

bit 2 = 1 if NUL device

bit 1 = 1 if standard output device

bit 0 = 1 if standard input device

Cooked and raw modes

Sub-function 1 is used to set device information for a specified handle. This sub-
function is often used to set the standard input device from cooked mode to raw
mode or back.

Two final interrupts are sometimes used by block device drivers. These two
interrupts, 25H and 26H are used to read from and write to the disk drive. You can
use these interrupts, for example, to process disks that were formatted using a
"foreign" operating system.

171

6. The Disk Operating System PC System Programming

6.12.8

6.12.9

172

The device number is passed in the AL register, the number of sectors to be
transferred is passed in the CX register, the starting sector number to be transferred
is passed in the DX register and the buffer is passed in the DS:BX register. The
carry flag is clear if there was no errors. If the carry flag is set, then the error code
is returned in the AX register.

Tips on Developing Device Drivers

Major headaches in developing a device driver occur because of problems that arise
during the testing phases of a new driver. First, a device driver must load into a
memory location assigned to it by DOS, at an address unknown to the
programmer. Second, a newly developed CON driver can't be tested using the
DEBUG program, since DEBUG uses this driver for character input and output.

We recommend that after you write the actual driver, you write a short test
program that calls the individual functions in the same manner as DOS, but
without having the driver installed as part of DOS. The advantages to this are that
everything executes under user control, and the whole process can be corrected with
a debugger. In any case, a new device driver (especially a block device driver)
should only be linked into the system after it has been tested completely and has
been proven to be error-free.

Note: When working with a hard disk, prepare a floppy system diskette
before test booting the system from the hard disk with the new driver
installed for the first time. If a small bug should exist in the new
driver, and the initialization routine hangs up, the booting process
will not end and DOS will be out of control. In such a case, the only
remedy is to reset the system and boot with a DOS diskette in the
floppy drive. Once DOS loads, you can then access the hard disk and
remove the new driver.

Driver Examples

This section contains a sample device driver for each of the three different types of
device drivers, to demonstrate the information you've read about so far.

The first program is a character driver which corresponds exactly to the format of a
normal console driver. The second program is a block device driver which creates a
160K RAM disk. The final program is a DOS clock driver to support an AT
computer realtime clock.

PREER A AR AR A AR AR AR AR AR KRR A AR I AR AR AR KRR R AR KRR R AR A AR A AR KRR R RN KRR AR o

CONDRYV *;

* .

Task ¢ This program represents a normal Console *:
Driver (Keyboard and Display Monitor). It should *;

* e

*e

e Se Se Ne Se S

.
* % o % * »
~e e e o

serve as a framework for a driver in the form of
: an ANSI.SYS driver.

Abacus

6.12 DOS Device Drivers

*

*

D I IR TIE

code segment

assume cs:code,ds:code,es:code, ss:code

org

;== Constant

cmd_fld equ
status equ
end_adr equ
num db equ
b_adr equ

KEY SZ equ
num_cmd equ

[¢]

DEVICE=CONDRV.SYS into the file CONFIG.SYS

and then boot the System.

;

i Author : MICHAEL TISCHER

Had developed on : 8.4.87

P last Update : 9.21.87

N

i assembly ¢ MASM CONDRV;

i LINK CONDRV;
* EXE2BIN CONDRV CONDRV.SYS
*
* Call : Copy into Root Directory, copy the command
*
*
*

KRR AR AR R KRR AR Rk AR AR R KRR R A AR AR R R AR AR R R AR AR AR AR KRR KRR AR AR AR RRRANR R

*
*
*
*
*
*
*
*
*
*
*
*

;Program has no PSP therefore start
;at Offset address O

Sa Ne Sk Se Se Ne o Ne Se e Se o Se Se e

s

2
3
14
18
14

20
16

;O0ffset command field in data block
;Offset status field in data block
;Of fset driver end-adr. in data block
;Offset number in data block

;Offset buffer address in data block

;Size of key board buffer
;Subfunctions 0-16 are supported

[}

= Data

i

;—— Header of Device Driver

dw
dw
dw

-1,-1

1010100000000011b

of fset

dw offset

db
;-— Jump Tab

fkt tab dw
B dw
dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

dw

db ptr dw
key_a dw

key e dw
key bu db

;== Routines and functions of driver

“CONDRV

le for

offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset
offset

), (?)

0
0
KEY Sz

strat
intr

functions

init
durmmy
dummy
no_sup
read
read b
dummy
del_in b
write
write
dummy
durmmy
no_sup
dunmy
dummy
dummy
write

dup (2?)

;Connection to next driver
;Driver attribute

;Pointer to strategy routine
;Pointer to interrupt routine
;new Console driver

sFunction
sFunction
;Function
;Function
;Function
;Function
;Function
;Function
;Function
;Function
;Function
;Function
;Function
;Function
;Function
;Function
;Function

10:
11:
12:
13:
14:
15:
16:

Initialization
Media Check
Create BPB

I/0 control read
Read

: Non-dest. Read

Input-Status
Erase Input-Buffer

: Write
: Write & Verify

Output-Status

Erase Output-Buffer
I/0 control write
Open (starting at 3.0)
Close

changeable Medium
Output until Busy

;Address of data block passed

;Pointer to next character in KEY S2
;Pointer to last character in KEY_S2Z
;internal Keyboard Buffer

173

6. The Disk Operating System

PC System Programming

174

strat proc far ;Strategy routine
mov cs:db_ptr,bx ;Store address of data block in the
mov cs:db_ptr+2,es ;Variable DB_PTR
ret sback to caller
strat endp
;
intr proc far ;Interrupt routine
push ax ;Store registers on the stack
push bx
push cx
push dx
push di
push si
push bp
push ds
push es
pushf ;store also the flag register
push cs ;Set data segment register
pop ds ;Code is identical here with data
les di,dword ptr db_ptr;Address of data block to ES:DI
mov bl,es:[di+cmd_fld] ;Get command-code
cmp bl,num_cmd ;1s command-code permitted?
jle bc_ok ;YES --> bc_ok
mov ax,8003h ;Code for "unknown Command*
Jmp short intr_end ;sback to caller
;-- Command-Code was o.k. =--> Execute command --------—=--===-=
bc_ok: shl bl,1 ;Calculate pointer in jump table
xor bh,bh ;erase BH
call [fkt_tab+bx] ;Call function
les di,dword ptr db_ptr;Address of the data block to ES:DI
;-- Execution of the function completed
intr_end label near
or ax,0100h ;Set finished-bit
mov es:[di+status],ax ;store everything in the status field
popf ;Restore flag register
pop es ;Restore other registers
pop ds
pop bp
pop si
pop di
pop dx
pop cx
pop bx
pop ax
ret ;back to caller
intr endp
;
dummy proc near ;This routine does nothing
Xor ax,ax ;Erase busy-bit
ret sback to caller

Abacus

6.12 DOS Device Drivers

dummy endp
H
no_sup proc near ;This routine called for all functions
;which should really not be called
mov ax,8003h ;Error: Command not recognized
ret sback to caller
no_sup endp
;
store_c proc near ;stores a character in the internal
;keyboard buffer
;Input: AL = character
; BX = Position of the character
mov [bxt+key bu],al ;store character in internal buffer
inc bl ;increment pointer to End
cmp bl,KEY_SZ ;End of buffer reached ?
Jjne store_e ;NO --> STORE_E
xor bl,bl ;new end is the beginning of buffer

store_e: ret

;back to caller

store ¢ endp
read proc near ;read a certain number of characters
;from the keyboard to a buffer
mov cx,es:[di+num db] ;read number of characters

jexz
les
cld
mov
mov

read_l: cmp
jne

read_2: xor
int
call
cmp
jne

mov
call
read 3: mov
- stosl
inc
cmp
jne

xor
read_4: loop
mov

mov

read_e: xor
ret

read e
di,es: [di+b_adr]

si, key a
bx, key e

si,bx
read_3

ah, ah
1éh
store_c
al,0
read_3

al,ah
store_c

al, [si+key bu]
b

si

si,KEY_S2
read_4

si,si
read_1
key_a,si

byte ptr key_e,bl

ax,ax

;test if equal to O
;Address of character buffer to ES:DI
;on STOSB count up
;Pointer to next character in KEY _S2
;Pointer to last character in KEY S2

;other characters in keyboard buffer?
;YES --> READ_3

;Function number for reading is 0
;Call BICS Keyboard-interrupt

;Store characters in internal buffer
;test if extended code

;no --> READ 3

;Extended Code is in AH

;store

;read character from keyboard buffer
;transmit to buffer of calling funct.
;Increment pointer to next character
;End of buffer reached?

;NO --> READ_4

;next character is the first character
;in the keyboard buffer

;repeat until all characters read
;Store position of the next character
;in the key board buffer

;Store position of the last character
:in the key board buffer

severything o.k.
;back to caller

175

6. The Disk Operating System PC System Programming

read endp

H

read b proc near ;sread the next character from the

skey board but leave in the buffer

mov ah,1 ;Function number for BIOS-interrupt
int 16h ;call BIOS Keyboard-interrupt
je read_pl ;no character present --> READ Pl
mov es;:[di+13],al ;store character in data block
XOor ax,ax ;everything o.k.
ret ;back to caller

read_pl label near

mov ax,0100h ;Set busy-bit (no character)
ret ;back to caller

read b endp

7

del_in b proc near ;erase input buffer
mov ah,1 ;Still characters in the buffer?
int 16h ;Call BIOS key board interrupt
je del_e ;no character in the buffer --> END
xor ah,ah ;Remove character from buffer
int 16h ;Call BIOS key board interrupt
jmp short del_in b ;Test for additional characters
del_e: Xor ax,ax ;everything o.k.
ret sback to caller

del_in b endp

i

write proc near ;write a specified number of
;characters on the display screen

mov cx,es:[di+num db] ;Number of characters read

jexz write e ;test if equal to 0O

lds si,es: [di+b_adr] sAddress of character-buffer to DS:SI

cld ;on LODSB increment count

mov ah,3 ;read current display page

int 16h ;Call BIOS Video-interrupt

mov ah,14 ;Function number for BIOS interrupt
write_l: lodsb ;read character to be output to AL

int 10h ;call BIOS Video-interrupt

loop write 1 ;repeat until all characters output
write e: xor ax,ax ;everything o.k.

ret ;back to caller

write endp

.

init proc near ;Initialization routine

mov word ptr es:(dit+end adr],offset init ;Set End-Address of
mov es:[di+end adr+2],cs ;the driver

176

Abacus

6.12 DOS Device Drivers

Xor ax,ax ;everything o.k.
ret ;back to caller
init endp
H
code ends

end

The header of this driver describes a character device driver which handles both the
standard input device (keyboard) and the standard output device (monitor). After
linking it into the system, setting the two bits in the device attribute calls this
driver on all function calls previously handled by the CON driver. Like any other
driver, this driver has a strategy routine and an interrupt routine. The former stores
the address of the datablock in the variable DB_PTR.

The interrupt routine saves the contents of all registers which will be changed by it
on the stack and gets the routine number to be called from the data block. It then
checks whether CONDRY supports this function. If not, it jumps directly to the
end of the interrupt routine and sets the proper error code in the status field of the
request header which was passed to the routine. Then it restores the registers which
were saved on the stack and returns control to the calling DOS function.

For any of the functions that are supported by the device driver, the offset address
of a routine to handle a particular function is determined from the table labeled
FKT_TAB. Notice that the routines named DUMMY and NO_SUP appear several
times. DUMMY is for all functions which apply only to block device drives and
therefore are not used in this driver. The DUMMY routine clears the AX register
and sets the BUSY bit in the status word. The NO_SUP routine handles any
functions which cannot be used since the drive attribute for CONDRYV does not
support these functions.

The STORE_C routine can be accessed from the lower level routines in this driver.
Its purpose is to store a character in the internal keyboard buffer of the driver. The
driver really shouldn't have this buffer available since BIOS (whose functions are
used by the driver to read characters from the keyboard) also has such a buffer. The
problem is that the BIOS always returns two characters when pressing a key with
extended codes (cursor keys, function keys etc.). If the higher level functions of
DOS only ask for one character at a time from CONDRYV, the second character
must not be lost. It should be stored in a buffer and delivered to DOS by the read
function on the next call. This is STORE_C's task.

Reading characters

The next routine is the READ function. It obtains the number of characters to be
read from the request header passed by DOS. If it is 0, the routine is terminated
immediately. If not, then a loop starts which executes once for every character read.
It first tests for characters still stored in the internal keyboard buffer. If so, a
character is passed to the buffer of the calling function. If no additional character

177

6. The Disk Operating System PC System Programming

exists in the keyboard buffer, function 0 of the BIOS keyboard interrupt 16H
inputs a character from the keyboard. This character is also passed to the internal
keyboard buffer. If it's an extended keycode, it is divided into two characters. The
next step removes a character from the internal keyboard buffer and passes the
character to the buffer of the calling function. The process repeats until all
characters requested have been passed to DOS. Then the routine ends.

The higher level DOS functions also call the function named READ_P. It tests
whether a character was entered from the keyboard. If not, it sets the BUSY bit in
the status field of the request header passed by DOS, and returns to the calling
function. If a character was entered without having been read, the driver reads this
character and passes it to the calling DOS function in the request header, and resets
the busy bit. The character remains in the keyboard buffer, and on a subsequent call
of the read function, it is again passed to DOS. To test the availability of a
character, the READ_P function uses function 1 of the BIOS keyboard interrupt
16H.

The function DEL_IN_B also gets called by the higher level DOS functions.
DEL_IN_B deletes the contents of the keyboard buffer. It removes characters from
the buffer using function 0 of the BIOS keyboard interrupt until function 1
indicates that no more characters are available. This ends the function and it returns
to the calling function after the busy bit is reset.

Writing characters

WRITE takes the number of characters from a buffer passed by DOS and displays
the characters on the screen. This routine uses function OEH of the BIOS video
interrupt. Once all characters have been displayed, it sets the BUSY bit in the
status field and ends the function. This function also executes when the higher
level DOS functions call the Write and Verify functions.

Initialization

178

The last function, the initialization routine, is called first by DOS. Since
CONDRY does not initialize variables and hardware, the routine simply enters the
driver's ending address into the passed request header. The routine returns its own
starting address since it will never be called again, and is the end of the chain of
drivers.

In its current form the driver has little use, since it uses only those functions
already available to the CON driver of DOS. It would be more practical if an
enhanced driver like ANSL.SYS were developed, through which screen design could
be more tightly controlled. For example, it's possible that such a driver would
have complete windowing capability which could be accessed from any program,
in any programming language.

The following block device driver creates a 160K RAM disk:

Abacus

6.12 DOS Device Drivers

PR AR AR R R A AR R AR R R R AR R AR KRR KRR AR AR AR R AR AR AR AR KRR KRR A RRRRR AR R KRR AN

i RAMDISK *:
i *
> Task : This Program is a Driver for a 160KB *
P RAM-Disk. *
i *
* Author : MICHAEL TISCHER *
:* developed onm : 8.4.87 *
i* last Update : 9.21.87 *
o *
’

> assembly : MASM RAMDISK;

LINK RAMDISK;
EXE2BIN RAMDISK RAMDISK.SYS

i Call

FRREI KA A KK KK KRR AR II R RAR K KRR A AR R R I KRR A A AR AR AR KRR RRRR AR A K KRR AR KK

code

;== Constants

cmd_fld
status
num_dev
changed
end_adr
b_adr
num_cmd
num_db
bpb_adr
sector
dev_des

;== Data

erst b

;—— Header of the Device-Driver

;== Jump

fkt_tab

Copy into Root Directory, enter the command
DEVICE=RAMDISK.SYS into the CONFIG.SYS file
and then boot the System.

segment

assume cs:code,ds:code, es:code, ss:code

org 0 ;Program has no PSP therefore begin
;at the offset address 0

equ 2 ;Offset command field in data block
equ 3 ;Offset status field in data block

equ 13 ;Offset number of supported devices
equ 14 ;Offset medium changed?

equ 14 ;Offset driver end-aRAdr. in data block
equ 14 ;Offset buffer address in data block
equ 16 ;the functions 0-16 are supported

equ 18 ;Offset number in data block

equ 18 ;Offset Address of BPB of the media
equ 20 ;Offset first sector number

equ 22 ;O0ffset device-description of RAM-Disk
equ this byte ;this is the first byte of the driver

dw -1,-1 ;Connection to next driver
dw 0100100000000000b ;Driver attribute

dw offset strat ;Pointer to strategy routine
dw offset intr ;Pointer to interrupt routine
db 1 ;a device is supported

db 7 dup (0) ;these bytes give the name

Table for the individual functions

dw offset init ;Function 0: Initialization

dw offset med_test ;Function 1: Media Test

dw offset get_bpb ;Function 2: created BPB

dw offset read ;function 3: direct reading

dw offset read ;Function 4: Read

dw of fset dummy ;Function 5: Read, remain in Buffer
dw offset dummy ;Function 6: Input-Status

dw offset dummy ;Function 7: Erase Input-Buffer
dw offset write ;Function 8: Write

dw offset write ;Function 9: Write & Verification
dw offset dummy ;sFunction 10: Output-Status

dw offset dummy ;Function 11: Erase Output-Buffer
dw offset write ;Function 12: direct Write

dw offset dummy ;Function 13: Open (after DOS 3.0)
dw offset dummy ;Function 14: Close

179

6. The Disk Operating System PC System Programming

180

dw offset no_rem ;Function 15: changeable Medium?
dw offset write sFunction 16: Output until Busy
db ptr dw (2}, (2} ;Address of the data block passed
rd_seg dw (?) ;RD_SEG:0000 beginning of the RAM-Disk
bpb_ptr dw offset bpb, (?) sAccepts the address of the BPB
boot_sek db 3 dup (0) snormally a jump command to the boot
;Routine is stored here
db “MITI 1.0" ;Name of creator & version number
bpb dw 512 ;512 bytes per sector
db 1 ;1 Sector per cluster
dw 1 21 reserved sector (boot-sector)
do 1 ;1 File-Allocation-Table (FAT)
dw 64 ;maximum 64 entries in root directory
dw 320 stotal of 320 sectors = 160 KB
db OFEh ;Media descriptor (1 Side with 40
;Tracks of 8 sectors each)
dw 1 ;every FAT occupies one sector
;=— the Boot routine not included since a System can not-----

;-- be booted from a RAM-Disk

vol_name db “RAMDISK " ;the actual volume-name
db 8 ;Attribute, defines volume-name

;== Routines and functions of the Driver

strat proc far ;Strategy routine
mov cs:db_ptr,bx ;Store address of the data block
mov cs:db _ptr+2,es ;in the Variable DB_PTR
ret ;back to caller

strat endp

intr proc far ;Interrupt routine

push ax ;Store registers on the stack

pushf salso store flag register

push cs ;Set data segment register
pop ds ;Code identical with data here

les di,dword ptr db_ptr;Address of data block to ES:DI
mov bl,es:[di+cmd fld] ;Get command-code

cmp bl,num_cmd ;1s command-code permitted?

jle bc_ok ;YES --> bc_ok

mov ax,8003h ;Code for *"unknown Command"

jmp short intr_end ;sback to caller

+-- Command-Code was o.k. --> Execute Command ---—-—-——-===—=—=
bc_ok: shl bl,1 ;Calculate pointer in jump table

xor bh,bh ;erase BH

call [fkt_tab+bx] ;Call function

Abacus

6.12 DOS Device Drivers

intr end

;-- Execution of the function completed

label near
push cs ;Set data segment register
pop ds ;Code is identical with data here

les di,dword ptr db ptr;Address of the data block to ES:DI
or ax,0100h ;Set finished-bit
mov es:[di+status],ax ;store everything in the status field

popf ;Restore flag register
pop es ;restore other registers
pop ds
pop bp
pop si
pop di
pop dx
pop cx
pop bx
pop ax
ret ;back to caller
intr endp
v
init proc near ;Initialization routine
;-- the following code is overwritten after the installation -
;-- by the RAM-Disk
;-- determine Device designation of the RAM-Disk —---——-=-----
mov ah,30h ;Sense DOS Version with function 30 (h)
int 21h ;of DOS-interrupt 21 (h)
cmp al,3 ;is it Version 3 or higher ?
jb prinm ;YES --> PRINM
mov al,es:[di+dev_des] ;Get device designation
add al,"“A“ ;convert to letters
mov im_ger,al ;store in installation message
prinm: mov dx,offset initm ;Address of installation message
mov ah,9 ;output function number for string
int 21h ;Call DOS-interrupt

;-- Calculate Address of the first byte after the RAM-Disk --
;-— and set as End Address of the Driver

mov word ptr es:[di+end_adr],offset ramdisk+8000h

mov ax,cs ;Size of RAM-Disk is 32KB plus
add ax, 2000h ;2 * 64KB

mov es:[di+end_adr+2],ax

mov byte ptr es:[di+num dev],1 ;1 device supported
mov word ptr es:[di+bpb adr],offset bpb ptr ;Address of the
mov es: [di+bpb_adr+2],ds - :BPB-Pointer

mov ax,cs ;Segment address of RAM-Disk beginning
mov bpb ptr+2,ds ;Segment address of BPB in BPB-Pointer
mov dx,offset ramdisk ;calculate to offset address 0

mov cl,4 ;Divide offset address by 16 and thus
shr dx,cl sconvert into segment address

add ax,dx ;add the two segment addresses

mov rd_seg,ax ;and store

;—- Create Boot-Sector

mov es,ax stransfer segment address to ES
xor di,di ;Boots. begins with the 1. byte of RD

181

6. The Disk Operating System PC System Programming

mov si,offset boot_sek ;Address of the boot-sector in memory
mov cx,15 ;only the first 15 words are used
rep movsw ;copy boot-sector into RAM-Disk

;=— Create FAT

mov di, 512 ;FAT begins with the byte 512 of RD
mov al,OFEh ;Write media-descriptor into the first
stosb ;byte of the FAT

mov ax, OFFFFH ;Store code for bytes 2 and 3 of FAT
stosw ;in FAT

mov cx, 236 ;remaining 236 words occupied by FAT
inc ax ;Set AX to O

rep stosw ;Set all FAT-entries to unoccupied
;-- Create Root Directory with Volume-Name ---========—-

mov di, 1024 ;Root Directory starts in 3rd Sector
mov si,offset vol _name ;Address of volume-name in memory
mov cx,6 ;the volume-name is 6 words long

rep movsw ;Copy volume-name into RD

mov cx,1017 ;Fill the rest of the directories in
Xor ax,ax ;Sectors 2, 3, 4 and 5 with zeros

rep stosw

Xor ax,ax ;everything o.k.
ret sback to caller
init endp
H
dummy proc near ;This Routine does nothing
Xor ax,ax ;Erase busy-bit
ret sback to caller

dummy endp

’

med_test proc near ;Media of RAM-Disk
;cannot be changed

mov byte ptr es:[di+changed],l
Xor ax,ax ;Erase busy-bit
ret ;back to caller

med_test endp

7

get _bpb proc near ;Pass address of BPB to DOS

mov word ptr es:[di+bpb_adr],offset bpb
mov word ptr es:([dit+bpb adr+2],ds

Xor ax,ax ;Erase busy-bit
ret ;back to caller

get_bpb endp

no_rem proc near sMedia of RAM-Disk cannot be changed
mov ax, 20 ;Set busy-bit
ret ;sback to caller

182

Abacus

6.12 DOS Device Drivers

no_rem

endp

;

write proc near

Xor bp,bp ;Transmission DOS --> RAM-Disk
jmp short move ;Copy data
write endp
H
read proc near
mov bp,1 ;Transmission RAM-Disk --> DOS
read endp

-- MOVE: Move a certain number of sectors between RD and DOS

-- Input :

1

BP = 0 : transmit from DOS to RD (Write)
: transmit from RD to DOS (Read)

none

-- Registers : AX, BX, CX, DX, SI, DI, ES, DS and FLAGS are changed

-- Info

move 1:

move 2:

move_3:

move_e:

move

;
;
;
;—— Output :
;
;
;

proc

mov
mov
les

or

push

mov
xchg
rep
or
jne
mov
push

mov
xchg
Jmp

Xor
ret

endp

: Information required {(number, first sector)
is taken from the data block passed by DOS

near

bx,es: [di+num_db]
dx,es:[di+Sector]
di,es:[di+b_adr]

bx, bx
move_e
ax,dx
cl,5
ax,cl
ax,cs:rd_seq
ds,ax
si,si
ax,bx
ax,128
move_2
ax,128
bx, ax
dx, ax
ch,al
cl,cl
bp, bp
move_3
ax,es
ds

es
ds,ax
si,di
movsw
bp, bp
move_1l
ax,es
ds

es
ds,ax
si,di
short move_1

ax, ax

;Number of sectors read
;Number of first sector
;Address of buffer to ES:DI

;More sectors to read ?

;No more sectors --> END

;Sector number to AX

;Calculate number of paragraphs

; (Segment units) by Multiplication
;swith 32, add to Segment start of RD
stransmit to DS

;Offset address is 0

;Number of sectors to be read to AX
;more than 128 sectors to read

;NO ——> read all sectors

;YES ~—> read 128 sectors (64 KB)
;subtract number of sectors read
;add to sectorsto be read next
;Number sect. to be read * 256 words
;Set lo-byte of word-counter to 0
;Should be read ?

;NO -==> MOVE 3

;Store ES in AX

;Store DS on the stack

sread ES

;ES and DS are reversed now
;sexchange SI and DI

;copy data into DOS-buffer

sread ?

;NO --> maybe other sectors to copy
;Store ES in AX

;Store DS on the stack

;read ES

;ES and DS have been exchanged
;exchange SI and DI again
;additional sectors to copy

;everything o.k.
;back to caller

183

6. The Disk Operming System PC System Programming

;—- RAM-Disk starts here

if ($-erst_b) mod 16 ;must start on a memory address
org ($-erst_b) + 16 - (($-erst_b) mod 16) ; divisible by 16
endif

ramdisk equ this byte

initm db "***%x 160 KB RAMDISK as Device"
im ger db "2v
db ": installed (c) 1987 by MICHAEL TISCHER$",13,10,10

code ends
end

This driver is similar to the CONDRY driver. The biggest difference between the
two lies in the functions which each supports.

Note: The initialization routine INIT here is more comprehensive than the
CONDRY initialization routine, and remains in memory after the end
of execution even though it is no longer needed. You'll see why this
is so in the paragraph below entitled "The INIT routine”.

First, this routine finds the DOS version number using function 30H. If the
version number equals or is greater than 3, the request header passed by DOS
contains the device designation of the RAM disk. The system reads the
designation, changes it to a character and places the character into the installation
message. DOS function 09H is used to display this message on the screen.

Next, the program computes the ending address of the RAM disk. Since the actual
data area of the RAM disk starts immediately after the last routine of this driver,
160K is added to the program's ending address. Further, the address of a variable
(BPB_PTR) containing the address of the BIOS parameter block is passed to DOS.
This variable describes the RAM disk's format. In this case, it tells DOS that the
RAM disk uses 512 bytes per sector. Each cluster is made up of one sector and
only one reserved sector (the boot sector) exists. In addition, only one FAT exists.
Additional information indicates that a maximum of 64 entries can be made in the
root directory and that the RAM disk has 320 sectors available (160K of memory).
The FAT occupies a single sector, and the media descriptor byte FEH designates a
diskette with one side and 40 tracks of 8 sectors each.

These parameters are then placed into the request header of DOS and the segment
address of the data area of the RAM disk is calculated (which the driver itself
requires, DOS does not need this information).

The INIT routine

The RAM disk must now be formatted, to create a boot sector, FAT and a root
directory. Since these data structures are in the first sectors of the RAM disk, a
normal INIT routine (which releases its memory to DOS), would overwrite itself

184

Abacus

6.12 DOS Device Drivers

with these data structures and would crash the system. This is why the
initialization routine is not at the end of the last routine of the driver, which would
place it at the beginning of the RAM disk's data area.

The boot sector occupies the complete first sector of the RAM disk, but only the
first 15 words are copied into it since DOS only needs these. The name "boot
sector” is actually a misnomer here, since it's impossible to boot a system from a
RAM disk.

The second sector of the RAM disk contains the FAT. The first two entries are the
media descriptor byte and 0 in the entries that follow. These zeros indicate
unoccupied clusters (an empty RAM disk).

The last data structure is the root directory. It contains no entries other than the
volume name.

Remaining routines

This concludes the work of the initialization routine and returns the system to the
calling function. The remaining driver routines are examined in order.

The DUMMY routine performs the same task as the routine of the same name in
the CONDRY driver.

The MED_TEST routine is found only in block device drivers. This routine
informs DOS whether or not the medium was changed.

The next routine, GET_BPB, simply passes the addresses of the variables which
contain the address of the BPB of the RAM disk to DOS, as the initialization
routine had already done.

NO_REM allows DOS to sense whether the medium (the RAM disk) can be
changed. You cannot change a RAM disk, so the program sets the BUSY bit in
the status field.

The two most important functions of the driver perform read and write operations.
As in CONDRYV, the program calls Write and Verify instead of the normal Write
function, since no data error can occur during RAM access. The routine itself does
very little; it loads the value O into the BP register and jumps to the MOVE
routine. The READ routine performs in a similar manner, except that it loads a 1
into the BP register.

MOVE itself is an elementary routine for moving data. The BP register signals
whether data is to move from the RAM disk to DOS or in the opposite direction.
The routine receives all other data (the DOS buffer's address, the number of the
sectors to be transferred and the first sector to be transferred) from the data block
passed by DOS. See the comments in the MOVE routine for details of the
procedure.

185

6. The Disk Operating System PC System Programming

Changes

This RAM disk can of course be enhanced. If you have enough unused memory,
you can extend the size of the RAM disk to 360K. AT owners could make the
RAM disk resident beyond the 1 megabyte boundary. In this case, the data transfer
between DOS and the RAM disk would use function 87H of interrupt 15H.

The clock driver

This final sample driver directly accesses the battery powered clock of an AT
computer. It offers the advantage that when the two DOS commands DATE and
TIME are used, the date and time are passed directly to the battery powered realtime
clock. Reading the date and time reads the information directly from the memory
locations of the realtime clock.

’-****‘hi**i‘h’k****ﬁ’ki*i***t*******’h**’k’hit*’h’k‘hﬂ’k’hit’k*’kﬁ**’k’h*t*’kﬁ*********;
* ATCLK *;
i *;
FAd Task ¢ This program is a clock-driver which can be *;
i* used by DOS for functions which access date *;
it and time on the battery powered clock *;
2% of the AT. *;
i* *;
i Author ¢ MICHAEL TISCHER *;
* developed on : 8.4.87 *:
% last Update : 9.21.87 *;

*. *e
’ ’
i assembly : MASM ATCLK; *i
Hhd LINK ATCLK; *:
i * EXE2BIN ATCLK ATCLK.SYS *;
i* *:
i* Call : Copy into root directory place the command *;
Had DEVICE=ATCLK.SYS in the CONFIG.SYS file *:
* and then boot the system. *;
’-***i***’k***t*’h*’kt*’h********’k*’h’k**’h***i**i****’k****ﬁ**i’h’k**********t*i;

code segment
assume cs:code,ds:code,es:code,ss:code

org 0 ;Program has no PSP, therefore

;beginning at offset address O

;== Constants

cmd _fld equ 2
status equ 3
end_adr equ 14
num db equ 18
b_adr equ 14

;O0ffset command-field in data block
;O0ffset status field in data block
;Offset driver end-adr. in data block
;0ffset number in data block

;O0ffset buffer-address in data block

;== Data

7-- Header of Device-Driver

186

dw -1,-1

dw 1000000000001000b
dw offset strat

dw offset intr

db “$CLOCK *

db ptr dw (2), (2)

mon_tab db 31

;Connection to next driver
;Driver attribute

;Pointer to strategy routine
;Pointer to interrupt routine
snew clock driver

;address of data block passed

;Table with number of days in

Abacus

6.12 DOS Device Drivers

february db 2

8

;the months

db 31,30,31,30,31,31,30,31,30,31

;== Routines and functions of the Driver

strat proc

mov

far

cs:db ptr,bx

;Strategy routine

sRecord address of the data block in

mov cs:db ptr+2,es ;the variable DB _PTR
ret ;back to caller
strat
H
intr proc far ;interrupt routine
push ax ;Save registers on the stack
push bx
push cx
push dx
push di
push si
push bp
push ds
push es
pushf ;Store the flag register
cld sincrement for string commands
push cs ;Set data segment register
pop ds ;Code is identical with data here
les di,dword ptr db_ptr;Address of data block to ES:DI

mov
je
je
or
jne
Imp

unk_fkt: mov

7

bl,es: [di+cmd fld]
bl, 4 -

ck read

bl,8

ck_write

bl,bl

unk_fkt

init

ax,8003h

Function Execution completed

intr_end label near

or
mov

popf
pop
pop
pop
pop
pop
pop
pop
pop
pop

ret

intr endp

ax, 0100h
es: [di+status],ax

es
ds
bp

di
cX

bx
ax

;Get command-code

;Should Time/Date be read?

;YES --> CK_READ

;Should Time/Date be written?

;YES --> CK_WRITE

;should the driver be initialized ?
;NO --> unknown function

;initialize driver

;Code for "unknown Command"

;Set finished-bit
;store everything in status field

;Restore flag register
;Restore other registers

;back to caller

187

6. The Disk Operating System PC System Programming

ck_read proc near ;Read Time/Date from the clock

mov byte ptr es:[di+num db],6 ;6 bytes are passed
les di,es:[di+b_adr] ;ES:DI points to the DOS-buffer

mov ah,4 ;Read function number for Date
int 1Ah ;Call BIOS Time interrupt

call date_ofs ;Change Date after offset to 1.1.1980
stosw ;store in buffer

mov ah,2 ;Read function number for time
int 1Ah ;Call BIOS Time interrupt

mov bl,ch ;Store hour in BL

call bed bin ;convert minutes

stosb ;Store in buffer

mov cl,bl ;sHour to CL

call bed bin ;Convert hour

stosb ;Store in buffer

xor al,al ;Hundredth second is 0

stosb ;Store in buffer

mov cl,dh ;Seconds to CL

call bed bin ;Convert seconds

stosb ;Store in buffer

Xor ax,ax ;everything o.k.

Jmp short intr_end sback to caller

ck_read endp

’

ck_write proc near ;Write Time/Date into clock

mov byte ptr es:[di+tnum_db],6 ;6 bytes are read
les di,es:[di+b_adr] ;ES:DI points to the DOS buffer

mov ax,es:[di] ;Get number of days since 1.1.1980
push ax ;store number
call ofs date ;convert into a date
mov ch,1%h ;Year begins with 19..
mov ah,5 ;Set function number for date
int 1AH ;Call BIOS Time interrupt
mov al,es:[di+2] ;Get minute from buffer
call bin bed ;convert to BCD
mov cl,al ;bring to CL
mov al,es:[di+5] ;Get seconds from buffer
call bin bed ;convert to BCD
mov dh,al ;bring to DH
mov al,es:[di+3] ;Get hours from buffer
call bin bcd ;convert to BCD
mov ch,al ;bring to CH
xor dl,dl ;no summer time
mov ah,3 ;Set function number for time
int 1AH ;Call BIOS Time interrupt
;-— Calculate Day of the Week
xor dx,dx ;HI-word for division
pop ax ;Get number of days from stack
or ax,ax ;is number 0?2
je nodiv ;Yes --> bypass division
xor dx,dx ;HI-word for division
mov c¢x,7 ;week has seven days
div cx ;divide AX by 7
nodiv: add di1,3 ;1.1.80 was a Tuesday (Day 3)
cmp dl,8 ;1s it a Sunday or Monday?
jb nosomo ;NO --> no correction necessary
sub dl,cl ;correct value
nosomo: mov al,6 ;Location 6 in RTC is day of week
out 70h,al ;Address to RTC-address register

188

Abacus

6.12 DOS Device Drivers

mov al,dl
out 71h,al

;Day of the week to AL
;Day of the week to RTC-data register

Xor ax,ax
Jmp intr_end

;everything o.k.
;back to caller

ck_write endp

;-— OFS_DATE: Convert number of days since 1.1.1980 into date ------—-
;-— Input : AX = Number of days since 1.1.1980

;-- Output : CL = Year, DH = Month and DL = Day

;-- Registers : AX, BX, CX, DX, SI and FLAGS are changed

;== Info : For conversion of Offsets the Array MON_TAB

P is used

ofs _date proc near

mov cl,80 ;Year-1980

mov dh, 01 ;January
ly: mov bx, 365 ;Number of days in a normal year
test cl,3 ;1s year a leap year?
jne 1yl ;NO --> 1yl
inc bl ;Leap Year has one day more
lyl: cnp ax,bx ;another year passed?
jb mo ;NO --> Calculate months
inc cl ;YES --> Increment year
sub ax,bx ;deduct number of days in this year

jmp short ly ;calculate next year

mo: mov bl,28 ;Days in February in a normal year
test cl,1lb ;is the year a leap year?
jne nolp2 ;NO --> nolp2
inc bl ;in leap year February has 29 days

nolp2: mov february,bl ;store number of days in February

mov si,offset mon_tab ;Address of months table

xor bh,bh

mol: mov bl, [si]

cmp ax, bx

;every month has less than 256 days
;Get number of days in month
;another month passed?

jb day ;NO --> calculate day

sub ax,bx ;YES --> deduct day of the month
inc dh ;increment month

inc si 7SI to next month in the table

jmp short mol

day: inc al

call bin bcd

;calculate next month

;the remainder + 1 is the day
;Convert day to BCD

mov dl,al ;transmit to DL

mov al,dh ;transmit month to AL
call bin bed ;convert to BCD

mov dh,al ;move to DH

mov al,cl

call bin bcd

mov cl,al

ofs_date endp

Se e e S

bin bed proc near

—-- BIN_BCD: Convert Binary-Number to BCD
== Input : AL = Binary value

-- Output : AL = corresponding BCD-value
-- Register : AX, CX and FLAGS are changed

;move year to AL
;convert to BCD
smove to CL

;back to caller

xor ah,ah ;prepare 16 bit division

mov ch, 10 ;work in decimal system

div ch ;divide AX by 10

shl al,l ;Shift quotient left 4 places

189

6. The Disk Operating System

PC System Programming

190

;OR remainder
;back to caller

-- DATE_OFS: Convert Date in number of days since 1.1.1980 -----

: CL = Year, DH = Month and DL = Day

: AX = Number of days since 1.1.1980
: AX, BX, CX, DX, SI and FLAGS are changed
: For conversion of date, the Array MON TAB

shl al,l
shl al,l
shl al,1
or al,ah
ret

bin bed endp

B

;== Input

;=-—- Output

;-- Register

;== Info

i is used

date_ofs proc near

call bed_bin
mov bl,al
mov cl,dh
call bed bin
mov dh,al
mov cl,dl
call bed _bin
mov dl,al
Xor ax,ax
mov ch,bl
dec bl
year: cmp bl, 80
jb monat
test bl,1lb
jne nolpyr
inc ax
nolpyr: add ax,365
dec bl
jmp short year
month: mov bl, 28
test ch,1lb
jne nolpyrl
inc bl
nolpyrl: mov february,bl
xor ch,ch
mov bx,offset mon tab
monatl: dec dh -
je add_day
mov cl, [bx]
add ax,cx
inc bx
jmp short monatl
add_day: add ax,dx
dec ax
ret

date_ofs endp

—-- BCD_BIN: Convert BCD to Binary Number

-- Output

;=— Input :
;-- Register

CL = BCD-Value

;Convert year to binary
stransmit to BL

;transmit month to CL
;Convert Month to binary
;and transmit again to DH
;transmit day to CL
;convert day to binary
sand again transmit to DL

;0 days

;store year

;back one year

;counted back to year 1980 ?
;YES --> convert month

;1s year a Leap year ?

sNO --> NOLPYR

;a leap year has one more day
;add days of year

;back one year

;process next year

;Days in February in a normal year
;1s current year a Leap Year?

;NO --> NOLPYR1

;in Leap Year February has 29 days
;store in Month table

;every month has less than 256 days
;Address of month table

;decrement number of months

;all month calculated --> TAG

;Get number of days in month

;add to total-days

;BX to next month in the table
;calculate next month

sadd current day
;deduct one day (1.1.80 = 0)
;back to caller

: AL = corresponding binary value
¢ AX, CX and FLAGS are changed

bed_bin proc near

mov
shr
shr
shr

al,cl
al,1l
al,l
al,1

;Convert BCD-value in CL to binary
;return in AL

;transmit value to AL
;shift 4 places right

Abacus

6.12 DOS Device Drivers

shr al,l

xor ah,ah ;Set AH to 0

mov ch,10 ;process in decimal system
mul ch ;smultiply AX by 10

mov ch,cl ;transmit CL to CH

and ch,1111b ;Set Hi-Nibble in CH to 0
add al,ch ;add AL and CH

ret ;back to caller

bcd_bin endp

init proc near ;Initialization routine

;—- the following code can be overwritten by DOS —--—--——-—--
;—— after installation of the clock

mov word ptr es:[ditend_adr],offset init ;Set end address

mov es:[di+end_adr+2],cs ;of the driver
mov ah,$;Output installation message

mov dx,offset initm ;Address of the text

int 21h ;Call DOS interrupt

Xor ax,ax ;everything o.k.

jmp intr_end sback to caller

initm db 13,10, "“**** ATCLK-Driver installed. (c) 1987 by"
db " MICHAEL TISCHER",13,10,%“$*"

init endp

7

code ends
end

The basic structure of this driver differs from the other drivers in that it calls the
individual functions directly, not through a table of their addresses. Since it only
supports functions 00H, 04H and 08H, it can test the function numbers passed by
DOS directly. If any other function occurs, it signals an error. Besides the INIT
routine, which only sets the ending address of the driver like CONDRY, the driver
only has the Read Time and Date and Write Time and Date functions.

Time routine

The TIME routine is fairly simple. For reading the clock, the routine reads the
time from the memory locations of the clock, converts the time from BCD to
binary format and then passes the time to the DOS buffer. For setting the time,
the reverse occurs: The routine reads the time from the DOS buffer, converts the
code from binary to BCD format and writes the BCD code into the memory
locations of the clock.

DOS uses the same format for indicating time as the clock: Hour, minute and
seconds each comprise one byte.

191

6. The Disk Operating System PC System Programming

Date routine

The DATE routine is more complicated. While the clock stores day, month and
year as one byte each, date encoding by DOS is the number of days since January
1, 1980. This number must be converted into a date in the form of day, month and
year as DOS writes the time and date. The reverse is true when you call the Read
function: the clock date must be converted into the number of days. Let's look at
how this is done.

The conversion routine starts with the year 1980. January 1, 1980 (called
NUMDAYS from here on) is equal to the value 0. The routine tests whether this
year is less than the current year. If so, it adds the number of days in this year to
NUMDAYS, adding a day to compensate for each leap year. Then it increments the
year and tests again for a smaller number than the current year. This loop repeats
until it reaches the current year. The routine then computes the number of days in
the current year's month of February, and enters this month into a table which
contains the number of days for each month.

In the next step, for every month less than the current month, the routine adds the
number of days in this month to NUMDAYS. Once it reaches the current month,
only the current days of the month are added to NUMDAYS. The end result is
transferred to the DOS buffer and the routine terminates.

Conversion to date format

Converting NUMDAYS into a date operates in reverse. The routine begins with
the year 1980 and tests whether the number of days in this year is less than or
equal to NUMDAYS. If this is the case, the year is incremented and the number of
days in this year is subtracted from NUMDAYS. This loop is repeated until the
number of days in a year is larger than NUMDAYS. The routine then computes
the number of days in the current year's month of February, and enters this month
into the table of the months.

January starts another loop which tests whether the number of days in the current
month is less than or equal to NUMDAYS. If this is the case, the month
increments and the routine subtracts the number of days from NUMDAYS. If the
number of days in a month is larger than NUMDAYS, the loop ends. NUMDAY'S
must only be incremented enough to give the day of the month and complete the
date.

The routine then converts the date to BCD format and enters the date in the
memory locations of the clock.

6.12.10 CD-ROMs

Soon after their introduction into the audio world, the compact disk industry began
approaching the PC market. A CD-ROM drive and a PC form an interesting

192

Abacus

6.12 DOS Device Drivers

combination. The compact disk medium itself is read-only, but 660 megabytes of
data can be stored in the form of text, graphics, etc.

Many publications and references are currently available on CD-ROM, such as:

. Telephone directories

. Books in Print

. The Bible in various translations
. The English translation of Pravda

In addition, maps, photographic libraries, public domain program collections and
medical databases are available in CD-ROM format. New titles are being published
daily in this growing market.

Why CD-ROM?

The CD-ROM has a clear advantage over the printed medium. Once captured and
digitized, information can be processed by a computer in whatever form the user
needs. The possibilities appear to be limitless, considering how easy it is to read
and compare information.

Another important consideration is the ease of access for many users. Load the
driver software, press a key or two, and the information is on the screen and ready.

You can buy a PC-compatible CD-ROM player for $800 to $1,000 at the time of
this writing. These players are available as either external or internal devices.

Interfacing

The PC's hardware can be easily interfaced to a CD-ROM player. The software
may encounter some problems, however. This is understandable, since DOS was
never intended to support these devices. This subsection shows how a CD-ROM
drive, using the proper drivers and utility programs, can be accessed like a read-
only floppy disk drive. This information may not be of immediate use to you.
However, this data will give you a closer look into the world of the device driver
and operating system organization.

This book mentioned earlier that the device drivers act as mediators between the
disk operating system and the external devices such as monitor, printer, disk drives
and hard disks. DOS differentiates between block device drivers and character device
drivers. As a mass storage device capable of reading information in a block mode, a
CD-ROM drive would normally be added to the rest of the system through a block
driver. Here's where the problem begins: DOS makes a number of assumptions
about block devices, and a CD-ROM drive cannot meet the criteria of these
assumptions.

193

6. The Disk Operating System PC System Programming

Memory limitations

In versions of DOS up to and including Version 3.3, the biggest obstacle to
interfacing with a block driver was the 32 megabyte limit imposed on every
volume designated as a block device. The second biggest obstacle is the lack of a
file allocation table (FAT) on a CD-ROM. Instead of the FAT, the CD-ROM
contains a form of data table into which the starting addresses of the various
subdirectories and files are recorded. However, DOS still demands a FAT which it
can at least read during driver initialization.

A character driver works better for implementing a CD-ROM driver, since DOS
makes no assumptions about the structure of the devices connected through
character drivers. Even character drivers are poorly suited for communication with a
CD-ROM drive, since they transmit characters one at a time instead of in groups
of characters. Another disadvantage is the need for a name (e.g., CON) instead of a
device designation. DOS must first see the CD-ROM driver as a character driver to
DOS to prevent read accesses to a non-existent FAT. The CONFIG.SYS file
supplies the name of the device during the system booting process.

Configuring the CD-ROM

Driver

194

The manufacturer usually includes CD-ROM driver software with the CD-ROM
drive package. A driver of this type usually has a name such as SONY.SYS or
HITACHILSYS, depending on the manufacturer.

The CONFIG.SYS sequence which installs this driver can look something like
this:

DEVICE=HITACHI.SYS /D:CDR1
The device driver selects the name CDR1 as the name of the CD-ROM drive.

After executing the initialization routine from DOS, the CD-ROM is treated as a
block driver which has been enhanced with a few special functions supporting CD-
ROMs. However, DOS still views the CD-ROM player as a character driver: DOS
cannot view the CD-ROM's directory, nor can it directly access the files on the
CD-ROM.

software extensions

To overcome this obstacle, many CD-ROM players come with a TSR (Terminate
and Stay Resident) program named MSCDEX (Microsoft CD-ROM Extension) in
addition to the device driver software (see Chapter 8 for information on TSR
programs). This program must be called from within the AUTOEXEC.BAT file.
The name of the CD driver can be passed to the program from the DOS prompt, as
shown in the following example:

MSCDEX /D:CDR1

Abacus

6.12 DOS Device Drivers

MSCDEX first opens this driver through the DOS OPEN function and provides it
a device designation. DOS assumes that MSCDEX is a device on a remote
network, as supported by DOS in Version 3.1.

MSCDEX brings us closer to the solution, since DOS handles network devices as
files containing more than 32 megabytes. These devices are accessed through
redirection, rather than direct access from DOS. The resident portion of MSCDEX
interfaces to the redirector, and intercepts all calls to the redirector. If MSCDEX
receives a call addressed to the CD-ROM drive, it adapts each instruction to a call
applicable to the CD-ROM driver. This makes a perfect connection between DOS
and the CD-ROM drive, while still allowing access to subdirectories and files at
any time.

To network
®.g., read access oS redirector Network call
Application xernal MSCDEX Redirector
rna.
CD-ROM access
y
Command CD-ROM
interpreter device driver
COMMAND . COM

Keyboard L

CD-ROM drive

CD-ROM access through MSCDEX and its device driver

195

http:interpret.er

6. The Disk Operating System PC System Programming

6.13

DOS Mass Storage

Many tasks performed by DOS are unseen by the user. This is why some. users
underestimate the complexity of DOS. For example, DOS requires many data
structures for handling a mass storage device, and the user may not realize this.
This section looks deeper into DOS and reveals the architecture and operation of
these data structures.

From the user's viewpoint, DOS addresses mass storage devices as volumes where
each individual volume has been assigned a letter. Floppy disk drives are identified
by the letters A and B, while the letters C or D usually identify a hard disk. A
mass storage device can have several volumes. This division into several volumes
or partitions is very practical for hard disks. Partitions on a floppy diskette don't
work as well due to the limited amount of storage space. A hard disk may be
divided into additional partitions if UNIX (or XENIX) is used in addition to DOS.
Each of the two operating systems then has its own volume which is also
designated by its own letter.

Volume names

Sectors

196

Each volume can be assigned a volume name when created, but this volume name
is not a requirement. The DIR command lists volume names when they are
available. Each volume has its own root directory, which can contain multiple
subdirectories and files. These subdirectories and files can be maintained and
manipulated by using one or more of the interrupt 21H functions.

DOS subdivides each volume into a series of sectors. These sectors are organized
sequentially. Each sector contains a specific number of bytes (usually 512) and is
assigned a consecutive number beginning with sector 0. Since function calls with
interrupt 21H are directed to files rather than individual sectors, DOS converts
these file accesses into sector accesses. To do this, DOS uses directories and a data
structure known as the FAT (file allocation table), which you read about earlier in
this book. After the desired sector number has been determined, control is passed to
the device driver which translates this sector number into a physical address. Mass
storage devices such as floppy and hard disks are divided into individual tracks
which contain a certain number of sectors. In addition to the physical sector
number, the driver must also determine the number of the track and the number of
the read head.

Abacus 6.13 DOS Mass Storage

Manufacturer's name, device driver, boot routine

First file allocation table (FAT)

Sector

number One or more copies of FAT

Root directory with volume names

Data register for files and subdirectories

Mass storage device structure

As mentioned above, every volume is divided into various areas containing the
various DOS data structures and individual files. Since the size of the individual
areas can differ depending on the type of mass storage device (and the
manufacturer), every volume contains a boot sector. The boot sector contains all
the information required to access to the different areas and data structures. DOS
creates this sector during disk formatting. Boot sectors always have the same
structure and are always located in sector 0 so that DOS can find and interpret it
properly.

The following illustration shows the layout of the boot sector.

00(h) JJump command to boot routine (3 bytes)
(E9xxx or EBxx90)
03 (h) |Manufacturer's name and version number (8 bytes)

0B(h) |Bytes per sector (1 word)
0D (h) |Sectors per cluster (1 byte)
OE (h) [Number of reserved sectors (1 word)
10 (h) |Number of FATs (1 byte) »BPB
11 (h) |Number of entries in root directory (1 word)
13(h) |Number of sectors in volume (1 word)
15(h) |Media descriptor (1 byte)
16(h) [Number of sectors per FAT (1 word
18 (h) |Sectors per track (1 word)

1A (h) |Number of read/write heads
1C(h) |Number of hidden sectors

1E(h)-
e BOOT ROUTINE

Boot sector layout

Boot sector

The name boot sector comes from the fact that DOS boots (i.e., starts) from it.
DOS is loaded and started from disk—it is not usually stored in permanent PC
memory (ROM). After you turn the computer on, the BIOS takes over the system
initialization and loads logical sector 0 of the floppy or hard disk into memory.
Once it completes its work the BIOS starts execution at address 0.

197

6. The Disk Operating System PC System Programming

The boot sector always contains an assembly language JUMP instruction at
address 0. After execution the program continues at a location further into the boot
sector. This instruction can be either a normal jump instruction or a "short jump."
Since the field for this jump instruction is 3 bytes long, but a "short jump" only
requires 2 bytes, a NOP (No Operation) instruction always follows the "short
jump" to fill in the extra byte. This NOP does nothing. A series of fields follow
which contain certain information about the organization of the media. The first
field is 8 bytes long and contains the manufacturer's name, where this medium was
formatted, as well as the DOS version number which performed the formatting.
The next fields contain the physical format of the media (i.e., the number of bytes
per sector, the number of sectors per track, etc.) and the size of the DOS data
structures stored on the media. Since the BIOS and DOS-BIOS functions represent
the lowest level of access to disk drives and hard disks, this area is also designated
as the BIOS parameter block (BPB). Three additional fields, which can provide
additional information to the device driver about the media, follow the BPB; these
three fields aren't used directly by DOS.

Bootstrap

198

Next comes the bootstrap routine to which the jump instruction branches at the
beginning of this boot sector. It handles the loading and starting of DOS through
the individual system components (see Section 6.3).

Several reserved sectors may follow the boot sector. These reserved sectors can
contain additional bootstrap code. The numbers of these sectors are recorded in the
BPB in the field starting at address OEH. It terminates the boot sector and a 1 in
this field indicates that no additional reserved sectors follow the boot sector (this is
the case for most PCs).

In order for DOS to add new files or enlarge existing files, it must know which
sectors of the media are still available. This information is contained in a data
structure called the FAT (file allocation table) which is immediately adjacent to the
media's reserved area. Each entry in the FAT corresponds with a certain number of
logically contiguous sectors, called clusters, on the media. Location ODH of the
boot sector specifies the number of sectors per cluster as part of the BIOS
parameter table. Only multiples of 2 are legal values. On an XT hard disk this
location contains the value 8 (8 consecutive sectors form a cluster). As the
following table demonstrates, the number of sectors comprising a cluster depends
on the storage medium.

Device Sectors per cluster
Single sided disk drive 1
Double sided disk drive 2
AT hard disk 4
XT hard disk 8

The reason for joining several sectors into a cluster is derived from the logic used
by DOS to write files to a media. It disassembles the file to fit the pieces into the

Abacus

6.13 DOS Mass Storage

sectors which are still available, instead of selecting adjoining sectors for file
storage. This process slows file access since the read/write head must be
repositioned after almost every read function. To avoid an excessive disassembly of
the file, DOS gathers several sequential sectors on the media into a cluster. This
ensures that at least the sectors of a cluster contain a portion of a file. If DOS
didn't use clusters, a file of 24 sectors could be stored in many separate sectors,
which would require the read/write head to be positioned a maximum of 24 times
to read the entire file. The cluster principle saves a lot of time, since the file is
stored in 6 clusters and the read/write head only has to be repositioned 6 times.

There is a problem however. Since a file is assigned at least one cluster, some
storage space is wasted. Consider AUTOEXEC.BAT which is usually no longer
than 150 bytes. Normally, a single sector could contain this file (and still waste
almost 400 bytes), but AUTOEXEC.BAT occupies a cluster of 2048 bytes on an
AT, which wastes more than 1.5K of hard disk space.

Now back to the file allocation table:

The size of individual entries in the FAT under DOS Versions 1 and 2 is 12 bits.
For DOS Version 3 and later, the size of an entry in the FAT depends on the
number of clusters: if a volume has more than 4,096 clusters, then each FAT entry
is 16 bits; otherwise each FAT entry is 12 bits. The number of bits per FAT entry
must be determined before file access. The information in the BIOS parameter
block is used for this purpose. The total number of sectors in the volume can be
found starting at location 13H. Divide this number by the number of sectors per
cluster to obtain the number of clusters in the volume.

The first two entries of the FAT are reserved and have nothing to do with the
cluster assignment. Depending on the sizes of the individual entries, 24 bits (3
bytes) or 32 bits (4 bytes) can be available. The first byte contains the media
descriptor, while the value 255 fill in the other bytes. The media descriptor, which
is also stored in address 15H of the BPB, indicates the device which the media uses
(for example a diskette). The following codes are possible:

Code Device
F8H Hard disk
F9H 5.25" disk drive (AT only)

2 sides, 80 tracks, 15 sectors
FCH 5.25" disk drive

1 side, 40 tracks, 9 sectors
FDH 5.25" disk drive

2 sides, 40 tracks, 9 sectors
FEH 5.25" disk drive

1 side, 40 tracks, 8 sectors
FFH 5.25" disk drive

2 sides, 40 tracks, 8 sectors

This shows the various diskette formats which DOS supports in 5.25" diskettes.

199

6. The Disk Operating System

PC System Programming

Included in DOS version 1.00 1.10 2.00 2.00 3.00
M criptor | FE FF EC FD F9
Number of read/write heads 1 2 1 2 2
Number of tracks per head 40 40 40 40 80
[Number of sectors per track |3])])
Number of bytes per sector 512 512 512 512 512
Number of sectors per cluster | 1 2 1 2 1

er ol reserved sectors 1 1 1 1 1
INumber of sectors per FAT 1 1 2 2 2
Number of FATs 2 2 2 2 2
[Number of sectors 4 7 4 7 14
in root directory
Number of entries 64 112 64 112 224
in root directory
Total number of sectors 320 640 360 720 2400
Free sectors for data 313 620 351 708 2371
Number of clusters 313 315 351 354 2371
To capacity _160K 320K _1180K 1360K 1,2Meq |
Total file capacity 156.5K 315K |175.5K]354K 1.185Me

DOS 5.25” diskette formats

You may have wondered why the individual entries of the FAT are 12 or 16 bits
wide if all they do is indicate whether a cluster is occupied or not. This could have
been done with one bit: The bit could contain 1 when the cluster is occupied and 0
if the cluster is available. The reason is that the entries in the FAT help mark the
available clusters and identify the individual clusters containing a specific file. The
directory entry of a file tells DOS which cluster holds the first data of a file. The
number of this cluster corresponds to the number of the FAT entry belonging to
it. In this entry is the number of the cluster containing the next sector of file data.
As the following illustration shows, a chain forms in which the individual clusters
assigned to a file can be located in the proper sequence.

200

Abacus 6.13 DOS Mass Storage

Media descriptor Directory entry for
entry humber EAI FORMAT.EXE file
0- ©FIO|RM
1.
2 os | A|T | 32| 32
iy s | BIX|E| o
6. 007 (h) oc
7. C 008 (h) o
8. 00D (h) 10 %
9. 5% 28 . :-o . =
iy - P b | 56|12
c. S —
D. 00E (h) 181 74]26 E O
E. L_oos(n)‘f el 16lesl o o
F. ¥ e
FAT entry and file clusters

The FAT entry which corresponds to the last cluster of a file must contain a
special code which tells DOS that the file ends here. The following table shows
the meanings of the various FAT entries.

Code Meaning
(0) 000H Cluster is available
(F) FFOH - (F)FF6H reserved cluster
(F) FF7H Cluster damaged, not used
(F)FF8H - (F)FFFH Last file cluster
(x) xxXxH Next file cluster
Note: The first hexadecimal number in parentheses refers to a FAT whose

entries are 16 bits wide.
DOS is designed so that several identical copies of the FAT on the media may be
kept. This offers the advantage that in case of damage to one FAT, it can be
replaced with another, preventing data loss.

The DOS CHKDSK command tests the various FATS to see if they are identical.

201

6. The Disk Operating System PC System Programming

Directory structure

202

Now let's look at the structure of a directory.

The root directory of a volume immediately follows the last copy of the FAT.
This root directory (like all subdirectories) consists of 32-byte entries in which
information can be stored about individual files, subdirectories and volume names.
The maximum number of entries in the root directory, and therefore its size, is
stored in the BPB starting at address 11H. The FORMAT command specifies both
the size number and the BPB. Before considering individual fields of this data
structure, here's a graphic overview of a directory entry:

+ OOH | Filename (blanks padded w/ spaces) (8 bytes)

+ 08H | File extension (blanks padded w/ spaces) (3 bytes)

+ OBH | File attribute {1 byte)

+ _OCH | Reserved (10 bytes) |
+ 16H | Time of last change (1_word)

+ 18H | Date of last change {1 word)

+ 1AH | First cluster of file (1 word)

+ 1CH | File size (2 words)

Directory entry layout

The first 8 bytes normally contain the name of the current file. If the filename is
shorter than 8 characters, DOS fills the remaining characters with spaces (ASCII
code 32). If the directory entry does not contain information on a file, but the file
is used in another manner, the first byte of the filename (therefore the first byte of
the directory entry) is identified by special code:

Code Meaning

00H Last directory entry

0SH First character of filename
has ASCII code ESH

2EH File applies to current
directory

ES5H File deleted

The second field contains the three character filename extension. If the extension is
less than three characters in length, DOS fills in the extra characters with blank
spaces (ASCII code 32). The period between filename and extension is displayed by
the DOS command DIR but is not kept in the directory; DIR displays it just to
make the names between easier to read.

Next follows the one-byte attribute field. As shown in the following figure the
individual bits of this field define certain attributes. The various attributes can be
combined so that a file (as in the IBMBIOS.COM file) can have the attributes
READ_ONLY, SYSTEM and HIDDEN.

http:IBMBIOS.COM

Abacus

6.13 DOS Mass Storage

7 _6 5 4 3 2 1 0o bit
| I —Ji=write-protected
=read/write enabled

— | fi=hidden file

(invisible to DIR)
=system file
fi=volume name
1

=subdirectory
archive bit

reserved

Attribute field in the directory

While the significance of bits O to 4 is easy to see, the significance of bit 5 needs
additional explanation. The name archive bit comes from its use in making backup
copies. Every time a file is created or modified, this bit is set to 1. If a program is
used to backup this file, (for example the DOS BACKUP command), the archive
bit is reset to 0. The next time the BACKUP command is used, it can determine
from the archive bit whether this file has been modified since the last backup. If it
still contains the value 0, the file doesn't have to be backed up again. If the archive
bit contains a 1, the file was modified and should be backed up again.

The attributes volume name and subdirectory will be discussed in more detail
below.

A reserved field which DOS requires for internal operations follows the attribute
field.

The time and date fields indicate when the file was last created or modified. Both
are stored as words (2 bytes), but have special and different formats.

203

6. The Disk Operating System PC System Programming

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bit

. A, AL —

[[T
Hour Minute Seconds in
2-second
increments (e.g.,)t
(13 means 26)

1514 13 12 11 10 9 8 7 6 5 4 3 2 1 0 bit

IHEE

\ AL A -y

I | |
Year (relative to 1980) Month Day of month

Timeldate field formats in directory entry

The next field indicates the number of the cluster which contains the first data of
the file. It also indicates the number of the FAT containing the number of the next
cluster assigned to the file. This field forms the beginning of a chain through
which all the clusters assigned to a file can be retrieved.

The file size in bytes is stored in 2 words with the lower word stored first. Using a
small formula and the two words, the file size can be calculated as follows:

File size = wordl + word2 * 65,536

Subdirectory and volume name

204

Both subdirectory and volume name deserve special consideration. The volume
name can only exist in the root directory and is indicated by bit 3 of the current
directory entry's attribute field. The filename in a volume entry acts as the volume
name; the DOS commands DIR, VOL and TREE can be used to display the
volume name.

If bit 4 of the current directory's attribute field is set, then this entry is for a
subdirectory. If in addition bit 1 in this field is set, the subdirectory can be
addressed, but will not be displayed when you execute the DIR command. For
these entries, the filename and extension field contain the subdirectory name; the
date and time field contain the time of its creation. The file length field is always
0. The field which normally indicates the first cluster of the file now indicates the
cluster which contains the directory entries of this subdirectory. They have the
same 32-byte structure as the entries in the root directory. As in a normal file, the
entry in the FAT, which corresponds with the subdirectory cluster, points to the
next cluster of the subdirectory, as long as one cluster is enough for the directory
of the subdirectory. This is not true of the root directory which extends through
several sectors or clusters, which follow each other logically. Furthermore the

Abacus

6.13 DOS Mass Storage

individual clusters of the root directory cannot be connected through the FAT,
because it only refers to the data area of the volume. This is the area which accepts
files and subdirectories, but not the root directory.

The process described above reveals that DOS separates the individual files in a
storage unit according to their directories. It doesn't store the files of one directory
in one area, but scatters the files across the storage medium.

When a subdirectory is created, two files are created with the names "' and "..'
which can only be erased when you remove the entire subdirectory. The first of
these two files points to the current subdirectory, and its cluster field contains the
number of the first cluster of the current subdirectory. The second entry points to
the parent directory, which in the directory tree is located ahead of the current
directory. If the parent directory is the root directory, the cluster field contains the
value 0. The path to the root directory can be traced back through this entry, since
as every subdirectory searches for its parent directory it comes closer to the root
directory.

Now back to our discussion of mass storage device structures. The file area follows
the root directory just described. It occupies the remaining storage area of the mass
storage device. It accepts the individual files and various subdirectories. For every
cluster in this area there is an entry in the FAT corresponding to this cluster. If a
file is enlarged, DOS reserves a cluster which is still available to store the
additional data of the file. The FAT entry of the last cluster which formerly
indicated the end of file is changed to point to the new cluster which in turn
contains the new end character. In DOS Versions 1.0 and 2.0, unused clusters are
searched for from the beginning. In DOS Versions 3.0 and up, a more
sophisticated search is used to try to select an unused cluster in the vicinity of
other clusters comprising the file. This reduces the access time to the file as much
as possible. Conversely, when reducing file size or deleting a file, the FAT is
updated to indicate that the unused clusters are again available. They can be used
again when a new file is created or expanded.

205

6. The Disk Operating System PC System Programming

6.14 Tips on Compatibility between Computers

206

This book discusses three methods of accessing PC hardware. On the one hand,
you can access available DOS or BIOS functions. On the other hand, you have the
option of developing new functions and routines for direct hardware control. While
this offers no advantage in mass storage device and keyboard access, special
routines for screen display are often much faster and more efficient than BIOS and
DOS routines used to do the same job.

For compatibility, however, DOS functions win hands down. Those of you who
want to develop programs which can run, without problems, on virtually any DOS
computer, must observe some rules for DOS function calls. These rules also apply
to future compatibility. To develop programs under the current DOS versions
which should execute without problems under future versions of DOS, you should
follow the suggestions made below.

. Use only DOS functions for screen and hardware access. Do not use BIOS
or other hardware dependent functions.

. Display error messages on the standard error device (handle 2).

. Use Version 2 UNIX-compatible handle functions for file access. This

ensures compatibility with future versions of DOS.

. If you use the old FCB functions for file or directory access (e.g., for
special attributes), make sure no FCBs are opened which are already open,
and no FCBs are closed which are already closed. This could cause
problems in a network.

. Check the DOS version number at the beginning of the program and end
the program with an error message if it cannot be executed under this
version.

. Store as many constants as needed for program execution (e.g., the paths

of programs and files to be loaded) within the environment block. Access
these values from the environment block within the program.

. Release all memory not required by the program using the DOS functions
(this is especially important when working with COM programs).

. . If you need additional memory, request it by using the proper DOS
functions.

. Use the available DOS functions for interrupt vectors; do not access
interrupt vectors directly.

. To change the contents of various interrupt vectors within a program,

first save the old contents and restore them before the end of the program.

Abacus

6.14 Tips on Compatibility between Computers

Call one of the DOS functions (31H or 4CH) before the end of the
program to pass a value to the calling program to signal whether the
program was executed correctly. Avoid using the other functions for

ending a program (interrupt 20H and function O of interrupt 21H).

Use function 59H of interrupt 21H (available in DOS Versions 3.0 and
higher) to localize error sources.

In conclusion, here is an overview of the older DOS functions to avoid, and the
new equivalent functions that can replace them.

0ld New

00H End program 4CH End Process

OFH Open file 3DH Open Handle

10H Close file 3EH Close handle

11H Find first entry 4EH Find first entry

12H Find next entry 4FH Find next entry

13H Erase file 41H Erase directory entry

14H Sequential read 3FH Read (through handle)

15H Sequential write 40H Write (through handle)

16H Created file 3CH Created handle or
S5AH Created temporary file or
5BH Created new file

17H Rename file 56H Rename directory entry

21H Random access read 3FH Read (through handle)

22H Random access write 40H Write (through handle)

23H Sense file size 42H Move file pointer

24H Set data set number 42H Move file pointer

26H Create new PSP 4BH Load and execute from file

27H Random access read 3FH Read (through handle)

28H Random access write 40H Write (through handle)

If you follow all these suggestions, your programs will execute on other

computers and under future DOS versions with little or no modifications.

207

6. The Disk Operating System PC System Programming

6.15 Undocumented DOS Structures

208

DOS manages the operating storage media (RAM and mass storage) and programs
which use multiple data structures. Some of these structures are thoroughly
documented and have already been described in this book. These documented
structures include:

. Program Segment Prefix (PSP), which precedes every program in
memory

. File Control Blocks (FCBs), which control file access

. Memory Control Blc;cks (MCBs), which control RAM

. Structures in the header of a device driver

. Environment blocks, which contain information strings about every

program in memory

. The many structures which DOS keeps in mass storage (boot sector, File
Allocation Table [FAT], root directory, etc.)

In addition, there are a number of undocumented structures. Until quite recently,
only a few people knew of the existence of these structures, since most technical
manuals concerning DOS didn't describe them. The authors of many of these
technical manuals felt that these structures weren't needed for programming, and
that their coding would change in future versions of DOS. The fact is that certain
kinds of programming do depend upon these structures, and that some applications
couldn't be realized at all without them.

Floppy disk and hard disk management utilities make intensive use of the
undocumented structures. If you examine the Norton Utilities® using a debugging
application, you'd see how much this program accesses these structures.

A minor change in these structures took place between DOS Version 3.3 and
Version 4.0, but this is the first change since the introduction of DOS Version 2.0
in 1983. Therefore, the chances are almost nil of finding altered coding in the
undocumented structures of subsequent DOS versions.

Knowing about these structures can be practical data for programming some
applications. This section lists our findings from viewing the Norton Utilities®.

The DOS Info Block (DIB) is the key to accessing the most important DOS
structures. This block holds pointers to several DOS structures and to other
information as well. The knowledge of its existence and construction is useful to a
program only if its address in memory is known. This address is not in a fixed
memory location, nor can it be obtained with any of the documented functions of
DOS interrupt 21H. However, the undocumented function 52H can offer us some

Abacus

6.15 Undocumented DOS Structures

assistance in finding that address. Calling function 52H returns the address of the
DOS Info Block to the ES:BX register pair.

As opposed to all other DOS functions that fetch pointers to a structure or data
area, the contents of the ES:BX register pair point not to the first, but rather to the
second field within the DIB after the function call.

DOS Info Block (DIB) structure
Addr. | Contents Type
-04H Pointer to MCB 1l ptr
ES:BX | Pointer to first Drive Parameter Block (DPB) 1 ptr
+04H Pointer to last DOS buffer 1 ptr
+08H Pointer to clock driver ($CLOCK) 1l ptr
+0CH Pointer to console driver (CON) 1l ptr
+10H Maximum sector length (based on all connected |1l word
mass storage devices)
+12H Pointer to first DOS buffer. 1l ptr
+16H | Pointer to path table 1 ptr
+1AH Pointer to System File Table (SFT) 1 ptr
Length: 1EH (30) bytes

The first field in the DIB contains a pointer to the Memory Control Block (MCB)
of the first allocated memory area. You will find detailed information on this
structure and what it does in Section 6.9 (Memory Allocation from DOS). The
pointer in the second field of the DIB gives access to a wealth of information that
could not be had in any other way. It points to the first Drive Parameter Block
(DPB), a structure which DOS lays out for all mass storage devices (floppy disks,

hard disks, tape drives, etc.).
Drive Parameter Block (DPB) structure
Addr. | Contents Type
+00H Number or symbol for corresponding drive 1 byte

(O =A, 1 =B, etc.)

+01H Sub-unit of device driver for drive 1 byte
+02H Bytes per sector 1 word
+04H Interleave factor 1 byte
+05H Sectors per cluster 1 byte
+06H Reserved sectors (for boot sector) 1 word
+08H Number of File Allocation Tables (FATs) 1 byte
+09H Number of entries in root directory 1 word
+0BH First occupied sector 1 word
+0DH Last occupied cluster 1 word
+0FH Sectors per FAT 1 byte
+10H First data sector 1 word
+12H Pointer to header (correspond. device driver) | 1 ptr
+16H Media descriptor 1 byte
+17H Used flag (OFFH=device not yet in use) 1 byte
+18H Pointer to next DPB (xxxX:FFFF = last DPB) 1 ptr
Length: 1CH (28) bytes

209

6. The Disk Operating System PC System Programming

210

The first field of the DPB tells us to which device the block belongs. 0 stands for
drive A, 1 for B, 2 for C, etc. The second field specifies the number of the subunit.
To understand the meaning of this field, remember that access to the individual
devices occurs through the device driver. DOS doesn't perform direct access to a
disk drive or hard disk. This keeps DOS from having to deal with the physical
characteristics of a mass storage device. Instead, DOS calls a device driver for this
purpose, which acts as mediator between DOS and hardware.

Of course, not every device has a separate device driver, since one device driver can
support many single devices. For example, the device driver built into DOS
manages the floppy disk drives and the first available hard disk. DOS configures a
DPB for each device, so a hard disk system would automatically have 3 DPBs
available (a DPB is always configured for floppy drive B, even if only one floppy
drive is actually available). Each device receives a number between 0 and the total
number of devices minus 1, to help each driver to identify the devices it manages.
This number is the one found in the subunit field.

The next field lists the number of bytes per sector. Under DOS this is almost
always 512. After this comes the interleave factor, which gives the number of
logical sectors displaced by physical sectors when the medium is formatted (more
on this in Chapter 7). This value can be 1 for floppy disk drives, 6 for the XT hard
disk and 3 for the AT hard disk. For floppy disk drives, this field can also have the
value FEH if no access has been attempted to the disk in the drive. The value FEH
means that the interleave factor is currently unknown.

There are a number of other fields related to these two which have already been
named in connection with the management of mass storage devices through DOS
(see Section 6.13). Among other things, they describe the status and the size of the
structures DOS created to manage mass storage devices. A pointer to the header of
the device driver lies within these fields. DOS uses this pointer when accessing the
device. More information can be obtained with this pointer since, for example, the
driver attribute is listed in the header of the device driver.

Following this field is the media descriptor to which the Used flag is connected.
As long as no access to the device has occurred, this flag contains the value OFFH.
After the first access it changes to 0 and remains unchanged until a system reset.

The DPB ends with a pointer that establishes communication with the next DPB.
Since every DPB defines its end with such a pointer, a kind of chain is created,
through which all DPBs can be reached. To signal the end of the chain, the offset
address of this pointer in the last DPB contains the value OFFFFH. When a
program needs the information within the DOS, there are many ways to find the
address of the desired DPB. One method is to follow the chain described above by
first finding out the address of the DIB. This gives you the pointer to the first
DPB, from which you can follow the chain until you reach the DPB you want.

Abacus

6.15 Undocumented DOS Structures

There's a better way, which isn't as susceptible to changes within the DIB, through
two undocumented DOS functions. This involves the 1FH and 32H functions,
which have been part of the DOS function repertoire since Version 2.0, although
not documented by Microsoft. When called, both return a pointer to a DPB to the
DS:BX register pair. While function 1FH always delivers a pointer to the DPB of
the current disk drive, the address delivered by function 32H refers to the device
whose number is passed to the function in the DL register at the time it's called. (0
represents the current drive, 1 is drive A, 2 drive B etc.). It's much more flexible
than function 1FH.

Access to the various DPBs with the 1FH and 32H functions offers a further
advantage, because it forces DOS to retrieve other information such as the
interleave factor and the media descriptor byte, which is ascertained for the disk
drive only after the first access. If you get to the DPB through the pointer in the
DIB block, the various fields may not have been initialized, and could contain the
wrong values.

Besides the pointer to the first DPB, the DIB contains the pointer to the first DOS
buffer at address 12H. These DOS buffers store individual sectors, so that the
sectors don't have to be repeatedly loaded from disk. The DOS buffers can be most
effective when used for storing disk sectors that are frequently needed by the
currently running program. Besides the FAT, these include the root directory and
its subdirectories. The number of buffers can be defined by the user in the
CONFIG.SYS file, If this number exceeds those needed for the FAT, root directory
and subdirectories, normal sectors can also be temporarily stored here, in the hope
that they are called to be loaded again in the near future, and can be taken directly
from the buffer.

So that DOS can quickly check each buffer for the desired sector with every read
operation, the individual sectors are linked together.

DOS buffer structure

Addr. | Contents Type

+00H | Pointer to next DOS buffer 1 ptr
+04H Drive number (0 = A, 1 = B etc.) 1 byte
+05H Flags 1 byte
+06H Sector number 1 word
+08H Reserved 2 bytes
+0AH Contents of buffered sector 512 bytes
Length: 210H (528) bytes

As with DPBs, this happens with the help of a pointer which appears at the start
of every buffer. Also, the last buffer is reached when the offset address of the
pointer contains the value OFFFFH. After the field linking one buffer to the next
comes the number of the drive where the buffered sector originates. The value
would be O for drive A, 1 for B, 2 for C, etc. Besides the drive number, the
identification of a sector requires a sector number. This is located beginning at
position 06H in the DOS buffer. The last field in the buffer header stores a pointer

211

6. The Disk Operating System PC System Programming

212

to the corresponding DPB, so that DOS can get information on the device which
loaded the buffered sector. Although this is the last field in the header of the DOS
buffer, the buffered sector does not end immediately after this field. There are two
more bytes which follow. The reason for this is that the DOS code is written in
machine language, and when it comes to working with memory blocks, it is most
efficient to have the buffered sector begin with an address that is divisible by 16.

The header of the DOS buffer is not the last place we run across the DPB. It turns
up again in the path table, which starts at address 16H in the DIB. This contains
the current path for each drive as well as a pointer to its DPB.

01 23 45 6 78 9 ABCDE.F

0000: 41 3A S5C 43 41 43 48 45-00 00 00 00 00 00 00 00 A:\CACHE........
0010: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ..coceececnsvee .
0020: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00cececencennen
0030: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ...ccceceeecenen
0040: 00 00 00 00 40 20 74 80-02 27 03 FF FF FF FF 02@ t..'......
0050: 00 42 3A 5C 00 00 00 00-00 00 00 00 00 00 00 00 .B:\.cceceeeconee
0060: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00ccecevccnnen
0070: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00ccecececcnen
0080: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ...cecececacanne
0090: 00 00 00 00 00 40 40 74-80 02 00 00 FF FF FF FF@Qt........
OOAO: 02 00 43 3A 5C 54 43 5C-42 41 55 53 5C 41 53 4D ..C:\TC\BAUS\ASM
00BO: S5C 48 45 52 43 4D 4F 4E-4F 00 00 00 00 00 00 00 \HERCMONO.......
00C0: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00 ...covecevcccace
00D0: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00coceeeccaee
0OEO: 00 00 00 00 00 00 40 60-74 80 02 65 05 FF FF FF @'t..e....
O00F0: FF 02 00 44 3A 5C 4D 53-43 5C 42 49 4E 00 00 00 ...D:\MSC\BIN...
0100: 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00cccecacenes
0110: 00 00 00 00 00 00 0O 00-00 00 00 00 00 00 00 00cecevecccaan
0120: 00 00 00 00 00 00 OO 00-00 00 00 00 00 00 00 00ccceccecnces
0130: 00 00 00 00 00 00 00 40-00 00 80 OD 17 00 FF FF [R
0140: FF FF 02 00

Memory dump of the path table contents

As long as the LASTDRIVE command is in the system's configuration file, the
table will have entries for drives A through the one specified by LASTDRIVE. If
this command is missing, however, the table will only have entries for each device
supported by the installed device driver. If you change the entries in this table, you
can divert one drive to another. The JOIN and SUBST DOS commands also take
advantage of this by manipulating the path table entry of the drive to be diverted.

Abacus 6.16 DOS 4.0

6.16 DOS 4.0

People were rather surprised when IBM introduced DOS 4.0 instead of DOS 3.4.
The version number suggests vast improvements to this operating system.
Version 4.0 does in fact have some features to offer which clearly set it apart from

its predecessors:

. Full-screen system installation

. Graphic user interfaces for directory display, file selection and running
programs

. Full mouse support

. Support of Extended Memory Specification (EMS) according to the LIM
4.0 specification for buffer storage

. Hard disk partition (volume) support and support for device capacity larger
than 32 megabytes

. Improved file access through optimization of the system code

The introduction of these features mean changes in the operating system code.
Although most of these changes will not affect most application programs, they
may cause problems in programs that lic within the system, as well as programs
developed without following rules of compatibility (see Section 6.14).

Compatibility problems

First of all, the support of hard disk partitions and files larger than 32 megabytes
implies definite changes to the DOS file system. These changes don't affect
programs that manipulate files only through the DOS interrupt 21H functions.
However, many block device drivers and programs that access the DOS structures
of the file system directly will have to be adapted to the new file system. This
includes programs like the Norton Utilities®, PC Tools® and all the other
utilities which perform tasks such as optimizing hard disks and restoring lost files.
All of these will be of little or no use under DOS Version 4.0.

To give you a chance to adapt programs affected by these changes to DOS 4.0, the
following pages give a description of changes to the file system (see Section 6.13
for a comprehensive look at the DOS file system).

In order to best visualize the changes to the file system, let's begin with a picture
of its fundamental structure, which remains valid under Version 4.0. This
fundamental structure can be divided into three layers, one on top of the other.
These range from the logical partitioning of a mass storage device on the top layer
to a purely physical system on the bottom layer. The top layer forms the function
interface to user programs. This interface calls individual functions through
interrupt 21H. No changes are allowed on this level in the switch to DOS 4.0 to

213

6. The Disk Operating System PC System Programming

Device

214

ensure that all applications that use these functions will continue to run normally.
File accesses from the first level are converted to device driver function calls on the
second level. In order to locate each file (i.e., retrieve the sectors which must be
accessed) this level uses various data structures which are kept in the storage
medium. These include:

. The boot sector (including the BIOS parameter block [BPB])
. The root directory and its subdirectories
. The FAT and its duplicates

These functions cannot be changed as well, since one of the most important
demands placed on the new DOS version is the ability to work with partitions that
were created and formatted under previous versions. This is possible only if the
structures listed above are not changed. This does not leave many ways to increase
the capacity of a volume. Since the size of the FAT entry is limited to 16 bits, a
volume can use no more than 65519 clusters. Therefore, an increase is possible
only by using more sectors in a cluster.

‘When DOS 4.0 sets up new partitions, it assigns the following cluster sizes:

Partition and cluster sizes under DOS 4.0

Max.partition size |128 meg] 256 meg| 512 meg| 1028 meg|2048 meg]
Cluster size 2 K 4 K 8 K 16 K 32 K
Secs. per cluster 4 8 16 32 64

While this procedure minimizes the changes on the second level of the file system,
it also has a disadvantage: The bigger the partition, the more memory it wastes.
Since the memory in a partition can only be allocated in clusters, some memory is
always wasted when a cluster is not completely filled. This is true of files that are
smaller than the cluster size. Memory space is also wasted in the last cluster of a
larger file, since the size of a file is rarely an integral multiple of the cluster size.

driver level

The changes become most noticeable on the third level of the file system, called
the device driver level. While character drivers remain unaffected by changes in the
partition size, these changes have a great impact on block drivers that support
partitions of more than 32 megabytes.

It's true that changes on this level could be kept to a minimum by increasing the
sector size from 512 bytes, but this could lead to compatibility problems with
partitions that were configured under previous versions of DOS. The only
alternative was to increase the number of sectors per partition. But when a
partition exceeds the 32-megabyte limit, the 16 bits, which up until now were
used to store the logical sector number, are no longer enough. For this reason,
DOS 4.0 has introduced a new type of block driver that supports partitions larger

Abacus

6.16 DOS 4.0

than 32 megabytes, and works with 32-bit sector numbers. DOS recognizes these
drivers with the help of bit 1 in the device attribute. This bit carried a value of 0 in
previous versions of DOS.

Starting with Version 4.0, DOS knows that it is dealing with a 32 bit driver if
this bit is turned on. Increasing the sector number also changed the structure of the
parameter data block, with which DOS passes information on the functions and
parameters being called, to the device driver. Since a 16-bit field is no longer large
enough for the sector number, DOS 4.0 adds a 32-bit field to the end of the block.
This stores the sector number for a 32-bit driver as a dword (double word). As
usual, the word with the smaller value is stored before that with the larger value.
To indicate that the new field is in use, DOS also loads the value -1 (FFFFH) into
the old field.

Structure of the extended parameter data block when

calling a function of a 32-bit driver under DOS 4.0

Addr. Contents Type
+00H Length of data block in bytes

+01H Number of device being addressed

+02H Number of function being called

+03H Status word

+05H Reserved

+0DH Media descriptor

+0EH Address of parameter buffer

+12H Number of sectors to process

+14H Number of first sector for 16 bit drivers
+16H Number of first sector for 32 bit drivers
Length: 1AH (26) bytes

= Gl Gl el G a2 G S O
o
<
ct
o
7]

The following driver functions are affected by the change to 32-bit sector numbers:

0 initialize driver
2 set BPB

3 direct read

4 read

8 write

9 write and encode

12 direct write

The structure of the BIOS parameter block (BPB), which the initialize driver
function must pass to DOS, has also changed. This structure is also part of the
boot sector of a DOS volume. It has been supplemented by two fields compared to
the old BPB, and now looks like this:

215

6. The Disk Operating System PC System Programming

216

Extended BIOS parameter block (BPB) structure under DOS 4.0

Addr. | Contents Type
+00H Bytes per sector 1 word
+02H | Sectors per cluster 1 byte
+03H Number of reserved sectors - 1 word
+05H Number of file allocation tables (FATs) 1 byte
+06H Number of entries in root directory 1 word
+08H Number of sectors in volume 1 word
(partitions <= 32 MB only)
+0AH Media descriptor 1 byte
+0BH Number of sectors per FAT 1 word
+0DH Sectors per spur 1 word
+0FH Number of read/write heads 1 word
+11H Distance of volume's first sector from first 1 word
sector on medium (partitions <= 32 MB:only)
+13H Distance of first sector in volume from first |1 dword
sector on medium (partitions > 32 MB only)
+17H Number of sectors in volume 1 dword
(partitions > 32 MB only)

Length: 1BH (27) bytes

The two new fields in this extended BPB refer to the total number of sectors in the
volume and the number of sectors between the first sector on the storage medium
and the first sector of the volume. Even though these fields were already present in
the old BPB, they were there only as 16-bit values, and had to be appended as 32-
bit fields. To guarantee maximum compatibility with the drivers of previous DOS
versions, DOS only needs to use the new BPB when the sector numbers cannot be
represented as 16-bit values. This happens if the distance from the first sector on
the storage medium to the first sector in the volume is greater than 32 megabytes.

The new BPB is installed while formatting a volume, but the old 16 bit fields are
used to store the number of sectors and the distance from the first sector when the
conditions mentioned above don't apply. Otherwise, the corresponding values are
entered in the 32 bit fields and the 16 bit fields are assigned a value of 0.

Extending the logical sector number to 32 bits also caused a change in the way the
25H and 26H interrupt functions work. These functions represent the only way for
an end-user program to directly access the individual sectors of a volume via DOS.
If the number of the first sector to be processed was passed to the DX register of
these interrupts by an earlier DOS version, direct sector access is only possible
under Version 4.0 if the volume to be accessed is smaller than 32 megabytes. To
access larger volumes in Version 4.0 and higher, the DS:BX register pair of these
interrupts must receive a pointer to the data block pictured on the next page:

Abacus 6.16 DOS 4.0
Structure of data block used in calling interrupts
25H and 26H under DOS 4.0
Addr., | Contents Type
+00H Number of first sector 1 dword
+04H Number of sectors 1 word
+06H Pointer to buffer 1 ptr
Length: OAH (10) bytes

At the same time a value of -1 (FFFFH) must be passed to the CX register, so
that DOS knows that the parameter transfer will not be following the old scheme.
In conclusion, there is one more little innovation to mention. While this has no
impact on program development under DOS 4.0, it does show that the 80386 has
truly come of age. For example, 80386 PCs can use a particular trick to speed up
file access and corresponding buffer and cache operations. DOS uses the
capabilities of the 80386 very skillfully by running string instructions using
bytes, words and dwords (double words). When copying and pushing memory
blocks within the I0.SYS and MSDOS.SYS modules, the following code
sequence is used to process the transcription in dwords:

MOV CX, NUMBER ;load number of words to move

SHR CX, 1 ;cut number of words to move in half
DB 66h ;dword prefix for string command
REP MOVSW ;copy memory block

Since neither the 8088 nor the 80286 processors can perform dword operations, the
SHR CX.,1 and the DB 66H instructions are simply replaced with NOP
instructions when installing the module, if the PC is equipped with a processor
other than an 80386.

217

Chapter 7

The BIOS

BIOS is the abbreviation for Basic Input/Output System. The name indicates that
the BIOS provides basic input and output routines for communicating between
software and the hardware peripherals such as keyboard, screen and disk drive.

Why the BIOS is important

Since these routine calls are standardized, this saves the programmer the trouble of
fitting programs to one particular PC hardware configuration. This means you can
develop a program on one PC or compatible, and run it on another compatible PC
without errors, even though neither the hardware nor the individual BIOS routines
are completely compatible. This hardware independent concept contributed much to
the popularity of the PC. It offers the computer manufacturers the ability to
develop PCs which aren't quite identical to a true IBM PC, yet can run popular
software.

About BIOS functions

BIOS functions occur through the individual routines contained in the BIOS
interrupts 10H to 17H and 1AH. The processor registers, whose usage is also
standardized, transfer data from the calling program to the interrupt and from the

interrupt to the calling program.
Number Meaning
10H BIOS display function call
11H Testing the configuration
12H Testing RAM
13H BIOS disk functions
14H Functions for asynchronous communication
15H Cassette functions
16H Reading the keyboard

219

7. The BIOS PC System Programming

BIOS architecture

220

The BIOS itself is located in PC ROM, making it resident even after the computer
has been turned off. It is stored very high in the processor's address space
beginning at address FO00:E000. It extends to address FOOO:FFFF, the last
location addressable on the Intel 8088 microprocessor. The BIOS routines must
create, store and modify variables, much like any other routine. Since this is
impossible in the BIOS area itself, BIOS stores these variables in the lower part of
memory starting at address 0040:0000.

This chapter begins with a description of the bootstrap, followed by descriptions of
each BIOS function, call and application.

Abacus

7.1 Booting the System

7.1

Booting the System

Section 6.3 described the booting process of DOS. The examination began at the
point where the first sector of a diskette or hard disk loads into memory. From the
time you switch on the computer to the booting process, a series of events occur.
This section describes those interim events.

Initialization

Program execution in a computer based on the Intel 8088 (or one of its successors)
starts after the computer is turned on at memory location FOO0:FFFO. This
memory location is part of the ROM-BIOS and contains a jump command to a
BIOS routine which takes over system initialization. The location of this routine
may differ from one computer to another (actually from BIOS to BIOS) because
the BIOS changes internally with each manufacturer. The task this routine
performs remains identical for nearly all PCs, however.

System check

First the BIOS tests individual functions of the processor, its registers and some
instructions. If an error occurs during this test, the system stops without
displaying an error message (this is impossible with a defective processor). If the
CPU passes the test, a checksum is computed from each of the ROM's contents
and compared with the various ROMs to determine whether a defect exists there.
Each chip on the main circuit board (such as the 8259 interrupt, the 8237 DMA
controller, and the RAM chips) goes through tests and initialization.

Peripheral testing

After determining the functionality of the main circuit board, the computer tests
the peripherals (keyboard, disk drive, etc.). In addition to these hardware related
tasks, the BIOS variables and the interrupt vector table must be initialized.

The bootstrap loader

Note that no mention has been made of the operating system so far. It hasn't been
loaded into the computer from diskette or hard disk yet. Interrupt 19H, known as
the bootstrap loader, performs this task on startup or on system reset (when you
press the <Alt><Ctrl><Delete> key combination). This routine tries to load some
form of the basic operating system from a predetermined place on the diskette.

Reasons for failure

This bootstrap process may fail for a number of reasons:
. There is no disk in the disk drive.
. There is a disk in the drive, but the disk isn't bootable (the DOS files are

not available on the diskette). If this occurs, the bootstrap routine

221

7. The BIOS PC System Programming

attempts to find the routine on the other disk drives connected to the PC,
or on a predetermined location on an existing hard disk.

If the system still cannot find the bootable system disk, there are two other reasons
that may be causing a problem:

. Some older systems switch to ROM BASIC. This is a small BASIC
interpreter stored in PC ROM directly beneath the BIOS starting at
memory location F000:6000. New PCs display a message on the screen
requesting that the user insert a diskette containing the operating system
into the drive.

. BIOS doesn't care what operating system it loads, so it may attempt to

load a non-DOS operating system if one exists on the disk. This makes it
possible to load other operating systems such as XENIX.

222

Abacus

7.2 Determining BIOS Version

7.2

Determining BIOS Version

The previous section described memory location FOOO:FFFO in conjunction with
the system startup. Usually a 5-byte-long jump instruction can be found at this
location. After this instruction, an additional 11 bytes are available (to
FO00:FFFF), which are normally used to store the release date of the BIOS
version.

You can examine the contents of these memory locations to determine which
BIOS version your PC uses. Call the DEBUG program from the DOS prompt:

debug

Enter the following line to display the bytes at the end of the ROM-BIOS:

d f000:£fff0 1 10

The next line displays the contents of this memory location as a hexadecimal
number; the characters to the right of the hex display are the corresponding ASCII
codes. Day, month and year appear as two digits separated by "/" characters.

C>debug
-d f000:££ff0 1 10
FOOO:FFFO EA 5B EO 00 FO 30 32 2F-30 36 2F 38 36 00 FC 00 [...02/06/86...

-q
o

BIOS date display in DEBUG

223

7. The BIOS PC System Programming

7.3

Access

224

Determining the PC Type

Usage of certain BIOS functions are more for model identification than for BIOS
version identification. They indicate the type of PC in use. They also indicate
when the BIOS has additional functions (e.g., AT BIOS is better equipped than the
PC and XT BIOS). These extra functions essentially handle string output on the
screen, realtime clock access (standard on the AT) and additional RAM beyond the
1 megabyte memory limit (also standard on the AT).

A program which calls these functions must first ensure that the computer in use
is in fact an AT, and that the functions addressed are availablq. The programmer
can use the model identification byte located in the last memory location of the
ROM-BIOS at address FOO0:FFFE. This byte can contain the following codes:

252 or FCH: AT
254 or FEH: XT and portable PC
255 or FFH: PC
Note: These values aren't entirely accurate. Many PC/XT compatibles

indicate completely different values in the model identification byte.
The following rule of thumb may be used: A model identification
byte of 252 identifies an AT; any other number indicates a PC/XT.

Only IBM computers have guaranteed reliable model identification numbers at
memory location FOOO:FFFE. This may not be the case for compatible
computers. Use the DOS program DEBUG to obtain the model identification byte.
Call DEBUG with

debug

Enter the following command sequence:

d f000:fffe 1 1
The model identification appears as a hexadecimal number on the screen.
to the model identification byte from programs

The model identification can be obtained directly from a program. Here's a short
assembler program to perform that task:

IDSeg segment at fOOOh
org Offfeh
PcID db (?)
IDSeg ends

push ds ;store data segment
mov ax, IDSeg

mov ds,ax sSet Data segment to BIOS

Abacus 7.3 Determining the PC Type

cmp PcID, 252 stest if AT-Code
pop ds ;restore Data segment
je IStAT

sDevice is a PC/XT

IstAT label near

Higher level languages can also find the identification byte. The following BASIC
program uses the PEEK statement for reading the model identification.

10 def seg = &hF000
20 if peek (¢§hFFFE) = 252 then print “AT" else print *“PC/XT"

Turbo Pascal uses the mem array to read the model identification:

begin
if mem[$FO00 : SFFFE] = 252 then writeln('AT')
else writeln ('PC/XT');
end;

How the model identification is used in a program will be demonstrated in the
programs later in this chapter.

225

7. The BIOS PC System Programming

7.4 BIOS Screen Output Functions

The BIOS contains a series of routines which display data on the screen and
maintain other display functions. In addition to the video mode, BIOS manages
cursor positioning, text output and graphic display routines. Interrupt 10H calls all
these routines. The processor registers transfer the data between the application
program and the BIOS interrupt routine.

Under DOS versions 1.0 and 1.1, these BIOS routines were the only options for
cursor positioning and color choice. DOS Versions 2.0 and up make these
functions available under DOS as well.

More about compatibility

The BIOS routines execute faster than their corresponding DOS routines. Those
concerned about compatibility and output device redirection may be better off using
DOS routines. In any case, the application itself should dictate which routines will
be used.

The BIOS routines, like the DOS routines, offer the programmer the advantage of
independence from a particular video card (IBM monochrome, IBM color, Hercules,
etc.), since they can be adapted to various cards. Because these cards have different
features supported by BIOS, let's look at the capabilities of these cards before
examining the routines of interrupt 10H. Programs demonstrating the function
calls are listed in BASIC, Turbo Pascal, C and assembly language later in this

chapter.

Monochrome display adapter

226

This card displays a page of 25 lines and 80 columns. Column 0 and line 0 are in
the upper left hand comer of the display. The numbering continues to the right and
down from column 0, line 0.

Abacus 74 BIOS Screen Output Functions

ROWS
NN _couums
0 1 2 3 4 s \ \ 76 77 18 79
]
1
2
3
4
J
4 £
22
23
24
N AN
\ \ N

Line and column numbering—monochrome display

Each of the 2000 (80*25) positions on the screen is represented by a character from
a set of 256 characters (IBM PC standard character set) and an attribute character,
also called an attribute byte. Both characters require one byte apiece, so 2000*2
(4000 bytes) of video RAM must be available to display the entire screen. This
video RAM exists on the video display card. Since video RAM is not part of the

normal RAM, the starting address remains constant at address B000:0000 for the
monochrome card.

While the PC systems have standard character sets for all the video cards described
here, the attribute bytes change from card to card.

As the figure below shows, bits 0 to 2 and 4 to 6 of the attribute byte defines the
foreground and background color of the displayed character.

227

7. The BIOS PC System Programming

7 6 5 4 3 2 1 o bit

! L
Character color

Character Intensity
0 = normal,1 = high

Backiground color

Bilnking
0 = off,1 = on

Attribute byte color structure—monochrome display adapter

Bit 3 of the attribute byte indicates the intensity of the foreground color. If it
contains a 1, the character appears in high intensity. Bit 8 indicates whether the
character on the screen should blink (a 1 in this bit causes the character to blink).
While these bits can be set in any manner, only bit combinations which "look
good" should be used for foreground and background color.

7 6 5 4 3 2 1 0 bit
ololo ololo No characters
(black on black)
7 6 5 4 2 1 0 bit
ojojo 0|01 Underlined characters
6 5 4 2 1 o bit
ololo 1111 Normal characters
(white on black)
5 4 1 0 bit I h ¢
nverse characters
1]1 0jo (black on white)
7 6 5 4 1 o bit
1|1 1|1 White character field
(white on white)

Colors and attribute byte—monochrome display adapter
Color graphics adapter (CGA)

This card offers text display of the IBM PC standard character set and various
graphic modes. Text mode works with a resolution of either 80x25 or 40x25
characters. 40x25 resolution displays characters in double width. This mode allows
the management of up to eight different video pages (80x25 mode allows up to

228

Abacus 74 BIOS Screen Output Functions

four different pages). The line and column number assignment is similar to the
monochrome display card.

CGA attribute bytes

The attribute byte used on this card mainly selects foreground and background
colors of the characters. A total of 16 colors is available. The first eight of these

may be used as background colors.
Binary Dec. Color
0000(b) | O Black
0001(b) |1 Blue
0010(b) | 2 Green
0011(b) | 3 Turquoise
0100(b) | 4 Red
0101(b) | S Magenta
0110(b) | 6 Brown (dark yellow on some monitors)
0111 (b) | 7 Light Gray (sometimes white)
1000(b) | 8 Dark Gray (or black)
1001(b) | 9 Light Blue
1010(b) J 10 Light Green
1011(b) | 11 Light Turquoise
1100¢b) | 12 Light Red
1101 (b) | 13 Light Magenta
1110(b) | 14 Yellow (also light yellow)
1111 (b) | 15 White

As the figure below shows, bits 0 to 3 of the attribute bytes represent the
foreground color, while bits 4 to 6 indicate the background color. Bit 7 means the
same as in the monochrome display card: it decides whether the character should
blink.

7 6 5 4 3 2 1 0 bit

Y Character color
Background color

Blinking
0 = off,1 = on

Attribute byte structure—color graphic adapter
This card can emulate a monochrome display card (see above) in which the

attribute character has the same meaning as in the monochrome card, with the
exception that no underlined characters can be produced.

229

7. The BIOS PC System Programming

Graphic modes and the CGA

Graphic modes can have either a resolution of 640x200 dots with 2 colors or
320x200 dots with 4 colors. In both modes the upper left corner of the screen has
the coordinates 0/0.

No attribute byte exists in this mode since every dot on the display is either
illuminated with a color or not, and not composed of standard characters from a
character set. To display characters from the standard character set in this mode,
they must be drawn on the screen with pixels (dots).

In 320x200 resolution, one of the 16 available colors can be defined as a
background color. The foreground color must be one of three colors in a palette
predetermined by the graphic card. Two palettes are normally available: One
contains the colors cyan, magenta and white, while the other offers the colors
green, red and yellow.

The video RAM of this card starts at location B800:0000 (unlike the monochrome
display card which starts at B000:0000). This ensures that the video RAMs of the
two cards do not overlap. They can be used in parallel with each displaying data on
its own monitor.

Hercules graphic cards

230

The Hercules graphic card has the same text mode as the IBM monochrome display
adapter, and can display two video pages of text at a time. A Hercules card also
offers a graphic mode in which two video pages can be displayed with a resolution
of 720x348 pixels. Unfortunately, the BIOS cannot access either the two video
pages or the graphic mode. BIOS treats this card like a normal monochrome card,
which can only display one text page of 80x25 characters.

Now that you have some general knowledge of graphic adapters, here are the
functions called from interrupt 10H:

Decimal | Hex Meaning

0 OH Determine Video mode

1 1H Define cursor size

2 2H Determine cursor position

3 3H Sense cursor position

4 4H Read light pen

5 5H Define current display page

6 6H Scroll display up

7 7H Scroll display down

8 8H Read character / attribute at cursor position
9 9H Write character / attribute at cursor position
10 AH Write character at cursor position

11 BH Determine color palette for graphic mode

12 CH Set display point in graphic mode

13 DH Sense display point in graphic mode

Abacus

74 BIOS Screen Output Functions

Decimal | Hex Meaning

14 EH Character output (like a terminal)

15 FH Determine video mode

19 13H Write character string (only available on AT)

As always, the processor registers pass the function arguments. Some common
rules define which registers accept which arguments:

The AH register indicates the number of the function to be called with interrupt
10H. If character should be displayed, or a dot placed on the screen in graphic
mode, its value passes to the AL register.

Hercules functions

If the function expects display coordinates for text mode, the X-coordinate
(column) must be loaded into the DL and the Y-coordinate (line) into the DH
register. In graphic mode the CX register accepts the X-coordinate and the DX
register the Y-coordinate. The number of the display page (if required) should be
contained in the BH register.

It is important for assembler programmers that the contents of the BX, CX, DX
and the contents of the segment registers remain the same before and after the
interrupt call. The contents of all other registers may change.

Function OH: Set video mode

Before sending output to the screen, the video mode must be selected. The current
video mode in use might not be the one you desire. Function O of interrupt 10H
performs this task and also selects the active video card in case the PC has several
video cards connected. For a call to this function through interrupt 10H, the AH
register must contain function number 0 and the AL register must contain the
number of the video mode to be activated. Of course only those video modes that
are supported by the video card in the PC can be activated. The following numbers
correspond to the various video modes (the video card supporting the mode is in
parentheses):

0 | 40*25 character monochrome text display (Color)
1 40*25 character color text display (Color)
2 | 80*25 character monochrome text display {Mono)

3]| 80*25 character color text display (Color)
4 | 320*200 pixel graphics with 4 colors (Color)
5 | 320*200 pixel graphics with 4 colors (Color)

but shown monochrome
6 | 640*200 pixel graphics with 2 colors (Color)

The mode makes no difference on a monochrome card, since only one mode exists
(80x25); this mode is constantly active. It uses the internal designation number of
7.

231

7. The BIOS PC System Programming

Function OFH: Get video mode

The opposite of this function is function OFH, which determines the current video
mode. A value of OFH in the AH register during a call to interrupt 10H executes
this function. It returns the value of the video mode (refer to the table above) in the
AL register. As mentioned above, a monochrome card always returns the value 7.
Besides the video mode, the number of columns per display line in this mode (40
or 80) returns in the AH register and the current display page number in the BH
register.

Function 02H: Set cursor position

After the video mode initialization, screen output can begin. Function 2 defines the
cursor position. Calling this function places the blinking cursor in the desired
location on the screen. This sets the starting position of character display. Prior to
calling this function the AH register should be loaded with the function number
(2), the DH register with the line location of the cursor, and the DL register with
the column location of the cursor. The BH register holds the display page onto
which the cursor should be positioned. Remember that every display page has its
own cursor for positioning the text output, but only one active or blinking display
cursor exists. This active cursor always appears on the currently displayed page.
Function 2 moves the active cursor if the value in the BH register corresponds to
the current screen page.

Function 03H: Read cursor position

232

The counterpart of this function is function 03H. It reads the current cursor
position of a selected display page and returns the position to the calling program.
At the call of this function the AL register must contain the function number (3)
and the BH register the number of the display page whose cursor position is being
read.

Monochrome display cards return a value of 0, since the card can only display one
page (numbered 0). After the call of interrupt 10H the DH register contains the
cursor position's line and the DL register the cursor position's column. In addition,
two values are returned to the CH and CL registers which have special
significance. They indicate the starting and ending raster scan (pixel) lines of the
cursor. These lines are independent of the displayed page.

To understand this significance, it is important to know that every text mode
character on color and monochrome cards have heights of 8 and 14 pixels per
character, respectively. The programmer can choose at which of these pixel lines
the blinking cursor begins and at which it stops.

Abacus 74 BIOS Screen Output Functions

These values must of course remain within the legal values of the individual video
cards (i.e., 0 to 7 for a color card and 0 to 13 for a monochrome card), otherwise
the blinking text cursor may disappear from the screen.

Function 01H: Define cursor size

While these values are read with the help of function 3, function 1 is used to set
these values. The AH register loads with a 1, the CH register with the starting line
of the cursor, and the CL register with the ending line of the cursor, before calling
interrupt 10H. The starting line must be smaller than or equal to the ending line,
or the cursor becomes invisible.

Function 05H: Set active display page

This book has frequently mentioned the current display page without telling how
to activate this page. Function 05H of interrupt 10H performs this task. Place a
value of 5 in the AH register and the number of the page you want activated
(displayed on the monitor) in the AL register. The number of the page to activate
depends on how many pages are available in the current video card and video mode.
Since the monochrome video card offers only one display page, using this function
with a monochrome card makes no sense at all. The following values are allowed
for the color card's different video modes:

0 to 7 (40*25 character text display [Color-card])
0 to 3 (80*25 character text display [Color-Card])

After selecting the video mode and moving the cursor to the desired location on the
screen, one or more characters are output on the screen in most cases. BIOS makes
various functions available which have different abilities in providing character
display on the screen. One difference between these functions is that they process
control codes in various ways. These control codes are the ASCII codes 7, 8, 10
and 13. They represent the following:

7 Bell produces a sound

8 Backspace erases preceding character & moves
cursor back one character position

10 Linefeed moves cursor one line down

13 Carriage return |moves cursor to start of current line

Some functions view these codes as normal ASCII characters and execute them
accordingly. Other functions see them as control codes. For example, code 7
produces a sound with some functions. The choice of which function to use
depends on which control code processing is desired.

Text display in graphic mode

Text display functions can be used in both text and graphic modes. Text output in
graphic mode creates different characters since the characters must be drawn on the

233

7. The BIOS PC System Programming

screen from pixels. The PC uses ASCII codes to set the graphic pixels. While the
character samples for the ASCII codes 0 to 127 are already stored in the ROM, the
character patterns for the codes 128 to 255 must be read from a table in RAM.
This table installs itself in RAM when you execute the DOS GRAFTABL
command.

BIOS obtains the address of this table from the memory locations 0000:007C to
0000:007F, where the table's offset address lies in the lower two bytes and the
table's segment address in the upper two bytes. These memory locations are inside
the interrupt vector table but can be used for this purpose since interrupt 1FH
(whose address normally appears there) remains unused.

Having this table stored in RAM makes it possible to define your own table, so
that special characters which are not contained in the standard character set can be
displayed on the screen. Since every character is comprised of 8 bytes, the first 8
bytes of the table are reserved for ASCII code 128, the next 8 for the code 129, etc.
Each byte contains the bit pattern for one of the 8 lines which compose a
character. Bit 0 represents the dot on the right border of the character matrix, bit 7
the dot on the left border. If you set a bit to 1, this illuminates the corresponding
pixel on the screen.

Function 09H: Write character with attribute
Function O0AH: Write character

Functions 09H and OAH are available for character output. Function 0AH displays
the character in the color determined oy the attribute corresponding to that
particular screen position. Function 09H sets the color (attribute) of the character
to be displayed. Neither function moves the cursor to the next screen position after
character display. Character output resumes at the same location on the next
function call. Function 02H must be called to move the cursor to the next screen
position for displaying readable text.

Determining the function call

234

Both functions 09H and OAH interpret the control codes described above as normal
characters and display them accordingly. During the call of these functions the
contents of the AH register depend on whether the user called function 09H and
OAH. The AL register accepts the ASCII code of the character to be displayed. The
display page for character display can be found in the BH register. The CX register
contains a number which indicates how many times the character should be
displayed. Because of this, it's possible to display a character several times with
just one interrupt call (this saves time and memory). If you want the character in
the AL register displayed only once, a 1 must be stored in the CX register during
the function call. Since function 09H also determines the color of the character to
be output, the BL register passes the character color.

Abacus 74 BIOS Screen Output Functions

Function OEH: Teletype mode

A serious disadvantage of these two functions is that the cursor's position does not
advance after the function call. Function OEH cures this problem. It acts like a
terminal, hence its name—the TTY (Teletype output) routine. The cursor advances
to the next screen position after a character is displayed. If the cursor reaches the
end of the screen line, it moves to the beginning of the following line. If the
cursor is in the last display screen position (line 24, column 79), the entire screen
is scrolled one line upward and the top line of the screen disappears from the
display area. In addition, the function clears line 24 and the cursor moves to the
beginning of the line.

Another approach to control codes

Unlike functions 09H and 0AH, function OEH treats control codes according to
their functions, and not as normal ASCII codes. Like function 0AH, characters are
displayed by function OEH using the character color (attribute) already present at
that screen location. This is valid for text mode only. In graphic mode, the
foreground color must be passed in the BL register.

Prior to the function call, the AH register must be loaded with function number
OEH, the AL register loaded with the code of the character to be displayed and the
BH register with the display page intended for character display.

Function 08H: Read character/attribute

While functions 09H, 0AH and OEH display characters on the screen, function 08H
makes it possible to read characters from the screen, i.e., to sense the character and
attribute displayed. Before the call, the value 08 must be loaded into the AH
register and the number of the display page from which the character should be
loaded into the BH register. The display position from which the character should
be read is the current cursor position in the display page indicated by the BH
register.

In text mode the character code can be read directly from video RAM. However,
graphic mode requires a comparison between the bit pattern at the current cursor
position and every character's bit pattern in the character set.

After the function call, the AH register contains the attribute (color) and the AL
register contains the ASCII code of the character read.

Function 06H: Scroll window up

Function O6H scrolls the screen up one or more lines, or clears sections of the
screen by displaying spaces (ASCII code 32). These operations can only be
performed on the current display page. To call this function, you must load the AH
register with the function number (6). The AL register is loaded with the number

235

7. The BIOS PC System Programming

of lines the display should be moved up. A 0 in this register instructs the function
to fill the screen area with spaces instead of scrolling the screen. The BH register
contains the color (attribute) for the blank line. The CH, CL, DH and DL registers
define the display page window to be scrolled or cleared. The C register represents
the upper left corer of the window, while the D register defines the lower right
comer of the window. The following list illustrates the meaning of each register:

Reg Meaning

CH Line of the upper left corner of the window
CL Column of the upper left corner of the window
DH Line of the lower right corner of the window
DL Column of the lower right corner of the window

Function 07H: Scroll window down

236

Function 07H scrolls the screen down one or more lines, or clears sections of the
screen by displaying spaces (ASCII code 32). These operations can only be
performed on the current display page. To call this function, you must load the AH
register with the function number (7). The AL register is loaded with the number
of lines the display should be moved down. A 0 in this register instructs the func-
tion to fill the screen area with spaces instead of scrolling the screen. The BH
register contains the color (attribute) for the blank line. The CH, CL, DH and DL
registers define the display page window to be scrolled or cleared. The C register
represents the upper left corner of the window, while the D register defines the
lower right corner of the window. The following list illustrates the meaning of
each register:

Reg Meaning

CH Line of the upper left corner of the window
CL Column of the upper left corner of the window
DH Line of the lower right corner of the window
DL Column of the lower right corner of the window

Abacus

74 BIOS Screen Output Functions

Graphic functions

The following are descriptions of the functions used in the different graphic modes.
They can be used in connection with video cards capable of producing graphics.

Function O0H: Set video mode

Function 00H switches on one of the available graphic modes. The border color (or
color palette) should then be selected for the 320x200 (or text) mode by loading
function number OAH in the AH register. The BH register dictates the use of the
border color or the color palette. If during the function call the BH register contains
a 0, the value in the BL register becomes the background and border color for the
graphic mode. All 16 colors are available, so the BL register can contain a value
between 0 and 15. This function remains valid for the text mode. However, only
the border color can be set. The background color for each character is set
individually by the top 4 bits of the color attribute, and therefore cannot be set for
everything.

If the BH register contains a 1, the value in the BL register (0 or 1) selects the
active color palette. The palettes contain the following colors:

Green, red, yellow
1 Cyan, magenta, white

Function OBH: Set color palette

Once the graphic mode initializes and the colors are selected, graphic drawing can
begin. Function 0BH writes graphic pixels at specified locations of the screen. The
pixel coordinates to be addressed are passed in the CX and DX registers. The values
in these registers depend on the graphic resolution of the current graphic mode. The
CX register contains the X-coordinate (column coordinate) of the pixel, and the DX
register the Y-coordinate (line coordinate) of the pixel. The function call must have
the function number (OBH) passed in the AH register. The color value of the pixel
to be manipulated is passed in the AL register. The Hercules card and the 640x200
mode of the color card permit the values 0 and 1 only. In the 320x200 mode of the
color card, the values 0 to 3 are allowed for the 4 possible colors. The significance
of these values depends on the active color palette. If a program enables palette 0,
the values have the following significance:

0 Color selected for background with function OBH
1 Green

2 Red

3 Yellow

237

7. The BIOS PC System Programming

An active palette 1 changes the values slightly:

0 Color selected for background with function OBH
1 Cyan

2 Magenta

3 White

Function ODH: Read pixel

Function ODH is the equivalent of this function, which determines the color value
of a pixel. Before the call, the value ODH must be passed in the AH register, the
X-coordinates of the pixel must be loaded into the CX register, and the Y-
coordinates into the DX register. The pixel color is returned as a result in the AL
register. This value corresponds to the rules described in function OBH.

Function 13H: Write string

238

Interrupt 10H includes another function on AT computers. Function 13H displays
strings of characters on the screen. During its call a series of arguments must be
passed, in addition to passing the function number to the AH register. The BH
register accepts the number of the display page on which the string should be
displayed (not necessarily the current display page). The starting position of the
character string on the display is in the DH (line) register and the DL register
(column). The CX register contains the number of characters in the character
string.

The AL register's contents define ore of the four possible modes in which the
character string can be displayed. The string format in modes 0 and 1 differ from
string format in modes 2 and 3. Modes 2 and 3 place attribute bytes after every
character in the string. In modes 0 and 1, the individual characters of the string
follow one another in sequence. The attribute byte for all characters depends on the
contents of the BL register. In modes 2 and 3, 2 bytes are stored in the string for
every character displayed. For example, a character string of 4 characters requires 8
bytes of memory. The number of characters to be displayed (4 characters in this
example) must be indicated in the CX register. Another difference between modes 0
and 2 and modes 1 and 3 is in display format. After the string display in modes 1
and 3, the cursor appears following the last character of the string. The next
character displayed with one of the BIOS functions then appears at this position on
the screen. The cursor position does not get updated in modes 0 and 2.

Abacus 74 BIOS Screen Output Functions

Demonstration programs

The following programs demonstrate the use of BIOS video interrupt functions
available from higher level languages. In Pascal and C, you'll find that using BIOS
display functions works much faster than the standard procedures and functions
provided in these languages, which use the slower DOS functions. BASIC's use of
BIOS screen functions is minimal, since these functions are even slower than the
BASIC PRINT statement.

Advantage

Accessing BIOS video interrupt functions has an advantage over the use of onboard
graphic commands in higher level languages: the BIOS functions can be accessed
at any time.

Disadvantage

There is a serious disadvantage to using BIOS functions for screen output. The
higher level language display commands can accept numerical variables, which are
then converted to ASCII characters. These higher level commands can format the
variables according to decimal places or a certain degree of precision, then display
these variables. However, if numerical variables are to be displayed using the BIOS
functions, they must first be converted into a character string which you must
transfer to the BIOS output function. This procedure takes time.

All three programs are identical in function. Each fills the screen with continuous
characters from the PC character set, then opens two windows in which two arrows
move up and down. How this was done, and how it will actually appear on the
screen, should become clear after you take a closer look at the program codes. The
programs limit their access to one video page, due to incompatibility problems
that could occur between monochrome and color cards. They also do not present
subroutines, functions or procedures for calling the BIOS graphic functions.

Once you understand this section you should be able to easily add the missing
functions and even write a short demo program of your own. Using BIOS video
interrupt assures that the computer will not crash and that nothing major can go
wrong.

BASIC listing: VIDEOB.BAS

100 AR A R AR R AR AR AR AR AR R R R AR R AR AR R R AR AR AR A AR R AR AR R AR AR AR AR AR R AR R AR

110 '* VIDEOB BAS *!
120 "k * 0
130 ** Task : Makes some Subroutines available for access *
140 *'* to the Display using the BIOS-Video-Interrupt **
150 LR 3 * 4
160 ** Author : MICHAEL TISCHER *
170 ** developed on : 07/18/87 *
180 ** last Update : 05/14/89 *

190 AR R R R IR AR AR AR KRR R AR KRR AR KRR RR KRR KRR AR KRR KRR KRR KA KRR KRR R AR R A AR Ak ke ko
200 °*

210 CLS : KEY OFF

220 PRINT"WARNING: This Program should only be started if GWBASIC was "

239

PC System Programming

7. The BIOS
230 PRINT"started from the DOS level with <GWBASIC /m:60000>. *
240 PRINT : PRINT"If this was not the case enter <s> for Stop."
250 PRINT"Otherwise press any key...";
260 AS$ = INKEYS$: IF AS$ = "s" THEN END
270 IF A$ = "" THEN 260
280 CLS
290 GOSUB 60000 ‘Install function for interrupt call
300 PAGE$=0 ‘Display page for the output is Page C
310 COLRR%=7 *light characters on dark background
320 FOR DISPROWS$=1 TO 24 ‘process all display lines
330 FOR DISPCOL%=0 TO 79 ‘process all display columns
340 CHARACTER$=CHRS ((DISPCOL$+DISPROW$*80) AND 255) 'continuous code
350 GOSUB 52000 ‘Set cursor position
360 GOSUB 57000 ‘Output character
370 NEXT ‘next column
380 NEXT ‘next line
390 VALUE$=0 'Erase Window
400 ULC%=5 : ULR%=8 : LRC%=19 : LLR%=22 ‘Coordinates of the 1. Window
410 GOSUB 55000 ‘Erase Window
420 ULC%$=60 : ULR$=2 : LRC%=74 : LLR%=16 'Coordinates of the 2. Window
430 GOSUB 55000 ‘Erase Window
440 COLRR$=&H70 ‘dark letters on light background (inverse)
450 DISPCOL%=5 : DISPROW$=8 'Coordinates for Text output
460 TS$=" Window 1 " '‘Text for output
470 GOSUB 58000 ‘Output Text
480 DISPCOL%=60 : DISPROW$=2 'Coordinates for text output
490 T$=" Window 2 " ‘Text for output
500 GOSUB 58000 'Output Text
510 DISPROW$=0 : DISPCOL%=0 ‘upper left Display corner
520 T$=STRINGS(23," ")+"Arrow number is being drawn “+STRINGS(23," ")
530 GOSUB 58000 - 'Output Text
540 COLRR%=&HFO ‘dark chars on light background (inverse) blinking
550 DISPCOL%=24 : DISPROW$=12 ‘Coordinates for Text output
560 T$=" >>> PC SYSTEM PROGRAMMING <<< * 'Text for output
570 GOSUB 58000 ‘Output Text
580 VALUE$=1 ‘always scroll one line
590 FOR ARROWS%=4 TO 0 STEP -1 ‘Output total of 10 Arrows
600 DISPCOL$=35: DISPROW$=0 ‘Position for number of Arrows
610 COLRR%=&H70 ‘dark characters on light background (inverse)
620 T$=STRS (ARROWS$) ‘Convert number of Arrows into ASCII-String
630 GOSUB 58000 ‘Output Text
640 COLRR%=7 *light characters on dark background
650 FOR COUNTL$=1 TO 8 ‘an Arrow consists of 8 Lines
660 DISPCOL$=5 : DISPROW$=9 ‘Coordinates in first Window
670 T$=STRINGS (8-COUNTLS$, " *)+STRINGS (2*COUNTL$-1, "*") +STRINGS (8-COUNTLS%, ")
680 GOSUB 58000 'Output Arrow line
690 DISPCOL$=60 : DISPROW$=16 ‘Coordinates in second Window
700 GOSUB 58000 ‘Output arrow line
710 ULC%$=5 : ULR%=9 : LRC%=19: LLR$=22 ‘Coordinates of 1. Window
720 VALUE$=1 ‘scroll one DISPROW
730 GOSUB 56000 *Scroll Window down
740 ULC%=60 : ULR%=3 : LRC%=74: LLR%=16 ‘Coordinates of 2. Window
750 VALUE$=1 'Scroll one Line
760 GOSUB 55000 'Scroll Window up
770 NEXT ‘next Arrow Line
780 NEXT '‘next Arrow
790 CLS
800 KEY ON
810 END
820
SO000 " Arkk kk kA kKR Ak KR kA K kA kA AR AR A AR AR RN R AR AR R AR A AARRRAAN AR RAKRNNAANRNNS
50010 ** Sense Video mode and other Parameters *
50020 '* *e
50030 '* Input : none *
50040 *'* Output : VMODE$ = the current Video mode *!
50050 '* PAGES = the current Display page *
50060 *'* DISPCOL$ = the number of Columns per Line *
50070 '* Info : the Variable 2% is used as Dummy *
S008B0 " * A AKX KA X A XA AR KR AR A AR AR AR A AR KRN AR KRR RN R R RN AR KRR AR A AR AR RARKRARAN KK)
50090 '

240

Abacus 7.4 BIOS Screen Output Functions

50100 DISPCOL%=15 ‘Get Function number for Video mode
50110 INR%$=&H10 ‘Call BIOS-Video-Interrupt 16 (h)
50120 CALL IA (INRS,DISPCOLS,VMODES, PAGES, 2%, 2%, 2%, 2%, 2%, 2%, 2%, 2%, 2%)
50130 RETURN ‘back to caller
50140 *

51000 AR AR AR R AR R AR R R R AR AR AR AN AR AR AR KRR AR AR AR AR AR R AR R AR AR KRR RN AR AN AR
51010 *'* Define appearance of blinking Text-Cursor *
51020 ** *
51030 ** Input : BEGLIN% = is the beginning Line of the Text-Cursor *'
51040 *'* ENDL$ = is the End Line of the Text-Cursor *e
51050 ** Output: none *e
51060 ** Info : the Variable 2% is used as Dummy *
51070 AR KRR AR R AR R AR R AR R A A AR AR AR R AR AR AR RN AR AR AR R RARRRRRAAR KA RAA AR AN AN
51080 *

51090 FKT$=1 '‘Set Function number for appearance of Cursor
51100 INR$=&H10 ‘Call BIOS-Video-Interrupt 16 (h)
51110 CALL IA(INR%,FKT%,2%,2%,2%,BEGLINS, ENDLS, 2%, 2%, 2%, 2%, 2%, 2%)

51120 RETURN ‘back to caller
51130

52000 TR AR R KRR RR AN AR R AR A AR AN A AR AR AR AR AN RN R R KRARARRAARRNRNNANRANANRAA R RN AN
52010 '* Set Cursor Position *!
52020 *'* *!
52030 ** Input : PAGE$ = is the Number of the Display page *1
52040 '* DISPCOL% = is the new Column of the Cursor *
52050 ** DISPROW$ = is the new Row of the Cursor *e
52060 '* Output : none *!
52070 '* Info : The position of the blinking Text-Cursor is only *'
52080 *'* influenced by the call of this subroutine if the *
52090 ‘'* Display page indicated is the current Display page *'
52100 ** *
52110 '* the Variable 2% is used as Dummy *
52120 TR R R AR AR AR R R AR R R R R AN R AR A A AR AR R AR AR R RRRRARRARR KRR RRNR R AR N AN
52130 *

52140 FKT$=2 ‘Set Function number for Cursor position
52150 INR%$=&H10 'Call BIOS-Video-Interrupt 16 (h)
52160 CALL IA(INR$,FKT$,2%,PAGES, 2%, 2%, 2%, DISPROWS, DISPCOL$, 2%, 2%, 2%, 2%)
52170 RETURN ‘back to caller
52180 *

53000 AR KRR AR R AR R AR R R A A AR A R AR R AR R R R R AR R R AR R AR AR ARN R AR KRR AR A ARRRRRRAR AR
53010 *'* Read Cursor Position and Beginning and End Row *
53020 *'* of the blinking Text-Cursor *!
53030 ** *0
53040 ** Input : PAGE$ = is the Number of the Display page *!
53050 ** Output: DISPCOL$ = Column of the Cursor in the Display page *'
53060 ** DISPROWS = Row of the Cursor in the Display page *!
53070 ** BEGLIN% = beginning Line of the Text-Cursor *e
53080 '* ENDL$ = is the End Line of the Text-Cursor *e
53090 *'* Info : the Variable Z% is used as Dummy *e
53100 TR KR AR AR R AR AR R R R R R R R R AR R KRR AR R R KRR A AR R R RRRRRANNAANR KRR RN RARRRNRR A AR
53110 FKT$=3 'Read Function number for Cursor position
53120 INR$=&H10 *Call BIOS-Video-Interrupt 16 (h)
53130 CALL IA(INRS, FKT%, 2%, PAGES%, 2%, BEGLIN%, ENDL$, DISPROWS, DISPCOLS, 2%, 2%, 2%, 2%)
53140 RETURN ‘back to caller
53150 *

54000 IR KRR KR AR AR R KRR R KA R AR R A AR R R R AR R R AR KRN AR AR RN AR AR R KRR RARNRRRAR AR
54010 ** Set the current display page on the *
54020 ** screen *
54030 ** *
54040 *'* Input : PAGE$ = is the Number of the Display page *
54050 ** Output: none *
54060 ** Info : the Variable 2% is used as Dummy *
54070 TR AR AR AR RN AR R R R R R AR AR AR AR R AR KRR RRRARARRARRRNRRRRAA AR R AR AR AR AR RN Ak O
54080 FKT$=5 ‘Set Function number for Display page
54090 INR$=&H10 'Call BIOS-Video-Interrupt 16 (h)
54100 CALL IA(INRS,FKT%,PAGE%, 2%, 2%,2%, 2%, 2%,2%,2%,2%,2%,2%)

54110 RETURN '‘back to caller
54120

55000 AR AR R AR AR R AR R AR AR AR R R AR R AR AR R AR AR R AR R AR AR R AR R AR AR AR AR AR AN AR AN AN
55010 '* Scroll current Display page up or erase *
55020 ** *

241

7. The BIOS PC System Programming

55030 ‘* Input : VALUE$ = how many Lines to scroll *
55040 '* ULC$ = Column upper left *
55050 ** ULR% = Row upper left *
55060 '* LRC$ = Column lower right *
55070 *'* LLR% = Row lower right *
55080 *'* COLRR$ = COLRR of erased Lines *e
55090 ‘'* Output: none *
55100 '* Info : If VALUE$ O is indicated, the *
55110 ** Display area is erased *!
55120 ** the Variable 2% is used as Dummy *
55130 R R e R R S SRS s S s Rt Al
55140 !

55150 FKT$=6 ‘Function number for scrolling up
55160 INR$=&H10 ‘Call BIOS-Video-Interrupt 16 (h)
55170 CALL IA (INR%,FKT%,VALUE$, COLRRS, 2%, ULR%, ULC%, LLR%, LRC%, 2%,2%,2%, 2%)
55180 RETURN ‘back to caller
55190

56000 A AR R AR AR AR AR AR AR AR AR R AR AR KRR A AR AR A AR AR AR AR R AR RRR KRR AR R AARA RN R KA
56010 '* Scroll current Display Page down or erase *
56020 '* *
56030 '* Input : VALUE$ = how many Lines to scroll *
56040 '* ULC% = Column upper left *
56050 '* ULR$ = Row upper left *
56060 ** LRCS = Column lower right *!
56070 '* LLR$ = Row lower right **
56080 '* COLRR$ = COLRR of erased Lines *
56090 '* Output: none *
56100 '* Info : If VALUE$ O is indicated, the *
56110 ** Display area is erased *
56120 *'* The Variable Z% is used as Dummy *
56130 AR AR R AR A R AR R A AR AR R AR A AR AR R A A A A A AR AR AR AR R RA R AR AR R AR R R AR A A A A A A Ak)
56140 *

56150 FKT$=7 ‘Function number for scrolling down
56160 GOTO 55160 ‘Call is identical with scrolling up
56170 °*

57000 AR AR AR R R AR AR AR AR R A AR AR AR AR AR R R AA AR AR R AR KRR AR AR KA R A KA AR AR A AR R AR
57010 '* Write a character of a designated COLRR to the current *
57020 '* Cursor position in the designated Display Page *
57030 ‘'* *
57040 '* Input : CHARACTER$ = the character for output *
57050 *'* COLRR% = COLRR of the character for output *
57060 *'* PAGE$ = is the Number of the Display page *
57070 ** Output: none *
57080 '* Info : the Variables ZL$%, 2ZH% and ZE% are Dummies *
57090 AR R R AR AR R AR AR R R AR R AR R AR KRR R AR AR KRR AR AR A RAAARARRRR AR KR ARA AR A Ak kk
57100 *

57110 FKT%$=9 ‘Output function numbers for character and Attribute
57120 INR%$=&H10 *Call BIOS-Video-Interrupt 16 (h)
57130 ZL%=1 ‘Output character only once (LO-Byte)
57140 ZH%=0 'Output character only once (HI-Byte)
57150 ZE$%$=ASC (CHARACTERS) ‘Get ASCII-Code of character to be output
57160 CALL IA(INR%,FKT$,ZE%,PAGES%, COLRR%, ZH%,2L%,2L%, 2L%,2L%,ZL%,2L%,2L$%)
57170 RETURN ‘back to caller
57180 *

58000 AR R AR AR AR R AR R R AR R KRR AR R AR AR R AR AR R AR R AR AR AR KR AR RARRRA KRR KRR AR R AR AR
58010 '* Output a String starting at a certain Position within a *
58020 '* Display page with a constant Attribute *
58030 ** *
58040 '* Input : TS = the String for output *
58050 *'* COLRR% = COLRR of the String (Attribute) *
58060 '* PAGE$% = is the number of the Display page *
58070 ** DISPCOL$ = Column - start of String *!
58080 ‘'* DISPROW$ = Row - start of String *
58090 '* Output: none *
58100 '* Info : the Variables 2C% and ZE% are Dummies *
58110 TR AR AR AR KRR R R AR A AR AR R AR AR AR AR AR AR AR AR A A AR AR AR A AR AR AR RRA AR A AR Ak
58120

58130 GOSUB 52000 'Set Cursor position for Output
58140 FOR ZC%=1 TO LEN(TS$) ‘process all chars or strings individually
58150 CHARACTERS=" * ‘output a blank first

242

Abacus

74 BIOS Screen Output Functions

Pascal

58160 GOSUB 57000

58170 2E$=ASC (MID$ (T$, 2C%,1)) '‘Get a character from the String
58180 FKT$=14 ‘Function number for Teletype-Output
58190 CALL IA(INRS,FKT$,ZE%,PAGES, 2%, 2%, 2%, 2%, 2%, 2%, 2%, 2%, 2%)

58200 NEXT ‘Output next character
58210 RETURN ‘back to caller
58220 *

60000 LR e R e s e s s S s s 2]
60010 '* initialize the Routine for the Interrupt call *1
60020 '* *
60030 '* Input : none *
60040 '* Output: IA is the Start address of the Interrupt-Routine *
60050 TR R R AR R R R R R R R AR R R R R R R A RAR AR R AR R R RRA AR R AR R R AR RR AR R R R R AR A AR AR Rk k Rk Rk
60060 '

60070 IA=60000! 'Start address of the Routine in the BASIC-Segment
60080 DEF SEG 'Set BASIC Segment
60090 RESTORE 60130

60100 FOR I%$ = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT 'poke Routine
60110 RETURN ‘back to caller
60120 '

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255

The program can be divided into three parts. Lines 100 to 700 represent the
demonstration program proper, which uses the subroutines in lines 50000 to
58220. These subroutines call a special function of the BIOS video interrupt and
access the routine for interrupt calls as described earlier. The program DATA
begins on line 60000.

See the header of each subroutine for the variables of each subroutine and what
each variable does.

It should be noted that all subroutines receive and return numerical values as
integer variables. Do not forget the percentage character after a variable. In certain
cases a real variable of the same name can be initialized, but the subroutine
expected an integer variable and the wrong parameters will be passed to the BIOS
function.

and C implementations

The individual functions and procedures of the next two programs are fully
documented and should be self-explanatory. The two programs resemble each other
strongly, since the procedures, functions and variables have the same names.

243

7. The BIOS PC System Programming

Pascal listing: VIDEOP.PAS

(*ﬁ******tt*t*i**t**t*ﬁﬁﬁ******tt**t***ﬁ***'ﬁ*ﬁ***t****t*****t**t***t*)

{* VIDEOP PASCAL *}
{* *}
{* Task : makes functions available which are *}
{* based on the BIOS-Video-Interrupt but are not *}
{* provided by PASCAL *}
{* *}
{* Author : MICHAEL TISCHER *}
{* developed on : 07/10/87 *}
{* last Update : 05/14/89 *}

[rr AR AR R kAR AR R AR R KRR R AR A AR R AR AR R RR AR AR R AR AR R AR Ak kAR AR Ak kk k)

program VIDEOP;

Uses Crt, Dos; { Adds DOS and CRT units to Turbo }
const NORMAL = $07; { Definition of character-attribute }
BOLD = $0f; { in relation to a monochrome }
INVERS = $70; { Display card }
UNDERLINE = $01;
BLINK = $80;

type TextTyp = string[80];

var i, { Loop variable for the Main program }

j’

k,

1 : integer;

Istring : string[2]; { accepts number of Arrows }
(*ﬁt****t*ittiﬁ******ti*tt*tﬁt***tiﬁ***tt’h*itttt*ti****t*******tit*i**)
{* GETVIDEOMODE: Read current Video mode and Parameters *}
{* Input : none *}
{* Output : The Variables listed below get the values after the *}
{* call of the Procedure *}

(*ﬁ****tt*t*ﬁﬁtt*t*tt*ﬁ*ﬁ***ﬁtti*ﬁtﬁttt*tt***ﬁ***ﬁtﬁ***itttﬁ*k****tﬁ**)

procedure GetVideoMode (var VideoMode, { Number of current Video mode
Number, { Number of Columns per Line
Page : integer); { current display page

var Regs : Registers; { Register-Variable for call of Interrupt }
begin
Regs.ah := $0OF; { Function number }
intr($10, Regs); { Call BIOS-Video-Interrupt }
VideoMode := Regs.al; { Number of Video mode }
Number := Regs.ah; { Number of characters per line }
Page := Regs.bh; { Number of the current display page }
end;

(t***t**tt***tﬁ*tﬁt******tttk****ﬁ***tt*t*******ttﬁtt*ﬁ*tttt****t*ﬁ***)

{* SETCURSORTYPE: defines the appearance of the blinking *}
{* Display cursor *}
{* Input : see below *}
{* Output : none *}
{* Info : for a monochrome display card the parameters *}
{* can be between 0 and 13, for a color display *}
{* card between 0 and 7 *}

{ﬁtﬁttttt**t*ﬁ*itttttﬁ*t*ﬁ****t*ﬁt**********tiﬁt*tttt*ﬁ*ttttt*itttt**ﬁ)

procedure SetCursorType (Beginline, { Beginning line of the cursor }
Endl : integer); { End line of the cursor }

var Regs : Registers; { Register variable for the interrupt call }

244

Abacus 74 BIOS Screen Output Functions

begin
Regs.ah := 1; { Function number }
Regs.ch := Beginline; { Beginning and }
Regs.cl := Endl; { End line }
intr($10, Regs); { Call BIOS-Video-Interrupt }
end;

[rE IR hh Rk kA AR AR AR IR IR A AR AR ARRRR KR KRR KRR AR AR AR AR R AR ARk kA Ak hhh ko k)

{* SETCURSORPOS: defines the position of the cursor in the *}
{* display page output *}
{* Input : see below *}
{* Output : none *}
{* Info : The position of the blinking display cursor changes *}
{* only through the call of this procedure, if the *}
{* indicated display page is the current display page *}
{*tttktkk*k**tttt**tt*tktkttt**********t*t*t*t*t*t*t*ttt*********t*t**)
procedure SetCursorPos (Page, { display whose Cursor is set }
Column, { new Column of the Cursor }
Line : integer); { new Line of the Cursor }
var Regs : Registers; { Register variable for the interrupt }
begin
Regs.ah := 2; { Function number }
Regs.bh := Page; { display page }
Regs.dh := Line; { Display coordinates }
Regs.dl := Column;
intr($10, Regs); { Call BIOS-Video-Interrupt }
end;

IS S AAAALE LA AL LSS ER AL TS LRt ittt ettt it il i)

{* GETCURSORPOS: senses the position of the cursor in a display *}
{* page and its start and end line *}
{* Input : see below *}
{* Output : The variables listed below contain the values after *}
{* the call of the procedure *}
{* Info : the start and end line of the cursor is independent *}
{* of the indicated display page *}
{t*t***t************i*****t*i*t*t*t*t***t*itt*t*t*tt*t*t***t********t*)
procedure GetCursorPos(Page : integer; { the display page }
var Column, { Column of the cursor }
Line, { Line of the cursor }
Beginline, { Start line of the cursor }
Endl : integer); { End line of the cursor }
var Regs : Registers; { Register variable for the interrupt }
begin
Regs.ah := 3; { Function number }
Regs.bh := Page; { Display page }
intr($10, Regs); { Call BIOS-Video-Interrupt }
Column := Regs.dl; { Result of the Function }
Line := Regs.dh; { read from the Register }
Beginline := Regs.ch; { and store in proper }
Endl := Regs.cl; { Variables }
end;

(Rr AR AR AR AR AR R AR A KRR R AR AN AR AR AR A KA RN RN A RRINN AR KKK KRR AT KRNI R AN

{* SETDISPLAYPAGE: set the display page *}
{* for output on the monitor *}
{* Input : see below *}
{* Output : none *}

{ﬁti****i*t*t#**tﬁ**#t*i*#t#ﬂ*ﬁ******i*t**tt*t****t*t*t*iﬁﬁﬁ**i#*it#tt)
procedure SetDisplayPage (Page : integer); { the new display page }

var Regs : Registers; { Register variable for the interrupt }

245

7. The BIOS PC System Programming

begin
Regs.ah := 5; { Function number and display page }
Regs.al := Page; { Screen page }
intr($10, Regs); { Call BIOS-Video-Interrupt }
end;

(**t*t*t*'kt**t******ﬁtﬂ****tt‘kt*t*ﬂ****tt***t*‘k*ﬂ***t**‘k****tt*‘k*ﬂ****'

{* SCROLLUP: scrolls a display area by one or more *}
{* lines up or erases it *}
{* Input : see below *}
{* Output : none *}
{* Info : If Number 0 is passed, the display area *}
{* is filled with blanks *}
{***tt*t*t**ttt*****itt**ﬁ****tttﬁ**t*tt*tt**********k*ttt******t**i**}
procedure ScrollUp (Number, { Number of lines to be scrolled }
COLOR, { Attribute for the blank lines created }

ColumnUL, { Column in the upper left hand corner }

LineUL, { line in the upper left corner }

ColumnLR, { Column in the lower right corner }

}

LineLlR : integer);{ line in the lower right corner

var Regs : Registers; { Register variable for calling Interrupt }
begin
Regs.ah := 6; { Function number and number }
Regs.al := Number;
Regs.bh := COLOR; { Color of empty line(s) }
Regs.ch := LineUL; { Upper left }
Regs.cl := ColumnUL; { coordinates }
Regs.dh := LinelLR; { Lower right }
Regs.dl := ColumnLR; { coordinates }
Intr($10,Regs); { Call BIOS-Video-Interrupt }
end;

{FHRRRAAAK KKK KRRR AR AR K KRR RK K ARR KRR RKKARRRARAKKRRRR RN KRR ARK AR K KRR AR A K}

{* SCROLLDOWN: Scrolls a display area by one or more *}
{* lines down or erases it *}
{* Input : see below *}
{* Output : none *}
{* Info : If Number 0 is passed, the display area *}
{* is filled with blanks *}
(*****t*ﬁ***t*t****t****ﬂ***tttt*ﬂ**t**t**ﬁ***ititﬂ*ﬂ*tt***ﬁt*t******t)
procedure ScrollDown (Number, { Number of lines to be scrolled }
COLOR, { Attribute for the blank line(s) created }

ColumnUL, { Column in the upper left corner }

LineUL, { line in the upper left corner }

ColumnLR, { Column in the lower right corner }

}

LinelR : integer); { Line in lower right corner

var Regs : Registers; { Register-Variable for call of Interrupt }
begin
Regs.ah := 7; { Function number and number }
Regs.al := Number;
Regs.bh := COLOR; { Color of blank line(s) }
Regs.ch := LineUL; { upper left }
Regs.cl := ColumnUL; { coordinates }
Regs.dh := LineLR; { Lower right }
Regs.dl := ColumnLR; { coordinates }
Intr($10, Regs); { Call BIOS-Video-Interrupt }
end;

(t***ﬁ*t**kt**t*ﬂ**kt****i**tkti**ttﬁ*ﬁt*t*ﬁ*t*t*******tt**i***ﬁ**t***)
{* GETCHAR: Read a character including Attribute from an indicated *}

{* position in a display page *}
{* Input : see below *}
{* Output : see below *}

[RHRAARRR KA KRK A AR RARR KKK KA KRR R AR AR K AR AR A AK AKX AR KRR AR KA AR AR AR AKX}

246

Abacus

74 BIOS Screen Output Functions

procedure GetChar (Page,

Column,
Line
var
var COLOR
var Regs : Registers;
CurColumn,
Curline,
CurPage,
Dummy : integer;
begin

GetVideoMode (Dummy, Dummy, CurPage);
GetCursorPos (CurPage, CurColumn, CurLine,

Dummy, Dummy)

SetCursorPos (Page, Column, Line);

Regs.ah := 8;
Regs.bh := Page;
Intr($10,Regs);

Character := chr(Regs.al);

COLOR := Regs.ah;

Character :

’

{ Get Function number for char. and Attribute

{ display page accessed }

{ Display Column }

: integer; { Display line }
char; }
: integer); }

{ the character
{ its Attribute

{ Register-Variable for the Interrupt }

{ current display Column }

{ current display line }

{ current display page }

{ stores Variables which are not needed }

{ sense current display page
{ Get cursor position

{ in the current display page
{ cursor on the position indicated

— -

{ display page

{ Invoke DOS registers

{ ASCII-Code of character

{ Attribute of the character

— e

SetCursorPos (CurPage, CurColumn, CurLine);{ Set cursor old position
end;

(t***ti*t***t***t*ﬁ***tt**i***ﬁ*t**ﬁt******iﬁ'**t*i**t*******t***i*t*i)

{* WRITECHAR: Writes a character with indicated color to the *}
{(* current cursor position in the display page *}
{* indicated *}
{* Input : see below *}
{* Output : none *}
{* Info : during the Output of characters, the control codes *}
{* such as Carriage-Return are treated as ASCII codes *}

(****t******ﬁ*ii*i***it**t*itt*iiﬁ***t!*it*t**tttt*ﬁiﬁ**iii*t*ﬁ***i**t}

procedure WriteChar (Page : integer;
Character : char;

{ Display page for writing }
{ ASCII-Code of the character }

}

COLOR : integer); { its Attribute }
var Regs : Registers; { Register variable for the interrupt
begin

Regs.ah := 9;

Regs.al := ord(Character); { Function number and character code

Regs.bh := Page; { Display page

Regs.bl := COLOR; { Display color

Regs.cx := 1; { output character only once

Intr($10,Regs); { Call BIOS-Video-Interrupt
end;

(*t*t****t**tt*'i**t'*i*'*tﬁ*tt*t'tt**t***Q*****i't'*i**t****tﬁttttt*t)
{* WRITETEXT: Writes a String starting at an indicated position in *}

(* a display page. *}
{* Input : see below *}
{* Output : none *}
{* Info : During output of characters the control characters *}
{* such as Carriage-Return are treated as such. *}
{* If writing continues beyond the End of the display, *}
(* will be scrolled up one line *}

{Krr I AR KRR AR KA R A AR KRR KKK AR A AR AR AR AR AARRN KRR ARk Ak k kAR A A A Ak |

procedure WriteText (Page, { Display page for output

. }

Column, { Column, from which output starts }

Line, { Line, from which output starts }

COLOR : integer; { Color for all characters }

Text : TextTyp): { Text for output }

var Regs : Registers; { Register variable for call of Interrupt }

247

http:chr(Regs.al

7. The BIOS PC System Programming

Counter : integer; { Loop Counter }
begin
SetCursorPos (Page, Column, Line); { Set cursor }
for Counter := 1 to length(Text) do { process characters }
begin { in sequence }
WriteChar (Page, ' ', COLOR); { Color at the current position }
Regs.ah := 14;
Regs.al := ord(Text [Counter]); { Function number and character }
Regs.bh := Page; { Display page }
Intr($10,Regs); { Call BIOS-Video-~Interrupt }
end;

end;

(***t*t***t*t***t*t****t**t*****t***t*t****t*t***ttt********t**t******)

{** MAIN PROGRAM **})
(***********t*************************************t*******************]

begin
clrscr; { Erase display }
for 1 := 1 to 24 do { Perform line 1 to 24 }
for j := 0 to 79 do { do all Columns }
begin
SetCursorPos (0, J, 1); { position cursor }
WriteChar (0, chr(i*80+j and 255), NORMAL); { Write a character }
end;
ScrollDown (0, NORMAL, 5, 8, 19, 22); { Erase Window 1 }
WriteText (0, 5, 8, INVERS, °* Window 1 '):
ScrollDown (0, NORMAL, 60, 2, 74, 16); { Erase Window 2 }
WriteText (0, 60, 2, INVERS, °* Window 2);
WriteText (0, 24, 12, INVERS or BLINK, ' >>> PC SYSTEM PROGRAMMING <<< ')z
WriteText (0, 0, 0, INVERS, * Still have to draw +
' arrows on the screen Y):
for i := 49 downto 0 do { draw a total of 50 Arrows }
begin
str(i:2, Istring); { convert 1 in ASCII-String }
WriteText (0, 37, 0, INVERS, IString);
J:=1; { every Arrow consists of 16 lines }
while j <= 15 do
begin
k = 0;
while k < j do { create a line of the Arrow }
begin
SetCursorPos (0, 12-(j shr 1)+k, 9); { Arrow Window 1 }
WriteChar (0, *‘*', BOLD);
SetCursorPos (0, 67-(j shr 1)+k, 16); { Arrow Window 2 }
WriteChar (0, ***', BOLD);
k := succ(k);
end;
ScrollDown (1, NORMAL, 5, 9, 19, 22); { scroll Window 1 }
ScrollUp(l, NORMAL, 60, 3, 74, 16); { scroll Window 2 }
for 1 := 0 to 8000 do { Wait Loop }
;
3 o= 342;
end;
end;
clrscr; { Erase display !}

end.

248

Abacus 74 BIOS Screen Output Functions

C listing: VIDEOC.C

JEERAR IR AR R A I KR AR AR KR A KRA RN RA AR A A AR AR A RN AR ARAN AN RAR A KRR AR KRR KA A Ak ok /

/* VIDEOC */
/* */
/* Task : makes functions available which are not */
/* available from the Library of MICROSOFT and */
/* the TURBO C-Compilers */
/* */
/* Author ¢ MICHAEL TISCHER */
/* developed on : 08/13/87 */
/* last Update : 05/14/89 */
/* */
/* (MICROSOFT C) */
/* Creation : MSC VIDEOC; */
/* LINK VIDEOC; */
/* Call : VIDEOC */
/* */
/* (BORLAND TURBO C}) */
/* Creation : through the RUN command on the menu bar */

JHrARRRIKIA KRR A I A KA AR A KA AR IRAR AN K AR AR ARRR AR AR KRR KRR AKA R AR AR AN AN KA AR R A AR A Kk /

#include <dos.h> /* include Header-Files */
#include <io.h>

#define NORMAL 0x07 /* Definition of the character Attribute */
#define BOLD 0xOF /* in relation to a monochrome */
#define INVERS 0x70 /* Display card */
#define UNDERLINE 0x01

#define BLINK 0x80

/*kﬁﬁ*ﬁﬁ****ﬁ***kﬁ***ﬁ****ﬁ******ﬁ*************ﬁ*ﬁ******ﬁﬁ********ﬁ*ﬁ*/
/* GETVIDEOMODE: Read current Video mode and Parameters */
/* Input : none */
/* Output : see below */

JEEER IR AR IR KKK KRN R A KRR AR R KA KRR A KRR AR R RK AR ARR R KRR ARARARAARARA KA AR AKX/

vold GetVideoMode (VideoMode, Number, Page)

int *VideoMode; /* the Number of the Video mode */
int *Number; /* Number of Columns per line */
int *Page; /* Number of current display page */
{
union REGS Register; /* Register variable for Interrupt-Call */
Register.h.ah = 15; /* Function number */
int86 (0x10, &Register, &Register); /* Call Interrupt 10(h) */
VideoMode = Register.h.al; / Number of Video mode */
Number = Register.h.ah; / Number of Characters per line */
Page = Register.h.bh; / Number of current display page */

}

JEIRIER IR KRR ARA KRR KRR R I A IR AR IR A KRR AR A KA KA R AR KRR AR R AARRAAA KR KRR AR KA XAK KR /

/* SETCURSORTYPE: defines the appearance of the blinking display */
/* cursor */
/* Input : see below */
/* Output : none */
/* Info : for a monochrome display card the parameters */
/* can be between 0 and 13. For a color */
/* display card between 0 and 7 */

SRR R AR IR AR AR AR R AR KRR AR AR AR AR KA KRR AR AR AR AR AR R AR KRR AR K AR A KRR AR R ARk * f

void SetCursorType (Beginline, Endl)

int Beginline; /* Beginning line of the cursor */
int Endl; /* End line of the cursor */
{

union REGS Register; /* Register variable for Interrupt-Call */

249

http:Register.h.bh
http:Register.h.ah
http:Register.h.al
http:Register.h.ah

7. The BIOS PC System Programming

Register.h.ah = 1; /* Function number */
Register.h.ch = Beginline; /* Beginning line of cursor */
Register.h.cl = Endl; /* End line of cursor */
int86 (0x10, &Register, &Register); /* Call Interrupt 10(h) */

}

/***/
/* SETCURSORPOS: defines the position of the cursor in the indicated */

/* display page */
/* Input : see below */
/* Output : none *x/
/* Info : The position of the blinking display cursor changes */
/* only if the call of this function refers to */
/* current display page . *

JrR AR kAR R kAR R AR KRR R AR KRR AR KR A AR AR AR KR KRR AR AR KRR R KRR AR R AR A AR A AN ARk A K/

void SetCursorPos(Page, Column, Line)

int Page; /* Display page where the cursor will be set */
int Column; /* new cursor Column */
int Line; /* new cursor line */
{

union REGS Register; /* Reglster variable for Interrupt-Call */
Register.h.ah = 2; /* Function number */
Register.h.bh = Page; /* Display page */
Register.h.dh = Line; /* Display line */
Register.h.dl = Column; /* Display Column */
int86 (0x10, &Register, &Register); /* Call Interrupt 10(h) */

}

VALAREARA RS AR SRR et et n e e et E st sttt sl s

/* GETCURSORPOS: Get the position of the cursor in a certain */
/* display page and its start and end line */
/* Input : none */
/* Output : see below */

VAR AR R AR iRt g s e R R R e e R R s s sttt ys

vold GetCursorPos(Page, Column, Line, Beginline, Endl)

int Page; /* Number of display page */
int *Column; /* Column, where the cursor is located */
int *Line; /* Line, where the cursor is located */
int *Beginline; /* Start line of the cursor */
int *Endl; /* End line of the cursor */
{
union REGS Register; /* Register variable for Interrupt-Call */
Register.h.ah = 3; /* Function number */
Register.h.bh = Page; /* Display page */
int86 (0x10, &Register, &Register); /* Call Interrupt 10(h) */
Column = Register.h.dl; / Read result of the Function */
Line = Register.h.dh; / from the Registers */
Beginline = Register.h.ch; / and assign to proper */
Endl = Register.h.cl; / Variables */

}

[RE R Rk R R kR ok kA kA kAN AN AN KA IRk ARk Ak AR AR AR AR AR AR KRR AN AR R hk /

/* SETDISPLAYPAGE: sets the display Page which is to be represented */

/* on the display */
/* Input : see below */
/* Output : none */

[EE KRk AR R AR kK kA IR ERN KRR AR AR KA KA AR AR AR R KRR R KRRk kA RA KK h K)

void SetDisplayPage (Page)
int Page; /* Number of the new current display page */

{
union REGS Register; /* Register variable for Interrupt call */

250

http:Register.h.cl
http:Register.h.ch
http:Register.h.dh
http:Register.h.dl
http:Register.h.bh
http:Register.h.ah
http:Register.h.dl
http:Register.h.dh
http:Register.h.bh
http:Register.h.ah
http:Register.h.cl
http:Register.h.ch
http:Register.h.ah

Abacus

74 BIOS Screen Output Functions

Register.h.ah = 5;
Register.h.al = Page;

/* Function number */
/* Display page */

int86 (0x10, &Register, &Register);
}

/* Call Interrupt 10(h) */

/*t**tt*ttti****ﬁ**t*t*t****tttk*ﬁ****tﬁ****t***t***ttttti*t**tt**tt*t/

/* SCROLLUP: Scrolls a display area up one or several */
/* lines or erases it */
/* Input : see below */
/* Output : none */
/* Info : If 0 is passed as number, the display */
/* area is filled with blanks */

VARAAAEE LSS Rt ittt Ra st st Re ettt ettt sttt et sty

vold ScrollUp (Number, Color, ColumnUL, LineUL, ColumnLR, LineLR)

int Number; /* Number of lines to be scrolled */
int Color; /* Color or Attribute for the blank lines */
int ColumnUL; /* Column in upper left corner of the display area */
int LineUL; /* Line in upper left corner of the display area */
int ColumnLR; /* Column in lower right corner of the display area */
int LinelLR; /* Line in lower right corner of the display area */

{
union REGS Register; /* Register variable for Interrupt call */
Register.h.ah = 6;
Register.h.al = Number;
Register.h.bh = Color;
Register.h.ch = LineUL;
Register.h.cl = ColumnUL;
Register.h.dh = LinelLR;
Register.h.dl = ColumnIR;
int86 (0x10, &Register, &Register);
}

/* Function number */

/* Number of lines */

/* Color of blank line(s) */

/* Set Coordinates of the */

/* display Window to be scrolled */
/* or erased */

/* Call Interrupt 10 (h) */

VAL AR RS LRSS R RS R R Rt Rttt ittt i it ettt it s isss

/* SCROLLDOWN: Scroll a display area by one or more */
/* lines down or erase it */
/* Input : see below */
/* Output : none */
/* Info : If 0 is passed as number, the display */
/* area is filled with blanks */

/t*t*t*tt***ﬁ**ﬂ*tit*i**tﬁkitﬁ**t***t*ﬁ*t*it*t*i****t*t*it*ttktt*i**t*/

void ScrollDown (Number, Color, ColumnUL, LineUL, ColumnLR, LineLR)

int Number; /* Number of lines to be scrolled */
int Color; /* Color or Attribute for the blank lines */
int ColumnUL; /* Column in upper left corner of the display area */
int LineUL; /* Line in upper left corner of the display area */
int ColumnIR; /* Column in lower right corner of the display area */
int LinelR; /* Line in lower right corner of the display area */

{
union REGS Register; /* Register variable for Interrupt call */
Register.h.ah = 7;
Register.h.al = Number;
Register.h.bh = Color;
Register.h.ch = LineUL;
Register.h.cl = ColumnUL;
Register.h.dh = LinelR;
Register.h.dl = ColumnlR;
int86 (0x10, &Register, &Register);
}

/* Function number */

/* Number of lines */

/* Color of blank line(s) */
/* Set Coordinates for the */
/* display window to be */

/* scrolled or erased */

/* Call Interrupt 10(h) */

SR I KKK I I KAk KA kKRR A R KRR KA A R AR AR A AR KR A R KA AR AR AR AR AR KA KA A A A ARk ok /

/* GETCHAR: Read from a designated display position */
/* a character and its Attribute-Byte */
/* Input : see below */
/* Output : see below */

Vadi it SR i A R A R ettt i st ettt s ittt it sttt sissyd

251

http:Register.h.dl
http:Register.h.dh
http:Register.h.cl
http:Register.h.ch
http:Register.h.bh
http:Register.h.al
http:Register.h.ah
http:Register.h.dl
http:Register.h.dh
http:Register.h.cl
http:Register.h.ch
http:Register.h.bh
http:Register.h.al
http:Register.h.ah
http:Register.h.al
http:Register.h.ah

7. The BIOS PC System Programming

vold GetChar (Page, Column, Line, Character, Color)

int Page; /* Display page from which the character is to be read */
int Column; /* Display column of the character */
int Line; /* Display line of the character */
char *Character; /* the character at this position */
int *Color; /* its Attribute-Byte (Color) */
{
union REGS Register; /* Register variable for Interrupt call */
int Dummy; /* for Variables which are not required */
int CurPage; /* the current display page */
int Curline; /* the current display line */
int CurColumn; /* the current display Column */

GetVideoMode (sDummy, &Dummy, &CurPage); /* Get current display page */
GetCursorPos (&CurPage, &CurColumn, &Curline, /* Get current cursor */

&Dummy, &Dummy); /* position */
SetCursorPos (Page, Column, Line); /* Set cursor */
Register.h.ah = 8; /* Function number */
Register.h.bh = Page; /* display page */
int86 (0x10, &Register, &Register); /* Call Interrupt 10(h) */
Character = Register.h.al; / Read results from the Registers */
Color = Register.h.ah; / and assign */

SetCursorPos (CurPage, CurColumn, Curline);/* cursor to old position */

}

[AR IRk kA Rk Ak R ARk A R AR R KRR KA KRR AR KR AR RN A IR R KRR R AR AR AR RN R AR N AR KA Nk * /

/* WRITECHAR: writes a character with an Attribute */
/* at the current cursor position in the page indicated */
/* Input : see below */
/* Output : none */

/************************tt**************t****t***********************/
vold WriteChar(Page, Character, Color)

int Page; /* The character appears in this display page */
char Character; /* the character to be output */
int Color; /* its Attribute or Color */
{

union REGS Register; /* Register variable for Interrupt call */
Register.h.ah = 9; /* Function number */
Register.h.al = Character; /* the character to be output */
Register.h.bh = Page; /* display page */
Register.h.bl = Color; /* Color of character to be output */
Register.x.cx = 1; /* output character only once */
int86 (0x10, &Register, &Register); /* Call Interrupt 10(h) */

}

SR TR Ak A I RRR KKK I IR IR AR RARRK R IR K KAKKE KRR RKRRKRIKR KKK I RKANR RN KRR K [

/* WRITETEXT: Writes a character string with constant color */
/* starting at a designated position within a display page*/
/* Input : see below */
/* Output : none */
/* Info : Text is a pointer to a character vector which contains */
/* the text to be output and is terminated */
/* with a '\0' character */

/t*i*****ﬁ*t***************t*****ﬁ**tﬁt***ﬁt*t*ttt*********t***t***t**/
vold WriteText (Page, Column, Line, Color, Text)

int Page; /* the Text is output in this display page */
int Column; /* display Column for Output */
int Line; /* display line for Output */
int Color; /* Color/Attribute of the Text */
char *Text; /* Text for output */
{

union REGS Register; /* Register variable for Interrupt call */
SetCursorPos (Page, Column, Line); /* Set cursor */
while (*Text) /* Output Text up to *'\0' character */

{

252

http:Register.x.ex
http:Register.h.bl
http:Register.h.bh
http:Register.h.al
http:Register.h.ah
http:Register.h.ah
http:Register.h.al
http:Register.h.bh
http:Register.h.ah

Abacus

74 BIOS Screen Output Functions

WriteChar (Page, ', Color);
Register.h.ah = 14;
Register.h.bh = Page;
Register.h.al = *Text++;
int86(0x10, &Register, &Register);
}

}

/* Color for characters */
/* Function number */
/* display page */

/* the character for output */

/* Call Interrupt */

/ti**t*t*t******ﬁ*t*i**t*ittt*i****t*t*****iittt****i*'*****ttt***ti**/

/* CLEARSCREEN: erase the 80*25 character Text display and set */
/* cursor into the upper left display corner */
/* Input : none */
/* Output : none */

/******ttii********t******i*t*t**i*i*******t*******titii*titi****tt*i*/

void ClearScreen ()

{
int CurPage;
int Dummy;

ScrollUp (0, NORMAL, 0, O, 79, 24);

/* current display page */
/* Dummy variable */

/* clear screen */

GetVideoMode (¢Dummy, &Dummy, &CurPage); /* Get current display page */

SetCursorPos (CurPage, 0, 0);
}

/* Set cursor */

/**i**ﬁ*ﬁ**iﬁ*tt******i******t*tt*tﬁ***********ttt*t********tt*****ét*/

/** MAIN PROGRAM *%/
/*ti*it‘t*******iti’**i*ﬁ**‘kii’*******tt***ii**t****i**********ﬁitt****ﬁ*/

void main()

{
int i, 3, k, 1;
char Arrows[3];

ClearScreen();
for (1 = 1; 1 < 25; i++)
for (3 = 0; 3 < 80; 3J++)

{
SetCursorPos (0, Jj, 1);
WriteChar (0, 1*80+3&255, NORMAL);
}

ScrollDown (0, NORMAL, 5, 8, 19, 22);

/* Loop variables */

/* accepts number of Arrows as ASCII-String */

/* Clear Screen */
/* process all lines */
/* process all Columns */

/* position cursor */
/* write characters */

/* erase Window 1 */

WriteText (0, 5, 8, INVERS, " Window 1 "):

ScrollDown (0, NORMAL, 60, 2, 74, 16); /* erase Window 2 */
WriteText (0, 60, 2, INVERS, " Window 2 ");

WriteText (0, 24, 12, INVERS | BLINK, “ >>> PC SYSTEM PROGRAMMING <<< ");
WriteText (0, 0, 0, INVERS, * There are ")
WriteText (0, 40, 0, INVERS,"arrows left to draw ")

for (i = 49;
{
sprintf (Arrows, "$24", 1i);
WriteText (0, 37, 0, INVERS, Arrows);
for (3 = 1; 3 < 16; j+=2)
{
for (k = 0; k < j; k++)
{
SetCursorPos (0, 12-(3>>1)+k, 9);
WriteChar(0, ‘'*', BOLD);
SetCursorPos (0, 67-(3>>1)+k, 16);
WriteChar (0, **', BOLD);

i>0; i--)

}
ScrollDown (1, NORMAL, 5, 9, 19, 22);
ScrollUp(l, NORMAL, 60, 3, 74, 16);
for (1 = 0; 1 < 4000 ; 1++)

’

}
}
ClearScreen();
}

/* draw 50 Arrows */

/* Convert number of Arrows to ASCII */

/* and output */

/* every Arrow consists of 16 lines */

/* create a line of the Arrow */

/* Arrow Window 1 */

/* Arrow Window 2 */

/* Scroll Window 1 down */
/* Scroll Window 2 up */
/* Wait Loop */

/* Clear Screen */

253

http:Register.h.al
http:Register.h.bh
http:Register.h.ah

7. The BIOS PC System Programming

7.4.1 The EGA and VGA BIOS

The BIOS functions for screen output have been part of ROM-BIOS since the early
days of the PC. Although they have proven themselves in thousands of
applications, they don't work with the newer types of graphic cards. EGA and
VGA cards are becoming more and more common in the PC market.
Incompatibilities arise between hardware and software, because these cards have
little in common with the CGA and MDA cards for which the original BIOS
functions were intended.

To make EGA and VGA cards compatible with programs that use BIOS functions
to do their screen output, the BIOS functions must first be adapted to the new
hardware standards. The first option would be to replace the ROM-BIOS on the PC
motherboard with new ROMs. This solution can create other problems, because no
set standard currently exists for EGA or VGA. Unlike the CGA and MDA cards,
where the IBM standard took over simply because there were no other alternatives,
EGA and VGA manufacturers have yet to define a universal standard. Such a
standard would have to apply to hardware, options and capabilities as offered by
each manufacturer.

EGA/VGA ROM-BIOS

Since trying to adapt the ROM-BIOS included with the computer to every graphic
card on the market is impractical, the manufacturers of these systems use the
opposite approach. They package an independent ROM-BIOS with their video
cards. There is a small ROM on the video card itself which contains the necessary
screen output functions. When the system is booted, the BIOS detects this ROM
expansion and allows it to redirect the BIOS video interrupt 16H to its own
routines, replacing the old functions.

By using these routines, all of the programs which use BIOS functions for output
can be executed without problems, but the enhanced capabilities of these video
cards are not used. Since the ROM-BIOS on the motherboard is intended to work
only with CGA and MDA cards, it supports only the capabilities of these cards.
So the graphic card manufacturers extend the BIOS in these video cards by
including new functions or upgrading old functions, so that the enhanced video
capabilities can be used.

This section is dedicated to these functions. No real standard exists for these BIOS
extensions, as mentioned previously. We could use this section to describe the
video functions of the more important EGA and VGA cards (many different cards),
but even with this information you still wouldn't be able to write programs which
would be compatible with all of the video cards on the market. Writing a program
for a specific video card makes sense only when you want the program to run with
that card only.

Abacus 7.4 BIOS Screen Output Functions

EGA/VGA video modes

Instead, let's look at the lowest common denominator, the video modes and
functions supported by virtually all EGA/VGA cards. If you stick to this "low-
level" standard, you can be fairly sure that your programs will run properly with
all EGA/VGA cards. The basis of this standard is the set of video modes supported
by the original EGA card, introduced by IBM in 1985, or the original VGA card,
introduced by IBM in 1987. All of the manufacturers of compatible cards have
included similar functions in their own cards, and added their own features.

All EGA and VGA cards have flexibility in common, which allows them to
emulate other video cards, as well as perform other tasks. The type of emulation
depends on the monitor connected, since unlike other cards, EGA/VGA cards can
by used with different types of monitors.

Monitors and EGA/VGA

If you connect a monochrome monitor to an EGA or a VGA card, it assumes the
features of an MDA or Hercules graphic card. If you connect a color monitor to an
EGA or a VGA, it emulates a normal CGA card. However, EGA/VGA cards run
best when connected to a multisync monitor, which allows color displays at higher
resolutions than Hercules or CGA. The standard resolutions (640x350 for EGA,
640x480 for VGA) can be displayed on a multisync monitor with no problem.
However, multisync monitors also support the higher resolutions available on
many EGA and VGA cards. Resolutions of 800x600 pixels and 1024x768 pixels,
are common. These higher resolutions can be used only if the EGA/VGA card has
enough RAM, since the extended graphics mode requires additional video RAM to
handle the higher resolutions. The programmer doesn't have to worry much about
this, because almost all EGA cards come with 256K RAM standard. Very few
EGA cards come with a mere 64K and must be expanded to 256K. Most VGA
cards come equipped with 256K of video RAM, as well as a special VGA BIOS.
This special BIOS may require special drivers to operate in conjunction with
graphical user interfaces such as GEM® or Microsoft Windows®.

In addition, to support the new graphic modes with higher resolutions, EGA cards
offer a palette of 16 colors chosen from the 64 available colors. In text mode it is
also possible to set the heights of individual characters, so that up to 43 lines can
be displayed on the screen at once, instead of the normal 25 lines.

VGA features

The VGA card is even more powerful. In text mode, the VGA card can display 25
lines, 43 lines and even 50 lines of text. In addition, the VGA has even more
colors available (262,144 colors, as opposed to the EGA's 64-color spectrum). Of
course, these colors are only effective when displayed on a monitor that has a high
enough resolution.

255

7. The BIOS PC System Programming

The rest of this section shows how these extended features can be used and how the
original BIOS functions have changed.

As with the normal BIOS, all of the video modes in the EGA/VGA BIOS are set
with the help of function 00H of the BIOS video interrupt. This function has not
been changed since the old BIOS, but it has been extended. The number of the
video mode to be set is passed in the AL register. The following codes are allowed:

EGA/VGA Card Video Modes

Code Mode MoNO] coLor | EGA/VGA
00H 40x25 characters, 16 colors []
01H 40x25 characters, 16 colors H [
02H 80x25 characters, 16 colors]]
03H 80x25 characters, 16 colors] -]
04H 320x200 graphic pixels, 4 colors]]
05H 320x200 graphic pixels, 4 colors]]
06H 640x200 graphic pixels, 2 colors] u
07H 80x25 characters, monochrome| M

ODH 320x200 graphic pixels, 16 colors n
OEH 640x200 graphic pixels, 16 colors [
OFH 640x350 graphic pixels, monochrome| M

10H 640x350 graphic pixels,16 colors** |
11H 640x480 graphic pixels, 2 colors i
12H 640x480 graphic pixels, 16 colors L
13H 230x200 graphic pixels, 256 colors [
* VGA only

* * EGA cards with 64K of added RAM can only display 4 colors

EGA and VGA cards can suppress clearing the video RAM when switching to a
new video mode. If you want to to do this, bit 7 of the AL register must be set in
addition to video mode number when the function is called.

The codes listed above are also valid for the function OFH, which is used to
determine the current video mode.

Nothing much has changed in functions 01H to OEH. Slight changes have been
made to functions 01H and 03H, which define and read the design of the cursor. We
will discuss these changes later. You can also get exact descriptions of these
functions from the appendices, where all of the functions of the EGA/VGA BIOS
are described.

Extended functions

256

After function OFH, which also appeared in the old ROM-BIOS, we have three
new EGA/VGA functions numbered 10H, 11H, and 12H. These new functions are
dedicated to a specific task and have a number of sub-functions.

Abacus 74 BIOS Screen Output Functions

Function 10H

Function 10H comprises all of the sub-functions for using the color capabilities of
the EGA/VGA cards. Before we describe these functions, we should first look at
the way in which the EGA and VGA cards create colors.

Unlike the MDA and CGA cards, the two nibbles of the attribute byte of a
character in text mode do not directly specify the color or attributes of the character
in the EGA. They comprise an index to one of the 16 palette registers of the EGA
card, which then contains the actual color. This makes it possible to set the desired
colors individually, and allows color changes simply by changing the contents of
the palette registers. The interpretation of the palette register contents, and the
number of displayable colors, depend on the type of monitor used. The EGA card
itself can generate 64 colors, but these can be displayed only on EGA or multisync
monitors, since these monitors have the six color lines required (25 = 64). There
are two lines available for each fundamental color (red, green, and blue), where the
two lines control the intensity level of the color. These six lines correspond
directly to the lower six bits of a palette register, as the following figure shows.

4 3 2 1 o bit
r|g|b|R|G|B

2
X

6
! X
| -

—>Blue (Iintense)
———Green (intense)
—— P Red (intense)

Blue (less Intense)
—p{Green (less Intense)
$1Red (less intense)

EGA palette registers when connected to EGA or multisync monitor

This color scheme is not available when a normal color monitor is connected. It
has only four lines for the color representation, three of which are assigned the
fundamental colors red, green, and blue. The fourth line simply allows the
resulting color to be displayed at higher intensity. These limited possibilities affect
the structure of the palette register, which clearly differs from the six-bit structure
used when an EGA or multisync monitor is connected. A total of only 16 colors
can be displayed in this mode.

257

7. The BIOS PC System Programming

y 2 1 o bit
I R|G|B
—p Blue

> Green
> Red
- Intensity

EGA palette registers when connected to a color monitor

The bits of a palette register take on a completely different meaning when the card
is connected to a monochrome monitor. In this case the monitor cannot display
different colors, and can only display bright, inverse, and underlined characters.
‘When connected to such a monitor, the meanings of the individual bits correspond
to those of the attribute byte of an MDA card, which we examined earlier in this
chapter.

DAC color table

258

The VGA card also uses the most significant and least significant nibbles of the
attribute byte as an index, pointing to one of 16 palette registers. Unlike the EGA
card, which only contains the color code, this byte contains a value between 0 and
255. This number acts as a reference to the DAC (digital analog converter) color
table. This table allows the VGA card to convert a digitally notated color code into
an analog video signal. The DAC color table sees each color code as three six-bit
values, with each value representing the degree of red, green and blue intensity in
the color.

As the following figure shows, the color code layout in some registers plays a role
which also involves the BIOS. Bit 7 of each value controls the grouping of the
different registers in the DAC color table, thus controlling the mode control
register of the video controller. If this bit contains a 0, the index in the DAC color
table bases its palette register on the contents of bits 0 to 5, and the color select
register on bits 2 and 3. The consequence is that the DAC color table is divided
into four groups of 64 consecutive registers. The value in the palette register
represents the index in this group, whereby the active group itself selects the color
based on the contents of bits 2 and 3 of the color select register.

When bit 7 of the mode control register contains a 1, the DAC color table divides
into 16 groups of 16 consecutive registers. The index of this table is based on bits
0-3 of the corresponding palette register, and bits 0-3 of the color select register.

Abacus

74 BIOS Screen Output Functions

These registers select the acﬁve color group from within the DAC color table, and
the contents of the palette registers represent the index of this group.

You can use this form of coding for creating fast and easy color changes when
characters on the screen must be changed rapidly. This involves storing different
groups in the DAC color table which specify brighter or darker colors, and quickly
incrementing the active color grouping through the color select register.

3

15

4 -

0 Bit
Bit Attribute

3

4 -

O Bit
Bit Attribute

[

16 Palette Registers

18 - Bit Calar Code

18 - Bit Calar Code

4 groups of
64 entries

Mode-Control-Register

Mode-Control-Register

16 groups of
16 entries

Color code layout of the VGA card

To perfectly emulate a CGA or an MDA card, the EGA/VGA BIOS sets the
individual palette registers (or in the case of the VGA card, the DAC color
registers) to the same color scheme used by a CGA or an MDA card when the
corresponding mode is initialized. In the case of CGA emulation (EGA/VGA card
and a CGA monitor), this means that palette register 0 contains the value 0,
palette register 1 the value 1, etc. At the same time, the color select register of the
VGA card must be set to the first of 16 palettes whose color codes correspond to
those of a CGA card. This also applies to CGA modes 4 and 5 (320x200 pixels,
four colors), which work with one of two color palettes which can be selected via
function OBH, sub-function 1. The EGA BIOS simply loads the corresponding
colors into the lower three palette registers, depending on the palette selected.

There is normally no need to change the contents of the palette registers in this
case, since no new colors can be displayed on the screen. Individual colors can
easily be exchanged with each other.

Things are different when an EGA/VGA or multisync monitor is connected. The
EGA/VGA BIOS loads values 0 to 15 into the 16 color registers when the text

259

7. The BIOS PC System Programming

260

mode is initialized, but this does not exhaust the color options of the EGA card.
To make full use of these options, sub-function 00H of function 10H can be used
to load one of the 16 palette registers. In addition to the function number in the
AH register and the sub-function number in AL, this function must also be passed
the number of the palette (0 to 15) in BH and the new color value for this palette
in the BL register. Since this function does not check the number of the register, it
can also be used to change the contents of a 17th palette register (screen border and
background color in the graphics mode), although it is better to use sub-function
O1H of function 10H for this. Besides, it doesn't make much sense to set a
background color in the text modes, because the text display takes up almost the
entire screen with only two or three raster lines left over for the output of a border
color. The contents of this palette register are ignored when a monochrome
monitor is connected.

To call the function for accessing this palette register, the AH register must first
be loaded with the function number 10H and the AL register with the sub-function
number 01H. The BH register holds the border color, which is then loaded into
palette register 16 when the function is called.

Sub-function 02H of function 10H is used when you want to load all of the palette
registers at the same time, including the register for the border color. In addition to
the function and sub-function numbers in AH and AL, respectively, the address of
a table must be passed in the ES:DX register pair. This table contains the values
for the 17 palette registers. When this function is executed, the contents of this
table will be copied into the 17 palette registers and will cause all of the colors on
the screen to change at once.

The last sub-function of function 10H (for EGA only) defines the meaning of a bit
in the text modes. As with the CGA and MDA cards, this bit can also be used on
the EGA card to emphasize a character by either displaying it on a bright
background color or flashing it, if the bit is set. While the meaning of this bit can
be changed only by directly programming the video hardware with CGA or MDA
cards, the EGA/VGA BIOS can perform the same task using sub-function 03H of
function 10H.

As with calling the other sub-functions, the function and sub-function numbers
must be passed in registers AH and AL. The meaning of bit seven of the attribute
byte is determined by the contents of the BL register. The value of zero in this
register sets the bright background color, while the value one causes all characters
on the screen, with bit seven of their attribute bytes set, to flash on and off.

The VGA card has additional functions available for accessing this table. These
functions are all sub-functions of function 10H, and are only accessible from the
VGA card.

The contents of a single DAC color register can be modified using sub-function
10H. Load the AL register with the sub-function number, the BX register with the

Abacus

74 BIOS Screen Output Functions

number of the corresponding register (0-255) and the CH, CL and DH registers
with the color code. Then call the function. To help correctly interpret the contents
of this register, the DAC color table must be coded as an 18-bit value (6 bits for
red, 6 bits for green and 6 bits for blue). The red components must be loaded into
the DH register, the green components into the CH register, and the blue
components into the DL register.

You must load the number of the register to be updated into the BX register. The
registers receive the number of the DAC register to be updated when you call sub-
function 15H.

Any number of DAC color registers can be loaded at a time using sub-function
12H. The number of the first DAC color register to be loaded is passed to the BX
register, and the number of DAC color registers to be loaded is passed to the CX
register. The new contents of the DAC color registers are loaded into a buffer (the
address of this buffer is contained in the ES:DX register pair). Each DAC color
register receives three consecutive bytes from this buffer. These three bytes specify
the green components, the red components and the blue components of the color
code.

Reading the DAC color table

Sub-function 17H reads the contents of a group of DAC color registers. The
number of the first DAC color register to be read is passed to the BX register, and
the number of registers is passed to the CX register. The contents of this register
copies the VGA BIOS to a buffer, whose segment and offset address may be found
in the ES.DX register pair. The structure is identical to that of sub-function 12H.
Remember that the registers for each DAC color register consist of three bytes (not
one), and to allocate a buffer of appropriate size.

Organizing the DAC color table

Sub-function 13H allows the organization of the DAC color table and the active
color group, offering two of its own sub-functions. If the BL register contains the
value 0, then the sub-function copies bit O of the BH register into bit 7 of the
mode control register of the VGA controller. The organization of the DAC color
table can then be broken down into 4 or 16 groups. However, if the BL register
contains the value 1 when this sub-function is called, then the sub-function copies
the contents of the BH register into the color select register, then selects the active
color group.

The contents of both registers can be conveyed by calling sub-function 1AH. After
calling this function, the content of bit 7 of the mode control register is passed to
the BL register, and the contents of the color select register is passed to the BH
register.

261

7. The BIOS PC System Programming

Gray scales

Palette

262

Sub-function OBH converts the color codes within the DAC color table into gray
scales. Pass the number of the first register to be converted into the BX register,
and the number of registers to be converted to the CX register. The conversion
results in a color value between O (black) and 1 (white), based on a red intensity of
30%, a green intensity of 59% and a blue intensity of 11%.

registers

The VGA BIOS still has more sub-functions in function 10H for reading the
palette registers. Sub-function 07H reads the contents of any palette register. When
the function is passed and the number of the palette register is passed to the BL
register, the number of the contents is returned in the BH register. This allows read
access to the contents of the overscan register (the color border on palette register
16), but this access requires the use of sub-function 08H. Like sub-function 07H,
the result is loaded into the BH register.

Sub-function 09H loads the contents of the entire palette table (i.e., all 16 palette
registers and the overscan registers) into a 17-byte buffer. The segment address of
this buffer is loaded into the ES register, and the offset address is loaded into the
DX register.

Another feature of the EGA and VGA cards are their ability to work with a number
of different fonts and font sizes. This feature allows the EGA/VGA cards to be used
with different monitors, in different resolutions. Since the screen resolution is
determined by the monitor hardware and cannot be changed, the video card must
adapt to the monitor's resolution. Exceptions to the rule are the more versatile and
expensive multisync monitors, which get their name from the ability to adapt
themselves to different synchronizations (resolutions).

Of the different monitors which can be used in connection with an EGA or a VGA
card, the color monitor, normally used in conjunction with a CGA card, has the
poorest resolution. It only has a resolution of 640 pixels (horizontal direction) by
200 pixels (vertical direction). If you want to display 25 lines of 80 columns each
on the screen, you will have to use a character matrix of 8 by 8 pixels so that all
of the characters fit on the screen.

Even though the monochrome monitor cannot display different colors, it does offer
a resolution of 720 by 350 pixels when used with an MDA or Hercules graphics
card. The individual characters are displayed with a matrix of 9 by 14 pixels.

EGA and muitisync monitors also have a vertical resolution of 350 pixels, but can
only display 640 pixels horizontally. The resolution of individual characters is 8 x
14 pixels—only slightly less than that of the monochrome monitors. VGA cards
and multisync monitors usually support a minimum vertical resolution of 480
pixels, but some units even support 600 raster lines. VGA cards often permit
character matrices of 8x16 (text mode) and 9x16 pixels.

Abacus 74 BIOS Screen Output Functions

Character generators

In order to support the various resolutions, the EGA/VGA cards have their own
character generators which can display characters in any height between one and 32
raster lines. The number of text lines per screen depends on the height of the
displayed characters and the resolution of the monitor. To make the best use of this
feature, the EGA/VGA cards get the bit patterns of the characters from a section of
the video RAM instead of from ROM.

Function 11H

Normally the character generator is programmed automatically and the appropriate
character set is loaded when a video mode is initialized, but it is possible for a
program to control these features with function 11H. You might want to use this
to display more than the usual 25 text lines on a monochrome, EGA, or multisync
monitor. But even if you do want to use 25 lines, these functions offer the ability
to redefine individual characters of the character set or to install an entirely new
character set. This can be done with sub-function 00H. Like all of the sub-
functions of function 11H, the value 11H must be passed in the AH register and
the sub-function number must be passed in the AL register. A number of other
parameters must also be passed in the other processor registers. The BH register
stores the height of the individual characters. Since this function is intended for
modifying individual characters of the current character set, you must load the
height of these characters here. As mentioned above, the height of characters on
monochrome, EGA, or multisync monitors is normally 14 lines (or with the VGA
card, 16 lines on a VGA or multisync monitor), while on color monitors it is 8
lines. The BL register stores the number of the character table in which the
character will be loaded. Theoretically a number O through 3 can be given here for
one of the four different character tables, but you should restrict yourself to
modifying character table 0, because it is the only table guaranteed to be accessible
by EGA cards with less than 256K RAM. This character table is also the one into
which the EGA BIOS loads the character definitions when the video mode is
initialized with function 00H. Since you may not want to redefine the entire
character set, the CX register holds the number of characters to be defined
(maximum of 256). The number of the first character to be defined is placed in the
DX register and may not exceed the value 255.

The character definitions themselves are stored in a buffer whose address is passed
in the ES:BP register pair. The bit patterns of the individual characters are placed
in this buffer such that the height of each character (BH register) also specifies the
number of bytes per character in the buffer.

The individual characters are stored sequentially, so the total size of the buffer is
the number of characters multiplied by the height of the characters. The eight bits
of each byte reflect the status of the individual pixels in each raster line. If a bit is
set, the pixel will appear at the corresponding position in the foreground color. If
the bit is cleared, the pixel will appear in the background color. Note that the

263

7. The BIOS PC System Programming

264

character matrix is actually eight pixels wide, even through the characters are
displayed with a width of nine pixels on a monochrome screen. In this case the
ninth bit is not taken from the character definition, the last bit on each line is
simply duplicated.

Bit 7 6
ES:Bp —P>

Line 1

< First character
00111000b

'00111000b
00010000b
] | 11111110b
00010000b
00101000b
[|] 01000100b

00000000b
< Second character

I e
o] [mm [ewjmm| o

N
N N (N

Line

Buffer structure after calling function 11H, sub-function 00H

As long as characters with the appropriate ASCII codes are displayed on the screen,
the changes will be noticeable immediately after this function is called.

While sub-function 00H can be used to load user-defined characters into the
character set, sub-functions 01H and 02H are used to load the two ROM character
sets contained on the EGA/VGA card. Sub-function 01H loads the entire 8x14
character set of the EGA/VGA card into one of the four character tables. Sub-
function 02H loads the 8x8 CGA-compatible character set into one of the four
character tables. In addition to the function and sub-function numbers, both
functions are passed the number of the character table in which the character set is
to be loaded in the BL register. If the character table involved is the one currently
displayed on the screen, then the changes will be visible immediately after the
function is called. Although these two functions load the character sets, they do
not set the character generator to the height of the appropriate character set. For
example, if you load the 8x8 character set into the current character table while the
characters are being displayed in an 8x14 matrix, you will get a rather strange

.display. Raster lines one to eight will have the bit-map of the 8x8 character set

while lines nine to 14 will have the remainder of the 8x14 set.

Sub-function 04H (available to VGA only) serves a similar purpose to sub-
functions 01H, 02H and 03H. The difference is that calling sub-function 04H loads
the 8x16 ROM character set into one of the four character tables.

Abacus

74 BIOS Screen Output Functions

If you want to work with several character sets in parallel, it is recommended that
you load the individual character sets into their own character tables and then
switch between the tables. Sub-function 03H is used to switch to a new character
table. In addition to the function and sub-function numbers, it must be passed the
number of the character table to be activated in the BL register.

Sub-functions 10H, 11H, and 12H are almost identical to sub-functions 00H, O01H,
and 02H. They are also used for loading character sets, but they program the
character generator at the same time. This has the result that the characters are
displayed with the proper character height after the function is called. The number
of text lines on the screen changes automatically.

Function 10H is used to load and activate user-defined character sets and is called
exactly like function 00H. The number of text lines which are displayed after the
call to the function results from the vertical resolution of the monitor divided by
the height of the individual characters. If this division is not even and there is a
remainder, the remaining lines will be divided equally between the top and bottom
borders of the screen. Partial text lines are not displayed.

Sub-functions 11H and 12H load and activate entire character sets. If the 8x14
character set is loaded with sub-function 11H and a monochrome, EGA, or
multisync monitor is being used, 25 lines (EGA) or 28 lines (VGA) will be
displayed on the screen. If this is done while a color monitor is connected, which
has a vertical resolution of only 200 lines, only 14 lines will be displayed on the
screen.

These changes must also be taken into account when calling function 12H, which
loads and activates the 8x8 character set. The usual 25 lines will be visible on a
color monitor, while on the other monitors the screen will consist of 43 text lines
(EGA) or 50 text lines (VGA).

VGA BIOS has an additional sub-function. When sub-function 14H is called, it
loads and activates the 8x16 ROM character set. Only 25 lines of text will appear
on the screen.

Regardless of the number of text lines which result from calling one of these
functions, the EGA BIOS ensures that the traditional BIOS functions for screen
output (function numbers 00H to OFH) will still work properly. Even if the screen
contains 43 lines, you can call the functions for character output, scrolling the
screen, and access the lines outside of the usual 25-line boundary. However, you
should avoid using multiple screen pages and just use page 0, or you may run into
problems with the BIOS versions of various manufacturers.

Cursor emulation

Certain EGA cards can have problems with the mechanism called cursor
emulation. This involves converting the starting and ending lines of the cursor
when the height of the character matrix is changed. For example, if the character

265

7. The BIOS PC System Programming

height decreases from 14 to 8 lines, then the cursor will be invisible if it was in
the range of raster lines from 9 to 14. To prevent this, the BIOS converts the
starting and ending lines to the new matrix height. This mechanism must be
disabled at the beginning of a program. Unfortunately, no function for doing this
exists in the EGA BIOS; the only way to disable it is to clear a flag in one of the
BIOS variables (bit O in the byte at address 0040:0087). The programs at the end
of this section demonstrate this in practice. The VGA BIOS dogs possess such a
function, as we'll see shortly.

Function 12H

266

All of the functions described so far can only be used in conjunction with an EGA
card or a VGA card. To determine if an EGA/VGA card is installed, the EGA/VGA
BIOS offers function 12H, which is not available in the normal ROM-BIOS. It is
called with the function number in AH and the value 10H in the BL register. If
this value is still in the BL register after the call, you can assume that no
EGA/VGA card is available and the normal ROM-BIOS was called, which does not
support this function. A different value shows that an EGA or a VGA card is
available. In this case the BH, BL, and CL registers contain configuration
information about the installed EGA/VGA card.

The value in BH specifies the video mode that will be activated after the system is
booted. Since another mode may have been enabled in the meantime, this
information is of little use. The value in the CL register, which tells you what
kind of monitor the card is driving, is much more useful. The following values are
returned for the individual monitor types:

OBH monochrome monitor
09H high-resolution (EGA/VGA or multisync) monitor
08H color monitor

The contents of the BL register are also useful. They specify the amount of RAM
installed in the EGA card. The following codes can appear:

0 64K 1 128K
2 192K 3 256K

This distinction is important if you want to work with multiple character tables or
with the high-resolution graphics modes of the EGA/VGA card. For example,
graphics mode number 10H, which offers a resolution of 640x350 pixels, can be
used only if the EGA/VGA card has at least 128K of RAM. The number of
character tables available also depends on the size of the RAM. This can be
determined by the incrementing by 1 the number returned in the BL register.

Abacus 74 BIOS Screen Output Functions

Function 1AH

Function 1AH, sub-function 00H informs the user of whether an EGA card or a
VGA card is installed. This function is only available to VGA cards. You must
pass the function number to the AH register and place the value O0H in the AL
register. This determines whether a VGA card is installed. If the value 00H
remains unchanged, there is no VGA card available, while a returned value of 1AH
indicates a VGA card. The contents of the BL register indicate the active video

mode:
Code Meaning
00H No video card
01H MDA card / monochrome monitor
02H CGA card / color monitor
03H Reserved
04H EGA card / high-res monitor
05H EGA card / monochrome monitor
06H Reserved
07H VGA card / analog monochrome monitor
08H VGA card / analog color monitor

Function 12H, sub-function 20H can be used to install an alternate hardcopy
routine. This can be used when the screen is displaying more or fewer than 25
lines. Since the normal hardcopy routine of the BIOS assumes that there are 25
lines on the screen, it always prints exactly 25 lines, which may omit some lines
from the hardcopy. The alternate hardcopy of the EGA/VGA BIOS always accounts
for the actual number of lines displayed on the screen, and is therefore preferable to
the normal hardcopy routine. It is installed by calling the BIOS video interrupt
10H, whereby the value 12H is passed in the AH register and the value 20H must
be in the BL register.

The VGA BIOS includes six other sub-functions of function 12H, exclusively for
control of the VGA card. Sub-function 30H helps determine the number of raster
lines available (not text lines) when a VGA is operating with a VGA or multisync
monitor. In CGA mode this becomes only 200 lines instead of 400. The sub-
function number must be loaded into the BL register. The VGA BIOS interprets
the number it finds in the AL register as the number of raster lines. A value of 0
in the AL register indicates 200, the value 1 indicates 350 and the value 2 indicates
400 raster lines.

Working in conjunction with color selection as mentioned above, so that EGA and
VGA cards can load their palettes or DAC registers, the color spectrum of a CGA
card can be emulated. Sub-function 31H enables or disables this emulation in the
VGA card after calling function 00H (video mode selection). Calling this sub-
function signaled by the value 0 in the AL register activates green light, while a
value of 1 tells the VGA BIOS to avoid loading the corresponding register.

267

7. The BIOS PC System Programming

Automatic gray scaling

Sub-function 33H specifies the status of automatic gray scale summing. This
summing instructs BIOS accesses to the DAC color table to automatically convert
color values into gray scales. The contents of the AL register indicate this status:
A value of 0 indicates conversion enabled, while a value of 1 indicates no
conversion.

Function 12H, sub-function 34H controls the suppression of cursor emulation. A
value of 0 in the AL register enables cursor emulation, while a value of 1
suppresses this emulation.

Function 13H

268

We will mention one last function of the EGA/VGA BIOS. It is not exactly new,
since it was already in the AT ROM-BIOS, but it was not in the PC or XT BIOS.
This is function 13H, which displays a string on the screen. There are four
different output modes available, which differ in how the string is passed to the
BIOS and whether or not the cursor will be placed at the end of the string when the
output is done. Also, the functions differ in whether all the characters in the string
will be given a constant color or provided with individual attributes. In the first
case, the buffer, the address of which is passed in the ES:BP register pair, need
only contain the ASCII codes of the characters to be printed. The color for all of
the characters is taken from the BL register. In the second case, the attribute byte
for each character follows its ASCII code in the buffer.

The contents of the AL register determine which mode will be used:

0= One color for all of the characters. The cursor position does not
change.

1= One color for all of the characters. The cursor will be placed after the
last character of the string.

2= The buffer contains the individual attributes. The cursor position does
not change.

3= The buffer contains the individual attributes. The cursor will be

placed after the last character of the string.

The number of the screen page on which the string is to appear can be specified in
the BH register, but this should always be the current page. Otherwise problems
will arise with printing control characters (carriage return, linefeed, etc.). The CX
register holds the length of the string. This refers to the number of characters to be
printed (attributes must not be counted in modes 2 and 3). The output position is
passed to function 13H in registers DH (line) and DL (column). And, finally, we
shouldn't forget the function number in the AH register.

Abacus 74 BIOS Screen Output Functions
A

N
Demonstration programs

After so many register assignments, function numbers, and the like, it helps to be
able to see some example programs to put the information into perspective. Many
of the functions we discussed are found in the programs listed below. Not all of
them are called by the actual main program but are included to show you how it's
done.

The programs have two main tasks. First, they show you how to work with and
program the color palettes. Second, and even more important, these programs
show you what possibilities are offered by defining your own character sets. Here
this is used to display a small graphic in text mode. This could be used when you
want to display a personal or company logo on the screen, but the characters
needed are not found in the ASCII character set. In the example program, this is
demonstrated by displaying the text "PC Internals Michael Tischer" on the screen
in large, fancy lettering while in text mode. This message was first drawn with a
graphics program and then converted to aLkind of virtual raster. This corresponds in
density to the character matrix (ﬂ' 8x14 pixels in the text mode when an EGA
monitor is connected. With the hélp of this raster we discovered that four rows of
30 characters each, for a total of 120 characters, were required to display this
graphic in text mode. The next step was to convert the bit-map of this graphic so
that it could be loaded into one of the character tables with the help of sub-function
00H of function 11H. Each eight consecutive pixels were combined into a byte and
then 14 of these eight-bit units in a column were combined together. The results
are the initialized arrays in the program listing.

Once these data are created, the most time-consuming part of the whole procedure
is done, since all we have to do is call the appropriate function in order to load the
characters into the character table so we are able to display them on the screen.
This proved to be something of a problem in C because none of the functions for
interrupt calls allowed a value to be assigned to the BP register, which is where the
offset address of the character buffer must be passed. We had to write a small
assembly language routine which just loads the parameters passed to it into the
required registers and then calls the BIOS video interrupt.

Inside the example program the bit patterns for the graphic are loaded into the
character definitions for the ASCII codes 128 to 248 with the help of this function.
The new characters replace the foreign characters and the border characters, but the
standard ASCII characters like letters and numbers are retained. You can load the
bit patterns in other parts of the character set as well, if you wish.

One réutine in the program which is not executed is called SetLine and allows the
number of text lines on the screen to be set (25 or 43). If you use this function to
put the screen in 43 line mode, you first make certain arrangements regarding
screen output. Both Pascal and C send their output to the screen using DOS
functions when printf or writeln is called. Turbo Pascal allows direct access to the
video RAM under certain conditions, but this doesn't change the problem. Here it

269

7. The BIOS

PC System

Programming

Pascal

270

depends on whether or not an extended screen driver (ANSL.SYS) is installed. If
such a driver is not installed, the DOS will use BIOS function OEH of interrupt
16H, which also handles screen scrolling. Since this function is part of the EGA
BIOS, it will properly recognize that the screen consists of 43 lines and will not
scroll it until the 44th line is reached. Things are different with most ANSL.SYS
drivers, which perform scrolling themselves. Since many of them assume a 25-line
screen, they will scroll until the 26th line is reached and the remaining lines will

be wasted.

To avoid such problems, the two output routines in the example programs offer
the ability to output strings directly to the video RAM and avoid the DOS

functions.

listing: EGAP.PAS

{$V-} { don't check length of strings }
{iittitii*ﬁt*ﬁ*ﬁ*i*itttt**ﬁ*iii*it*tﬁttti*i**tﬁi***t**i*tttti*i***t**ii}
{* EGAP *}
{* *}
{* Description : demonstrates the use of the functions of the *}
{* EGA/VGA BIOS. *}
{* *}
{* Author : MICHAEL TISCHER *}
{* developed on : 08/30/1988 *}
{* last update : 06/07/1989 *}

(*ﬁ**ﬁ**ﬁﬁ*iﬁ*ittii*tiﬁiﬁ**tittiﬁi*ﬁtﬁt*itﬁtiiﬁ*ﬁ**t*ititiﬁ**ﬁ*ﬁ*ﬁ*i*i*)

program EGAVGAP;

Uses Dos, CRT;
type BytePtr

const

VElb = record

{ bind in the DOS and CRT units
= “byte; { pointer to a byte

{ describes a screen position as 2 bytes

Character : char; { the ASCII code
Attribute : byte; { the attribute
end;

——

—

—

VRam = array([0..4000] of VelB; { describes the video RAM }
string8 = string([80]}; { output string for PrintAt
VIDEO_INT = $10; { BIOS video interrupt
LINE2S = 25; { 25 line screen
LINE43 = 43; { 43 line screen
MOMO = 0; { constants for GetMonTyp
COLOR =1;

EGA = 2;

Font array(l..120, 1..14) of byte = (

(o, 0,255, 62, 28, 28, 28, 28, 28, 28, 28, 28, 28, 31), { E
(o, 0,252, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1,252), { A
(o, 0, 0, 0,129,195,195,199,199,206,206,142, 14, 14), { C
(o, o, 62,193,128,128, 0, 0, 0, O, O O, O, 0), {H
(o, o0, 16,144,112, 48, 48, 16, 16, 0, O, 0, O, 0), {
(o o o o o o o0 0 o O O O O O, {L
(o o 3 00 0 0 o0 0 0 0 O O 0, {I
(0, 0,254,248,112,112,112,112,112,112,112,112,112,112), { N
(o o o o0 o0 0 O O 0,252 61, 30, 30, 28), { E
(o o o o0 O 0 O O 0,248, 6 7, 3, 3), - {

{ o o o o o0 0 O 0 O0 7, 0 0 0,128, {C
(0, O, 32, 96,224,224,224,224,224,254,224,224,224,224), {o
(o o o0 o0 o0 0 O O O 1, 6 12, 28, 24), { N
(o o o o0 o0 O O O 0,240, 28, 6, 7, 7}, {T
(o o o0 0 o O0 O O O 63 15, 7, 7, T, {A

e e e e e e e e e e

Abacus

74 BIOS Screen Output Functions

o, oo, 0, 0, 0, 0, 0, O, 0, 30,
o, o0 0, 0, 0, 0, 0, O, 0,126,
o, 0, 0, 0o, 0, 0, 0, O, 0,124,
o, o o0 o0 o0 o0 0 O O O
o, 0, 0,0 00 00 0, 0, O, 0O, O,

’ ’ ’ ’ ’

28, 28, 28, 28, 28, 28, 28, 28, 62,255,
o, o0 0, 0, 00 0, 0, O, 0,128,
14, 14, 14, 7, 7, 3, 3, 1, 0, O,
o, o, o, 0, 0, 0,128,128,193, 62,

o, o, 0, 0,16, 16, 32, 64,128, O,

o, 00 0, 0,0 O, O, O, O, 0, O,

o, o0 0, 0, 0, 0, 0, O, 0, 3,
(112,112,112,112,112,112,112,112, 248, 254,
(28, 28, 28, 28, 28, 28, 28, 28, 62,255,
(3 3 3 3, 3 3, 3, 3, 7,159,
(128,128,128,128,128,128,128,128,192, 240,
(224,224, 224, 224,224,224, 96,112, 49, 30,
(56, 63, 56, 56, 56, 24, 92, 76,134, 1,
(7,255, 0, 0, 0, 0, 1, 2, 12,240,
(7 17, 1, 1, 1, 1, 1, 1, 15, 63,
(o, 00 00 0,0 0, 0, 0, 0,128,224,
(14, 14, 14, 14, 14, 14, 14, 14, 31,127,
(1, 1, 1, 1, 1, 1, 1, 1, 3,207,
(192,192,192,193,193,195,195,193, 225, 248,
(o, 7,120,192,192,128,128,192,195,124,
(224,224, 224, 224, 224, 224, 224, 240, 112, 29,
(56, 56, 56, 56, 56, 56, 56, 56,124,255,
(31,31, 3, 0, 0, 64, 96, 96,112, 71,
0,224,248,252, 28, 12, 4, 12, 24,224,

(
(
(
(
(
(
(
(
(
(
(o o o o o0 o o0 O O O
(
(
(
(
(
(
(
(
(
(
(

o,
o, 0,252, 60, 30, 30, 30, 23, 23, 23,
o, o0 0, 0, 0, 0, 0, 1, 1, 1,
o, 0,126,120,240,240,240,112,112,112,
o, 0 28, 28, 28, 0, 0, 0, 0,252,
o, o0 00 0,0 0, 0, 0, O, O, 1,
o, 00 0,0 0, 0, 0, 0, O, 0,240,
o, o 63,15, 7, 7, 1, 1, 1, 1,
o, 00 00 0, 0, 0, 0, O, O, 62,
0, 0,
o, o0 0, 0, O, 0, O, O, O, 63,

39, 71,135,128),
30, 15, 15, 14),
131, 3, 1, 1),
0,129,131,195),
62,193,128, 0),
0,192,224,224),
56, 56, 56, 56),
48, 48, 48, 48),
52, 12, 4, 4),
o, 0, 0, 0),
o, 0, 0, 0),
0o, 0, 0, 0,
o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
0o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
0o, 0, 0, 0),
o, o, 0o, 0),
0, 0),

0, 0),

o, o, 0, 0),
0, 0),

0, 0),

0, 0),

0o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
0, 0, 0, 0),
o, 0, 0, 0),
o, 0, 0, 0),
o, o, o, 0),
o, 0, 0, 0),
o, 0, 0, 0),
19, 19, 19, 17),
130,130,130,196),
112,112,112,112),
60, 28, 28, 28),
6, 12, 28, 24),
2, 2, 7, 1D,
7, 1, 1, N,
65,129,128, 0),
128,192,192, 224),
64,224,224,224),

o o0 0 0 o0 O o0 O O, 0,192, 96,112,112),

o, o0 0, 0, 00 0, 0O, O, O, 7,
o, o0 0, 0, 0,0 0, 0, O, 0,192,
0, 0,252, 60, 28, 28, 28, 28, 28, 28,
o o o o0 o0 o0 O O O O
°I ol ol ol ol ol °l 0' ol 0l
0, 0, 63, 56, 48, 48, 32, 32, 32, 0,

24, 48,112, 96),
112, 24, 28, 28),
28, 28, 28, 28),
o, 0, 0, 0),
o, o, 0o, 0),
o, 0, 0, 0),

o, 0,255,112,112,112,112,112,112,112,112,112,112,112),

0, 0,225,225, 97, 32, 32, 32, 32, 15,
o, 0,192,192,192, 0, 0, 0, 0,192,
o, o0 0, 0, 0, 0, 0O, O, 0,252,
o, 00 0,0 0, O, 0, 0, O, O, 64,
o, o0 0, 0,0 0, 0, 0, O, 0,124,
o, 0,1, 3, 1, 1, 1, 1, 1, 1,
0, 0,192,192,192,192,192,192,192,207,

P I e e e e e e I e e e e e e
o
~
o
~
o
~
o
~
=]
~
o
~
o
~
o
~

3, 1, 1, 1),
193,195,195,195),
3 o o0 0),
65,195, 71, 170),
131, o0, 1, 1),
1,129,193,193),
208, 224,224,192),

e e e e e e s e e e s e M e e e M M e e s i e e e e e e e s e e s e e

mIEHE ZH wEEQO»IPIO » mO ZomHEE>»PY HHW mEHE 0WZH

HHOQO®>
e o e e e e e S e ot et e A e et et S e S o ot et S A A s s S A S A s e e

mEAEQPOPIO

[e] Hm®n

m

moxme3

271

7. The BIOS) PC System Programming

(o o o0 o0 o0 o0 O O 0,128, 96,112, 48, 56), { B}
(o o o o o o o0 O O 3, 12, 24, 56, 48), { M}
(o o o o0 o0 o0 O O 0,224, 56, 12, 14, 14), { -}
(o o o o o o0 O O O0,126, 30, 14, 15, 15}, { P}
(o0 o o0 o0 o0 o0 o0 O O, 60, 78,142, 14, 0), {C}
(17, 17, 16, 16, 16, 16, 16, 16, 48,254, 0, 0, 0, 0),
(196,196, 232, 232,232,112,112, 80, 32, 35, 0, 0, O, O0),
(112,112,112,112,112,112,112,112, 248,254, O, O, O, O),
(28, 28, 28, 28, 28, 28, 28, 28, 62,255, O, O, O, O0),
(56, 56, 56, 56, 56, 24, 28, 12, 6,129, O, O, O, O0),
(7€ o o0 o0 o 0 1, 2, 12,240, O, 0, O, 0),
« 7, 17, 1, 7, 7, <, 1, 1, 15,63, 0, 0, 0, 0),
(o o0 o0 o0 o0 o0 o0 0,129,231, 0, O, O, 0),
(224,224,224, 224,224,225,225,224,240,252, 0, O, O, 0),
(o0, 3, 60,224,224,192,192,224,225, 62, 0, 0, O, 0),
(112,240,112,112,112,112,112,120,184, 14, o, 0, 0, 0),
(224,255,224,224,224, 96,112, 48, 24, 7, O, O, O, 0),
(28,252, o, 0, 0, O, 4, 8, 48,192, 0, O, O, 0),
(28, 28, 28, 28, 28, 28, 28, 28, 62,255, O, O, O, O),
(o o o o o0 o0 o0 O O0128 0, 0, O, O0),
(o o o0 o o o o o o O O O O O0),
(o o o o o0 o0 o0 O0 O 3 0 0 0 O,
(112,112,112,112,112,112,112,112,248,254, O, O, O, 0),
(1, 1, 1, 1, 1, 1, 1, 1, 3,15 o0, O, O, O),
(193,193,192,192,192,194,195,195, 227,250, O, o0, O, 0),
(240,254,255, 15, 1, o, o0, 0,122,126, O, O, O, O0),
(14, 14,142,206,206,198, 71,195,129, o, O, O, O, O),
(1, o o0 o0 O O O, 0,131,124, O, 0, O, 0),
(13, 1, 1, 1, 1, 1, 65,129, 3, 15, o, O, O, O),
(192,192,192,192,192,192,192,192, 224,249, 0, 0, 0, 0),
(56, 56, 56, 56, 56, 56, 56, 56,124,255, O, O, O, O0),
(112,127,112,112,112, 48, 56, 24, 12, 3, 0, 0, 0, 0),
(14,254, 0, 0, O, O, 2, 4, 24,224, 0, 0, 0, O,
(14, 14, 14, 14, 14, 14, 14, 14, 31,127, 0, 0, 0, 0),
(o o o o0 o0 O O O 0,192, 0, 0, 0, 0));

var VLine{VLine}, { stores the current cursor position }
VColumn{VColumn},
NumLine{NumLine} : byte; { number of screen lines }
Mono 7 : boolean; { TRUE, if monochrome monitor }

(FRRR R IR IR KRR RA I IR IR KA A AR KRR AR KRR R RARRK AR AR AR AR KRR R AR A KRR KRR R A AN}

{* CEmul: Switches the cursor emulation of the EGA card on or off. *}
{* Input : - DOIT = TRUE : Cursor emulation on. *}
* o FALSE: Cursor emulation off. *}
{* Output : the current cursor column *}

(Iﬁ*t*ﬁtt**iti****ttti*tttﬁ*ttki'**i'*t***t*t*kit*****tt**t**t*t*ktﬁ***)

procedure CEmul (DoIt : boolean);

var VioInfoByte : byte absolute $0040:$0087; { BIOS info byte }
begin
if DoIt then { turn emulation on? }
VioInfoByte := VioInfoByte or 1 { yes, set bit 0 }
else { NO }
VioInfoByte := VioInfoByte and 254 { mask out bit 0 }
end;

(*ti*t*************ti**t****t*ii***it*ti**ti**ti***i*ﬂ*t*ktt*****t**i**}

{* GetCS: Returns the current output column. *}
{* Input : none *}
{* Output : the current cursor column *}

(ﬁ*ﬁ*h**i*i*ﬁ*tt**«ﬁtiﬁi***ﬁ*t*t***t*a*ﬁ*i******tt*ﬁt**ﬁta*«t*tt**t***t}

function GetCs : byte;
begin

GetCS := VColumn; { get column from global variable }
end;

272

Abacus 74 BIOS Screen Output Functions

{*t****t***ﬁ**t*t*ﬁ*t***t*t*tﬁ**t***t****ﬁ*ﬁtﬁ*******ﬁ****ﬁﬁ*t*t***ﬁﬁ**)

{* GetCZ: Return the current output line. *}
{* Input : none *}
{* Output : the current output line *}

(i*t**ﬁ**ﬁ**ﬁ*itﬁ**t******ti***ﬁ*ti*ﬁit**ﬁtﬁt**tﬁ**tkﬁt**ﬁ***i**i*ﬁ*ﬁ**)

function GetCZ : byte;

begin
GetCZ := VLine; { get line from global variable }
end;

{HRRRRIRARRIIRIKRRRR I AR KA ARARRARARAR AR AR R IRARANR R AR R AR AR A IR R IR AN R AR A |

{* CharDef: Defines the bit pattern of an individual character. *}
{* Input : - ASCII = ASCII code of the first char to be defined *}
{* - TABLE = number of the character table { 0 bis 3) *}
{* - MATRIX = number of lines in the character matrix *}
(* - NUMBER = number of characters to be defined *}
{* - BUFPTR = pointer to the buffer with the character *}
{* Output : none *}

(FRA R AR IR KRR AR AR R AR AR RANNRIR IR ARRR AR IRRR AR A RN RN IR IRk ko Rk kAN kA k Rk |

procedure CharDef(Ascil, Table, Matrix, Number : byte;
BufPtr : BytePtr);

var Regs : Registers; { processor registers for interrupt call }

begin
Regs.ax := $1100; { ftn. no.: character generator, subftn. 0 }
Regs.bh := Matrix; { line height of the matrix }
Regs.bl := Table; { number of the character table }
Regs.cx := Number; { number of the character to be defined }
Regs.dx := Ascii; { first character to be defined }
Regs.bp := Ofs{ BufPtr” }; { offset address of the buffer }
Regs.es := Seg(BufPtr”); {segment address of the buffer }
intr (VIDEO_INT, Regs); { call BIOS video interrupt }

end;

(R A AIR KKK RI KRR ARRRAR R A E AR A RNRR RN KRR AR ARNRRRARAR KRR R AR ANNRR ARk h kA kk |

{* GetMonTyp: Determines the type of monitor attached. *}
{* Input : none *}
{* Output : the monitor type: MOMO = monochrome monitor *}
{ COLOR = color monitor *}
{* EGA = EGA or Multisync monitor *}

[FA AR AR AR KA K AR RRRRR KR KA KA AR AR KR A AR R ARARAR AR AR AR KA AR ANA RN AR Rk kAR A Kk)

function GetMonTyp : byte;

var Regs : Registers; { processor registers for interrupt call }
begin
Regs.ah := $12; { ftn. no.: get configuration }
Regs.bl := $10; { subfunction number }
intr (VIDEO_INT, Regs); { call BIOS video interrupt }
case Regs.cl of { CL contains the monitor type}
$0B : GetMonTyp := MOMO; { monochrome monitor }
$08 : GetMonTyp := COLOR; { color monitor }
$09 : GetMonTyp := EGA; { EGA monitor }
end;
end;

(ﬁﬁ*t*ﬁ**t**ttt*tt*t**ttﬁﬁ*tﬁt*t*ttt******ttt*t**tﬁt*ﬁttttttt*tt*ttﬁ*tt}
{* SetCur : Sets the blinking cursor and the internal output position *}

{* Input : - COLUMN = output column (0 .. 79) *}
{* - LINE = output line (1 ..n) *}
{* Output : none *}

(KRR RA R IR KRR KA R KKK KA K KR KRKN AR IR R RRARK R AR R AR AR A AR A RN ARK A KN KRNKA KK KR KRN |

procedure SetCur(Column, Line : byte);

273

7. The BIOS PC System Programming

var Regs : Registers; { processor registers for interrupt call }

begin
Regs.ah := $2; { ftn. no.: set cursor position }
Regs.bh := 0; { screen page 0 }
Regs.dh := Line; : { set coordinate }
Regs.dl := Column;
intr (VIDEO_INT, Regs); { call BIOS video interrupt }
VLine := Line; { save coordinates in internal variables }
VColumn := Column;

end;

(*tiﬁttt**t**t*ti*t**ttt*ttii*t*t*t*t*iti*i*iti*ttitt*ttittti*iiﬁt**it*)

{* SetCol : Defines the contents of one of the 16 color registers in *}

{* the EGA card. *}
{* Input : - REGNR = number of the color register *}
{* - COLOR = color value (0 to 63) *}
{* Output : none *}

{t**ii*tt**it*t**ttt*t*ii*t*ii*t**t****tt*t**tt*t**itﬁtﬁ**t*i**t**t**ii)

procedure SetCol (regnr, color : byte);

var Regs : Registers; { processor registers for interrupt call }
begin
Regs.ah := $10; { ftn. no.: set colors/attributes }
Regs.al := 0; { subfunction 0 }
Regs.bl := regnr; { set number of the register }
Regs.bh := color and 63; { set color value (mask out bits 6 and 7) }
intr (VIDEO_INT, Regs); { call BIOS video interrupt }
end;

[RrRR IR AR AR R AR R AR R R AR KKK AR R K KRR R KRR A RIRR AR AR AR R AR R RNR A KRR R A AR IR K |

{* SetBorder : Defines the border color. *}
{* Input : - COLOR = color value (0 to 63) *}
{* Output : none *}

(t*t***ti*i*ttt**it**i*ti*****ﬁ***t*****t*****i*****ttttittttt**tﬁ**i**)

procedure SetBorder (color : byte);

var Regs : Registers; { processor registers for interrupt call }
begin
Regs.ah := $10; { ftn. no.: set colors attributes }
Regs.al := 1; { subfunction 0 }
Regs.bh := color and 63; { set color value (mask out bits 6 and 7) }
intr (VIDEO_INT, Regs); { call BIOS video interrupt }
end;

(ttt*t*ttttit*t**ttttﬁ*ii***iit****t*t***ttt*tttttﬁt*t*tﬁttt***i***t*ii)

{* SsetLines : Sets the number of lines. *}
{* Input : Sub-function of function 11H: *}
{* $11 : 8x4 character set *}
{* $12 : 8x8 character set *}
{* $14 : 8x16 character set *}
{* Output : none *}

(*t**tt*ti**aﬁﬁittttn**tt*t*ttt*t*ttﬁ*titi*tt*tt****tt*t*«ti***«*t*ttﬁt)

procedure SetLines(Lines : byte);

var Regs : Registers; { processor registers for interrupt call }
begin
Regs.ah := $11; { ftn. no.: character generator }
Regs.al := Lines; { sub-function of fnc. 11h }
Regs.bl := 0; { use character table 0 }
intr (VIDEO_INT, Regs); { call BIOS video interrupt }
end;

274

Abacus

74 BIOS Screen Output Functions

(**tﬁ*ﬁﬁ*ﬁt*ﬁ**tﬁ*ﬁttﬁtttt*ﬁt**ﬁ*ﬁtﬁ*'*ﬁttﬁtﬁﬁt**ﬂ*ﬁttttﬁtt*ﬁ*ﬁttttﬁ*ﬁﬁ}

{* IsEga: Determines if an EGA card is installed and handles the *}
{* initialization of the global variables. *}
{* Input : none *}
{* Output : TRUE, if an EGA card is installed, else FALSE. *}

(N r AR AR AR AR AR IR R AR R RN RN AR RN I IR ARA RN A AR RRAR AR IR IR ARk Ak kAR AR A A AN)

function IsEga : boolean;

var Regs : Registers; { processor registers for interrupt call }
begin
Regs.ah := $12; { ftn. no.: get video configuration }
Regs.bl := $10; { subfunction number }
intr (VIDEO_INT, Regs); { call BIOS video interrupt }
if Regs.bl <> $10 then { is it an EGA or VGA card? }
begin { yes }
{*- create pointer to VRAM depending on the monitor connected -*}
Mono := Regs.bh = 1; { connected to monochrome monitor? }
IsEga := TRUE; { an EGA card was discovered }
end
else
IsEga := FALSE; { no EGA card discovered }
end;

(iitttttt’htttt‘h’h’h’httt*tti**i*ﬁt*tttttttt*ttt**ti*i*ti*t*t*ttttt**t*ttti}
{* IsVga: Determines whether a VGA card is installed, and initializes *}

(* the global variables. *}
{* Input : none *}
{* Output : TRUE if a VGA card is installed, otherwise FALSE. *}
{* Info : Use this function BEFORE calling the ISEGA in your own *}
{* application, since the TRUE for some EGAs also applies *}
(* to this routine as well. *}

[Galalobaleh bbb SRR LA AL A S S E AL SR ittt ii it ol i ittt i il ettt sty

function IsVga : boolean;

var Regs : Registers; { processor register for the interrupt call }
begin
Regs.ah := $1A; { function no.: Determine video system }
Regs.al := $00;
intr (VIDEO_INT, Regs); { Call BIOS video interrupt }
if (Regs.al = $1A) and ((Regs.bl = 7) or (Regs.bl = 8)) then
begin { VGA card installed and active }
Mono := FALSE;
IsvVga := TRUE; { definitely a VGA card on board }
end
else
IsVga := FALSE; { no VGA card connected }
end;

[Frhddkdk ok h kA kAN h R AR AR R AR R AR R AR A AR R AR A AR AR KRR RN AR I RN AN R ANk Rh R kR k]

{* PrintAt: Outputs a string at the give screen position with a *}
(* certain attribute. *}
{* Input : - COLUMN = output column (0 .. 79) *}
{* - LINE = output line (0 .. NUMLINE-1) *})
{(* - COLOR = attribute for the characters to be printed *}
{* - OUSTR = the string to be printed *}
{* Output : none *}

[Galalalelolobolobo bbb LA ML AL AL LA S LA SRR e LAttt et ittt ittt tssy

procedure PrintAt(Column, Line, Color :
byte; OutStr : string8);

var ColorRAM : VRam absolute $B800:0000; { describes physical VRAM }
MonoRAM : VRam absolute $B000:0000; { describes physical VRAM }
Index : word; { index into the VRAM array }
Stren, { length of the string to be printed }
i : byte; { running pointer to the string }

275

7. The BIOS

276

begin
Stren := length(Outstr); { get length of the string }
Index := Line * 80 + Column; { set index in the array }
if Mono then
begin { yes }
for 1:=1 to Stren do { run through the string }
begin
MonoRAM[Index].Character := OutStr([i]; { set character }
MonoRAM[Index].Attribute := Color; { set color }
inc(Index); { increment the index }
end;
end .
else { output to the color screen }
begin
for 1:=1 to Stren do { run through the string }
begin
ColorRAM[Index].Character := OutStr([i];{ set character }
ColorRAM[Index].Attribute := Color; { set color }
inc(Index); { increment the index }
end;
end;
{*—- calculate new cursor position *}

SetCur((VColumn + VLine * 80 + Stren) mod 80,
(VColumn + VLine * 80 + Stren) div 80);
end;

(i*****t#*******t*t***************#**********************i#*t*****t*ﬁ**)

{* Blinking : Defines the meaning of bit 7 in the attribute of a *}
{(* character in the text modes. *}
{* Input : - DoBlink = TRUE : blinking *}
{* FALSE: intense background color *}
{* Output : none *}

(*ﬁ**ﬁﬁt**t***ﬁﬁ***t**ﬁ******t****it**t*******t*i'!*ﬁ**tttttt'!*t*'****)

procedure Blinking(DoBlink : boolean);

var Regs : Registers; { processor registers for interrupt call }
begin
Regs.ah := $10; { ftn. no.: set colors/attributes }
Regs.al := $3; { subfunction number }
if DoBlink then { blinking? }
Regs.bl :=1 { yes, BL =1 : blinking }
else { no}
Regs.bl := 0; { yes, BL = 0 : intense background color }
intr (VIDEO_INT, Regs); { call BIOS video interrupt }
end;

(R AR AR A kA kR kR R AR AR R KRR R A AR KRR R AR R AR KRR AR KRR KRR AR R AR KRR AR KA AR R AR R AR)

{* Cls: Clears the screen, causing the video mode to be reset. *}
{* The palette registers will also be filled with the default *}
{* values and the character set will be reset. *}
{* Input : none *}
{* Output : none *}

(ti**iit***i**ti*tt***ﬂi**tt***ittﬂtt**tt**tt*i*ittt**i*k***t***t*t**i*}

procedure Cls;

var Regs : Registers; { processor registers for interrupt call }
begin
Regs.ah := $0; { ftn. no.: set video mode }
if Mono then { connected to monochrome monitor }
Regs.al := 7 { yes, 80x25 text display }
else { no, color monitor }
Regs.al := 3; { yes, 80x25 character text display }
intr (VIDEO_INT, Regs); { call BIOS video interrupt }
end;

PC System Programming

Abacus 74 BIOS Screen Output Functions

(*i*ﬁttttttitt'*ﬁtﬁt'*ﬁt‘*i*ttt'ii*iiittitttttﬁt'*tttttittitttitﬁittttt)
{* EgaVga : Demonstrates how to use the functions of the EGA/VGA BIOS.*}
{* Input : TRUE if VGA card installed, otherwise FALSE *}

{* Output : none *}
(*iitt*titiﬁiiiiﬁii***ﬁ**iiii*it*tittt*ttt*..***ti*ttitt*ﬁiitﬁ*it*ﬁ*ﬁii}

procedure EgavVga (VGA : boolean);

var i, J, k : word; { loop counter }
OutStr : string8; { logo output string }
Regs : Registers; { processor register for the interrupt call }
]
begin s
{*-- Add EGA/VGA hardcopy routine *}
Regs.ah := $12; { alternate select function }
Regs.bl := $20; { sub-function: install rtne }
intr (VIDEO_INT, Regs); { call interrupt }
{*-- prepare screen layout *}
SetCur (0,0);
Cls; { clear the screen }
Blinking(FALSE); { light background instead of blinking }
if (VGA) then { Check compatibility in case characters must be
begin { redefined, and the characters must be changed

Regs.ah := $12; { into 350-1line mode (changed back into EGA
Regs.bl := $30; { mode).
Regs.al := 1;

— o —

intr (VIDEO_INT, Regs); { call BIOS video interrupt }
SetLines($11); { activate 8x14 character set }
end;
CharDef (128, 0, 14, 120, BytePtr(@font)); { define character }
for i1:=1 to 250 do { run through the loop 500 times }
begin { write color bars to the video RAM }
PrintAt (GetCs, GetCz, ((i mod 14) + 1) shl 4, *) ;
if 1 <> 250 then { last color bar? }
PrintAt (GetCs, GetCz, 0, °*); { no}
end;)
for 1:=10 to 15 do { make room for logo }
PrinTat (22, i, 0, * 'Y):
k := 128; { first character in logo }
for 1:=0 to 3 do { the logo consists of 4 lines }
begin
Outstr := '*; { empty the string }
for j:=1 to 30 do { each line consists of 30 characters }
begin
OutsStr := OutStr + chr(k); { append the char to the string }
inc(k); { increment K }
end;
PrintAt (24, 1+11, 15, OutStr); { output the string }
end;

PrintAt (1, 1, 15, ' The most important characters are ')z
PrintAt (1, 2, 15, * still present in spite of the logo! ');
Printat (1, 3, 15, °* '):
Printat (1, 4, 15, * !"#$%&'*()*+-./0123456789:;<=>2@ ');
Printat (1, 5, 15, ' ABCDEFGHIJKLMNOPQRSTUVXXYZ[\]*_ ‘);
Printat (1, 6, 15, * “abcdefghijklmnopqrstuvxyz{|}~ *');
Printat (33, 21, 15, °*

Printat (33, 22, 15, °* press any key to end the program. 'ys
Printat (33, 23, 15, °* ')
SetCur (34, 22);
{*-- change the colors in the color bars *}
1:=0; { start value for the color registers }
while (not KeyPressed) do { repeat until key is pressed }
begin
inc(1); ° { increment the color value for the first register }
for j:=1 to 14 do { run through registers 1 to 14 }

277

7. The BIOS PC System Programming

SetCol(j, i+3 and 63); { write color value in the register }
end;

if (VGA)} then { Switch VGA card back into 400-line mode }
begin

Regs.ah := $12;
Regs.bl := $30;
Regs.al := 2;

intr(VIDEO_INT, Regs); { call BIOS video interrupt }

SetLines($14); { activate 8x16 character set }
end;

Cls; { clear screen }

end;

(ﬁtt*tit*t***i*ttt*i*i***tttﬂ*****k****k**i*ki*i*ki*k**i*t*tt'kttt'i*ti)

{** MAIN PROGRAM *x}
(*ttttttttttttttttttttttittttttktt*tttttittt&tttt&ﬁtttitttttttttttt*tkt}

begin
1f Isvga then { VGA card installed? }
EgaVga(true) { YES, run demo }
else
begin
if IsEga then { EGA card installed? }
begin { YES }
if (GetMonTyp = EGA) then { EGA monitor attached? }
Egavga(false) { YES, run demo }
else { NO, wrong monitor }
begin
writeln('This program only works with an EGA ‘');
writeln(‘'card or VGA card, and a monitor b
writeln('supported by one of these cards. 'Y;
end;
end
else
writeln('No EGA or VGA card installed...'+
' Program aborted.®');
end;
end.

C listing: EGAVGAC.C

JRR Rk Rk kR R kR kAR R AN KA R KA A AR A RN R AR R KRR AR A AR R AR AR A AR R AR AR AR AR AR AR A AR A kN

/* EGAVGAC */
/* */
/* Task : Demonstration using the functions available */
/* in the EGA-/VGA-BIOS */
/* */
/* Author : MICHAEL TISCHER */
/* Developed on : 08/30/1988 */
/* Last update : 05/02/1989 */
/* */
/* {MICROSOFT C}) */
/* Creation : CL /AS /c EGAVGAC.C */
/* LINK EGAVGAC EGAVGACA; */
/* Call : EGAC */
/* */
/* {BORLAND TURBO C) */
/* Creation : Make a project file containing the following: */
/* EGAVGAC */
/* EGAVGACA.OBJ */
/* Before compiling, select the Options menu */
/* and the Compiler option - make sure that the */
/* Small model is active */
/* Select the Linker option - make sure that the */
/* Case-sensitive link is set to Off */
/* The program will compile with one warning... */

278

Abacus 74 BIOS Screen Output Functions

/* this is okay, it will run correctly */
/*tit*i**itﬁ*ﬁ**ititiii******ﬁt*ittiiit*t***tit*iit*ti*t*tit‘ktiﬁ**tit*t/

/*== Add include files */

#include <dos.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <bios.h>

/*== Typedefs */
typedef unsigned char BYTE; /* Create a byte */
typedef unsigned int WORD;

typedef BYTE BOOL; /* like BOOLEAN in Pascal */

typedef struct velb far * VP; /* VP = FAR pointer to the video RAM */

/*== Function definition from the assembler module */

extern vold chardef(BYTE ascii, BYTE table, BYTE lines,
BYTE amount, BYTE far * buf);

/*== Structures */
struct velb { /* Describes a two-byte position on the screen */
BYTE ascii_code, /* ASCII code */
attribute; /* Corresponding attribute */
}i
/*== Macros */
/*-- MK FP creates a FAR pointer to an object out of a —==—==————=——-—- */
/*-- segment address and an offset address */
#ifndef MK_FP /* MK_FP not defined yet2 */
#define MK FP(seg, ofs) ((void far *) ((unsigned long) (seg)<<16| (ofs)))
#endif

#define VOFS(x,y) (80 * (y) + (x)) /* Offsetpos. in video RAM */

#define VPOS (x,y) (VP) (vptr + VOFS({ X, v)) /* Pointer in VRAM */

#define GETCZ () (vline) /* Returns the current cursor line */

#define GETCS () (vcolumn) /* Returns the current cursor column */

/*== Constants */

#define TRUE (1 ==1) /* Constants for working with BOOL */

#define FALSE (1 == 0)

#define VIDEO_INT 0x10 /* BIOS video interrupt */

#define MONO 0 /* Monitor types for GETMON */

#define COLOR 1

#define EGA 2

#define PAUSE 100

/*== Global variables */

VP wvptr; /* Pointer to the first character in video RAM */

BYTE vline, /* States the current cursor position */
veolumn;

BOOL mono; /* TRUE if a monochrome monitor is connected */

R R AR KA KRR KRR AR AR R AR A AR RN AR AR IR AR R AR AR KA R AN N AR AR R A AR R AR Rk Rk Rk kk N

* Function :CEMUL *
*k * %k
* Task : Enables/disables cursor emulation on the *

EGA card. *
* Input parameters : - DOIT = TRUE : Emulation on *

279

7. The BIOS ° PC System Programming

* FALSE: Emulation off *
* Return values : None *
ﬁt*ﬁ*****ﬁ****ﬁﬁ****f'**'ﬁ**'*******ﬁti**"iﬁt*******i*ﬁ*ﬁ*************/

void cemul (BOOL doit)

{
/*-- Definition of video info byte at offset address 0x87 within ----*/
/*-- the BIOS variable segment */

#define VIO_INFO_BYTE ((BYTE far *) MK_FP (0x40, 0x87))

if (doit) /* Cursor emulation enabled? */
VIO_INFO BYTE |= 1; / YES, set bit 0 */
else [/* NO, */
VIO_INFO BYTE &= 254; / clear bit 0 */

})

/i****ﬁt*it******it*********i*i***tﬁti*ﬁttﬁtit*****t**tt***t**ttﬁ*t*i*tﬁ

* Function :GETMON *
* % * Kk
* Task : Determines the type of monitor connected. *
* TInput parameters : None - *
* Return values : Monitor type *
* MONO = monochrome monitor *
* COLOR= Color monitor *
* EGA = EGA or multisync monitor *
tt*t*itt't*ttt*t'tt**t**tii*tt*tt*tit**t*ti**ii**tt*****i***ii**i***tii/

BYTE getmon()
{

union REGS regs; /* Processor register for interrupt call */
regs.h.ah = 0x12; /* Function number: Determine configuration */
regs.h.bl = 0x10; /* Sub-function number */
int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */
if (regs.h.cl == 0x0B) /* Monochrome monitor? */
return(MONO); /* YES */
if (regs.h.cl == 0x08) /* color monitor? */
return(COLOR); /* YES */
else /* NO, must be EGA */

return(EGA);
}

VAR R R R R T e

* Function :SETCUR *
* % 4 *k
* Task ! Sets the screen cursor and the internal *
* position of the output. *
* Input parameters : - COLUMN = the cursor column *
* - LINE = the cursor line *
* Return values : None *
*t*i***'*ﬁ**i*t'****ii*it**i*'*tti*ttﬁ*ii**t*ttii*tﬁ*iiii***i**********/

void setcur (BYTE column, BYTE line)
{

union REGS regs; /* Processor register for interrupt call */
regs.h.ah = 2; /* Function number */
regs.h.bh = 0; /* Use video page zero */

regs.h.dh = vline = line; /* Use global variables for coordinates */
regs.h.dl = vcolumn = column;

int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */
}

VA R R R R R e 2 s

* Function :SETCOL *
** *k
* Task : Defines the contents of one of the 16 EGA *
* color registers. *

280

http:regs.h.dl
http:regs.h.dh
http:regs.h.bh
http:regs.h.ah
http:regs.h.cl
http:regs.h.bl
http:regs.h.ah

Abacus 74 BIOS Screen Output Functions

* Input parameters : - REGNR = Color register number *
* - COLOR = Color value (0-15) *
* Return values : None *

t*t*t***************t*t******i****t******i*******t*t*****i*t******t/

void setcol (BYTE regnr, BYTE color)

{

union REGS regs; /* Processor register for the interrupt call */
regs.h.ah = 0x10; /* Function no.: Set color/attribute */
regs.h.al = 0; /* Sub-function 0 */
regs.h.bl = regnr; /* Set register number */
regs.h.bh = color & 63; /* Set color number (Bits 6 and 7) */
int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */

}
/ﬁ*t*t**t******tt**tt***********t*t*********it*****t***t****************
* Function :SETBORDER *
*h **
* Task : Sets the border color. *
* Input parameters: - COLOR = Color value (0-15) *
* Return values : None *

KA KRR AR AR AR AR AR AR AR Ak R AR ARk KA AR AR KK R AR IR I AR IR AR AN A AR A AR AR ANk hk /

vold setborder(BYTE color)

{

union REGS regs; /* Processor register for the interrupt call */
regs.h.ah = 0x10; /* Function no.: Set color/attribute */
regs.h.al = 1; /* Sub~function 1 */
regs.h.bh = color & 15; /* Set color value */
int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */

}

/**t*tt*t*ﬁﬁ*ﬁ*i*iii***ﬁ**i*i***ﬁ*ﬁ*t*t*t*t*ﬁ**ﬁ*t*t*t*t*iit*i*ii*i**tt*

* Function t:SETLINES *
*K * ok
* Task : Determines the number of lines. *
* Input parameters: - Sub-function no. for calling function 11H *
* Ox11 : 8*14 character set *
* 0x12 : 8*8 character set *
* 0x14 : 8*16 character set (VGA only) *
* Return values : None *
*

*****ﬁ**ﬁtttﬁ*ﬁtttttttt*ﬁ*ﬁtt*tt*ttttttﬁ*ﬁtﬁ**ﬁtt*t*t*t*t***ﬁ**ﬁ*ﬁti**/
void setlines(BYTE lines)

{

union REGS regs; /* Processor register for the interrupt call */
regs.h.ah = 0x11; /* Function no.: Character generator */
regs.h.al = lines; /* Sub-function no. */
regs.h.bl = 0; /* Use character table 0 */
int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */

}

[R AR kKRR AR AR R KRR AR AR AR AR AR R R AR R AR AR R AR AR AR AR AR AR AN AN A KA A A ARk kX

* Function :IS_EGA *
* * *k
* Task : Determines whether an EGA card is installed. *
* Input parameters: None *
* Return values TRUE when an EGA or VGA card is installed, and *
* false in any other case *

t***tﬁ*ﬁ*t**ttﬁ**kttttﬁ*tkt*t***tﬁtt*t*t*t*t**tkﬁ*tt*tt*t*tk**ﬁ*i*tﬁ*t*/
BOOL is ega()

{
union REGS regs; /* Processor register for the interrupt call */

281

http:regs.h.bl
http:regs.h.al
http:regs.h.ah
http:regs.h.bh
http:regs.h.al
http:regs.h.ah
http:regs.h.bh
http:regs.h.bl
http:regs.h.al
http:regs.h.ah

7. The BIOS PC System Programming

regs.h.ah = 0x12; /* Function number: Determine video configuration */

regs.h.bl = 0x10; /* Sub-function number */
int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */
if (regs.h.bl != 0x10) /* Is it an EGA or VGA card? */
/*~- Set pointer in video RAM for attached monitor —————————ee—eae-%/
vptr = (VP) MK FP((mono = regs.h.bh) 2 0xb000 : 0xb800, 0);

return(regs.h.bl != 0x10); /* BL != 0x10 --> EGA or VGA */

}

/kt**tt*ttt***t*t***t*t*******ttﬁtttt***ﬁ**t***t***t*t*t**t*tttt*t*t*tt*
* Function :IS_VGA *
*x .
* Task

Input parameters
Return values

*»
*

Determines whether a VGA card 1is installed.
None

TRUE when a VGA card is installed;

FALSE in any other case.

This function should be called before the
is_ega function, because the parameters in the
is_ega function also apply to VGA cards (i.e.,
TRUE will be returned to is_ega for a VGA card.
Call is _vga first in your own applications,

then call is ega.
i******t*ﬁt*t't*ttt*ﬁ*t**ttﬁtt**tttt*t*t*t*tttt*itttttt***t*t*i*t*t*tt/

Info

* F F % F F F * * »

*
*
*
*
*
*
*
*
*
*

BOOL is_vga()
{

union REGS regs; /* Processor register for the interrupt call */
regs.h.ah = 0x1A; /* Function no.: Determine video configuration */
regs.h.al = 0x00; /* Sub-function number */
int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */
if (regs.h.al == 0x1A && (regs.h.bl==7 || regs.h.bl==8))

{ /* VGA card connected to VGR monitor? */

mono = FALSE;

vptr = (VP) MK FP(0xb800, 0); /* Set pointer in video RAM */

return TRUE;

}
return FALSE; /* No VGA card installed */
}

/*ﬁ**t**t*ﬁ*tﬁt*t*ﬁ*ttt***t**t*t*t*i*t*t*ﬁ**t*t*ttt*ttt***t*t*t*t***t*'*

* Function tPRINTAT *
*k *x
* Task : Displays a string on the screen. *
* *
* Input parameters: — COLUMN = Display column. *
* - LINE = Display line. *
* - CHCOLOR = Character attribute. *
* - STRING = Polnter to string. *
* Return values : None *
* Information : - This function dces not recognize format specs *
* as supplied by PRINTF. *
* - When the function reaches the end of the *
* screen, the screen will not scroll up. *
*

**tt*tttt*ttt*ﬁ*t*t*i*t*t*tt*t*t*t*t*i*t*t*tt*t*ttttt*ttt*ttttt*t*ﬁ*tt/
void printat (BYTE column, BYTE line, BYTE chcolor, char * string)

{

register VP lptr; /* Floating pointer to video RAM */
register BYTE i; /* points to the number of characters */
unsigned newofs; /* Computes new coordinates */
lptr = VPOS(column, line); /* Set pointer in video RAM */
for (i=0 ; *string ; ++lptr, ++i) /* execute string */
{
lptr->ascii_code = *(string++); /* Character in video RAM */
lptr->attribute = chcolor; /* Set character attribute */

}

282

http:regs.h.al
http:regs.h.ah
http:regs.h.bl
http:regs.h.bh
http:regs.h.bl
http:regs.h.ah

Abacus 74 BIOS Screen Output Functions

/*-- Compute new cursor coordinates */

vcolumn = (newofs =
vline = newofs / 80;

}

((unsigned) line * 80 + column + 1)) % 80;

/ﬁtﬁ*ﬁi*ﬁtitt*ttt*ttﬁtttktﬁﬁﬁ*ﬁ*ﬁﬁ***iﬁtttttt**ﬁtttﬁittﬁ*ﬁtﬁ*ﬁi**ﬁ*it*tt

* Function :PRINTFAT *
**k *k
* Task : Displays a string on the screen (like PRINTF), *
* writing the string directly to video RAM. *
* Input parameters: - COLUMN = Display column. *
* - LINE = Display line. *
* - CHCOLOR= Character color. *
* - STRING = Pointer to the string. *
* - tee = Additional arguments as needed. *
* Return values : None *
* Information : - When the end of the screen is reached, the *
* screen will not scroll up. *
* : - string can use the normal format specifier *
* group as used with PRINTF. *
*

t***ﬁﬁﬁ**ttitt*t*tft*t*ﬁ*ﬁ*itﬁt*ittti*ﬁti*t*ﬁ*****titt****tﬁtiiﬁt*ﬁ*ti/

void printfat (BYTE column, BYTE line, BYTE chcolor, char * string,...)

{
va_list parameter; /* Take parameter list for VA ... Macros from */
char output [255]; /* the formatted, displayed string */

va_start (parameter, string);/* Get parameters in PARAMETER variable */
vsprintf (output, string, parameter); /* Convert string */
printat (column, line, chcolor, output); /* Display string */
}

/*ﬁ***ﬁ*tt*ﬁ*ttt*tﬁ****ﬁ*'tt**ti*t*tﬁiﬁt*tt**ttttﬁ**it*ﬁiitttﬁt**ﬁ*t**'*

* Function :BLINKING *
* %, * *
* Task : Defines the meaning of bit 7 of the attribute *
* byte of a character in text mode. *
* Input parameters: DOBLINK = TRUE : Blink. *
* FALSE : Light background color. *
* Return values : none *
tttt**tit*t*t*ii*t**ﬁit*t*tit*tt**tt**ﬁ******t*i*kt**ﬁ********t**tit***/

void blinking(BOOL doblink)
{
union REGS regs; /* Processor register for the interrupt call */

regs.h.ah = 0x10; /* Function no.: Set color/attribute */
regs.h.al = 0x3; /* Sub-function number */
regs.h.bl = doblink 2 1 : 0; /* BL = 1 : blinking */
int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */
}

/Qtttﬁt*tttiﬁﬁ*it*t*'*i*ﬁ*i**ﬁﬁ*tt****ﬁtt**tit**tﬁﬁ'ti*'*ik*ttﬁ**t*t*ttt

* Function :CLS *
** **
* Task : Clears the screen and resets the video mode. *
* This reset includes the palette registers, as *
* well as the character set in use. *
* Input parameters: none *
* Return values : none *
*t*t**ﬁ*ﬁt*ﬁ*t*it**i*t*ﬁtt*tﬁtﬁtttttﬁtttﬁ*ttttﬁi*ﬁtt*itﬁt*ﬁttﬁttt'tﬁt**/
void cls()

{

union REGS regs; /* Processor register for the interrupt call */

regs.h.ah = 0x0; /* Function no.: Set video mode */

regs.h.al = (mono) 2 7 : 3; /* B0x25-char text mode */

283

http:regs.h.al
http:regs.h.ah
http:regs.h.bl
http:regs.h.ah

7. The BIOS PC System Programming

int86 (VIDEQ INT, ®s, ®s); /* Call BIOS video interrupt */
}

/t*t*tti*ttt*t*ttﬁ***t*tﬁtﬁt*tﬁt****tttt*tttit***t*t*tﬁ****ttﬁtﬁttﬁtﬁtt*

* Function tNOKEY *
ok *x
* Task ¢ Tests for a depressed key. *
* Input parameters: none *
* Return values ¢ TRUE if a key is depressed, otherwise *
* FALSE. *

ﬁtiti*tiﬁ*ﬁtiﬁﬁ**ﬁ****ti****t*****ttﬁtﬁt*ttititt**ﬁtitiﬁittti**ﬁ*ii*ﬂtﬁ/
BOOL nokey ()

{

#ifdef _ TURBOC /* Using TURBO C to compile? */

return(bioskey(1) == 0); /* YES, read keyboard from BIOS */
¥else /* Using Microsoft C to compile... */
return(_bios_keybrd(_KEYBRD READY) == 0); /* Read from BIOS */
#endif

}

VA R R L T

* Function c:EGAVGA *
* *k
* Task : Demonstrates the application of EGA/VGA BIOS *
* functions *
* Input parameters: VGA : TRUE when working with VGA card *
* FALSE in any other case *
* Return values : none *

ﬁtt*ﬁtﬁt*t*tt*tﬁt*ﬁt*t*tﬁt*t*ttﬁtﬁttt**tttit*t*t*ﬁt*tt*ﬁtﬁt*ﬁt*ﬁt**/

void egavga(BOOL VGA)
{
static BYTE font[120][14] = { /* Character definition for logo */
{ o, 0,255, 62, 28, 28, 28, 28, 28, 28, 28, 28, 28, 31}, /* T */
o, 0,252, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1,252}, /* h %/
o, 0 0, 0,129,195,195,199,199,206,206,142, 14, 14}, /* e */
s
e

o

0, 0, 62,193,128,128, 0, 0, 0, 0, 0, 0, 0, O}, /* s */
o, 0, 16,144,112, 48, 48, 16, 16, 0, 0, 0, 0, O}, /*
o, o0 0, 0o, 00 0, 0, O, O, 0O, 0O, O, O, O}, /*

*/

{

{

{

{

{

{ o o 3 o0 00 0 0 0 0 O O O O}, /* 1%/
{ o, 0,254,248,112,112,112,112,112,112,112,112,112,112}, /* 1%/
{ o o o0 o 0 0 o0 O 0,252, 61, 30, 30, 28}, /*n */
{ o o o0 o O O O O 0,248, 6 7, 3, 3}, /* e */
{ o o o o0 o0 o0 o0 O O 7, 0 O, 0,128}, /* s */
{ 0, 0, 32, 96,224,224,224,224,224,254,224,224,224,224}, /x x/
{ o 0,0 0,0 00 00 0,0 O, O, O, 1, 6, 12, 28, 24}, /* c */
{ oo 00 0, 0, 0, 0, 0, O, 0,240, 28, 6, 7, 7T}, /* o */
{ o o o0 o0 0 0 0 O0 O, 63 15 7, 7, 7}, /*n */
{ o o 0 o o0 o0 o0, O 0, 30, 39, 71,135,128}, /*t o*/
{ o o o0 o o0 o0 o0 0 0,126, 30, 15, 15, 14}, /*a*/
{ o o o o o o0 o0 O O0,124,131, 3, 1, 1}, /* 1/
{ o, o0 0, 0, 0,0 0, O, 0O, O, O, 0,129,131,195}, /*n*/
{ oo o0 0, 0, 0, 0, 0, 0O, O, O, 62,193,128, O}, /% */
{ o o o o o0 0 o0 O O O, O0,192,224,224}, /*t
{ o, 0,248,120, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56}, /* h o/
{ o oo 0,0 00 O, 0, 0, 0, O, 31, 48, 48, 48, 48}, /* e */
{ o, 00 00 00 00 0, 0, O, 0,196, 52, 12, 4, 4}, /*
{ o, o0 o0 00 00 0, 00 O O, O, O, O, 0, O}, /* b */
{ o o o o o o0 0 0 0 O O 0, O O}, /* 1%/
{ o, o0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O}, /*t %/
{ o o o o0 o o0 0 0. 0 O 0 O O O}, ARV
{ o o o o0 o0 0 o0 O O O 0 0 0 O}, /*p */
{ o o o0 o0 0 o0 o0 O 0 O 0 O 0 O}, /*a */
{ 28, 28, 28, 28, 28, 28, 28, 28, 62,255, O, 0, 0O, O}, /*t x/
{ o o o o o o0 o o0 o0,128, 0, 0, 0, O}, /*t */
{ 14, 14, 14, 7, 7, 3, 3, 1, O, 0, 0, O, 0, O}, /* e */
{ o, 0,0 0, 0o, 0, 0,128,128,193, 62, 0, 0, 0, O}, /*r*/
{ o, o, o, o, 16, 16, 32, 64,128, 0, 0, O, 0, O}, /*n */

284

7

Abacus N 74 BIOS Screen Output Functions

{ oo 00 00 00 O0 O, O, O, O, O, O, O, O, O}, /*s*/
{o o o000 o0 o0 0 0 0 3 0 0 0 0, /* *
{112,112,112,112,112,112,112,112, 248,254, 0, 0, O, O}, /* £ */
{ 28, 28, 28, 28, 28, 28, 28, 28, 62,255, 0, 0, O, O}, /*o*/
{ 3 3 3 3 3 3, 3 3 1719, 0, 0, 0, 0}, /*r*/
{128,128,128,128,128,128,128,128,192,240, 0, 0, O, O}, /* */
{224,224, 224, 224,224,224, 96,112, 49, 30, 0, 0, 0, O}, /*t %/
{ 56, 63, 56, 56, 56, 24, 92, 76,134, 1, 0, 0, 0, O}, /* h*/
{ 7,255, o, o, 0o, O, 1, 2, 12,240, O, O, O, O}, /*e */
¢« 1, 17, 1, 1, 1, 1, 1,15, 63, 0, 0, 0, O}, /* */

{ o, o0 o0 o0 00 0, 0, 0,128,224, O, O, O, O}, /* c */
{ 14, 14, 14, 14, 14, 14, 14, 14, 31,127, 0, O, O, O}, /* h */
{11, 1, 1, 1, 1, 1, 1, 1, 3,207, O, O, O, O}, /* a */
{192,192,192,193,193,195,195,193,225,248, 0, 0, O, O}, /* ¢ */
{ o, 7,120,192,192,128,128,192,195,124, 0, 0, O, O}, /* a */
(224,224,224,224,224,224,224,240,112, 29, o, o, o0, O}, /* c */
{ 56, 56, 56, 56, 56, 56, 56, 56,124,255, 0, O, O, O}, . /*t */
{3, 31, 33, o, o, 64, 96, 96,112, 71, O, O, O, O}, /* e */
{ 0,224,248,252, 28, 12, 4, 12, 24,224, O, O, O, O}, /* ¢ */
o, o0 0,0 00 00 0, 0, 0, O, O, O, O, O, O}, /* s */
o, o0 0,0 00 00 0, 0, 0, 0, O, 0, O, O, O}, /* */
o, o0 o0 00 00 0, 0, 0, 0, O, O, O, O, O}, /* n */
o, o0 00 0,0 0,0 0,0 0, O, O, 0, O, O, O, O}, /* e */
o, o0 00 00 00 0, 0, 0, O, 0, O, O, O, O}, /* e */
o, o0 00 00 00 0, 0, 0, O, O, O, O, O, O}, /* d */
o, 0,252, 60, 30, 30, 30, 23, 23, 23, 19, 19, 19, 17}, /* e */
o, o0 0,0 00 00 0, 0, 1, 1, 1,130,130,130,196}, /* d */

{

{

{

{

{

{

{

{

{ o, 0,126,120,240,240,240,112,112,112,112,112,112,112}, /* */
{ o, o, 28, 28, 28, 0, 0, 0, 0,252, 60, 28, 28, 28}, /x4 x/
{ o, oo o0 0,0 00 0, 0, 0, O, 1, 6, 12, 28, 24}, /* n */
{ o, o0 00 00 O0 O, 0, O, 0,240, 12, 2, 7, 7}, /x */
{ o, o 63,15, 7, 7, 1, 1, 7, 1, 1, 1, 1, 1}, /*t */
{ o, 00 00 00 00 O, 0O, O, O, 62, 65,129,128, O}, /* h */
{ o o o o0 o0 o0 O O O O0,128,192,192,224}, /* e */
{ oo 0,0 0, 0O, 0, O, 0O, 0, O, 63, 64,224,224,224}, /x */
{ oo oo 0,0 0, 0, 0, 0, 0, 0, 0,192, 96,112,112}, /%1 %/
{ oo 00 00 00 0, O, O, O, O, 7, 24, 48,112, 96}, /* o */
{ o, oo 0,0 0, 0, 0, 0, O, 0,192,112, 24, 28, 28}, /* g */
{ o, 0,252, 60, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28}, /* o */
{ o o, 0,0 0,0 0,0 0, O, O, O, 0, 0, 0, O, O}, /% %/
{ o, o0 0,0 00 00 0, 0, 0, 0, O, 0, 0, 0, O}, /* a */
{ o, o, 63, 56, 48, 48, 32, 32, 32, 0, 0, 0, 0, O}, /*t %/
{ o, 0,255112,112,112,112,112,112,112,112,112,112,112}, /x */
{ o0, 0,225,225, 97, 32, 32, 32, 32, 15, 3, 1, 1, 1}, /xt %/
{ o, 0,192,192,192, 0, 0, 0, 0,192,193,195,195,195}, /* h */
{ o o o o0 o0 o0 0 O 0,252, 3, 0, 0, 0}, /* e */
{ oo 0,0 0,0 00 0, O, O, O, O, 64, 65,195, 71, 70}, /x */
{

{

{

{

{

{

{

{

o, 00 0, 0, 0, 0, 0, 0, 0,124,131, 0, 1, 1}, /* ¢ */
o, 0,15, 3, 1, 1, 1, 1, 1, 1, 1,129,193,193}, /* e */
0, 0,192,192,192,192,192,192,192,207,208, 224,224,192}, /* n */
o, 00 00 0, 0, 0, 0, 0, 0,128, 96,112, 48, 56}, It %/
o, o0 0, 0o, 0, 0, 0, 0, 0, 3, 12, 24, 56, 48}, /* e */
o, o0 0, o, 0, 0, 0, O, 0,224, 56, 12, 14, 14}, /*x %/

o, o0 o, o, o, 0o, 0, 0, 0,126, 30, 14, 15, 15}, VAR

o, 00 0,0 0, 0, 0, 0, O, 0, 60, 78,142, 14, O}, /* o */
{ 17, 17, 16, 16, 16, 16, 16, 16, 48,254, 0, 0, 0, O}, /* £ %/
{196,196, 232, 232,232,112,112, 80, 32, 35, O, 0, 0, O}, /* */
{112,112,112,112,112,112,112,112,248,254, 0, 0, 0, O}, /%t x/
{ 28, 28, 28, 28, 28, 28, 28, 28, 62,255, O, 0, 0, O}, /* h *x/
{ 56, 56, 56, 56, 56, 24, 28, 12, 6,129, 0, 0, 0, O}, /* e */
{ 7 o o0 o0 o0 O 1, 2 12,240, O, 0, 0, O}, VARV

t 17 7 1, 1, 1, 1, 17, 1, 15, 63, 0, 0, 0, O}, /* s */
{ o, 0,0 00 0,0 0, O, O, 0,129,231, 0, 0, 0, O}, /* c */
{224,224, 224,224,224, 225,225,224,240,252, O, 0, 0, O}, /*x %/
{ o, 3, 60,224,224,192,192,224,225, 62, O, 0, 0, O}, /* e */
{112,240,112,112,112,112,112,120,184, 14, O, 0, 0, O}, /* e */
{224,255,224,224,224, 96,112, 48, 24, 7, O, 0, 0, O}, /* n */

{ 28,252, 0, 0, 0, O, 4, 8, 48,192, 0, 0, O, O}, /* */
{ 28, 28, 28, 28, 28, 28, 28, 28, 62,255, 0, 0, O, O},
{ o, oo 0,0 0ob 00 0, 0, 0, 0,128, 0, 0, O, O},

285

7. The BIOS PC System Programming

{ o o o o o o o0 o o o0 0 O O O}

{ o, o, 00 00 00 00 O, O, O 3 0O, O, O, O},

{112,112,112,112,112,112,112,112,248,254, O, O, O, O},

{1 1, 1, 1, 1, 1, 1, 1, 3,15 o, O, O, O},

{193,193,192,192,192,194,195,195, 227,250, 0o, O, O, O},

{240, 254,255, 15, 1, O, o0, 0,129,126, 0, O, 0O, O},

{ 14, 14,142,206,206,198, 71,195,129, o0, o, O, 0O, O},

{ 1, o o o0 O o0, O, 0,131,124, O, O, O, O},

{193, 1, 1, 1, 1, 1, 65,129, 3, 15, o, O, O, O},

{192,192,192,192,192,192,192,192, 224,249, 0, 0, O, O},

{ 56, 56, 56, 56, 56, 56, 56, 56,124,255, 0, O, O, O},

{112,127,112,112,112, 48, 56, 24, 12, 3, O, 0, 0, O},

{ 14,254, o, 0, O, O, 2, 4, 24,224, O, 0O, 0, O},

{ 14, 14, 14, 14, 14, 14, 14, 14, 31,127, o0, 0, O, 0},

{ o, o, 0, 0, 0, 0, 0, 0, 0,192, 0, O, O, 0}
IH
union REGS regs; /* Processor register for the interrupt call */
unsigned 1, j, k; /* Loop counter */
double delay; /* Loop counter for PAUSE */
/*-- Prepare screen */
cls(); /* Clears screen */
blinking(FALSE); /* Light background color instead of blinking */
setcur (0, 0); /* Move cursor to upper left corner */
/*—- Install EGA and VGA hardcopy routine */
regs.h.ah = 0x12; /* Function no.: Alternate Select */
regs.h.bl = 0x20; /* Sub-funct. 0x20 = Install hardcopy routine */
int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */
if (VGA) /* Check for compatibility */

{ /* and check custom characters */

regs.h.ah = 0x12; /* VGA card in 350-line mode */

regs.h.bl = 0x30; /* Toggle EGA card */

regs.h.al = 1;

int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */

setlines(0x11); /* Enable 8x14 character set */

}

chardef (128, 0, 14, 120, (BYTE far *) font); /* Define characters */

for (i=0; 1<250; ++1) /* Execute loop 250 times */
{ /* Write color blocks to video RAM */
printfat (GETCS(), GETCZ(), ({1 % 14) + 1) << 4, * "y ;
printfat (GETCS (), GETCZ{), 0, * ");

}

for (i=10; 1<16; ++1) /* Allocate space for logo */
printat (22, 1, 0, " ");

for (k=128, 1=0; i<4; ++1i) /* The logo consists of ASCII */
{ /* characters 128-248 */

for (j=0; 3<30; ++3)
printfat (j+24, i+11, 15, "$c", k++);

}
printat (1, 1, 15, "The most important characters are"“);
printat (1, 2, 15, "still present despite the logo! “);
printat (1, 3, 15, * ")
printat (1, 4, 15, " !\"#$%&' () *+-./0123456789:;<=>2Q *);
printat (1, 5, 15, “ ABCDEFGHIJKLMNOPQRSTUVXXYZ[\\]*_ *);
printat (1, 6, 15, " "abcdefghijklmnopqrstuvxyz{|}~ *);
printat (33, 21, 15, *

W
printat (33, 22, 15, * Press any key to end the program. *):
printat (33, 23, 15, * ";
setcur(34, 22);

/*-- Change colors in the color blocks */
i =0; /* Starting value for color register */

286

http:regs.h.al
http:regs.h.bl
http:regs.h.ah
http:regs.h.bl
http:regs.h.ah

Abacus 74 BIOS Screen Output Functions

while (nokey()) /* Repeat until the user presses a key */
{
for (delay=0.0; delay < PAUSE; ++delay)
H
++1; /* Increment color value for the first register */
for (3=1; J<15; ++J) /* Go through registers 1 to 14 */
{
setcol (J, i+]) & 63); /* Write color value in register */
if (!'nokey()) /* Key pressed? */
break; /* YES --> Stop loop before restarting */
}
}
if (vea) /* Go into 400 line mode */
{ /* Enable VGA card */

regs.h.ah = 0x12;
regs.h.bl = 0x30;
regs.h.al = 2;

int86 (VIDEO_INT, ®s, ®s); /* Call BIOS video interrupt */
setlines(0x14); /* Enable 8*16 character set */
}
cls{(); /* Clear screen */

}

SRR R AR AR R AN R AR AR AR AR AR AR AR AR R AR AR AR AR KRR A RRR AR AR AR AR N RRR AR AR AN KA KRN [

/** MAIN PROGRAM **/

/**t*ﬁ*t*t*tﬁ*tﬁit***tit*tt***tk*t*t**t**ttt*t****t***ﬁ*t***tt**t***tii/

void main()
{

if (is_vga()) /* Is there a VGA card installed? */
egavga{ TRUE); /* YES */
else /* No VGA installed - go on */
{
if (is_ega()) /* Is there an EGA card installed? */
{ /* YES */
1f (getmon() == EGA) /* Is there an EGA monitor connected? */
egavga (FALSE); /* YES, start demo */
else
{ /* wrong monitor */
printf(*This program functions only with an\n");
printf ("EGA monitor. \n");
}
}
else /* 1f no EGA or VGA card connected */

printf(“ATTENTION! There is neither an EGA nor a *
" VGA card installed.\n");

Assembler listing: EGAVGACA.ASM

PRRRRA R R R R AR A AR AR AR AR AR R AR AR IR AR R IR R AR AR AR AR AR AR AR A Ik hh Ak kA kX o

Hd EGAVGACA *;
st *;
i* Task : Generates a functions for custom designing *3
:* characters. *;
i+ *;
o Author : MICHAEL TISCHER *;
i * Developed on : 09/25/1988 *z
i* Last update : 06/07/1988 *;
.k xe

i
I Assembly : MASM EGAVGACA; *;
i* ... Link with a C program whose memory model *;
* has been set to SMALL *;

;**fﬁﬁ*t*tit*i*tﬁ*****i**ttﬁtﬁittﬁititiﬁiitﬁt*tf**iﬁ*it***ii*tiit*i*t**;

287

http:regs.h.al
http:regs.h.bl
http:regs.h.ah

7. The BIOS

PC System Programming

288

;== Segment declarations for the C program

IGROUP
DGROUP

CONST
CONST

_BSS
_BSS

_DATA
_DATA

;== Pro

group _text

group const, bss,

;Addition to program segment

_data ;Addition to data segment

assume CS:IGROUP, DS:DGROUP, ES:DGROUP, SS:DGROUP

segment word public

ends

segment word public

ends

segment word public

ends

'CONST';This segment includes all read-only
;constants

'BSS' ;This segment includes all un-initial-
;ized static variables

'DATA' ;This segment includes all initialized
/"™;global and static variables

gram

_TEXT segment byte public

public

_chardef

‘CODE' ;Program segment

-- Cal

Ne e we e s

1 from C

- CHARDEF: Defines the appearance of a character

: vold chardef(BYTE ascii, BYTE table, BYTE lines,

-- Return value: none

BYTE amount, BYTE far * buf);

_chardef proc near
sframe struc ;Stack access structure
bptr dw ? ;Take BP
ret_adr dw ? ;sReturn address of calling program
ascii dw ? ;ASCII code of character
table dw 2 ;Number of character table
lines dw ? ;Character matrix height
amount dw ? ;sNumber of characters to be defined
bufptr dd ? ;FAR pointer to buffer
sframe ends ;End of structure
frame equ [bp - bptr] ;Addresses elements of structure
push bp ;Push BP onto stack
mov bp, sp ;Transfer SP to BP
mov ax,1100h ;Function no. 11H, sub-funct. 0
mov bh,byte ptr frame.lines ;Character matrix height
mov bl,byte ptr frame.table ;Number of, character table
mov cl,byte ptr frame.amount 7 Number of' characters
xor ch,ch
mov dl,byte ptr frame.ascii ;Get ASCII code of character
xor dh,dh
les bp,frame.bufptr ;Buffer address to ES:BP
int 10h ;Call EGA BIOS video interrupt
pop bp ;Pop BP off of stack
ret ;Return to C program
_chardef endp
7
_text ends 7End of code segment
end ;End of program

Abacus

7.5 Determining System Configuration using BIOS

7.5

Determining System Configuration using BIOS

Some programs (e.g., copy programs) must determine how many disk drives are
connected to the PC, or how much RAM exists on the main circuit board or
motherboard. This information can be obtained with the help of BIOS interrupt

11H.

The content of individual registers is not important during the call of this
interrupt, since neither the function number nor another argument must be passed.

The configuration, which is determined during the system booting process, is
returned in the AX register. The individual bits of this register contain the

following information:

Bit (s) Meaning

0 Equal to 1 if 1 or more disk drives are available
1 Unused
2 & 3 RAM memory on the main circuit board
00 = 16K
01 = 32K
10 = 48K
11 = 64K
4 & 5 Video mode during system boot

00: unused

0l: 40*25 characters - color card

02: 80*25 characters - color card

03: 80*25 characters - mono card

6 & 7 Indicates number of disk drives in system if bit 0 is
1
00 = 1 disk drive
01 = 2 disk drives
10 = 3 disk drives
11 = 4 disk drives
8 Egual to 0 when DMA chip is available
9 - 11 Number of RS-232 cards attached
12 Equal to 1 if joystick attached
13 Unused

14 & 15 | indicates the number of printers

While this bit assignment is the same for the PC and the XT, it differs from the
configuration word returned by the AT. To interpret the content of the AX register

correctly, you must know the model of the computer being tested.

289

7. The BIOS

PC System Programming

290

Bit Meaning
00 Equal to 1 if 1 or more disk drives are available
0l Equal to 1 if system has a math coprocessor
02-03 Unused
04-05 Video mode during system boot
00: Unused
0l: 40*25 characters — color card
02: 80*25 characters - color card
03: 80*25 characters — mono card
06-07 Indicates number of disk drives in system if bit 0 is
1
00 = 1 disk drive
01 = 2 disk drives
10 = 3 disk drives
11 = 4 disk drives
08 Unused
09-11 Number of RS-232 cards attached
12-13 Unused
14-15 indicates the number of printers

Do not use this function to sense the current video mode, since it only indicates
the video mode switched on during system booting. Function 15H of interrupt
10H provides the number of the current video mode.

Abacus

7.6 Determining Available RAM using the BIOS

7.6

Determining Available RAM using the BIOS

While interrupt 11H only returns the amount of RAM on the main circuit board,
interrupt 12H obtains the amount of RAM available in the entire system. The
total amount of RAM from the main circuit board and any memory expansion
cards are returned. The DIP switch settings on the memory boards determine the
amount of memory reported available on the PC and XT. The interrupt routines
derive the amount of RAM on an AT by reading one of the 64 memory locations
on the battery powered realtime clock.

Memory limits

This method determines RAM below the 1 megabyte limit only. The 8088's
addressing capability limits memory to 1 megabyte, so the PC and XT can report
on the entire memory available. The AT's 80286 processor can manage up to 16
megabytes of memory. However, interrupt 12H cannot report on any RAM beyond
1 megabyte.

The memory size returned is passed in the AX register as a multiple of 1K (1024
bytes, not 1000 bytes). For example, if the AX register contains 256, you have
256K of RAM available in your PC.

Demonstration programs

The three program listings in this section are practical examples of the interrupts
described in the preceding section. The three programs, which were written in
BASIC, Pascal and C, are identical in their basic design.

They test the model identification byte in memory location FO0O:FFFE to
determine whether the computer is a PC, XT or AT. The equipment designation
appears on the screen. This model identification acts as the basis for identifying the
processor type as well. The program assumes that an AT has an 80286 and all
other PCs have an 8088 processor. During the next step in the programs, interrupt
12H determines the amount of RAM on the circuit board and returns that amount.
As mentioned above, the AT can have additional RAM memory beyond the 1
megabyte limit. Each program tests for that additional RAM if the equipment
designation indicates an AT. The programs use function 88H of interrupt 15H (see
Appendix B for detailed documentation). For the moment, all you need to know is
that this function passes the amount, in multiples of 1K, of RAM above the 1
megabyte limit to the AX register.

After displaying this information, interrupt 11H determines the equipment
configuration. The last task of the program consists of filtering out the
information encoded in the bits of the configuration word and displaying it on the
screen.

To keep the program from becoming too long, the programs limit themselves to
the identical bits of the configuration words in the PC, XT and AT. For example,

291

7. The BIOS PC System Programming

BASIC

292

the programs skip the AT information concerning the availability of a math
COproCessor.

You may want to rewrite this program so that it displays all the information
contained in the configuration word according to computer type.

The comments in each listing should answer any questions you may have about
program flow.

listing: CONFIGB.BAS

100 ‘AR R AR A A AR AR AR R AR AR AR R AR AR AR AR AR R AR R AR R AR AR AR AR AR A AN AN A A Ak kk o

110 ** CONFIGB *e
120 *'* *e
130 '* Task : Displays the Configuration of the PC *
140 ** *
150 ** Author : MICHAEL TISCHER *
160 '* developed on : 7.20.87 *
170 ** last Update : 9.21.87 *
180 AR AR AR R AR AR AR R AR R AR AN AR AR AR AR AR AR AR AN AR AR AR R AR A AR R AR AR AR AR R Ak A O

190 *

200 CLS : KEY OFF

210 PRINT"WARNING: This program should only be started if the GWBASIC *
220 PRINT*was started from the DOS level with <GWBASIC /m:60000>."
230 PRINT : PRINT*If this was not the case, then input <s> for Stop.*
240 PRINT*Else press any key ...";

250 AS$ = INKEY$: IF A$ = "s" THEN END

260 IF A$ = " THEN 250

270 GOSUB 60000 ‘Install Function for interrupt Call

280 CLS ‘Clear Screen

290 DEF SEG = &HF000 'BIOS-Segment

300 PRINT “CONFIG (c) 1987 by Michael Tischer"

310 PRINT

320 PRINT “Configuration of Your PC*

330 PRINT * "

340 PRINT "“PC-Type : "; ‘determine PC type
350 IF PEEK(&HFFFE) = &HFF THEN PRINT “PC" : GOTO 390

360 IF PEEK(&HFFFE) = &HFE THEN PRINT “XT* : GOTO 390

370 IF PEEK(&HFFFE) = &HFC THEN PRINT “AT" : GOTO 390

380 PRINT “unknown"

390 PRINT “Processor : 80%;

400 IF PEEK(&HFFFE) = &HFC THEN PRINT "286" ELSE PRINT “88"

410 INRS = &H12 'BIOS-interrupt reads RAM size
420 DEF SEG 'Set BASIC-Segment again

430 CALL IA(INRS,RAMHI%,RAMIOS,2%,2%,2%,2$%, 2%, 2%, 2%, 2%, 2%, 2%)

440 PRINT “RAM-Memory (Main Circuit Board) :";RAMHI%$*256+RAMLOS;“KB"

450 DEF SEG = &HF000 *BIOS-Segment

460 IF PEEK(&HFFFE) <> &HFC THEN 520 ‘branch if not AT

470 DEF SEG 'set BASIC-Segment again

480 INRS = &H15 *Call Cassette interrupt

490 RAMHI% = &H88 ‘Function for reading of HI-RAM size

500 CALL IA(INR$,RAMHI%,RAMIO%,Z2%,2%,28%,2%, 2%, 28, 2%, 2%, 2%, 2%)

510 PRINT “Additional RAM-Memory :";RAMHI$*256+RAMLO%; "KB beyond 1 MB"
520 DEF SEG '‘Set BASIC-Segment again

525 INR% = &H11 'BIOS-interrupt reads Configuration

530 CALL IA(INRS,CONFHI%,CONFLOS,2%,2$%,2%, 2%, 2%, 2%,2%,2%, 2%, 28%)

540 PRINT “Video mode after Start HEH

550 IF CONFLO% AND 48 = 0 THEN PRINT"undefined* : GOTO 590

560 IF CONFLO% AND 48 = 16 THEN PRINT*40*25 Character, Color-Card* : GOTO 590
570 IF CONFLO% AND 48 = 32 THEN PRINT"80*25 Character, Color Card* : GOTO 590
580 PRINT*80*25 Character, Mono-Card"“

590 PRINT"Disk drives :*; INT (CONFLO%/64) +1
600 PRINT"RS232 cards :%; INT (CONFHI%/2) AND 3
610 PRINT*Printer cards +%; INT (CONFHI%/64)

620 PRINT

Abacus 7.6 Determining Available RAM using the BIOS

630 END

640 * .
Goooo (R Ly R e e R s s Rz st sl
60010 ** Initialize the Routine for interrupt-Call *e
60020 ** *
60030 *'* Input: none *
60040 ** Output: IA the Start address of the interrupt-Routine *e
60050 AR AR AR R R R AR R AR R R AR A AR R AR A AR AR R AR R AR AR R RA R AR AR AR AR AR AR AR R AR A AR
60060 °*

60070 IA=60000! ‘Start address of the Routine in the BASIC-Segment
60080 DEF SEG 'Set BASIC-Segment

60090 RESTORE 60130

60100 FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT ‘'Poke Routine
60110 RETURN ‘back to Caller
60120
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118 ‘
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255

Pascal listing: CONFIGP.PAS

(*t*kttttt*ﬁk*tﬁtktk*t*t*tttttttkk*ﬁktttttttktttttttttttttﬁ*ﬁiﬁttt*ﬁtt)

{* CONFIGP PASCAL *}
{* *}
{* Task : Outputs the Configuration of the PC on the *}
{* Display Screen *}
{* *}
{* Author : MICHAEL TISCHER *}
{* developed on : 7/7/87 *}
{* last Update : 5/18/89 *}

‘*'*'*'Q*'**1*'**ﬁtﬁ*'*'*'ﬁ*ﬁ*ﬁ*ﬁ**'***iﬁ*ﬁ*ﬁ*ﬁ**'**'***'**i*ﬁ*i*ﬁ'*ﬁ*)

program CONFIGP;

Uses Crt, Dos; { Add DOS and Crt }
‘ttttt'*t**'**'*tt**ﬁ*tttttt**tﬁ*tﬁtt*kttitttﬁ*tﬁﬁtttt*ttt**ttttﬁitﬁ*ﬁ)
{* PRINTCONFIG: Display PC's configuration *}
{* Input : none *}
{* Output : none *}
{* Info : The configuration output depends on the PC type *}

{itt*ttktttttttt*kttttt*t*tttttttttt*i*kttttttkttkttﬁtttt*tt*tttii*tit’

procedure PrintConfig;

var AT : boolean; { is the PC an AT? }
-’Regs : Registers; { Register variable for interrupt call }
begin
clrscr; { Clear screen }
i1f mem[$FO00:$FFFE] = $FC then AT := true { test if AT or }
else AT := false; { PC or XT }
writeln('Configuration of this PC');
wriceln(' '):
write ('PC-Type s ')
case mem[$F000:$FFFE] of { Read PC type again }
SFF : writeln('PC'); { SFF is a PC }
SFE : writeln('XT'); { $FE is an XT }
SFC : writeln('AT') { SFC is an AT }

else writeln('Unknown');

293

7. The BIOS PC System Programming

end;

write (*Processor : INTEL ');

if AT then writeln('80286') { the AT has an 80286, }

else writeln('8088'); { PC and XT have an 8088 processor }

intr($12, Regs);

writeln ('RAM-Memory : ',Regs.ax,' KB');

if AT then { is the PC an AT? }
begin { YES }
Regs.ah := $88; { Function number for additional RAM size }
Intr($15, Regs); { Call BIOS cassette interrupt }
writeln('additional RAM : ',Regs.ax,' KB beyond 1 MB');
end;

Intr($11, Regs); { Call BIOS configuration interrupt}

write('Video mode after start : ');

case Regs.al and 48 of { Determine video mode }
0 : writeln('undefined');
16 : writeln('40x25 character color card');
32 : writeln('80x25 character color card');
48 : writeln('80x25 character mono card')

end;
writeln('Disk drives
writeln('RS-232 cards
writeln('Printer cards
end;

', succ(Regs.al shr 6 and 3));
', Regs.ah shr 1 and 3);
*, Regs.ah shr 6)

{**t***t**********t******ttt**tt*t**t****iii*i**ttt**i******t****t*tt*)

{* MAIN PROGRAM *}
[RRRRRRRKKKRRRRRRRR KKK KRR RRRRRRKRKKR AR RRARARRRRR AR AR AR R RRRRAAAAK

begin
PrintConfig; { Display configuration }
end.

C listing: CONFIGC.C

JRE IR IR RRRRKRRR KRR KRR KRR AR RKRR AR R AR KRR AR R AR KRR AR AR AR ARk h Kk Kk ke kkkd %/

/* CONFIGC */
/* */
/* Task : Outputs the configuration of the PC on the */
/* Display Screen */
/* */
/* Author : MICHAEL TISCHER */
/* developed on : 8.13.87 */
/* last Update : 9.21.87 */
/* */
/* (MICROSOFT C) */
/* Creation : MSC CONFIGC */
/* LINK CONFIGC PEPO; */
/* Call : CONFIGC */
/* */
/* (BORLAND TURBO C) */
/* Creation : With the RUN command in the Command Line */

/tttt*ttt‘**tit*tit**ﬁt******tttii*tt**t*i*t**t*tﬁ**iiittt****ﬁi*itttﬂ/

#include <dos.h> /* Include Header-Files */
#include <io.h>

extern short int PeekB(); /* PEEKB linked with MicroSoft C */
#define FALSE 0 /* Constants make reading the */
#define TRUE 1 /* Program text easier */
/t**t*tt**ttt**ﬂ**t*i******tttt***t*ﬁt**t*****tt**tk*ttt*t***t*i***f**/
/* CLS: Clear Screen and Cursor to upper left corner */
/* Input : none */
/* Output : none */

/*tt*ﬁttt***ttt*ttttt'ﬁtit****ttt**ﬁ***t'*itﬂt*****ﬁﬁ**tﬁt'ﬁt*ﬁt**t*ﬁ*/

void Cls()

294

http:succ(Regs.al

Abacus

7.6 Determining Available RAM using the BIOS

union REGS Register; /* Regjster-Variable for interrupt-Call */
Register.h.ah = 6; /* Function number for Scroll-UP */
Register.h.al = 0; /* 0 for clear */
Register.h.bh = 7; /* white characters on black background */
Register.x.cx = 0; /* left upper screen corner */
Register.h.dh = 24; /* Coordinates of the lower */
Register.h.dl = 79; /* right screen corner */
int86 (0x10, &Register, &Register); /* Call BIOS-Video-interrupt */
Register.h.ah = 2; /* Set Function number for Cursor position */
Register.h.bh = 0; /* Screen page 0 */
Register.x.dx = 0; /* Coordinates of upper left screen corner */
int86 (0x10, &Register, &Register); /* Call BIOS-Video-interrupt */

}

SRR R Rk Rk Rk kR AR AR kAR Ak ki ke k Ak kA kAR A ARN AR ARk k kAN RNk hkk /

/* PRINTCONFIG: Output the PC Configuration */
/* Input : none */
/* Qutput : none */
/* Info : the configuration output dependent on the PC-Type */

SRR AR AR AR KA AR AR R A AR R R AR R AR R AR KA R KRR R R R AR KRR AR R R AR KA AR RAKRKRRRKK A K/

void PrintConfig()

{

union REGS Register; /* Register-Variable for interrupt-Call */
short int AT; /* the PC and AT? */
Cls(); /* Clear Screen */
if (PeekB(0xF000, OXFFFE) == OXFC) AT = TRUE; /* Determine if the */
else AT = FALSE; /* PC and AT */

printf (“CONFIG (c) 1987 by Michael Tischer\n\n");
printf("Configuration of this PC\n%);

printf (" \n") ;
printf ("PC-Type IR
switch (PeekB (0xFO00, OXFFFE)) /* Determine PC-Type again */
{
case OxFF : printf (“PC\n"); /* OXFF a normal PC */
break;
case OXFE : printf(“XT\n"); /* OXFE an XT */
break;
case OXFC : printf (“AT\n"); /* OXFC an AT */
break;
default : printf (“"Unknown\n"); /* Code unknown */
break;
}
printf (“Processor : INTEL 80%);
if (AT) printf(“286\n"); /* the AT has an 80286, */
else printf (“88\n"); /* PC and XT have an 8088 Processor */
printf ("RAM-Memory HERS M
int86(0x12, &Register, &Register); /* Get RAM size */
printf ("$d KB\n",Register.x.ax); /* and output */
if (AT) /* the PC an AT? */
{ /* YES */
Register.h.ah = 0x88; /* Function number for additional RAM */
int86 (0x15, &Register, &Register); /* Get RAM size */
printf(“additional RAM : %d KB beyond IMB\n", Register.x.ax);

}
int86(0x11, &Register, &Register); /* BIOS-Configuration-interrupt */
printf(*video mode after Start : “};
switch(Register.x.ax & 48)
{
case 0 : printf(*undefined\n");
break;
case 16 : printf(“40*25 Character Color-Card\n");
break;
case 32 : printf(*80*25 Character Color-Card\n");

295

http:switch(Register.x.ax
http:Register.x.ax
http:Register.h.ah
http:Register.x.dx
http:Register.h.bh
http:Register.h.ah
http:Register.h.dl
http:Register.h.dh
http:Register.x.ex
http:Register.h.bh
http:Register.h.al
http:Register.h.ah

7. The BIOS PC System Programming
break;
case 48 : printf("80*25 Character Mono-Card\n");
break;

296

}
printf(*Disk drives : %d\n", (Register.x.ax >> 6 & 3) + 1);
printf (*RS232~-Card : %d\n", Register.x.ax >> 9 & 0x03);
printf(“Printer-Card : %d\n\n", Register.x.ax >> 14);
}

JRERIR IR IR K KRR R R AR KRR AR AR AR RKRARKR KRR AR RA KRR R RRRRRARKR AR KRR A kK [

J** MAIN PROGRAM **/

/tt!i*tt*tﬁtﬁt!'*itﬁ!ﬁtﬁttikﬁtﬁtﬁ*ﬁtttiiiitit*tttkﬁﬁﬁt*itittﬁtiitﬁ*'l*/
void main()

{

PrintConfig(); /* Output the Configuration */
}

T

http:Register.x.ax

Abacus

7.7 Accessing the Floppy Disk from the BIOS

7.7

Accessing the Floppy Disk from the BIOS

A cassette recorder was the primary form of mass storage in the early days of
personal computing. However, floppy drives soon became the standard. PCs can
control a maximum of four disk drives, numbered 0 to 3. DOS designates the first
two units as drive A and drive B.

Early disk-based PC systems used only one side of disks for data storage. DOS
Versions 1.1 and later store data on both sides of the disk.

Disk structure

Each side of a disk consists of 40 tracks of 9 sectors each. Each sector has a
capacity of 512 bytes. The tracks are numbered from 0 to 39. Track O is located on
the outer edge and track 39 on the inner edge of the disk. The two disk sides have
designations of side O (front) and side 1 (back). This disk has a total storage
capacity of 360K.

The disk drives included with AT computers have 80 tracks with 15 sectors instead
of 40 tracks with 9 sectors. An AT floppy drive can store up to 1.2 megabytes of
data per disk. Systems with a 1.2 megabyte drive can read both 1.2 meg disks as
well as 360K disks.

Note: While it's possible to write 360K formatted disks using an AT type
1.2 megabyte drive, the resulting disks are not always readable by a
standard PC/XT 360K drive.

The following shows the structure of a disk:

297

7. The BIOS PC System Programming

Track 1&g, e oty 000 i
Track 2 &
Track 3 & 8
e Sactor 1
Sector 2
i”

Structure of a disk

This structure is based on DOS specifications. It's possible to program the disk
controller directly or use the various BIOS functions to alter the disk structure.
Some methods of copy protection take advantage of this capability to arrange the
data on the disk in such a way that DOS cannot use the data directly.

The methods of transferring data to or from the disk are identical. First the
read/write head moves to the proper track. Since the disk moves constantly, the
sector to be processed eventually passes by the head, allowing data transfer.

BIOS makes some functions available for disk access at the lowest level. BIOS
thinks of DASD (Direct Access Storage Device) rather than disk drives.

A total of six BIOS disk functions can be accessed by calling interrupt 13H and
passing the function number to the AH register.

Function 0: Reset disk

298

Function O resets the disk drive. The reset always executes automatically during
system start, but should also occur when an error occurs during the call of one of
these six functions. Before the interrupt call, function number 0 must be loaded
into the AH register. After the execution of the function the error status is returned
in the AH register. A value which indicates the type of error if any, is returned in
the AH register after all 6 functions.

Abacus

7.7 Accessing the Floppy Disk from the BIOS

If a program calls the reset function without the disk drive previously reporting an
error, error code 1 (function number not permitted) may be returned in certain
cases, even though no error occurred. For this reason, the function should be called
only after an error, and not after every disk operation.

Function 1: Status

Function 1 senses disk status without disk access. If it returns a value of 0 as a
result, no error occurred. Another value represents one of the following error codes:

01H Function number not permitted

02H Address-marking not found

03H Write attempt on write protected disk
04H Sector address not found

06H disk changed

08H DMA-Overrun

09H Data transmission beyond segment border
10H Read error

20H Disk controller error

40H Track not found

80H Time-Out error, drive does not respond

If one of these errors appear, the disk operation just completed has been repeated
several times following a reset. Most of the time the repeated operation succeeds
without an error. If not, the current program in memory should react to the error
condition in a suitable manner and display an error message.

Working with the functions presented here, a time-out error can occur frequently
after a read operation. It usually occurs because of the speed decrease required to
read the disk: The old speed cannot be resumed immediately after reading.

Function 2: Read

Function 2 reads disk data. The BIOS must know the location from which you
want disk data read. This information is passed in the DL, DH, CL and CH
registers:

DL Drive number (0 to 3)

DH Disk side (always O for single sided disks)
0 = Front side

1 = Back side

CL First sector to be read (1 to 9/1 to 15)

CH Track containing sector to be read

299

7. The BIOS PC System Programming

Up to 9 sectors (PC/XT disk drives) or 15 sectors (AT disk drives) can be read
using one function call. The AL register specifies this number of sectors. Since
disk drives usually store data belonging together in sequential sectors, this enables
fast data access (e.g., 9 x 512 bytes = 4.5K in one disk revolution).

The address of a buffer in memory must be passed in registers ES and BX since the
data transfer area has no fixed location in RAM in which it can reside. The ES
register accepts the segment address of the buffer and the BX register accepts the
offset address.

The function returns the error status to the AH register, and the number of sectors
read in the AL register. In addition to the AH register, a set carry flag (carry flag =
1) signals the occurrence of an error.

Function 3: Write

Function 3 allows write access to the disk. It accepts arguments similar to those
used in function 2 above:

DL Number of the drive (0 to 3)

DH Disk side (always O for single sided disks)

0 = Front side

1 = Back side

CL First sector to be written (1 to 9/1 to 15)

CH Track in which the sector to be written is located

The value in the AL register indicates the number of sectors to be written, while
the ES and BX registers indicate the address of the memory area from which the
data should be read. The function passes the error status in the AH register, and the
number of sectors written in the AL register. The carry flag has the same meaning
as in function 2.

Function 4: Verify disk

300

Function 4 tests whether data is transferred properly to and from the disk. The
BIOS bases correct data transmission on a cyclical redundancy check (CRC) value,
instead of just comparing data in memory with data on disk. Using a CRC

~ involves summing the value of each individual byte in a sector with a specific

formula. Since most disk drives work well and have exceptional reliability, most
programmers ignore this function. DOS only uses this function to test data that
was transmitted to a disk in response to an active VERIFY ON flag.

Abacus

7.7 Accessing the Floppy Disk from the BIOS

The register setup is similar to functions 2 and 3 (see above), with the difference
that the AH register must contain 4. Since the function doesn't need a buffer
address, this function does not use the BX and the ES registers.

Note: This function only works properly on a PC or an XT: ATs may
return incorrect results.

Function 5: Format

The last function of interrupt 13H allows the user to format part of a disk. Disk
formatting (e.g., with the DOS command FORMAT) is a requirement since disks
used by the PC are soft-sectored. This means that software, not hardware,
determines the positioning of the sectors and tracks on the disk. The operating
system must install the tracks and sectors on the disk using this function. Sectors
don't have to contain 512 bytes. This BIOS function lets you format 128, 256,
512 or 1,024 bytes per sector. However, you must format a complete track.

The function number (5) must be passed in the AH register. The AL register is
loaded with the number of sectors to format the track with. This number can be
less than the DOS default values of 9 or 15. The number of the track to be
formatted is passed in the CH register. This track number must be a value from 0
to 39 (PC/XT) or from 0 to 79 (AT). The number of the disk drive is passed in the
DL register and the disk's side in the DH register.

Besides this information, the format function also requires a field containing
formatting characteristics, which is also needed by the functions for reading,
writing and verifying a sector. The address of this field is passed in the ES and BX
registers. The segment address is loaded in the ES register and the offset address in
the BX register.

This table contains an entry consisting of four bytes for every sector to te
formatted:

Byte 1 Track to be formatted

Byte 2 Disk side (always O for single sided disks)
0 = Front side

1 = Back side

Byte 3 Number of sector

Byte 4 Number of bytes in this sector

0 128 bytes

256 bytes

512 bytes

1024 bytes

wnonon

1
2
3

Even though the function already possesses the number of the track to be formatted
and the disk side, these items appear here again for reasons of safety. The sectors
are placed into this table sequentially, which assigns the first sector the logical
number 1 and the second sector the logical number 7.

301

7. The BIOS PC System Programming

302

While the logical and physical numbers of the sectors usually agree in a disk drive,
it makes sense in a hard disk to change the logical number of a sector instead of its
physical number. The hard disk of the XT reduces access time for individual sectors
by displacing the logical sectors by six in relation to the physical sectors.

Also the number of bytes which a sector can accommodate does not have to be
uniform, since each sector may be defined in the table. With this and other
parameters of the table, copy protection can be developed based on formatting.
Format-based copy protection cannot be processed by the operating system.

In addition to information such as the disk drive and sector number passed to the
BIOS functions during a call, the BIOS also requires a series of other items to
enable some disk operations. These parameters are passed in the device parameter
table. Such a table exists in the ROM BIOS, but you can install your own in
RAM. The address of the new device parameter table must be placed into memory
locations 0000:0078 to 0000:007B. These memory locations should contain the
address of interrupt 1EH (the PC doesn't use this interrupt).

DOS also offers the option of providing a unique device parameter table which
changes some values of this table from the BIOS default, accelerating access to the
disk drives.

The table itself consists of 11 bytes. The first two bytes transfer directly to the
disk controller. They indicate the step time and the DMA mode. The step time is
the maximum time period in which the read/write head of the disk drive can move
from one track to another.

The second byte indicates the time the disk drive motor can continue to run after a
disk operation. It defaults to 2 seconds since it assumes that this is the maximum
amount of time between consecutive disk accesses. Disk access speed is quicker if
the disk motor has already achieved operational speed and does not have to be
brought up to speed again. The value in this memory location is based on the 18
unit per second system clock, so a value of 18 represents running time of about
one second.

Abacus

7.7 Accessing the Floppy Disk from the BIOS

The value in byte 3 indicates the number of bytes per sector for a write or read
operation. It corresponds to the values for formatting a sector, so it normally
contains the value 3 (512 bytes per sector). If you want to write or read sectors
with other sector sizes, the proper value must be entered into this memory
location.

Byte 4 gives the maximum number of sectors per track. The PC/XT disk drive
defaults to the value 9 in this location, while the AT defaults to the value 15
decimal.

Byte 5 of the table contains a value that represents the amount of empty space
between the end of a sector and the start of the following sector. This space relates
to the time BIOS must allow to elapse until the next sector appears under the
read/write head (not units of length). The value for this memory location defaults
to 42.

Byte 6 determines the data transfer length, which has no influence on data
transmission in most cases. ‘

Since formatting of a disk occurs through the magnetization of certain areas, the
sizes of the non-magnetic spaces between sectors must be determined. Byte 7
records this, and these spaces must be larger than the space between sectors in byte
5 so that the beginning of a sector can be recognized properly.

Byte 8 accepts the ASCII code of the character which fills a sector during
formatting. The BIOS defaults to the division character V (ASCII code 246).

After the read/write head moves from one track to another it requires a rest period
to let the vibrations connected with the movement fade away. Then it can properly
perform any disk accesses which follow.

This rest period given in byte 9 of the table defaults to multiples of 1 millisecond.
While the BIOS grants 25 milliseconds of rest, DOS only permits 15
milliseconds.

The last entry of the table in byte 10 gives the time duration during which the disk
motor achieves operating speed. The value in this memory location defaults to
multiples of 1/8 second. Even here DOS requires more from the read/write head
than BIOS. It provides only a 1/4 second waiting period, as opposed to 1/2 second
for BIOS.

303

7. The BIOS ‘ PC System Programming

High density disk drives

304

Part of the introduction of the AT included high density 1.2 megabyte disk drives.
To ensure compatibility with earlier disk drives, they are capable of reading and
writing 320/360K disks despite the increase to the higher capacity of 1.2
megabytes. They can also recognize a change of the disk media. For support of
this new capability, AT BIOS contains three new disk functions which are called
through interrupt 13H like previous functions.

The first of these new functions determines the drive type in use. During the
function call, in addition to function number 15H, the number of the drive (0 or 1,
2 reserved for the hard disk) must be passed in the DL register. The function
returns the type of the drive in the AH register:

AH = 0 no drive available

AH = 1 disk drive does not detect disk change
AH = 2 disk drive does detect disk change

AH = 3 Hard disk

If the drive detects a disk change it can be sensed with the help of function 16H.
After calling this function by passing the value 16H to the AH register and the
number of the drive (0 or 1), the function returns a number to the AH register
which tells whether the disk was changed since the last disk access. If this register
contains the value 6, the disk was changed. The value 0 indicates that no change
took place.

The last new function, function 17H, must be called before calling the formatting
function (function number 5) on PC/AT or PS/2 machines to tell the controller
how it should format the disk. It should format the disk in either the 320/360K or
the 1.2 megabyte format. Besides the function number in the AH register and the
drive number in the DL register, a code must be passed to the AL register
indicating not only the format type, but also the type of disk drive in use. This
code has the following meaning:

1 format to 320/360K on a 320/360Kk-drive
2 format to 320/360K on a 1.2 megabyte-drive
3 format to 1.2 MByte on a 1.2 megabyte-drive

Abacus 7.7 Accessing the Floppy Disk from the BIOS

Demonstration programs

The disk monitor in this section combines all the functions you have read about so
far. The monitor versions, written in BASIC, Pascal and C, all have the same
basic structure. Let's examine this structure before looking at the individual
programs.

The beginning of each program initializes variables, configures the screen and
resets the disk drives. Next the input loop executes; this loop is the center point of
the program. It displays the program prompt DISKMON> and then waits for user
input. After the user enters input and presses the <Return> key, the program
ensures that this input calls an executable command. If the input is illegal, the
program displays an error message and returns to the program prompt. Legal input
calls the subroutine, function or procedure requested.

All three programs support the Help, Format, Get, Fill, Constants and End
commands. The Fill command fills a sector with one character. The End command
terminates the program. There is no Write command in the monitor's command
set. This is because the amount of coding required to create a window for editing
the 512 bytes of a sector would have made the program listings too long.

All disk access commands ask for the track and perhaps the sector number of the
disk, but not the disk drive number or the disk side number. The program defaults
to disk drive O (drive A:) and disk side 0. The Constants command lets you change
these defaults so you can access another disk drive or disk side. This command also
specifies the format parameter needed for an AT (i.e., what disk format should be
used).

Like all other user input, the program transfers this input to the BIOS instead of
the program itself. This disk monitor checks the BIOS's reaction to the input. The
BIOS returns an error message in response to illogical or false input. Every disk
monitor command which accesses the disk drive reads the error status of the disk
drive after command execution. An error message then appears on the screen as
needed.

Let's take a close look at the monitor commands:

? Entering a question mark (?) at the program prompt displays a list of
the available commands.
Get This overview includes a Get command which reads and displays a

sector of the disk. An internal buffer stores the contents of this sector
after input and displays the contents on the screen. Certain control
characters such as carriage returns or linefeed are shown as character
strings instead of as ASCII codes. For example, <CR> appears
instead of an actual a carriage return, and <LF> appears instead of a
linefeed. While reading a sector the program assumes that the sector
has the standard format of 512 bytes.

305

7. The BIOS

PC System Programming

Format

Reset

The Format command formats the selected sector in a 512-byte
format. Remember that a 360K disk can have a maximum of 9
sectors per track and a 1.2 megabyte disk can have a maximum of 15
sectors per track. You can assign fewer sectors, but you must specify
at least one sector.

The Reset command resets the disk drives. It also can be called by
various commands when the disk drive reports an error. If it's called
by the user before an error occurs, this can cause an error message.
Most disk error messages cannot cause damage to the drive.

BASIC listing: DISKMONB.BAS

306

100 TR AR AR AR R AR AR R AR RN R AN RN AR AR A RAN R RN RN R AR A AN AN RN R AR AR Ak r ko k O
110 ** DISKMONB *
120 (R 3 * 1
130 ** Task : Diskmon is a small Diskette monitor based *'
140 ** on the BIOS-Interrupt 13(h) *
150 ** Author : MICHAEL TISCHER *
160 '* developed on : 07/24/87 >t
170 ** last Update : 05/20/89 *
180 TR R AR R AR A AR R R AR AN RN R AR A AR AN R AR AR AN RN KA AR R A AR AR AR AN RANR AR RR O
190 °*

200 CLS : KEY OFF

210 PRINT "WARNING: This Program should only be started if GWBASIC was"
220 PRINT “started from the DOS level with <GWBASIC /m:60000>.%

230 PRINT : PRINT"If this was not the case, please input <s> for Stop."
240 PRINT “Else press any key ...";

250 A$ = INKEY$: IF A$ = “s" THEN END

260 IF A$ = "“ THEN 250

270 DIM SECTOR%([255] 'Stores Sectors to be read or written
280 DIM FD%[29] ‘Formatting data (maximum 0-29 = 30 Words)
290 GOSUB 60000 ‘Initialize Interrupt-Routine
300 CLS ‘Clear Screen
310 KEY OFF ‘Turn off Function key assignment
320 COLOR 0,7 ‘dark characters on light background (invers)
330 PRINT" DISKMON (c) 1987 by Michael Tischer ? = Help *
340 COLOR 7,0 *light characters on dark background
350 VIEW PRINT 2 TO 24 '‘Lines 2 to 24 form a window
360 DR = 0 ‘access unit 0 (A) first
370 SIDE$ = 0 ‘access the first Diskette side
380 FTYP% = 3 '1.2 MB Diskettes in 1.2 MB drive
390 DEF SEG = &HF000 'Set BIOS-Segment
400 IF PEEK (&HFFFE) = &HFC THEN AT% = - 1 ELSE AT% = 0 ‘test if AT
410 DEF SEG ‘Set BIOS-Segment again
420 GOSUB 50000 ‘Execute Reset
430 GOSUB 51000 ‘Output Error message if necessary
440 INPUT"DISK-MON>",E$ ‘User input prompt
450 IF E$ = %" THEN 440 '‘no input --> repeat input prompt
460 IF E$ = “2" THEN GOSUB 53000 : GOTO 440 ‘Display Help-Text
470 IF E$ = “r" THEN GOTO 420 'Reset
480 IF E$ = “s" THEN GOSUB 54000 : GOTO 430 ‘fill a Sector
490 IF E$ = “f" THEN GOSUB 55000 : GOTO 430 ‘format a Track
500 IF E$ = "g" THEN GOSUB 56000 : GOTO 430 ‘Read Sector and display
510 IF E$ = "c“ THEN GOSUB 57000 : GOTO 440 ‘Input Constants
520 IF E$ = "e" THEN VIEW PRINT 1 TO 24: CLS : END 'End Program
530 PRINT"unknown Command!" : GOTO 440

540 *

50000 PR RN RN AR A AN AR A AR AR RN R A RN RN RN RN RN R AN RN AN AN AN A AR R AR AR A Ak khkdk
50010 '* Execute Reset of all Disk drives *
50020 *'* e
50030 ** Input : none *
50040 *'* OQutput: DST% = the Diskette-Status *
50050 ** Info : 2% is a Dummy-Variable *

Abacus

7.7 Accessing the Floppy Disk from the BIOS

50060
50070
50080
50090
50100
50110
50120
51000
51010
51020
51030
51040
51050
51060
51070
51080
51090
51100
51110
51120
51130
51140
51150
51160
51170
51180
51190
51200
51210
53000
53010
53020
53030
53040
53050
53060
53070
53080
53090
53100
53110
53120
53130
53140
53150
53160
53170
53180
53190
54000
54010
54020
54030
54040
54050
54060
54070
54080
54090
54100
54110
54120
54130
54140
54150
54160
54170
54180
54190
54200

AR AR KKK AR AR AR AR AR KRR AR KA RR KA RRAR AR AR RRRRRR AR RN R AR AR R ARk O

DST$ = 0 'Function number for Reset
INR$ = &H13 *Call BIOS-Diskette-Interrupt 13 (h)
CALL IA(INRS,DST%,2%,2%,2%,2$%,2%,2%,2%, 2%, 2%, 2%,2%)

RETURN ‘back to caller
'

AR R AR AR R R AR R KRR R AR R KRR AR R KRR AR AR R AR A RR KA AR KRR AR AR AR AR AR AR Ak
‘* Output Error Message based on the Diskette-Status * e
' *e
‘* Input : DST% = Status of the last Diskette operation *

.
** Qutput: none *
ARk Rk R AR AR AR AR AR AR R KRR AR R RRR AR AR AR KRR AR R KRR R KRR AR AR AR R Ak

IF DST$% = 0 THEN RETURN
PRINT “ERROR: ";

'0 = everything o.k.

IF DST$ = &H1 THEN PRINT"Function number not allowed * : GOTO 50000

IF DST$% = &H2 THEN PRINT"Address-Marking not found" : GOTO 50000

IF DST% = &H3 THEN PRINT“Write attempt on protected Disk" : GOTO 50000

IF DST% = &H4 THEN PRINT"Sector not found” : GOTO 50000

IF DST% = &H6 THEN PRINT"Diskette changed" : GOTO 50000

IF DST% = &H8 THEN PRINT“DMA Overrun* : GOTO 50000

IF DST% = &H9 THEN PRINT"Data transmission beyond segment border"
IF DST% = &H10 THEN PRINT"Read Error" : GOTO 50000

IF DST$ = &H20 THEN PRINT"Error of Disk-Controller" : GOTO 50000

IF DST% = &H40 THEN PRINT"Track not found” : GOTO 50000

IF DST$ = &H80 THEN PRINT"Time Out Error® : GOTO 50000
PRINT"Error ";DST%;" unknown" : GOTO 50000

.

PRR KRR AR KRR AR AR RN R R AR AR AR KRR KKK KRR R RRRARARRRRKRARRNRR AN RARRAR AR A kKX)
‘* Display Help-Text on the screen >
% *
** Input : none *
** Qutput: none *
R AR KRR AR AR AR R R AR R AR AR KR AR AR R AR R AR A AR KRR AR R KRR AR AR AR RN Rk kk hox)
PRINT

PRINT"COMMAND OVERVIER"

PRINT*" "

PRINT"e = End"

PRINT"g = Get (Read)"
PRINT"s = Sector fill*

PRINT"r = Reset"

PRINT"f = Format"

PRINT"c = Constants"

PRINT"? = Help"

PRINT

RETURN ‘back to caller
PRI KA KA AR R AR AR R AR AR R KRR AR AR IR AR R AR AANRAAN AN RRRAARARRARARRRARKR S
** Fill a Sector *
" % * v
‘* Input : DR% = the Number of the unit addressed *
'x SIDE% = the number of the Disk side addressed *
‘* Output: DST$ = the Diskette status >
‘* Info : 2% is a Dummy-Variable >
TR AR AR AN RN R R R KA R A R R R AR AN AR R R AR AR AR AR AR R A AN KRN AR A AR R RR KRR A KR KK
INPUT “Track : *,TRACK% '‘Track in which the Sector is located
INPUT "Sector : *, SECTORS ‘Sector to be filled
INPUT “Character: *,2$ 'Fill Character
IF 2$ = “* THEN Z$ = CHRS$ (0)

FOR I% = 0 TO 511 : POKE VARPTR (SECTOR%[0])+I%,ASC(Z$) : NEXT
DST$ = 3 ‘Function number for writing
INR$ = &H13 ‘Call BIOS-Diskette-Interrupt 13 (h)
NUM$ = 1 ‘Number of Sectors
OFSLO% = 0 : OFSHI% = 0 ‘initialize Variables
SEG$ = -1 ‘Use BRASIC DS for ES
NUME = 1 ‘Number of Sectcrs to be read
OFSLO% = VARPTR(SECTOR%([0]) AND 255 ‘1O & HI-Byte of the Offset

GOTO 50000

307

7. The BIOS

PC System Programming

54210
54220
54230
54240
55000
55010
55020
55030
55040
55050
55060
55070
55080
55090
55100
55110
55120
55130
55140
55150
55160
55170
55180
55190
55200
55210
55220
55230
55240
55250
55260
55270
55280
55290
55300
55310
55320
56000
56010
56020
56030
56040
56050
56060
56070
56080
56090
56100
56110
56120
56130
56140
56150
56160
56170
56180
56190
56200
56210
56220
56230
56240
56250
56260
56270
56280
56290
56300
56310
56320

308

OFSHI% = INT(VARPTR (SECTOR%[0]) / 256) ‘address of Var SECTOR%[0]

CALL IA(INR$,DST%,NUM%, OFSHI%, OFSLO%, TRACKS, SECTORS, SIDES,DR%, 2%,2%, SEGS,2%)

RETURN ‘back to caller

L e 2]

‘* Format a Track *
" r * ¢
‘* Input : DR% = the number of the unit *
'x SIDE$ = the number of the disk side *
' FTYP$ = Type of Disk drive *
' AT$ = -1 if computer is an AT, otherwise 0 *e
'* OQutput: DST$ = the Diskette status *
‘* Info : 2% is a Dummy-Variable *
LR e X}

IF NOT (AT$) THEN 55150 ‘if not AT, then no format fitting

FKT$ = gH17 ‘Set Function number for DASD Type
INRS = &H13 ‘Call BIOS-Diskette-Interrupt 13 (h)
CALL IA(INRS,FKT$,FTYPS$,2%,2%,2%,2%,2%,DRS, 2%, 2%, 2%, 2%)

INPUT “Track : “,TRACKS
INPUT “Number Sectors: *,NUM$
IF NUM% > 15 THEN 55160
FOR I% = 0 TO NUM$-1

‘Number of Track to be formatted
‘Number of Sectors to be installed
‘maximum of 15 Sectors can be installed

‘one entry for every Sector

POKE VARPTR (FD$%[0])+I%*4, TRACKS ‘Enter number of Track
POKE VARPTR (FD%$[0])) +I%*4+1,SIDES ‘Enter number of side
POKE VARPTR(FD$([0]) +I%*4+2, I%+1 ‘Enter Sector number
POKE VARPTR (FD$%(0])+I%*4+3,2 ‘Format Sector with 512 Bytes
NEXT ‘Process Entry for next Sector
DST$ = 5 ‘Function number for Formatting
INR% = &H13 *Call BIOS-Diskette-Interrupt 13 (h)
OFSLO% = 0 : OFSHI% = 0 ‘initialize Variables
SEG$ = -1 'Use BASIC DS for ES
OFSLO% = VARPTR(FD%[0]) AND 255 'LO and HI-Byte of Offset
OFSHI% = INT(VARPTR(FD$([0]) / 256) ‘address of Var. FD%[0]
CALL IA(INR$,DST%,NUM$, OFSHI%,OFSLO%, TRACKS, 2%, SIDE$,DR%, 2%,2%,SEGS,2%)

RETURN ‘back to caller
. N

AR R R AR A AR R AR AR AR AR R A AR AN AR R R RN AR A AN AN A AR AR R AR RN AR AR RRRRARAA AR
‘* read a Sector and display
“x

‘* Input :

[R33

*

*

DR$% =
SIDE$ =

'

the Number of the drive to be accessed
the number of the Diskette side

'* Output: DST$ = the Diskette status

‘* Info : 2% is a Dummy-Variable

AR AR R AR AR R AR R R R R R R R AR AR A AR R AR AR R AR R R AR AR R R R AR R AR AR R A AR R AR Ak ko

*
*

'

INPUT “Track : “,TRACKS$ ‘Track in which the Sector is located
INPUT "“Sector: “,SECTOR% ‘the Sector to be filled
DST$ = 2 ‘Function number for reading

INRS$ = &H13 ‘Call BIOS-Diskette-Interrupt 13 (h)
NUM$ = 1 ‘Read a Sector
OFSLO% = 0 : OFSHI% = 0 ‘Create Variables
SEG% = -1 ‘Use BASIC DS for ES
OFSLO% = VARPTR (SECTOR%[0]) AND 255 ‘LO and HI-Byte of Offset
OFSHI% = INT(VARPTR(SECTOR%[0]) / 256) '‘addr of the Var SECTOR$ (0]

CALL IA(INR$,DST%,NUM$, OFSHI%, OFSLO%, TRACKS, SECTORS, SIDE%,DR%, 2%,2%, SEG%,2%)

IF DST$ <> O THEN RETURN
PRINT STRINGS (80,"-");

‘on error do not output data

FOR I% = 0 TO 511 ‘process all Bytes of the Sector read
2% = PEEK(VARPTR(SECTOR%([0]) + I%) ‘get a Byte from the Sector
IF 2% = 0 THEN PRINT "“<NUL>"; : GOTO 56350

IF 2% = 7 THEN PRINT "<BEL>"; : GOTO 56350

IF (2% = 8) OR (2% = 29) THEN PRINT “<BS>"; : GOTO 56350

IF 2% = 9 THEN PRINT "<TAB>“; : GOTO 56350

IF 2% = 10 THEN PRINT "<LF>*; : GOTO 56350

IF 2% = 11 THEN PRINT “<HOM>"; : GOTO 56350

IF 2% = 12 THEN PRINT “<FF>"; : GOTO 56350

IF 2% = 13 THEN PRINT "<CR>"; : GOTO 56350

IF 2% = 27 THEN PRINT "<ESC>"; : GOTO 56350

IF 2% = 30 THEN PRINT “<CUP>"; : GOTO 56350

Abacus

7.7 Accessing the Floppy Disk from the BIOS

56330 IF 2% = 31 THEN PRINT “<CDN>"; : GOTO 56350

56340 PRINT CHRS$(2%); ‘output Byte as ASCII character
56350 NEXT ‘output next Byte
56360 PRINT

56370 PRINT STRINGS (80, %-");

56380 RETURN ‘back to caller
56390 *

57000 AR AR AR R AR AR KRR AR KRR RRRRRR AR AR R R R AR R RRAA R R R RAAA AR R AR R R AR AR AKX
57010 ** Input Constants (Unit number, Diskette side, etc.) *
57020 ** *e
57030 '* Input : AT$ = -1 if computer is an AT, else 0 *!
57040 '* Output: DR% = Number of unit to be accessed *!
57050 '* SIDE% = Number of disk. side *
57060 '* FTYP$ = Type of Disk drive *e

57070 PR AR AR KR AR AR R RN KRR AR AR RN KRR R KRR RN AR R AR RN AR AR KRR RN kAR AR Rk hkkk ¢
57080
57090 INPUT “Unit-Number (0-3) : “,DR$

57100 INPUT "Diskette side (0 or 1): "“,SIDES

57110 IF NOT (AT%) THEN RETURN ‘Diskette format only for AT
57120 PRINT"Formatting Parameter:"

57130 PRINT* 1 = 320/360 KB diskette in 320/360 KB Drive"

57140 PRINT" 2 = 320/360 KB diskette in 1.2 MB Drive"

57150 INPUT" 3 = 1.2 MB diskette in 1.2 MB Drive -- Please input: “,FTYP%

57160 RETURN 'back to caller
57170

60000 AR AR R R R R AR AN AN AR R AR A AR R AR R AR AR KRR AN KRN AR A AR A RR AR R KRR AR AR R ARk Ah
60010 '* initialize the Routine for Interrupt call *
60020 ** *
60030 '* Input : none *
60040 ** Output: IA is the Start address of the Interrupt-Routine *

60050 " *Akkkhkk kAR KRR AR R R R KRR KRR KRR AR KR AR R AR KRR RN KRR KR AR R AR Rk A ARk k 0

60060 *

60070 IA=60000! ‘Start address of the Routine in the BASIC-Segment
60080 DEF SEG 'Set BASIC-Segment
60090 RESTORE 60130

60100 FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT 'Poke Routine
60110 RETURN '‘back to caller
60120
60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,239,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA ~ 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255 5

Structurally this program resembles the other BASIC programs which have been
presented. The main program with the input loop is in lines 300 to 540. Then
follow the individual commands of DISKMON which exist as subroutines between
lines 50000 and 57170. The subroutine for initializing the interrupt call starts at
line 60000 (the program uses this interrupt frequently).

The use of a BASIC variable as a buffer for the reading and writing of data is
somewhat complicated in this program. The program dimensions an integer array
with elements from 0 to 255. Since every element in this array requires 2 bytes
(for integer), the program allocates 512 bytes for a buffer. The problem arises from
the BASIC interpreter's garbage collection routine. When it removes data, which is
no longer needed, from the variable storage area, it also moves the data buffer. The

309

7. The BIOS PC System Programming

Pascal

310

address of this buffer which was supposed to be passed to BIOS is no longer valid.
Other data are now stored there.

During a write operation this wouldn't be very bad, since only false data would be
written to the disk. During a read operation this could lead to a crash of the BASIC
interpreter, since variable memory could be destroyed. To prevent this, establish
the address of the buffer variable immediately before the BIOS function call. Also,
make sure that the variables which accept this address are constantly available. For
this reason DISKMON initializes the two variables with 0 before storing the
buffer address in them. This offset address must receive the segment address of the
current BIOS function in the ES register. Since the BASIC data segment contains
the buffer address, the contents of the Data segment register DS must be passed to
ES. This is done by passing the value -1 for ES which causes the interrupt
function to copy the contents of the DS registers to ES.

listing: DISKMONP.PAS

(t*iii**tttti*iiit*ttt*iiiti*i*i*ii*ii****tt*t*ti**it*iiiiiiit*iii*iii)

{* DISKMONP *}
{* *}
{* Task : DISKMON is a small disk monitor based on *}
{* the functions of the BIOS diskette *}
{* interrupt 13(h) *}
(* *)
{* Author : MICHAEL TISCHER *}
{* developed on : 7/9/87 *}
{* last update : 5/19/89 *}

{tit**tﬁt**ﬁﬁ'i.ii*tﬁﬁ**i**ii‘tﬁia*ttti*t.tliitﬁ**tQﬁlk*tt‘ti.*ﬁi*iﬁtt)

program DISKMON;

Uses Crt, Dos; { adds Crt and Dos features

-~

type BufferTyp = array [l1..1] of char;

FormatTyp = record { BIOS requires this information for }
Track, { every sector of }
Side, { a track to be formatted }
Sector,
Length : byte;
end;
var ErrCode : byte; { Error status after diskette operation }
Command : string[l]; { Command input by the user }
FTyp, { Diskette type for formatting function }
DriveNum, { Number of current drive }
side : integer; { Number of the current diskette side }
Dummy : integer; { Dummy variable }
AT : boolean; { is the computer an AT? }
{tittttittititttii**t*ﬁ*iii'ki*t*t***tti*tttitiﬁiﬁ**t'titttﬁt*t*'ii*t*#}
{* RESETDISK: Reset for all attached disk drives *}
{* Input : none *}
{* Output : error status *}

[RR AR AR AR AR AR AR KRR AR KRR RR AR KRR RRRR AR RRRR AR AR AR R AR AR AR R AR)

function ResetDisk : integer;

var Regs : Registers; { Register variable for interrupt call }
begin
Regs.ah := 0; { Function number for reset is 0 }

Abacus 7.7 Accessing the Floppy Disk from the BIOS

intr($13, Regs); { Call BIOS disk interrupt }
ResetDisk := Regs.ah; { Read error status }
end;

‘ﬁtit'tiittttnni'ttttitil'ttiﬁitttt*ttttnit*tlt*t*tiﬁiﬁiﬁ*'**tt*ﬁtt:*t’
{* GETDISKSTATUS: reads the error status *}
{* Input : none *}
{* Output : the error status *}

[FRr IR IR R A AR R AR AR R AR AR IR AR AR IR AR AR R AR R KR IR RRA KRR AR A KRR AR R AR IR AN K)

function GetDiskStatus : integer;

var Regs : Registers; { Register variable for interrupt call }
begin

Regs.ah := 1; { Function number for error status is 1 }
intr($13, Regs); { Call BIOS disk interrupt }
GetDiskStatus := Regs.ah; { Read error status }
end;
(ﬁkiﬁ'tatittttttttitlk*ﬁ'thititﬁttﬁtﬁittﬁkittittttt#tiiﬁtttit*ittthiiﬁ)
{* READSECTORS: read a certain number of sectors *}
{* Input : see below *}
{* Output : error status *}

(KRR AR KK AR KRR AR KK KRR AR KR AR KRR AR R KRR K KRR R AR ARK KR AR AR AR KA RRRKRARRR R}

function ReadSectors (DriveNum, { Disk drive for reading |
Side, { Side or read/write head number }
Track, { track to be read |}
Sector, { The first sector to be read }
Number, { Number of sectors to be read }
SegAdr, { Segment address of the buffer }
OfsAdr : integer; { Offset address of the buffer }

var NumRead : integer) : integer;

var Regs : Registers; { Register variable for interrupt call }
begin

Regs.ah := 2; { Function number for reading is 2 }
Regs.al := Number; { Set number of sectors for reading }
Regs.dh := Side; { Set side number }
Regs.dl := DriveNum; { Set drive number }
Regs.ch := Track; { Set track number }
Regs.cl := Sector; { Set sector number }
Regs.es := SegAdr; { Set buffer address }
Regs.bx := OfsAdr;

intr($13, Regs); { Call BIOS disk interrupt }
NumRead := Regs.al; { Number of sectors read }
ReadSectors := Regs.ah; { Read error status }
end;

(atﬂntaﬁaﬂttn*t*ﬂ*«#atattt#t*tﬁtt*t*t«h«n«nkatu*#tﬁtttﬂ**«t'ttat*t*ﬁtt)

{* WRITESECTORS: Write a certain number of sectors *}
{* Input : see below *}
{* Output : error status *}

(«wtw'uﬁttt"'tttttttwnun*tt«x.ta»ttttntnt-w'aa«attttttttttw*attntt«':)

function WriteSectors (DriveNum, { Disk drive }
Side, { Side or read/write head }

Track, { Track to be written }

Sector, { First sector to be written }

Number, { Number of sectors to be written |}

SegAdr, { Segment address of the buffer }

}

OfsAdr : integer;{ Offset address of the buffer
var NumWritten : integer) : integer;

var Regs : Registers; { Register variable for interrupt call }
begin
Regs.ah := 3; { Function number for writing is 3 }

311

http:Regist.er

7. The BIOS PC System Programming

Regs.al := Number; { Set number of sectors to be read }

Regs.dh := Side; { Set side number }

Regs.dl := DriveNum; { Set drive number }

Regs.ch := Track; { Set track number }

Regs.cl := Sector; { Set sector number }

Regs.es := SegAdr; { Set buffer address })
Regs.bx := OfsAdr; ¢
intr($13, Regs); { Call BIOS disk interrupt }

NumWritten := Regs.al; { Number of sectors written }
WriteSectors := Regs.ah; { Read error status }

end; \

(IR A AR KRR IR KA AR R KRR IR R AR R AR AR AR AR AR KRR AR R KR KRR AR AR ARk kA kk]

{* SETDASD: must be called for an AT before formatting to indicate *}

{* if it should be formatted with 360 KB *}
{* or with 1.2 MB *}
{* Input : see below *}
{* Output : none . *}

(R AR RRRA AR R IRRR I KRR IRR A KA ARRR AR AR AR AR R KKK KRR AR KRR KRR AR AR AR AR R AR A AN

procedure SetDasd (DiskFormat : integer);

var Regs : Registers; { Register variable for interrupt call }

begin

Regs.ah := $17; { Function number }

Regs.al := DiskFormat; {* Format }
~ Regs.dl := DriveNum; { Drive number }
b intr($13, Regs); { Call BIOS disk interrupt }

end;

R R R R K AR R R KRR KR KRR K KRR KRR R R KRR R KRR K KA KRR KRR KRR KRR KRR KR KRR KRR XK]

{* FORMATTRACK: formats a track *}
{* Input : see below *}
{* Output : the error status *}

(AR AR R KR AR KRR KRR KRR AR A KRR KA AR R AR AR A KR KKK KR KRR KRR KRR RKRAKR KR RRARKA AN)

function FormatTrack (DriveNum, { Number of the disk drive }
Side, { the side or head number }
Track, { Track to be formatted }
Number, { Number of sectors in this track }
Bytes : integer) : integer;
var Regs : Registers; { Register variable for interrupt call }
DataField : array [1..15] of FormatTyp; { maximum 15 sectors }
LoopCnt : integer; { Loop counter }
begin
for LoopCnt := 1 to Number do { Create sector descriptor }
begin
DataField[LoopCnt].Track := Track; { Number of the track }
DataField(loopCnt].Side := Side; { Diskette side }
DataField[LoopCnt].Sector := LoopCnt; { Number of the sector }
DataField[LoopCnt].Length := Bytes;{ Number of bytes in the sector }
end;
Regs.ah := 5;
Regs.al := Number; { Function number, Number }
Regs.es := seg(DataField(1l]); { Address of the data field in }
Regs.bx := ofs(DataField[1]); { registers ES and BX }
Regs.dh := Side; { Side number }
Regs.dl := DriveNum; { Drive unit }
Regs.ch := Track; { Set track number }
intr($13, Regs); { Call BIOS disk interrupt }
FormatTrack := Regs.ah; { Read error status }
end;
(kltQ!lllkkitkitltk'lll*llltktﬁtiﬂt'k!i'l'tttt"tﬂlﬁl"*ttt'tttt!tﬂu'l)
{* WRITEERROR: Output error message according to error value *}
{* Input : the error number 9 *}
{* Output : none *}

312

7.7 Accessing the Floppy Disk from the BIOS

(AR ERRRR R KRR R IR R AR AR RRR A IR AR AR IR KRR A AR AR AR KRAR KRR RAR AR RRARA AR AR K |

procedure WriteError (ErrorNumber : integer);

begin
case ErrorNumber of
$00 : ; { 0 means no error }
$01 : writeln('ERROR: Invalid function number®‘);
$02 : writeln('ERROR: Address marking not found');
$03 : writeln('ERROR: Write attempt on protected disk');
$04 : writeln(*ERROR: Sector not found');
$06 : writeln('ERROR: Diskette changed');
$08 : writeln('ERROR: DMA overrun');
$09 : writeln('ERROR: Data transmission beyond segment border');
$10 : writeln('ERROR: Read error');
$20 : writeln('ERROR: Disk controller error');
$40 : writeln('ERROR: Track not found');
$80 : writeln('ERROR: Time out error');
else writeln('ERROR: Error ‘',ErrorNumber,‘' unknown');
end;
if (ErrorNumber <> 0) then ErrorNumber:=ResetDisk; { Reset performed }
end;

[rrRRRRRR KRR R R KRR KRR RRARARRAR AR AR AR AR KRR AR AR AR A RR KRR RN KRR RN R AR AR AR AR AR AN)

{* CONSTANTS: Input of the two constants and *}
{* diskette side or head number, as well as diskette *})
{* type for AT *}
{* Input : none *)

{* Output : none *}
‘***iﬂ‘**i*‘*ii*ﬁ'*ﬁii**ﬂ**tﬁ'***tttﬂi‘*ﬁﬂ‘*tﬂ*ﬁ*tiﬁ**tﬁttiiﬁ*i*i**ﬁ*i}

procedure Constants;

begin
write ('Unit-Number (0-3) :
readln (DriveNum);
write('Diskette side (0 or 1):
readln(side);
if AT then
begin
writeln('Format-Parameter:');

{ Read unit number }

'):
{ Read head number }
{ only for AT }

writeln(* 1 = 320/360-KB-Diskette in 320/360-KB drive');
writeln(* 2 = 320/360-KB-Diskette in 1.2-MB drive');
write(' 3 = 1.2-MB-Diskette in 1.2-MB-drive -- Please input: '),
readln (FTyp)
end;

end;

(itttt*tﬁk'ttﬁtﬁ**tﬁ'*tﬁtﬁi*tk'*ﬁtttttﬁtttttﬁt*t*ﬁtﬁttttt**ﬁ'ki*tﬁi*ﬁ*]
{* HELP: Display help text on the screen
{* Input : none
{* Output : none
(uﬁ*ttttti**ttiﬂ*ﬁtﬁtﬁtitttta*ﬁﬁﬁﬂ*itttt*ttﬂtﬂt*tﬂ*tﬁ***ttt**t*i**t*i*)

procedure Help;

begin

writeln(#13410'COMMAND OVERVIERW);
writeln (* ‘):
writeln('e = End');

writeln('g = Get (Read)');

writeln('s = Sector fill');

writeln('r = Reset');

writeln('f = Format');

writeln(‘c
writeln(*'?
end;

Constants');
Help'#13#10);

{**itti**ﬁﬁt*ﬁtﬁﬁ'ﬁﬁttttttt*tk'ﬁ'ittt'ttﬁi**iﬂﬁ**tiifitit*'iﬁ’ii*iﬁ*'ﬂ)
{* READSEC: Read a diskette sector and display it on the screen *}

313

http:Help'.13.10

7. The BIOS PC System Programming

{* Input : none *}
{* Output : none *}
(ﬁ*'****ﬂ********ﬁ******ﬂ*ﬁ**********ﬁ*ﬁ*ﬁ***********ﬁ***ﬁ***ﬁ*ﬁ**ﬁ***)

procedure READSEC;

var DataBuffer : array [1..512] of char; { the characters read }
Track, { the track from which to read }
Sector : integer; { Sector to be read }

begin

write (*Track : '});

readln (Track}; { Read track from keyboard }

write('Sector: ');

readln (Sector); { Read sector from the keyboard }

ErrCode := ReadSectors (DriveNum, Side, Track, Sector, 1,
seg(DataBuffer), ofs(DataBuffer), Dummy);

if (ErrCode = 0} then { Error occurred during reading? }
begin
write (' '+
! 'y:
for Dummy:=<1 to 512 do { output the 512 characters }
begin
case DataBuffer [Dummy] of
#00 : write('<NUL>'); { treat control characters separately }
#07 : write('<BEL>'});

: write('<BS>');

: write('<TAB>');
#10 : write('<LP>");

: write('<CR>');

#27 write ('<ESC>');
else write(DataBuffer [Dummy]); { output normal character }
end;
end;
write (#13410° '+
' '):
end
else WriteError(ErrCode); { output error message }

end;

[rr R R R IR KRR IR R KRR KK R KRR AR R AR AR KRR KKK N RK AR AR AR A KRNI R KRR AR R AR ARk)

{* FORMATIT: format a certain number of sectors of a *}
{* track with 512 bytes each *}
{* Input : none *}
{* Output : none *}

(R R R KR AR AR KR AR R IR AR AR A KR AR KRR KRR R AR AR AR R KA KR AKN KR KRR AR AR KR KRR A K}

procedure FormatIt;

var Track, { Track to be formatted }
Sector : integer; { Number of sectors }
begin
write('Track : ');
readln(Track); { Read number of tracks from keyboard }
write('Sector: ‘');
readln (Sector); { Read number of sectors from the keyboard }
if AT then SetDasd(FTyp); { 1f AT then diskette type }
WriteError (FormatTrack (DriveNum, Side, Track, Sector, 2));
end;

[RR KRR KRR KRR AR KRR KA IR R AR R AR KR KKK KA AR AR KN A XA R RIR AKX AR KRR AR A AL}

{* FILLSECTOR: Fill a sector with a character *}
{* Input : none *}
{* Output : none *}

(AR IR R A KRR KRR IR AR KRR AR KKK KRR AR R KRR KRR R RKRIRA KA IRKRA KRR AR AR KR KK |

procedure FillSector;

var DataBuffer : array [1..512] of char; { Content of sector to fill }

314

Abacus

7.7 Accessing the Floppy Disk from the BIOS

LoopCnt, { Loop counter }
Track, { Track in which the sector is located }
Sector : integer; { Number of sector to be filled }
FillChar : char; { the fill character }
begin
write('Track HERS ¥

readln(Track);
write ('Sector :
readln (Sector);
write('Character:
readln(FillChar);

-

{ Read track from keyboard

{ Read sector from keyboard

’

{ Read the fill character from the keyboard

for LoopCnt := 1 to 512 do

DataBuffer[LoopCnt]

:= FillChar; { Fill buffer with characters

WriteError (WriteSectors (DriveNum, Side, Track, Sector, 1,

end;

seg (DataBuffer), ofs({DataBuffer), Dummy)};

(RS ALEEAS IS SRS SR ER ISRt SRt s i sttt il i sttt it ti bttt bbb

{**

*x}

MAIN PROGRAM

[RA IR AR AR R R AR AR A KRR A AR R IR A K AR KRR AR R AR R AR KR AR RN ARR R AR A IR AR KRNI AR AR A K |

begin

clrscr;
textbackground (7);
textcolor(0);
writeln(' DISKMON:

1f mem($FO00:SFFFE] = $FC then AT

{ Clear screen

{ light background
{ dark characters
{ Headline

(c) 1987 by Michael Tischer 4

{ test if AT or

:= true
= { PC or XT

else AT := false;

? = Help *});
textbackground(0) ; { dark background }
textcolor(7); { light text }
window (1, 2, B8O, 25); { only first line does not belong to window }
DriveNum := 0; { Indicate unit 0 as constant }
Side := 0; { Side 0 as constant }
FTyp := 3; { 1.2 MB diskette in 1.2 MB unit }
}
}
}

WriteError (ResetDisk);

repeat
repeat

write ('DISKMON>');

readln (Command) ;

{ perform Reset

{ output prompt
{ Read command from keyboard

until (Command <> '‘);
case (Command (1]) of

'*2* : Help;

iyt

's* : FillSector;
‘f* : FormatlIt;
'g' : READSEC;
‘c': Constants;
else

end;

until (Command = ‘e');

end.

: WriteError(ResetDisk);

{? display help text
{r perform reset

{s fill a sector

{f format a track

{g read a sector

{c input constants

—— e e e

if Command <> 'e' then writeln({'unknown command‘');

{e end program

The DISKMON in Pascal and the following version in C strongly resemble each
other. Both have the input loop inside the main program and the individual
commands placed in procedures or functions outside the main program. Unlike the
BASIC version of DISKMON, a difference exists between the DISKMON
commands and the BIOS function call. They are stored in separate program
sections. This has the advantage that the BIOS function calls can be easily
transferred as stand alone modules to other programs.

Problems with addressing the data buffer don't exist in C or in Pascal as they do in
BASIC. The buffer is a local variable.

315

7. The BIOS PC System Programming

There are two small differences between the C and Pascal versions. They are in the
screen display and the administration of constants for unit number, disk side, etc.
While the Pascal version defines these as global variables, the C version defines
them as local variables within the main() program area.

C doesn't allow easy window definition for performing tasks. This is why the C
version of DISKMON doesn't use the first screen line as a status line to output a
copyright notice and cali the Help command.

C listing: DISKMONC.C

316

/***i'i***i****ii**ti'**'*t!i***t*****i**i*******ﬁ!*'*i**fﬁtii*iii*****/

/* DISKMONC */
/* */
/* Task : DISKMON is a short disk monitor program, */
/* using BIOS interrupt 13(h) functions */
/* */
/* Author : MICHAEL TISCHER */
/* Developed on : 08/15/1987 */
/* last update : 06/08/1989 */
/* */
/* (MICROSOFT C) */
/* Creation : CL /AS DISKMONC.C */
/* Call : DISKMONC */
/* */
/* (BORLAND TURBO C) */
/* Creation : Make sure Case-sensitive link is OFF before */
/* compiling & linking */
/* Select Compile/Make or RUN (no project file)' */

[AR AR RN AR AR AR AR AR AR KRR AR KR AR AR AR R AR AR AR AR KRR AR A AR AN/

/*== Add include files */

#include <dos.h>
#include <stdio.h>
#include <ctype.h>

/*== Typedefs */
typedef unsigned char byte; /* Create a byte */
/*== Constants */
#define FALSE 0 /* Constants to make reading the */
#define TRUE 1 /* source code easier */
#define NUL 0 /* null character */
#define BEL 7 /* bell character code */
#define BS 8 /* backspace character code */
#define TAB 9 /* tab character code */
#define LF 10 /* linefeed character code */
#define CR 13 /* Return key code */
#define EF 26 /* End of file code */
#define ESC 27 /* Escape code */
/*== Macros */
#ifndef MK FP /* MK_FP still undefined? */

#define MK:E‘P (s,0) ((void far *) (((unsigned long) (s) << 16) | (o)))
#define peekb(a,b) (*((byte far *) MK FP((a), (b))))
#endif

/*-- The following macros state the offset and segment addresses of —--*/
/*-- any pointer */

Abacus 7.7 Accessing the Floppy Disk from the BIOS

#define GETSEG(p) ((unsigned) (((unsigned long) ((void far *) p)) >> 16))
#define GETOFS(p) ((unsigned) ((void far *) p))

/* -- Function declarations */

byte DRead(byte, byte, byte, byte, byte, byte far *);
byte DWrite(byte, byte, byte, byte, byte, byte far *);

/*== Structures */
struct FormatDes |{ /* Describes format of a sector */
byte Track,
Side,
Sector, /* logical sector number */
Length;

b

SRR AR AR AR R AR KR AR K KRR K AR KK AR KK AR KRN R KRR AR AR R KR AR KR RR KR AR KRR KRN/

/* RESETDISK: Reset all drives connected to system */
/* Input : none */
/* Output : error status */

JEERE R KKK KK KRR AR KRR R R AR R kAR R AR AR AR AR AR KKK KK RRR KRR R KRR AR KRR KRR Rk Rk kA% /

byte ResetDisk (}

{

union REGS Register; /* Register variable for interrupt call */
Register.h.ah = 0; /* Function number for reset = 0 */
Register.h.dl = 0; /* Reset disk drives */
int86(0x13, &Register, &Register); /* Call BIOS disk interrupt */
/* printf("Result: %d\n", Register.h.ah); */

return(Register.h.ah); /* Return error status */

}

JERERKRKR KKK KKK KKK R KKK KRR KK AR R AR KRR AR AR AR KRR KRR KRR AR AR AR R KR AR KR KAk hkk /

/* WDS: Display status of the last disk operation */
/* Input : see below */
/* Output : TRUE if no error, otherwise FALSE */

SRR R kK KRR A AN KRR AR RN KN R AR KR AR AR KR KRR R KR RRRRR KRR RRR AR AN XK R Ak /

zyte WDS (Status)
yte Status; /* Disk status */

{

if (status) /* Error occurred? */
{ /* YES */
printf ("ERROR: *);
switch (Status) /* Display error msg */
{
case 0x01 : printf(“Function number not permitted\n");
break;
case 0x02 : printf(“Address marking not found\n");
break;
case 0x03 : printf("Disk is write-protected\n*);
break;
case 0x04 : printf(“Sector not found\n*);
break;
case 0x06 : printf(“Disk changed\n");
break;
case 0x08 : printf (“DMA overflow\n");
break;
case 0x09 : printf(“Data transfer past segment limit\n");
break;
case 0x10 : printf(“Read error\n");
break;
case 0x20 : printf({“Disk controller error\n%);
break;
case 0x40 : printf("Track not found\n");
break;

317

http:return(Register.h.ah
http:Register.h.ah
http:Register.h.dl
http:Register.h.ah

7. The BIOS PC System Programming

case 0x80 : printf(*Time Out error\n");
break;
case Oxff : printf(*Illegal parameter\n");
break;
default : printf(“Error %d unknown\n", Status);
}
ResetDisk (); /* Execute reset on error */
}
return(!Status);
}

/****tt*******t*tt*titi**i****itttttti*tt***i******ttttt***ttti*******i/

/* DREAD: Read specified sector from disk */
/* Input : see below */
/* Output : error status */

/***ti****ii*****i*i*tt**ti***tttt***i*t****t***t*********it****tttt**t/

byte DRead (Drive, Side, Track, Sector, Number, Buffer)

byte Drive, /* Drive number */
Side, /* Disk side or read-write head number */
Track, /* Track number */
Sector, /* First sector to be read */
Number, /* Number of sectors to be written */
far * Buffer; /* FAR pointer to a byte vector */
{
union REGS Register; /* Register variable for interrupt call */
struct SREGS SRegs; /* Variables for segment register */
Register.h.ah = 2; /* Function no. for read is 2 */
Register.h.al = Number; /* Number in AL register */
Register.h.dh = Side; /* side in DH register */
Register.h.dl = Drive; /* Drive number in DL */
Register.h.ch = Track; /* Track in CH register */
Register.h.cl = Sector; /* Sector in CL register */
Register.x.bx = GETOFS (Buffer); /* Offset address of buffer */
SRegs.es = GETSEG(Buffer); /* Segment address of buffer */
int86x (0x13, &Register, &Register, &SRegs);
return (Register.h.ah); /* Return error status */

}

/**tii*i****i*****i****i***ﬁtii******t******t*****ittttt**tt*i*ittt*tti/

/* DWRITE: Write to the specified number of sectors */
/* Input : see below */
/* Output : error status */

/***ti*****ti****t*i*****i***t***t***ttit****i****t*itt**ttt***tttttt*t/

byte DWrite(Drive, Side, Track, Sector, Number, Buffer)

byte Drive, /* Number of drive to be accessed */
Side, /* Disk side or number of read-write head */
Track, /* Track number */
Sector, /* First sector to be written */
Number, /* Number of sectors */
far * Buffer; /* FAR pointer to a byte vector */

{
union REGS Register; /* Register variable for interrupt call */
struct SREGS SRegs; /* Segment register variables */
Register.h.ah = 3; /* Function no. for write is 3 */
Register.h.al = Number; /* Number in AL register */
Register.h.dh = Side; /* Side in DH register */
Register.h.dl = Drive; /* Drive number in DL */
Register.h.ch = Track; /* Track in CH register */
Register.h.cl = Sector; /* Sector in CL register */
Register.x.bx = GETOFS(Buffer); /* Offset address of buffer */
SRegs.es = GETSEG(Buffer); /* Segment address of buffer */
int86x (0x13, &Register, &Register, &SRegs); /* BIOS disk int. call */
return (Register.h.ah); /* Return error status */

318

http:return(Register.h.ah
http:SRegs.es
http:Register.x.bx
http:Register.h.cl
http:Register.h.ch
http:Register.h.dl
http:Register.h.dh
http:Register.h.al
http:Register.h.ah
http:return(Register.h.ah
http:SRegs.es
http:Register.x.bx
http:Register.h.cl
http:Register.h.ch
http:Register.h.dl
http:Register.h.dh
http:Register.h.al
http:Register.h.ah

Abacus 7.7 Accessing the Floppy Disk from the BIOS

/ttnn«t«ttnttat«tnttt«tarat«ttaanctaaattt«tntattrtttttaatttata*«tnt«tat/

/* FORMAT: format a track */
/* Input : see below */
/* Output : error status */
/* Info : BYTES parameter gives the number of bytes in the for- */
/* matted sector. The following codes are allowed: */
/* 0 = 128 bytes, 1 = 256 bytes */
/* 2 = 512 bytes, 3 = 1024 bytes */

/a«tttqtaatattﬂt«tat«t«tﬂtt*ﬁtitatatatnt«ttﬂa*wttqtat«ﬂ«**ttatatatﬂtaat/

byte Format (Drive, Side, Track, Number, Bytes)

byte Drive,
Side, /* Side/head number */
Track, /* Track to be formatted */
Nurber, /* Number of sectors in this track */
Bytes; /* Number of bytes per sector */
{
union REGS Register; /* Register variable for interrupt call */
struct SREGS SRegs; /* Segment register variables */
struct FormatDes Formate([15]; /* Maximum of 15 sectors */
byte 1i; /* Loop counter */
if (Number <= 15) /* Is number o.k.? */
{
for (1 = 0; 1 < Number; i++) /* Set sector descriptor */
{
Formate(i].Track = Track; /* Track number */
Formate[i].Side = side; /* Disk side */
Formate[i].Sector = i+1; /* Sector increments by 1 */
Formate[i).length = Bytes; /* Number of bytes in sector */
]
Register.h.ah = 5; /* Function number for formatting */
Register.h.al = Number; /* Number in AL */
Register.h.dh = Side; /* Side number in DH */
Register.h.dl = Drive; /* Drive in DL */
Register.h.ch = Track; /* Track number in CH */
Register.x.bx = GETOFS (Formate); /* Offset addr. of table */
SRegs.es=GETSEG (Formate); /* Segment address of buffer */
int86x (0x13, &Register, &Register, &SRegs); /* Call BIOS disk intr.*/
return(Register.h.ah); /* Return error status */
}
else return(OxFF); /* Illegal parameters */

}

SRR AR AR AR KRR KRR KRR R KA R RN KRR KRR AR RN R K AR AR A AR RN RANKR KRR R KR KR AN AN A AN/

/* CONSTANTS : Change drive number, disk side and disk type */
/* (PC/XT or AT) */
/* Input : see below */
/* Output : none */

JRERER KKK AR IR KRR KRR KRR R RN R AR AN RN A RNANRNA KRR KRR AR AR AR AR AN KK R KRR R AN R AR N [

void Constants(Drive, Side, FTyp, AT)

byte *Drive, /* Pointer to drive variable */
Side, / Pointer to side variable */
FTyp, /* Disk drive type */
AT; /* TRUE if computer is an AT */

printf ("Drive number (0-3}: "};

scanf ("%d*, &Drive); /* Read drive number */
printf("Disk side (0 or 1): ");

scanf (“&%d", &Side); /* Read head number */
if (AT) /* Used only by ATs */

{

printf (“Format parameter:\n");

printf(* 1 = 320/360K diskette in 320/360K drive\n");

printf("* 2 = 320/360K diskette in 1.2MB drive\n");

printf(* 3 = 1.2MB diskette in 1.2MB drive - please enter choice:

") ;

319

http:return(Register.h.ah
http:Register.x.bx
http:Register.h.ch
http:Register.h.dl
http:Register.h.dh
http:Register.h.al
http:Register.h.ah

7. The BIOS PC System Programming

scanf (“%d", &FTyp);
}
} N

/ttttttatta*Q***aa*«ttﬁtt*att*a*atﬁata**tttta**tttttt****a*a*tttt****a*/

/* HELP: Display help screen */
/* Input : none */
/* Output : none */

SRR R kAR AR R AR AR AR AR AR R R A AR KRR R AR KRR R KRR KRR KK R RR AR KA AN K AR KR AR N/

void Help{)

{
printf (“\nDISKMON (c) 1987 by Michael Tischer\n\n");
printf("C OMMAND OV Es“RVIEWDN);
printf(* \n");
printf(“[(E/e] = End\n");
printf("{G/g) Get (read)\n");
printf("[S/s] Fill a sector\n");
printf (“[R/r] = Reset\n");
printf (" (F/f] = Format\n");
printf(*[C/c] = Constants\n");
printf(*[?] = Help\n\n");

}

SRR kAR Ak R kR Rk R R AR R R AR KRR R KR AR KRR R KRR R ARR KR AR KRR KA AR R AR K AN R AR R AN K /)

/* GET : Read a disk sector and display it on the screen */
/* Input : none */
/* Output : none */

SRRk kR kKRR AR AR AR KRR R AR KRR K KRR R AR R KRR AR KR KR KRR R KRR AR AR ARRA KKK KRR RN A Ak /

void ReadSector (Drive, Side)

byte Drive; /* Drive number */
byte Side; /* Disk side number */
{ .
byte Buffer([512]; /* Contents of filled sector */
int i, - /* Loop counter */
Track, /* Track in which filled sector lies */
Sector; /* Number of sector to be filled */

printf(“Track : “);

scanf (“%d", &Track); /* Read track number from keyboard */
printf (“Sector: *);
scanf (“%d", &Sector); /* Read sector number */

if (WDS(DRead(Drive, Side, Track, Sector, 1, Buffer}))
{

printf(* "):

printf (" "),

for (1 = 0; 1 < 512; i++) /* Display characters read from disk */
switch (Buffer(i]) /* ASCII code conversion */

{
case NUL : printf(“<NUL>");

break;

case BEL : printf (“<BEL>");
break;

case BS : printf("<BS>");
break;

case TAB : printf (“<TAB>");
break;

case LF : printf (“<LF>");
break;

case CR : printf(“<CR>");
break;

case ESC : printf (“<ESC>*");
break;

case EF : printf (“<EOF>");
break;

default : printf(“%c", Buffer[i));
}

320

Abacus

7.7 Accessing the Floppy Disk from the BIOS

printf (“\n “);
printf(* \n");
}
}

SR AR KRR KA A K AR RR N AR A RN KRN NR AR AR R R RRN NN AR AN AR RNN AR AN KRR AR IR AR AN R AR/

/* FORMAT: Format a specified number of sectors in a track with */

/* 512 bytes */
/* Input : none */
/* Output : none */

/*i AR KRR R AR AR AR R AR R AN AR AN AR AR R AR AR RN AN A ARk tti*iti*ii*i**ﬂ***t*tﬁ/

void FormatIt (Drive, Side, AT, FTyp)

byte Drive, /* Drive number */
Side, /* Disk side number */
AT, /* TRUE if computer is an AT */
FTyp; /* Disk drive type */
{
int Track, /* Track to be formatted */
Number; /* Number of sectors to be formatted */
printf (“Track HEA
scanf ("$d*, &Track); /* Read track number from keyboard */
printf("No. of sectors : “);
scanf (“%d", &Number); /* Read number of sectors */
if (AT) /* Is computer an AT? */
{
union REGS Register; /* Register variable for interrupt call */
Register.h.ah = 0x17; /* Function no. for set DASD-Type */

Register.h.al = FTyp;
Register.h.dl = Drive;
int86 (0x13, &Register, &Register); /* Call BIOS disk interrupt */
}
WDS (Format (Drive, Side, Track, Number, 2, AT, FTyp));
}

JERRK AR AR KRR KKK KRR KA R KA KRR KR KRR AR KRR AR AR KRR RN AN KR ARK AR R AR KRR AR K KA AKX/

/* FILL : Fill a sector with a character */
/* Input : see below */
/* Output : none */

SRR K A K KA KK AR KKK AR AR KA KA NN A AN A AN KA N K AN KRR AR A AKX KRN AR A AN N KKK KR/

void Fi11It(Drive, Side)

byte Drive; /* Drive number */

byte Side; /* Disk side number */

{

byte Buffer[512]; /* Contents of sector to be filled */

int i, /* Loop counter */
Track, /* Track in which the sector lies */
Sector; /* Number of sector to be filled */

char Character; /* Fill character */

printf ("Track T

scanf (“%d", &Track); /* Read track number from keyboard */

printf (“Sector HE I

scanf ("%d", &Sector); /* Read sector number from keyboard */

printf("“Fill char. : “);

scanf ("\r%c", &Character); /* Read fill character from keyboard */

for (i = 0; 1 < 512; Buffer[i++] = Character)

WDS (DWrite(Drive, Side, Track, Sector, 1, (byte far *) Buffer));
}

SR FEHK KA E IR KRR KK AN KA AR I AN KN AR A AN R KA NN K AN KK AN R AN KA AN K KN KA A AN KA R A RN R kK k /

/** MAIN PROGRAM **/

SEE R KKKk AR KRR KA AR A A KA R AR AR AR A A AN KN AN ANANNKN KRR KRR R KRR NN KAk k Rk kk [

321

http:Register.h.dl
http:Register.h.al
http:Register.h.ah

7. The BIOS

PC System Programming

322

void main()

{

int Drive, /* Drive

Side, /* Disk side

FTyp; /* Disk and disk drive format
byte AT; /* Computer type (AT or PC/XT)
char Entry; /* Accept user input
Drive = Side = 0; /* Default of drive 0, side 0
FTyp = 3; /* 1.2-MB diskette in 1.2-MB disk drive

/*-- Read PC type from location in ROM-BIOS

AT = (((byte) peekb(0xF000, OXFFFE)) == OXFC) ? TRUE : FALSE;
printf (*\n\nDISKMON (c) 1987 By Michael Tischer\n\n");

WDS (ResetDisk()); /* Execute reset first
do
{
printf (%2 = Help> *“); /* Display prompt
scanf (*\r $lc“, &Entry); /* Get user input
switch (Entry = toupper (Entry)) ' /* Execute command
{
case '?' : Help(); /* Display help screen
break;
case 'R' : WDS(ResetDisk()}; /* Execute reset
break;
case 'S*' : FillIt (Drive, Side); /* Fill a sector
break;
case 'F' : FormatIt (Drive, Side, AT, FTyp);
break;
case 'G' : ReadSector(Drive, Side); /* Read sectors
break;
case 'C' : Constants(&Drive, &Side, &FTyp, AT);
break;

default : if (Entry != 'E') printf(“Unknown command\n®);
}
}
while (Entry != ‘E‘'); /* “E% or “e" ends program
}

*/
*/
*/
*/
*/

*/
*/

*/

*/

*/
*/
*/
*/

*/

Abacus

7.8 Accessing the Hard Disk from the BIOS

7.8

Accessing the Hard Disk from the BIOS

The original XT models included 10 megabyte hard disks. Hard disk drives are now
the mass storage device of choice on PCs, with the floppy disk running a close
second. However, the two devices have many features in common.

Like the floppy disk, a hard disk consists of magnetized plates, also called disks,
which can store data as magnetic impulses. Unlike the floppy disk, a hard disk
contains several of these disks. The plates in a hard disk can store data on both
sides, and therefore must have a read/write head above and below each disk for
reading and writing data.

Hard disk format

Hard disk formatting is similar to that of a floppy disk: Each disk is divided into
tracks which have sectors within them. A cylinder consists of all sectors which can
be accessed without moving the read/write heads. In other words, the heads remain
stationary within one cylinder while the disk moves beneath them. Moving the
heads to another set of tracks accesses another cylinder. Every cylinder contains the
same number of sectors, which in turn contain a constant number of bytes.

Partitions

The hard disk has another division beyond track, sector and cylinder levels:
Partitions allow you to configure parts of a hard disk for different operating
systems. Although you can format a disk according to one operating system and
use that operating system exclusively, hard disks allow you to store several
operating systems at once. You can allocate the number of cylinders needed for
each operating system when formatting a hard disk. The first sector of the hard disk
contains the information about this memory allocation. This information includes
data about the beginning of each partition and its size, as well as which operating
system lies in this partition (e.g., DOS has code 1). It also records which
operating system is active and which operating system should be started during the
system boot.

XT and AT models can control hard disks capable of storing 10 megabytes, 20
megabytes, 40 megabytes and more. Both hard disks have 2 disks (4 sides)
(numbered 0 through 3) and accept 17 sectors per cylinder of 512 bytes each. The
difference in capacity lies only in the number of cylinders. The XT hard disk has
306 cylinders numbered from 0 to 305 on each side of its disk medium; the AT has
615 cylinders numbered from 0 to 614 on each side of its disk medium. The XT
hard disk has a minimum capacity of 10.16 megabytes and the AT hard disk a
minimum capacity of 20.41 megabyte.

Note: Exercise extreme caution when using the BIOS hard disk access
functions. Unlike a disk drive which you can test out with an unused
disk, you can't do the same with a hard disk. Careless use of the
Write or Formatting function could lead to irretrievable data loss. If

323

7. The BIOS PC System Programming

you plan to try these functions, back up the entire hard disk before
you try these functions.

BIOS accesses the hard disk through interrupt 13H—the same interrupt used for
floppy disk access. The individual functions are identical for hard disk and floppy
disk drives, but hard disk control is very different from floppy disk drive control.
BIOS uses different modules for controlling the hard disk and disk drives. When
you call interrupt 13H, it accesses the hard disk routine first. This routine tests
whether the hard disk or floppy disk drive should be addressed, based on the device
number in the DL register. If the hard disk is involved, it calls the proper routine
in the hard disk module. On the other hand, if the floppy disk drive should be
addressed, another module must be called by calling interrupt 40H, which points to
the old disk interrupt 13H.

All hard disk functions share the condition that after the function call they use the
carry flag to signify whether they could perform their task or if an error occurred. If
this is the case, the carry flag sets and an error code passes to the AH register. The
individual codes have the following meanings:

01H Addressed unavailable function or drive
02H Address marking not found

04H Sector not found

05H Error during controller reset

07H Error during controller initialization
09%H DMA transmission error: Segment border crossed
OAH Sector defective

10H Read error

11H Read error corrected with ECC

20H Controller defect

40H Search operation failed

80H Drive does not respond (Time out)

AAH Drive not ready

CCH Write error

When any one of these errors occur except error 01, execute a reset and try calling
the function again. Most of the time the error won't recur.

More about errors

324

If error 11H occurs during the read function, the data read in may not actually be
defective. This error indicates that a read error occurred, but that it could be
corrected with the help of the ECC (Error Correction Code) algorithm. This
procedure is similar to the CRC (Cyclic Redundancy Check) process used in the
disk drives. A complicated mathematical formula adds the individual bytes of a
sector. The result of the process goes to the disk in the form of a sector plus four
bytes. If a read error occurs, it can be corrected within certain limits with the help
of the stored ECC results.

Abacus

7.8 Accessing the Hard Disk from the BIOS

The use of processor registers for data transmission becomes another parallel
between the hard disk and floppy disk functions. The function number passes to
the AH register. If the program requires the number of the hard disk to be
addressed, it always passes to the DL register. The value 80H always stands for the
first hard disk, and 8 1H for the second hard disk. The number of the read/write head
(and indirectly of the disk addressed) passes to the DH register. The CH register
accepts the cylinder number. Remember that a 10 megabyte hard disk has more
than 306 cylinders. Since this 8-bit register can only address 256 cylinders at a
time, this register alone isn't enough to indicate the cylinder number.

For this reason bits 6 and 7 of the CL register help indicate the cylinder number.
They form bits 8 and 9 of the cylinder number, permitting an addressable range of
1,024 cylinders (0-1,023). Bits 0 to 5 of the CL register provide the number of the
sector to address (they are numbered from 1 to 17 in each cylinder). If you attempt
to access several sectors at a time, the numbers of these sections pass to the AL
register. During read/write operations a buffer address must be indicated from which
data can be read or to which data can be transferred. In such a case, the ES register
passes the segment address and the BX register the offset address of this buffer.

Function 00H: Reset

Function OH resets the controller without the need of any other parameters. After
an error occurs, this function should always be called before the next data access.
The information from the hard disk on which the execution of the reset is based
passes to the DL register.

Function 01H: Status

Function 01H reads the hard disk drive status (this status is indicated after every
hard disk operation). The number of the drive whose status should be read must be
stored in the DL register.

Function 02H: Read sector

Function 02H reads one or more sectors. A single call of this function can read up
to 128 sectors. This limitation occurs because the hard disk controller transfers data
directly into RAM through the DMA. The DMA chip can only transfer a
maximum of 64K at a time, in one memory segment at a time. For this reason, it
is important that the complete buffer whose aldress passes to ES:BX fits into the
64K starting with the segment address in ES. Otherwise the DMA chip may report
an error.

This function initially reads all sectors in numerical order within the cylinder
indicated, using the read/write head indicated. Once the function reads the last sector
of a cylinder, and additional sectors should be read, reading continues with the first
sector of the same cylinder, but using a different read/write head. After the function

325

7. The BIOS PC System Programming

accesses the last read/write head and additional sectors still remain, the read process
continues in the first sector of the following cylinder on the first read/write head.

Function 03: Write sector

Function 03H writes one or more sectors. A single call of this function can write
data in up to 128 sectors. This limitation is also caused by the DMA (see function
02H above).

This function initially writes all sectors in numerical order within the cylinder
indicated, using the read/write head indicated. Once the function writes to the last
sector of a cylinder, and additional sectors should be written, writing continues
with the first sector of the same cylinder, but using a different read/write head.
After the function reaches the last read/write head and additional sectors still
remain, the write process continues in the first sector of the following cylinder on
the first read/write head.

Function 04H: Verify

Function 04H verifies the different sectors of a cylinder. No comparison occurs
between the data on the disk and the data in memory (no buffer address needed in
ES:BX). ECC numbers verify whether the bytes stored return the same results after
processing through the ECC algorithm. The AL register indicates the number of
sectors o be verified.

Function 05H: Format

326

Function O5H formats the hard disk. Before a hard disk can be accessed it must be
formatted. Similar to the function used for formatting a disk, this function must
know the read/write head and cylinder number. In addition, it must pass the address
of the buffer to the register pair ES:BX. This buffer must be 512 bytes long, even
if the function only accesses the first 34 bytes. It contains two bytes for each of
the 17 sectors to be formatted. The first byte indicates whether the sector is in
good condition. Assuming that every sector is in good condition, the value 0 is
entered into this byte. The second byte accepts the logical number which should be
assigned to the current sector. BIOS takes information from the first two bytes in
the table about the first physical sector of the cylinder. Bytes 3 and 4 supply
information about the second physical cylinder. Once the physical series has
already been determined, the logical sequence of the sectors can be set through 2
bytes of a sector indication in this table.

The numbers differ between a logical sector and its respective physical sector. This
shift in logical sectors, called sector interleaving, help optimize access time on a
hard disk.

Abacus

7.8 Accessing the Hard Disk from the BIOS

The average hard disk rotates at 60 revolutions per second. This means that the
next physical sector appears under the read/write head every thousandth of a second.
The hard disk controller is incapable of transferring the 512 bytes of the sector
previously read into the PC's memory. For this reason, the logical sectors shift in
relation to the physical sectors, so that the next logical sector only appears under
the read/write head after the hard disk controller completes the transmission of the
last sector.

The interleave factor, i.e., the number of sectors by which the logical sectors shift
in relation to the physical sectors, depends on the relationship between the speed at
which the hard disk revolves, and the processing speed of the hard disk controller.
For example, if the interleave factor is 6, this means that for every sector read, a
"jump” of 5 sectors takes place before the next logical sector follows. The closer
this factor comes to 1 (in which case the physical and logical sectors are identical),
the faster the hard disk and the closer the transmission speed comes to the physical
limit,

While XT hard disks operate with an interleave factor of 1:6, AT hard disks are
twice as fast, with an interleave factor of 1:3. The effects of the interleave factor
and the relationship between logical and physical sectors can be seen in the
following table:

AT: physical logical XT: physical logical
sector sector sector sector
1 1 1 1
2 7 2 4
3 13 3 7
4 2 4 10
5 8 5 13
6 14 6 16
7 3 7 2
8 9 8 5
9 15 9 8
10 4 10 11
1 10 11 14
12 16 12 17
13 5 13 3
14 11 14 6
15 17 15 9
16 6 16 12
17 12 17 15

During a function call, BIOS enters a value into the first byte of a sector marker
which tells the calling program whether or not the sector is OK. The value 0
means OK, and the value 128 means a magnetization error occurred. Besides the

327

7. The BIOS PC System Programming

registers mentioned above, the AL register accepts the number of sectors to be
processed. Since the cylinders of the AT and XT hard disks have 17-sector formats,
the AL register should contain the value 17 during the call of this function.

Function 08H: Check disk specs

Function O8H, passing the number of the hard disk in the DL register, checks hard
disk specifications. This is important for examining hard disks with unusual
formats.

After the function call the DL register contains the number of attached hard disks.
This number can be 0, 1 or 2. In addition, the DH register contains the number of
read/write heads. Since the read/write head count always starts at 0, a value of 7
means that 8 heads are available. The CL register (bits 0-7 of the cylinder number)
and the upper two bits of the CH register (bits 8 and 9 of the cylinder number)
indicate the number of cylinders. The counting here also starts at 0. The last
information is found in the lower 6 bits of the CH register. It shows the number
of sectors per cylinder, where the counting begins at 1 (an excepuon to the rule,
since thc other counts in this function begin with 0).

When a user interfaces a foreign hard disk to a PC, the BIOS must know the
characteristics of this hard disk to perform correct access. For this reason it uses
interrupt 41H for hard disk 0 and the interrupt 46H for hard disk 1 as pointers to a
table. This table has a format prescribed by BIOS and describes the attached hard
disk drive. BIOS stores a whole series of tables so that BIOS can adjust itself
properly during the system boot from the booting hard disk drive.

Note: If the hard disk is already in the PC and functions properly, do not
attempt to access the hard disk description table, since the hard disk
could be damaged.

A table must be constructed in RAM for foreign hard disk interfacing, and interrupt
vectors 41H or 46H must point to this table. In addition, function 9 must
configure BIOS to use this table. The number 9 declares the function. The number
of the drive (80H or 81H) is loaded into the DL register. You may never have to
use this complicated function: Most hard disk manufacturers include a
configuration program which performs the same task. Check the documentation
which came with the hard disk for the parameters needed for the hard disk
description table.

Function 0AH: read ECC
Function 0BH: Write ECC

Functions OAH and OBH are additional read/write functions. They differ from

functions 2 and 3 in that they read and write the four ECC bytes at the end of each
sector in addition to the 512 bytes of data. Because of this, every sector has 516

328

Abacus

7.8 Accessing the Hard Disk from the BIOS

bytes instead of 512 bytes, and only 127 sectors can be read or written at one time,
instead of 128 as in functions 2 and 3.

Function OBH: Recalibrate

Function 0BH recalibrates one of two hard disks. It also returns the error status,
passing the error number to the DL register.

Function 10H: Check ready status

Function 10H tests whether or not the hard disk whose number is in the DL
register is currently prepared to execute commands. If the carry flag is set on the
return of this function, the hard disk isn't ready. An error code passes to the AH
register.

Function 14H: Self test

Function 14H forces the controller to perform an internal self test. If the controller
is OK, it returns with a reset carry flag.

Function 15H: Check drive type

Function 15H determines the type of drive. The number of the drive (80H or 81H)
passes to the DL register. If the drive is unavailable, it returns the value O in the
AH register after the function call. If the AH register contains a value of 1 or 2,
the device indicated is a floppy disk drive. The value 3 indicates a hard disk. If this
is the case, the CX and DX registers contain the number of sectors on this hard
disk. The two registers form a 32-bit number (the CX register contains the upper
16 bits, and the DX register the lower 16 bits).

Note: We chose not to include demonstration programs in this section,
because accessing a hard disk without proper knowledge can have
serious consequences. While floppy disk drive access can be practiced
with an unused or empty disk without worrying about damage, you
only get one hard disk with a PC. One small mistake during access
could destroy all data on a hard disk.

Avoid hard disk access using BIOS functions unless absolutely necessary. Leave
these tasks to DOS functions as much as possible.

329

7. The BIOS PC System Programming

7.9 Accessing the Serial Port from the BIOS

Computers in every part of the world communicate with each other and exchange
data. Most of the time these computers use normal telephone lines for this
communication. Phone lines only permit slow data transfer, but allow users to
communicate from almost anywhere on the planet. Data transfers serially (i.c., one
bit at a time), while the sender and receiver maintain similar transfer protocols
(parameters for data transfer).

Serial card

330

Since basic PC configurations aren't equipped for this type of data transmission,
data transfer is only possible when the user adds an asynchronous communication
port (IBM's catch phrase for an RS-232 card, or serial interface card).

This type of card enables data transfer between two computers direct through a
cable or through phone lines. Both the sender and receiver require a modem to
communicate using the latter method. Modems convert computer signals into
acoustical signals which can then be transmitted over telephone lines.

In addition to hardware, data communication requires software which controls the
RS-232 card. BIOS offers this software in four functions called by interrupt 14H.
Before discussing these functions in detail, let's examine data transfer protocol.

Direction of data flow

LSB MSB
0 1 2 3 4 5 6 71 8

Y I |
5-8 data bits
(optional)

Parity bit
| (optlonaI)J

logical 1
logical 0-|

1, 1.5 or 2
stopbits B
- rt bi Start bit of
Line status next character

Asynchronous transmission protocol

Abacus

7.9 Accessing the Serial Port from the BIOS

Word length

Parity

As the figure above shows, only the two line states, 0 and 1 (also called high and
low) are important. The line remains high if no data transmission takes place. If
the line's state changes to low, the receiver knows that data is being transmitted.
Between 5 and 8 bits transfer over the line, depending on the word length.
Unfortunately the BIOS functions only support a word length of 7 or 8 bits. If the
line is low during data transmission, this means that the bit to be sent is 0. High
signals a set bit. The least significant bit is transferred first, and the most
significant bit of the character to be transmitted is transferred last.

The character can be followed by a parity bit which permits error detection during
data transmission. Parity can be even or odd. For even parity, the parity bit
augments the data word to be transmitted, so that an even number of bits results.
For example, if the data word to be transmitted contains three bits set to 1, the
parity bit becomes 1 so that the number of 1 bits increments to four, making an
even number. If the data word contained an even number of 1 bits, the parity bit
would be zero. For odd parity the parity bit is set in such a manner that the total
number of 1 bits is odd.

Stop bits

The stop bits signal the end of the transmission of data. Data transmission
protocol permits 1, 1.5 and 2 stop bits. Some users are confused about the option
of working with 1.5 stop bits, since some believe that you can't divide a bit. The
explanation for this paradox comes from the data transmission protocol.

Baud rate

Old standards dictate that data transfers at a rate of 300 baud (about 300 bits per
second), and one stop bit. The signal for a 1 bit and the signal for a 0 bit are both
events. Binary bits when transmitted in an analog environment such as phone lines
may not be identical with baud rates. Since stop bits always have the value 1, the
line would be high for 1/300 second. If instead you keep the line high for 1/200
second, 1.5 bits are transmitted. The line remains high until a new character
transfers and sets the line transmitting the start bit to low.

Some interfaces work with negative logic. In such a case the conditions for 0 and 1
in the illustration above must be reversed. This doesn't change the basic principle
of serial transmission.

Protocol settings

Data transmission only works if the sender and receiver both match various
protocol parameters. First the baud rate (the number of bits transmitted per second)
must be set. The standard baud rates for data exchange over voice telephone lines
are 300, 1200 and 2400 baud. These baud rates depend on the capabilities of the

331

7. The BIOS PC System Programming

modem in use. For a dedicated (data only) telephone line or for direct data
transmission through a cable, speeds up to 9600 baud are possible. Up to 80 bytes
per second or 4800 bytes per minute can be transmitted at 9600 baud.

The word length depends on the data being transmitted. If the data consists of
normal ASCII characters, a 7-bit word is enough, since the ASCII character set has
only 128 characters. If the data encompasses the complete PC set of 256
characters, 8-bit words are more practical.

Next the necessity of a parity check should be determined, and whether even or odd
parity should be used. In most cases parity checking is recommended, since phone
lines do not always transmit all data correctly. The parity selected is unimportant,
as long as both sender and receiver select the same parity.

The number of stop bits must be defined. One stop bit transmits successive
characters faster than a setting of two stop bits. On the other hand, two stop bits
increase the reliability of transmission.

Sample protocol

UART

332

The following illustration shows a sample transmission of an "A" character with a
protocol of 8 data bits, odd parity and one stop bit. Positive logic and a 300 baud
transmission rate are assumed. Since the ASCII code of the "A" character is 65
(01000001(b)) and therefore contains only two 1 bits, the parity bit changes to 1
to set the number of 1 bits to an odd number.

logical 1‘-|__|
logical 0 |
L L L L L L L L L L L
l. , |

1/300 second

8 data bits
(01000001 (b) for "A")

|Parlty bit I

Transmitting A character: 8-bit word length, 1 stop bit, odd parity and 300 baud

The brain of an RS-232 card is the UART (Universal Asynchronous Receiver
Transmitter). You should be familiar with the design and capabilities of this
processor, so that you can properly adapt programs to the error messages returned
by the different BIOS functions.

Abacus ' 7.9 Accessing the Serial Port from the BIOS

Transfer registers

A character transmitted on a data line passes first to a register designated as a
transfer holding register. It remains there until processing ends on the character
preceding it. Then the character moves to the transfer shift register from where the
UART transmits the character bit by bit over the data line. Depending on the
configuration, parity and stop bits implement the stream of data. When the BIOS
function passes the status of the data lines to the AH register, bits 5 and 6 indicate
whether these two registers are empty.

Receiver registers

The receiver shift register accepts received data, then transmits the data to the
receiver data register where the UART removes the parity and stop bits. If a
previously received character is still in the data register, bit 1 of the line status sets
to 1 to avoid overwriting. Bit O indicates that a character was received. If while
processing the character, the UART discovers that a parity error occurred during the
transmission, it sets bit 2 of the line status. If a breakdown occurs in the agreed-
upon protocol (number of parity and stop bits), the action sets bit 3. The UART
always sets bit 4 if the data line remains longer in low (0) status than required for
the transmission of a character. Bit 7 signals a time out error. This occurs
occasionally when the communication be&ween the RS-232 card and the modem -
isn't working properly.)

7 6 S 4 3 2 1 0 bit

Recelve character

1 Overwrite character
in data register

Parity error

Protocol not specified

Line Interrrupt
Data register clear

Shift register clear

Time out

Line status

H

Function 0: Passing protocol

Before data can be transmitted or received, the UART must be informed of the
number of stop bits, etc. Function O of interrupt 14H serves this purpose. The
function number (0) enters the AH register, and the protocol passes to the AL
register. The bits of the AL register indicate the various parameters:

333

7. The BIOS

PC System Programming

Bits Protocol
bit 0,1 Word length
10(b) - 7 bits
1ll(b) - 8 bits
bit 2 Number of Stop bits
0 - 1 Stop bit
1l - 2 Stop bits
bit 3,4 Parity check
00(b) - none
01(b) - odd
10(b) - even
bit 5 -7 |Baud rate

000 - 110 Baud
001 - 150 Baud
010 - 300 Baud
011 - 600 Baud
100 - 1200 Baud
101 - 2400 Baud
110 - 4800 Baud
111 - 9600 Baud

Function 1: Transmit character

Function 2: Receive character

Function 3: Line/modem status

334

After initialization the function loads the line status into the AH register.

Function 1 transmits characters. During its call, the AH register must contain 1
and the AL register must contain the character to be transmitted. If the character
was transmitted, bit 7 of the AH register changes to O after the function call. A 1
signals that the character could not be transmitted. The remaining bits correspond
to the line status.

Function 2 receives characters. After calling this function the AL register contains
the character received. AH contains the value 0 if no error occurred, otherwise the
value corresponds to the line status.

Function 3 senses and returns the modem status and line status. It returns the line
status in the AH register and the modem status in the AL register:

7.9 Accessing the Serial Port from the BIOS

Bit 0 | Modem ready to send status change
Bit 1 | Modem on status change

Bit 2 | Telephone ringing status change

Bit 3 | Connection to receiver status change
Bit 4 | Modem ready to send

Bit 5 | Modem on

Bit 6 | Telephone ringing

Bit 7 | Connection to receiver modem

Bits 4 to 7 represent a duplication of bits 0 to 3. Bits 0 to 3 indicate whether the
contents of bits 4 to 7 have changed since the last reading of the modem status. If
this is the case, the corresponding bit contains the value 1. For example, if bit 2
contains the value 1, this means that the content of bit 6 has changed since the last
reading. In reality it means that the phone just started to ring or has stopped
ringing, depending on the previous value of bit 6.

335

7. The BIOS PC System Programming

7.10 The Cassette Interrupt

The cassette interrupt (interrupt 15H) is a leftover from the days when PCs used
cassette recorders exclusively as data storage devices. This interrupt provided four
functions (numbered 0 through 3) for enabling and disabling the cassette recorder
motor, reading from and writing to magnetic tape. As the PC gained ground in the
business world, the disk drive became popular. Consequently, the cassette drive's
popularity faded.

The four cassette interrupt functions remain part of the PC's ROM-BIOS. The XT
has no cassette recorder interface. In addition, the XT's cassette interrupt consists of
a short routine which sets the carry flag and stores an error code in the AH reglster
to tell the program that the function called is unavailable.

The AT and the cassette interrupt

The cassette interrupt returned with the introduction of the AT. New functions can
be called which have nothing to do with cassette recorder control. The following
describes these functions, available only on AT models.

Among other things, the interrupt makes two functions available based on the
time measurement of the onboard AT realtime clock. The first of these is function
83H. It is useful in situations where the CPU is engaged in a time consuming task
(e.g., computing a complicated formula), but other duties must be performed at the
same time (e.g., checking the keyboard to determine if the user wants to terminate
the operation).

Function 83H: Time flag

336

Function 83H calls the address of a flag (a byte in the user program) in which the
highest level bit is set after a certain time period has elapsed. Within an executing
program this flag can be tested after certain amounts of time. Only two assembly
language instructions are necessary for this, so the testing requires little time.
Function number 83H passes information to the AH register. The segment address
of the flag is loaded into the ES register and the offset address into the BX register.
The time that should elapse until the flag is set is passed to the CX and DX
registers. Both registers form a 32-bit number which indicates the number of
microseconds to wait (1 second = 1,000,000 microseconds).

The CX register represents the upper 16 bits of this number. To calculate the total
time, the contents of the CX register must be multiplied by 65,536 and the DX
register must then be added to the total. If the waiting period is known in
microseconds, the value for the CX and the DX register can be calculated:

CX = int (Waiting period /65,536)
DX = Waiting period mod 65,536

Abacus

7.10 The Cassette Interrupt

This function can only be called if the previous call of this function has ended (the
time indicated has elapsed). If this is not the case, the function returns immediately
with the carry flag set.

Function 86H: Walit for end time

The second time function, function 86H, differs from function 83H in that it waits
until the time indicated has elapsed. For this reason the function number must pass
to the AH register, and the waiting time to the CX and DX registers during the
function call. To convert the waiting time into two values for the CX and DX
registers, the formula above can be used. This function can only be called if
function 83H was not called previously, and if the time period set during its call
has not yet elapsed. In such a case, the function returns immediately with a set
carry flag to the calling program.

Extended memory

The AT accepts more than 640K of memory. This additional memory (called
extended) begins at 1 megabyte and cannot be accessed in real mode, in which the
80286 processor operates as an 8086 processor. Function 88H determines the
availability and size of this memory. Placing a value of 88H in the AH register
returns the size of RAM beyond the 1 megabyte boundary (excluding RAM from 0
to 640K) in 1K increments in the AX register.

Function 87H: Move memory block

Global

Function 87H moves blocks of memory within the total memory space. This
means that blocks of memory can be moved from the area below the 1 megabyte
limit to the area above the 1 megabyte limit, and the other way around. The
function should not be used for the latter, since its call is complicated and has
other disadvantages. To access memory beyond the 1 megabyte barrier, the
processor must be switched into protected mode (full 80286 mode). Function 87H
requires very comprehensive information, since the 80286 processor is more
difficult to program in protected mode than in real mode (8086 emulation under
DOS). See the end of this section for a program which demonstrates the use of
function 87H.

The function number 87H must first be passed to the AH register, then the number
of the words to be moved (words only—not bytes) must be passed to the CX
register. A maximum value of 8000H corresponds to a maximum value of 64K.

Descriptor Table

The ES:SI register pair receive the address of the GDT (Global Descriptor Table),
which must be installed in the user program. The GDT describes the individual
memory segments of the 80286 in protected mode. The segments in protected
mode are exempt from the limitations made in real mode. While segments can

337

7. The BIOS PC System Programming

338

only start at memory locations divisible by 16 in real mode, protected mode
segments may start at any memory location. Furthermore, protected mode
segments may be any size from 1 byte to 64K.

Another protected mode innovation is the access code defined for every segment. It
indicates whether the segment described is a data segment or a code segment (only
code segments can be executed). The access code also contains information on
access priority, and whether access is even permitted. Every segment descriptor
consists of 8 bytes apiece. Function 87H expects during its call that six segment
descriptors have been prepared in the GDT (i.e., memory space reserved for them).
The figure below illustrates which segment descriptors are involved, as well as the
construction of a segment descriptor.

Addr |Segment descriptor GDT Addr.
+0 + OH

Segment length DUMMY
+2 + 8H

. GDT

Bits 0-15 of segment address +10H
+4 START

Bits 16-23 of segment address +18H
v ’ DEST.

Access code BIOS CS +208
+6

+28H

Reserved (always 8) STACK

+8 +30H

Segment descriptor structure as seen by function 87H

Only the segment descriptors designated as start and destination are of interest here,
since the BIOS functions fill out the other descriptors. The first describes the
segment from which the data are taken. The destination descriptor describes the
segment into which the data are copied. The length of both segments can be
OFFFFH (64K decimal), even if fewer bytes (or words) copy over in the process. If
a lower value is indicated, do not allow the number of bytes (number of words
multiplied by 2) to be copied to exceed this amount. Otherwise the processor
notices an access across a segment boundary during copying, which triggers an
error. The address of the two memory areas must be converted to a (physical) 24-
bit address. The lower 16 bits of this address enter the second field of the segment
descriptor and the upper 8 bits enter the third field. As access code 92H can be
used, which signals the processor that the described segment is a data segment with
the highest priority; that the segment exists in memory; and that the segment can
be written. The last field of the descriptor exists for reasons of compatibility with
the 80386 processor, and should always contain the value 0.

While the address of the user program's buffer stays fixed, the address beyond the 1
megabyte boundary to which data should be copied can be freely selected (subject

Abacus

7.10 The Cassette Interrupt

to RAM availability). The following table shows the addresses of the various 1K
blocks beyond the 1 megabyte border as 24-bit addresses.

0 K = 100000H 124 K = 11F000H
1 K = 100400H 125 K = 11F400H
2 K = 100800H 126 K = 11F800H
3 K = 100C00H 127 K = 11FCO0H
4 K = 101000H 128 K = 120000H
5 K = 101400H 129 K = 120400H
6 K = 100800H 130 K = 120800H
7 K = 100CO0H 131 K = 120COOH
8 K = 102000H 132 K = 121000H
9 K = 102400H 133 K = 121400H
60 K = 10F000H 252 K = 13FO00OH
61 K = 10F400H 253 K = 13F400H
62 K = 10F800H 254 K = 13F800H
63 K = 10FCOOH 255 K = 13FCOOH
64 K = 110000H 256 K = 140000H
65 K = 110400H 257 K = 140400H
66 K = 110800H 258 K = 140800H
67 K = 110CO0H 259 K = 140CO00H
68 K = 111000H 260 K = 141000H
69 K = 111400H 261 K = 141400H

After the function call the carry flag indicates the success of the function call. If
the carry flag sets, an error occurred. The value in the AH register indicates the
cause of the error:

AH = O] No error (carry flag reset)

AH = 1] RAM parity error

AH = 2| GDT defective at function call

AH = 3] protected mode could not be initialized properly

A disadvantage of this function is that while the processor is in protected mode, all
interrupts must be suppressed. The reason is the fact that during the protected
mode, BIOS interrupts (e.g., timer or keyboard) can be called, but these routines
were developed for operation in real mode only. These interrupts may not work
properly in protected mode. The disadvantage can be clearly seen when you call the
timer. Since its interrupts are suppressed, protected mode performs no time
measurement, and time remains frozen for a moment. If programs call function
87H frequently, the clock may run slow by 20 or 30 seconds in one day. The clock
can be reset easily to the proper time with software, so software can bypass most
of the disadvantages.

Function 89H: Protected mode

Function 89H switches the AT into protected mode. Only someone developing his
own operating system may have any interest in this function. Any system capable

339

7. The BIOS PC System Programming

of multiprocessing must run in protected mode. This function goes far beyond the
scope of this book. See the AT technical manual for more information.

Function 84H: Joystick reader

Function 84H reads two joysticks connected to the AT. Two sub-functions operate
within this function: Both return a set carry flag if the adaptor to which the
joysticks should be connected doesn't exist.

The first sub-function executes by passing the function number to the AH register
and the value 0 to the DX register. It returns the status of the joystick fire buttons
in bits 4 to 7 of the AL register.

The second sub-function executes by passing the function number to the AH
register and the value 1 to the DX register. It returns current joystick positions
using X- and Y-coordinates. The X-coordinate for the first joystick can be found in
the AX, and the Y-coordinate in the BX register. For the second joystick, the CX
register contains the X-coordinate and the DX register the Y-coordinate.

Function 85H: Read SysReq key

340

The <System Request> key on the AT keyboard triggers an interrupt without
producing a character code. It cannot be tested with the BIOS keyboard reading
functions. Function 85H reads the keyboard for the <System Request> key.
Passing the function number to the AH register executes the function. The current
BIOS version doesn't implement this function within the cassette interrupt.
Usually the <System Request> key does nothing when the user presses it.
However, a machine language routine can assign a special application to the
<System Request> key. This program must only "deflect” interrupt 15H to its
own routine. If it's called by a user program or by the system, a user routine
executes instead of the cassette interrupt. It can test whether the AH register
contains the function number 85H. If this is not the case, it calls the old cassette
interrupt. If the AH register contains this function number, the user routine
performs the desired action.

The content of the AL register is also important to this user routine because it
indicates whether the user pressed or released the <System Request> key. 0 means
activated, 1 released.

Abacus 7.10 The Cassette Interrupt

Demonstration programs

Of all the functions made available by this interrupt, the most interesting is
probably function 88H. It permits the owners of ATs with memory beyond the 1
meg limit to use memory that is inaccessible to DOS. The programs presented in
this section demonstrate easy calls to function 87H within user programs. To
illustrate the function call, each one of these programs copies the current video
RAM contents directly beyond the 1 megabyte memory border. It then erases the
video RAM and restores it again. The core of these programs is always the routine
which calls function 88H of interrupt 15H. It constructs a GDT for this, enters the
addresss of the start and destination area, as well as the GDT. First it converts the
two addresses (passed as segment and offset addresses) into a 24-bit-wide address.
This routine must be constructed first in assembly language for the higher level
languages, then integrated into the higher level language programs. You'll see how
this is done in the documentation of the individual listings. To avoid detailed
comparison of the various assembler programs for linking into the move function,
the difference lies almost exclusively in the area of the variable passing. Otherwise
the programs are almost identical.

BASIC listing: MOVE.BAS

100 A A Ak Ak kA AR A AR R A AR AR AR R R AR A AR R AR A AR R AR AR A AR A AR A AR A AR A kAR kA Ak Ak ko ko

110 ** MOVE *e
120 “* *
130 ** Task : uses the Routine for moving a storage area *
140 '+ to store the Video-RAM *
150 '* Author : MICHAEL TISCHER *e
160 '* developed on : 7.22.87 *
170 ** last Update : 9.21.87 *e
180 AR AR AR R AR R AR A AR R AR AN A AR A AR AR AR AR AR AR AR AR AR A AR AR AR AR AR A A Ak d

1%0 *

200 CLs : KEY OFF

210 PRINT*WARNING: This program can only be started if the GWBASIC “

220 PRINT"was started from the DOS level with <GWBASIC /m:60000>*

230 PRINT : PRINT*If this is not the case, input an <s> to Stop "

240 PRINT"Else, press any key...";

250 A$ = INKEY$: IF A$ = “s* THEN END

260 IF A$ = "" THEN 250

270 CLs ‘Clear Screen

280 PRINT"MOVE (c) 1987 by Michael Tischer® : PRINT

290 PRINT*This Program uses Function 87(h) of Interrupt 15(h) to copy blocks *
300 PRINT"of memory between the ‘normal® RAM and the RAM beyond the *

310 PRINT"1-Megabyte border.*

320 DEF SEG = &HF000 ‘Set BIOS-segment

330 IF PEEK(&HFFFE) = &HFC THEN 380 ‘test if AT

340 PRINT"Since this unit is not an AT, but a PC or *

350 PRINT"XT, and they do not have memory the 1-MB limit, *

360 PRINT*this program can not be executed! Sorry..."

370 END ‘Terminate Program (PC or XT)
380 PRINT*The Program will first copy the current display immediately beyond the *
390 PRINT*1 MB border and thens clear the screen. If you then press a key, *
400 PRINT*the old screen content is restored.®

410 PRINT : PRINT"Please activate a key to start the program...";

420 A$ = INKEYS : IF A$ = " THEN 420 ‘wait for key

430 STARTSS = VIDEOSS : STARTO% = 0 ‘Start-area is Video-RAM:0000

440 GOSUB 60000 *install Function for Interrupt call
450 GOSUB 61000 *install Function for copying memory
460 GOSUB 50000 ‘get current Video mode

470 IF VMODE% = 7 THEN VIDEOSS = g¢HB0OO ELSE VIDEOSS = &HB80O

480 STARTO% = 0 : STARTSS = VIDEOS% ‘Start address 1is the Video-RAM

341

7. The BIOS PC System Programming

490 DESTS% = 0 : DESTO% = 0 ‘destination area is 10000:0000

500 DIRECTION$ = 1 ‘copy from below to above 1 MB

510 SIZE%$ = 2000 ‘the size of the Video-RAM is 200 Words
520 GOSUB 51000 ‘;move memory

530 CLS ‘clear screen

540 PRINT"Please activate a key ...*
550 A$ = INKEYS : IF A$ = “* THEN 550 ‘wait for key

560 STARTS% = O : STARTO% = 0 ‘Start area is 10000:0000

570 DESTS% = VIDEOS% : DESTO% = 0 ‘Destination area is Video-RAM:0000
580 DIRECTIONS = 2 ‘copy from above to below 1 MB
590 GOSUB 51000 ‘move memory

600 LOCATE 15,1 'Set Cursor to column 1 of line 15
610 END

620 *

50000 RN AR R R R R A AR AR AR R AR A RN AR A RN R RN RN AR R AR R RN RN R AR IR AR RN R RN AN AN AR
50010 ** Sense current Video Mode *
50020 ** *e
50030 '* Input: none *
50040 ** Output: VMODE% = the current Video mode *
50050 ** Info : the Variable 2% is used as Dummy *
50060 R R R R R A R AR R AR R R R R A AN R AR AR AR R AR R AN R RAN R AR RAAR A RN AR AR RR N RN
50070 2%=15 'get Function number for Video mode
50080 INR$=&H10 *call BIOS-Video-Interrupt 16 (h)
50090 CALL IA(INRS, 2%, VMODE%,PAGES, 2%, 2%, 2%, 2%, 2%, 2%, 2%, 2%, 2%)

50100 RETURN ‘back to caller

50110 °*

51000 ITRE AR KA R A AN RN R A AR A KRR R AR AR A RN ARAARARR AN R AR AR AN RN RRA AR AR R AR ANk bk §
51010 '* move a memory area *!
51020 *'* *
51030 ** Input: STARTS% = segment address of the Start area *
51040 '~ STARTO% = Offset address of the Start area *e
51050 '* DESTS% = segment address of the destination area *
51060 '* DESTO% = Offset address of the destination area *e
51070 ** SIZE$ = Number of words to be moved *
51080 ** DIRECTION% = Direction in which to move *
51090 ** data: **
51100 ** 0 = from below 1 MB --> to below 1 MB *e
51110 '+ 1 = from below 1 MB --> beyond 1 MB *
51120 '* 2 = from above 1 MB —--> below 1 MB *
51130 '* 3 = from beyond 1 MB --> beyond 1 MB *t
51140 '* Output: none *e

91150 AKX RA R RN R AR ARk kAR N R A A AN KRN R AR RN KR RN AR RN RAAA N AR AR RN RARAR AN A AR

51160 CALL MOVE (STARTS%, STARTO$, DESTS$, DESTO%, SIZE%$, DIRECTIONS)

51170 RETURN 'back to caller

51180 *

60000 RN AN KRR R AR N R AR AN R R AR AN N AR RAN AR A AN R AN N AR R AR RN AR AR RN N A RN AN AN
60010 '* initialize the Routine for Interrupt call **
60020 *'* *
60030 *'* Input: none *

60040 '* Output: IA is the Start address of the Interrupt-Routine *e

GO050 " HAK A K KA KRR A R A AR RN RN KRR N KN R AR KRR RN RN RN AR AR RN KRN R RARA KRR A RN TR RN R A

60060 *
60070 IA=60000! ‘Start address of the Routine in the BASIC-segment
60080 DEF SEG ‘Set BASIC-segment

60090 RESTORE 60130

60100 FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT 'poke Routine
60110 RETURN ‘back to caller

60120 *

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138,2 0,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108,255

60240 °*

342

Abacus

7.10 The Cassette Interrupt

61000
61010
61020
61030
61040
61050
61060
61070
61080
61090
61100
61110
61120
61130
61140
61150
61160
61170
61180
61190
61200
61210
61220

Iﬁttﬁtttkt*ttttt**ktttttt*ttttﬁtttt*tktit*tittttttt*t*ttttttﬁtttI
'* Tnitialize Routine for moving of mremory areas. *
L3 x4
‘* Input: none *
'+ Qutput: MOVE is the Start address of the Routine *
lt'*t**t*t*tﬁittt*tﬁti"ttt'*titii’t'k'ﬁt**i‘ﬁ*'*itttk*tttt*tttiﬁ**l
f

DEF SEG 'Set BASIC segment

MOVE=61000! ‘Start address of the Routine
RESTORE 61130

FOR I% = 0 TO 140: READ BYTE% : POKE MOVE+I%,BYTE$: NEXT
RETURN ‘back to caller

DATA 232,115, o, 0, o, 0, o, 0, O, O, O, O O, O, O
DATA O, 0, 0, 0,255,255, O, O, 16,146, 0, 0,255,255, O
DATA O, 0,146, O, O, 0, 0, O, O O O O O, 0, O
DATA O, 0, O, 0, 0, O, 85,139,236,139,126, 6,138, 45,139
DATA 126, 12,139, 5,139,126, 10,139, 29,246,197, 1,232, 46, O
DATA 136, 84, 28,137 68, 26,139,126, 16,139, 5,139,126, 14,139
DATA 29,246,197, 2,232, 24, 0,136, 84, 20,137, 68, 18,180,135
DATA 139,126, 8,139, 13,205, 21,139,229, 93,202, 12, 0, 94,235
DATA 186,138,212,177, 4,210,234,117, 3,128,202, 16,211,224, 3
DATA 195,115, 2,254,194,195

The DATA statements integrated the interrupt call routine and the memory
movement routine into BASIC. They contain the machine language command
codes, read and POKEd into the BASIC section starting at address 61000. This
address is also stored in the MOVE variable so that the program can be called from
the CALL command in line 51160. For those of you who have mastered assembly
language, here is the program listing from which the DATA lines of the MOVE
function were derived.

Assembler listing: MOVEBA.ASM

;**ttk**i**tfi**k*t**k*tttfﬁtt**iﬁttt*k**t***ﬁt*ﬁ**t**tt**iﬁtiiﬁk*****;

.k
7

MOVEBA *;

*e

i

Task : Makes the functions for moving of *;
memory blocks beyond the 1MB memory limit *;
available in BASIC for linking *;

*e

’

Author : MICHAEL TISCHER *;
developed on : 8.22.87 *;
last Update : 9.21.87 *3;
*e

r

Info: the Code is fully relocatable so that the *;
Routine can be poked to any place within the *;

BASIC segment *;

*e

r

assembly : MASM MOVEBA; *;
LINK MOVEBA; *;

EXE2BIN MOVEBA MOVEBA.COM *3;

;**t**t**ti**tﬁtﬁ*t**tﬁﬁtﬁ't**tﬁt*itt*i*ﬁ*ﬁtt**i**iit****ﬁ*ti****ﬁ*tti;

code

Se Se Se Se Ne S N

MOVE: Copy storage blocks beyond the 1MB limit
Call from BASIC: CALL ADR(Sourcesegment, StartOffset, Destsegment,

segment

assume cs:code,ds:code,es:code,ss:code

DestOffset, Size, Direction);

Info : - after the call Variables are in the following

Positions on the Stack:
Startsegment = SP + 16
StartOffset = SP + 14

343

http:MOVEBA.COM

7. The BIOS PC System Programming

344

- Destsegment = SP + 12

DestOffset = SP + 10

Size =SP + 8

Direction =SP + 6
- for Direction the following Codes are accepted

0 = from below 1 MB —-> to below 1 MB

= from below 1 MB ~-> to over 1 MB
= from above 1 MB --> to below 1 MB .
= from above 1 MB --> to above 1 MB
the number concerns words not
- bytes, and can not be larger than 8000 (h)

]
I
I wN =

s NE Se Se Ne S Se SeoSe NN
]
[}

move proc far ;GW expects during CALL Far-Procedure
call get adr ;the Address of the Routine
7—— The Global Descriptor Table
GDT equ this word
dw 4 dup (?) ;segment Descriptors for Dummy-segment
dw 4 dup (2)
7—— segment Descriptors of the Source-Area
dw Offffh ;segment length = 64 KB
sa_lo dw (2} ;Lo-Word of the 24 bit-Address
sa_hi db 010h ;Hi-Byte of the 24 bit-Address
db 10010010b ;Data segment in memory with
;highest priority, Writeable
dw 00000h ;Compatibility Word for 80386
;-- segment Descriptors of the Destination-Area -————--——-—————
dw Offffh ;segment length = 64 KB
da_lo dw (2?) ;Lo-Word of the 24 bit-Address
da_hi db (2) ;H1-Byte of the 24 bit-Address
db 10010010b ;Data segment in memory with
;highest priority, Writeable
dw 00000h ;Compatibility Word for 80386
dw, 4 dup (?) ;segment Descriptors BIOS-Code-segment
dw 4 dup (?) ;segment Descriptors Stack-segment

;-- the Code of the MOVE-Routine

movel: push bp ;store GW Basepointer
mov bp, sp ;move SP to BP
mov di, [bp+6] ;get Address of the direction Variable
mov ch, [di] ;move direction to CH
mov di, [bp+12] ;get Address of Destsegment-Variable
mov ax, [di] ;move destination segment address to AX
mov di, [bp+10] ;get address of DestOffset-Varilable
mov bx, [di] ;move destination Offset address to BX
test ch,1 ;Destination beyond 1 MB?
call calc_adr ;form 24 bit Address

mov [si+da_hi-gdt],dl ;store result
mov [sit+da_lo-gdt],ax

mov di, [bp+16] ;get address of the Startsegment-Variable
mov ax, [di] ;move Source segment address to mov

mov di, [bp+14] ;get Address of StartOffset-~Variable

mov bx, [di] ;Source Offset address to BX

test ch,2 ;1s Source beyond 1 MB?

call calc_adr ;form 24 bit Address

mov [si+sa_hi-gdt],dl ;store result
mov [si+sa lo-gdt],ax

mov ah,087h ;Parameter for the Function call
mov di, [bp+8] ;get Address of the Size-Variables
mov cx, [di] ;get number of words

int 15h ;call RAM-displacement function

Abacus 7.10 The Cassette Interrupt

mov sp,bp ;restore Stackpointer
pop bp ;return BP from the Stack
ret 12 ;Addresses of the Variables on the Stack
;are no longer required
Move endp
-- GET_ADR: returns the Offset address of the GDT -=—--——--—========

H

;== Input : none

;=— Output : SI = Offset address of the GDT
;-- Register : SI is changed

get_adr proc near

pop si ;get Address of GDT from Stack
dmp short movel ;jump to actual Routine

get_adr endp

;-- CALC_ADR: calculates the 24 bit (physical) Address —--——========-=--
;=— Input : AX:BX = Buffer address to be converted

;= 2ero Flag = 1 : Buffer address beyond 1 MB

;-- Output : DL = HI-Byte of Buffer address (bit 16-23)

;- : BX = Lo-Word of Buffer address (bit 0-15)
;-- Register : AX, BX, DL, CL and FLAGS are changed

calc_adr proc near

mov dl,ah ;Hi-Byte of the segment address to DL
mov cl,4 ;move Hi-Nibble of the segment
shr dl,cl ;address to the Lo-Nibble

Jne under lmb ;test if beyond 1 MB

or dl,010h ;1s beyond 1 MB

under_lmb:shl ax,cl ;segment address times 16
add ax,bx ;sadd Offset address
jnc no_more ;test if excess
inc dl ;yes

no_more: ret ;back to caller

calc_adr endp

’

code ends
end

The INLINE command, not DATA statements, integrate the MOVE routine into
the following Pascal program.

Pascal listing: MOVEP.PAS

[rE AR KRR A AR AR AR AR AR AR KRR R AR AR AR AR R KRR AR R R AR AR AR R KRR AR AR R AR AR AR AR KK)

{* MOVEP *}
{* *}
{* Task : With the help of a procedure, Data are *}
{* copied in RAM below and above 1 MB *}
{* *}
{* Author : MICHAEL TISCHER *}
{* developed on : 8/8/87 *}
{* last Update : 6/8/89 *}
{* *}
{* Info : This program runs only on ATs and *}
{* only if RAM beyond 1 MB *}

345

7. The BIOS PC System Programming

{* is available *}

{‘ﬁttttttttttt'ttttﬂttttttttttttﬂtt*lﬁt*titﬂ*tti*ttttttﬁtiﬁttttﬁi!itit)

program MOVEP;

Uses Crt, Dos; {add Crt and Dos units}
var Keypress : char;

{kttittﬂttﬂkﬂtﬂt'tittkitttitﬁﬁﬁt*ﬁﬁiﬁt'*fﬁii*'ttt*ttt*tttﬁttﬁtﬁi‘ttﬁ't}
{* GETPAGE: returns the segment address of the current display page *}
{* Input : none *}
{* Output : the segment address of the current display page *}

[R A A R R AR AR KK R KRR R KRR KRR R KRR AR R R KRR R R KRR AR K AR KRN R R RRR AR KRR K |

function GetPage : Longint;

var Regs : Registers; {Processor registers for interrupt calls}

begin

Regs.ah := 15; { Function number }

intr($10, Regs); { Call BIOS video interrupt }

i1f Regs.al = 7 then GetPage := $B000 { Monochrome card }
else GetPage := $B800; { Color card }

end;

AR AR R AR AR AR R AR KRR A AR AR AR R AR R AR R KRR R AR R AR AR AR AR AR AR KRR AR R AR R AR KK}

{* MOVE: moves memory areas *}
{* Input : see below *}
{* Output : none *}
{* Info: Direction: 0 = from below 1 MB--> to below 1 MB *}
{* 1 = from below 1 MB--> to above 1 MB *}
{* 2 = from above 1 MB--> to below 1 MB *}
{* 3 = from above 1 MB--> to above 1 MB, *}
{* Addresses above the 1MB boundary are given relative *}

{* to this value *}
{i**ltﬂ'ﬂ.t.*!ﬂi*tttt.t.ittﬂ"tﬁi't.tttﬂﬂ'tt"it'ﬁi’it'ttiﬁﬁﬁii'tiﬁiii'**'}

{SF+}

procedure HiMove (StartSeg, { Segment address of the start buffer
StartOfs, { Offset address of the start buffer
DestSegq, { Segment address of destination buffer
DestOfs, { Offset address of destination buffer
Size, { Number of words to be copied
Direction : integer); { Direction in which to copy

—— -

begin
inline(
$8B/$7E/$10/$8B/$76/S0E/$8B/$46/$0C/$BE/$CO/$8B/$SE/SOA/
$8B/$46/508/$8B/$4E/$06/$8A/SE9/$55/$E8/$SE/$00/$00/$00/
$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/
SFF/$FF/$00/$00/$10/$92/$00/$00/SFF/$FF/$00/$00/$00/$92/
$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/$00/
$00/$00/$00/$00/$50/$8C/$CO/SF6/$C5/$01/SE8/$28/$00/$2E/
$88/$56/$1C/$2E/$89/$46/$1A/$8B/$C7/$8B/$DE/$F6/$C5/$02/
SEB/$16/$00/$2E/$88/$56/$14/$2E/$89/$46/$12/$B4/$87/$0E/
$07/$59/$8B/$F5/$CD/$15/$EB/$17/$5D/$EB/$CF/$8A/$D4/$B1/
$04/9D2/$EA/$75/$03/$80/$CA/$10/$D3/$E0/$03/$C3/$73/$02/
SFE/$C2/$C3/$5D
)i
end;

[R A AR AR AR KKK KRR R KA AR AR RRR AR AR KRR AR AR AR AR ARK KRR AR AR KRR AR kK)

{* MAIN PROGRAM *}

‘i*ﬁiittiitQi*tﬁiii*i*ittti‘iktiiti*itt*tttt‘**i‘i*i*t**ti*ttitttttttt)
begin
clrscr; { Clear Screen }

writeln('MOVEP (c) 1987 by Michael Tischer');
writeln(#13#10'This Program uses Function 87(h) of '+

346

Abacus 7.10 The Cassette Interrupt

‘Interrupt 15(h) to move blocks of storage ');
writeln('between the “normal® RAM and the RAM beyond the 1 Mega-'+
‘Byte storage boundary');
1f mem[$FO00:$FFFE] <> $FC then { test if computer is an AT }
begin
writeln('Since this computer is not an AT, '+
‘but a PC or');
writeln('an XT, and these can not have storage '+
‘beyond the 1 MB boundary, ');
writeln('this program can not execute on your PC! ');
writeln(‘Sorry....'});
end
else
begin
writeln('First this display page is moved immediately '+
‘beyond the 1 MB storage ');
writeln('boundary. The screen is then cleared. ‘+
‘After a key has been activated, ');
writeln('the old display page is restored.');
writeln(''#13#10'Please activate a key now to '+
‘start the program...'});

repeat until keypressed; { Walt for a key }
Keypress := ReadKey; { Read key }
HiMove (GetPage, $0000, $0000, $0000, $2000, $1) ; { Copy video RAM }
clrscr; { Clear screen }
writeln('Please press a key ...');

Keypress:= ReadKey; { Read key }
HiMove ($0000, $0000, GetPage, $0000, $2000, $2) ; { Restore video RAM }
gotoxy(1,15);

writeln('That's Alll');

end;

end.

For the Pascal programmers interested in assembly language, the assembler listing
of the MOVE function appears here.

Assembler listing: MOVEPA.ASM

FRRERAIIRIRIRRN NI KARIIRIR AN AR RN RIRNR AN R RRARR AN AR A RN R RN R RNk kAo

* MOVEPA *2
i* *;
* Task : coples Data between the RAM below 1 MB and *;
FAd above 1 MB *;
> CAUTION! This is the Version for linking *;
* in a Pascal Program with INLINE- *;
* commands W
,.a *,-
> Author : MICHAEL TISCHER W
i* developed on : 6.8.87 *:
¥ last Update : 6.8.89 *;
it *;
i* assembly : MASM MOVEPA; *;
i* LINK MOVEPA; *;
* convert to INLINEs and add to Turbo Pascal *;

FRRRA R A A A AR A AR NI A KRR A I IKERARR AR ERARKRINIRAR SRR AR AR IR AR ARk dok o

;== Code-segment
code segment para 'CODE' ;Definition of the CODE-segment

org 100h 7it begins at Address 100 (h)
;directly behind the PSP

assume cs:code, ds:code, es:code, ss:code

;== Program

;--Call: HiMoves (StartSeq,

347

7. The BIOS PC System Programming

H StartOfs,

;- DestSeg,

;== DestOfs,

i NumWords,

;- Direction : word);

7-= This routine is designed as a FAR call model
movepa proc near

sframe struc ;Access structure on stack
bptr dw ? ;Taken by BP

ret_adr dd 2 sReturn address (FAR)

directn dw
numwords dw
destofs dw
destseg dw
startofs dw
startseg dw

[V

;Copy direction

;Number of Words being copied
;Destination buffer's offset address
;Destination buffer's segment address
;Starting buffer's offset address
;Starting buffer's segment address

LVICIS IS RIS U

sframe ends +End of structure

frame equ [bp - bptr] ;For stack addressing
push bp ;Store BP on the Stack
mov bp, sp ;Move SP to BP

mov di, frame.startseg ;Get source segment from stack

mov si, frame.startofs ;Get source offset from stack

mov ax, frame.destseg ;Get destination segment from stack
mov es,ax ;and move to ES

mov bx, frame.destseg ;Get destination offset from stack
mov ax, frame.numwords ;Get numwords from stack

mov cX, frame.directn ;Get direction from stack

mov ch,cl sand send to CH
push bp ;Mark BP
call getgdt ;Determine address of GDT

;-— Variables and Data of the MOVE-Function

GDT equ this word
;—— THIS IS THE GDT (GLOBAL DESCRIPTOR TABLE)
dw 4 dup (?) ; segment Desc. for Dummy-segment
;-- this segment Descriptor describes the GDT itself --——————
dw 4 dup (2}
;—— segment Descriptor of the Source-Area
dw Offffh ;segment length = 64 KB
sa_lo dw (?) ;Lo-Word of the 24 bit-Address
sa_hi db 010h ;Hi-Byte of the 24 bit-Address
db 10010010b ;Data segment in storage with
shighest Priority, Writeable
dw 00000h ;Compatibility Word for 80386
;-— segment Descriptor of the Destination-Area —-==—-———==-——-
dw O0ffffh ;segment length = 64 KB
da_lo dw (?) ;Lo-Word of the 24 bit-Address
da_hi db (?) ;Hi-Byte of the 24 bit-Address
db 10010010b ;Data segment in storage with
shighest Priority, Writeable
dw 00000h ;Compatibility Word for 80386

;-- this segment Descriptor describes the BIOS-Code-segment
dw 4 dup (?)

;-- this segment Descriptor describes the Stacksegment —-----
dw 4 dup (2)

;—— END OF THE GDT

;—— MOVE: Moves Data between memory above and below 1 MB ———=————===—e——
;== Input : DI:SI = Source address (if above 1 MB as Offset to 1 MB)
;j—— ES:BX = Dest. address (if above 1 MB as Offset to 1 MB)

e CH = move ... from --> to
Had 00b = from below 1 MB --> to below 1 MB
P 0lb = from below 1 MB --> to above 1 MB

348

Abacus

7.10 The Cassette Interrupt

10b = from above 1 MB --> to below 1 MB
11b = from above 1 MB --> to above 1 MB
AX = Number of words to be moveg {max. 08000h)
Output : Carry-Flag = 1 : Error
Register : AX, BX, DL, CL, SI, ES and FLAG are changed
Info : This function should not be used to move RAM below the
1-MB boundary

~o Ne Ne Ne e Se S

move: push ax ;Store number of words on the Stack
mov ax,es ;Destination segment address to AX
test ch,1 ;1s destination above 1 MB?
call calc_adr ;form 24 bit Address

mov cs:[bp+28],dl ;store result
mov cs:[bp+26],ax

mov ax,di ;Source segment address to AX
mov bx,si ;Source Offset address to BX
test ch,2 ;1s Source above 1 MB?

call calc_adr ;form 24 bit Address

mov cs: [bp+20],dl ;store result
mov cs: [bp+l18],ax

mov ah,087h ;load Parameter for function call
push cs

pop es ;set ES to CS

pop cx ;Get number of Words from Stack
mov si,bp ;load Offset address of GDT

int 15h ;call RAM moving function

jmp short ende ;back to Turbo

movepa endp

—- GETGDT: Get Address of the GDT and jump to MOVE
-- Input : none

;-— Output : CS:BP = Address of the GDT

;-— Register : only BP is changed

;-- Info : this Routine can only be used in the environment
;- of this Program

getgdt prec near

pop bp ;Get Address of GDT from the Stack
Jmp short move ;Jump to MOVE-Routine

getgdt endp
~

-- CALC ADR: calculates 24 bit (physical) Address
Input : AX:BX = Buffer address to be converted

Zero Flag = 1 : Buffer address beyond 1 MB
: DL = HI-Byte of the Buffer address (bit 16-23)
: BX = Lo-Word of the Buffer address (bit 0-15)
—- Register : AX, BX, DL, CL and FLAGS are changed

Output

P

calc_adr proc near

mov dl,ah ;Hi-Byte of segment address to DL

mov cl,4 ;shift Hi-Nibble of segment
shr dl,cl ;address into Lo-Nibble

jne under lmb ;test if above 1 MB

or dl,010h ;1s above 1 MB

under lmb:shl ax,cl ;segment address times 16
add ax,bx ;add Offset address to it
jnc no_more itest if overflow
inc d1 ;yes

no_more: ret ;back to caller

calc adr endp

349

7. The BIOS PC System Programming

ende label near ;Code stops here
pop bp sRestore BP from atack
;== End
code ends ;End of the CODE segment
end movepa ;End of the assembler program

The C program differs from the BASIC and Pascal programs in that the MOVE
function is also present as an assembler routine, but excluded from the C program
listing. First the MOVE assembler program assembles, then the C program is
compiled. You then merge the two programs using the linker. For this reason the
listing of the C program follows with the source listing of the corresponding
assembler function.

C listing: MOVEC.C

350

[AR AR AR R AR R R AR R AR AR R R AR AR AR KRR R AR R AR AR R AR AR ARAR AR KA AR AR AR A AR/

/* MOVEC */
/* */
/* Task: integrates an Assembler-Routine in C, which can */
/* move memory blocks beyond the 1 MB boundary */
/* */
/* Author : MICHAEL TISCHER */
/* developed on : 8.13.87 */
/* last Update : 9.21.87 */
/* */
/* (MICROSOFT C) */
/* Creation : MSC MOVEC; */
/* LINK MOVEC MOVECA PEPO; */
/* Call : MOVEC */
/* */
/* (BORLAND TURBO C) */
/* Creation: with Project-File with the following content: */
/* movec */
/* moveca.obj */

/i'**iitt*'**t*tt**k****tttt******k*ttt*ttt*tttt***t*k**titt*****t*k*t/

#include <dos.h> /* include Header-Files */
#include <io.h>
#include <conio.h>

extern void AdMove(); /* ADMOVE must be linked */
extern int PeekB(); /* PEEKB must be linked */
/*kt*tiﬁ**ﬂ**ﬂttti*tﬂt*iﬁtttﬁ**ktﬁ**t*iiitttﬂ***ﬂi*iﬁ&**ttt*f*tt*itt*ﬁ/
/* GETPAGE; returns the Address of the current display page */
/* Input : none */
/* Output : see below */

/ttﬁittttttttttitt*ﬁ**ﬂtt**ﬂﬁ*itﬁ**t'ttttttttﬁtttittktttttt*t*tttttttt/
unsigned int GetPAge()

{

union REGS Register; /* Register-Variable for Interrupt call */
Register.h.ah = 15; /* Function number to get Video parameter */
int86 (0x10, &Register, &Register); /* Call Interrupt 10(h) */

return((Register.h.al == 7) 2 0xB0O0O : 0xB800);
}

/ttﬁtttttﬁ*tit*tﬁiﬁtiﬁiﬁtitit*ﬁiﬁ*ﬁi*i**iﬁt*titt*tttﬂt*i*iﬁﬁ*t*ttﬁiﬁ**l

/* CLS : Clear Screen */
/* Input : none */
/* Output : none */

http:return�Register.h.al
http:Register.h.ah

Abacus 7.10 The Cassette Interrupt

/tttttttt****i*ti*ttiititititttttttﬁtt**ﬁttt***itt***ittt****it***tttﬁ/

void Cls()

{

union REGS Register; /* Register-Variable for Interrupt call */
Register.h.ah = 6; /* Function number for Scroll-UP */
Register.h.al = 0; /* 0 is for clear */
Register.h.bh = 7; /* white characters on black background */
Reglister.x.cx = 0; /* upper left display corner */
Register.h.dh = 24; /* Coordinates of the lower */
Register.h.dl = 79; /* right display corner */
int86(0x10, &Register, &Register); /* Call BIOS-Video-Interrupt */

}

/*i*it*it*itt*tittti*iititittt*********ktttttititﬁiittitiiit*****tittt/

/** MAIN PROGRAM **/

/******t**tttttt**ttt*t*tt*i*i*tiiﬂtﬂt*t'*'tittitiititt*****titttt****/
void main ()

{
printf ("\nMOVE (c) 1987 by Michael Tischer\n\n");
printf ("This Program uses the Function 87 (h) of Interrupt 15 (h}"};
printf(* to move memory blocks\nbetween the \“normal\® RAM and the *“);
printf ("RAM beyond the 1 Mega-Byte storage limit.\n");
if (PeekB (0xF000, OXFFFE) != OxFC) /* test if AT */
{
printf("Since this PC is not an AT, but a “);
printf ("PC or XT\nand this PC can not have RAM ");
printf{(*beyond the 1 MB storage limit, ");
printf("this program can not be executed! Sorry...\n\n%);
}
else
{
printf (*After starting the program by pressing a key *);
printf ("the current display\n content is ");
printf("copied directly beyond the 1 MB-limit\n ");
printf ("and then the display is cleared. If another key is “);
printf ("\npressed ,the old display is again *);
printf (“restored.\n\nPlease press a key to ");
printf ("start the Program ...");

getch(); /* wait for a key */
/*-— Copy current Video Rrm beyond 1 MB */
AdMove (GetPage (), 0x0000, 0x0000, 0x0000, 0x2000, 1);

Cls(); /* Clear Screen */
printf ("\nPlease press a key ...");

getch(); /* get a key */
/*-- Restore Video-RAM */

AdMove (0x0000, 0x0000, GetPage(), 0x0000, 0x2000, 2);
printf("\n\nThat's It!\n");

Assembler listing: MOVECA.ASM

;**t*tt*tt**ﬁ*tt*t***ﬁ*******ﬁ**t*ﬁ*tt**tt*i*ﬁ**ttttﬁtt*ﬁﬁ*ﬁ*ﬁﬁ***tt*ﬁ;

i* MOVECA *;
Hhd *;
i Task : Makes the Functions for moving of *;
r Storage blocks beyond the 1MB memory limit *:
i* available for inclusion in C *;
.k *e
; ;
i* Author : MICHAEL TISCHER *;

351

http:Register.h.dl
http:Register.h.dh
http:Register.x.ex
http:Register.h.bh
http:Register.h.al
http:Register.h.ah

7. The BIOS PC System Programming

* developed on : 8.13.87 *;
* last Update : 9.21.87 *;
i* . *;
FAd assembly : MASM MOVECA; *:
'otﬁtttttttﬁtittitt&iiittttltﬁtﬂ'tiﬂt!ﬁtti&ﬁ*'tti&ﬁtﬁii**tt*tttﬁitﬁttﬁﬁ’-
IGROUP group _text ;Grouping of Program-segments
DGROUP group const,_bss, data ;Grouping of Data-segments

assume CS:IGROUP, DE:DGROUP, ES:DGROUP, SS:DGROUP

public _AdMove ;Functions become accessible to other
;programs

CONST segment word public 'CONST' ;this segment accepts all

CONST ends ;readable Constants
_BSS segment word public 'BSS*® ;this segment accepts not all
_Bss ends sinitialized static Variables

_DATA segment word public 'DATA' ;all initialized global and
;static Variables are stored in this

; segment
GDT equ this word ;the Global Descriptor Table
dw 4 dup (2?) ;segment Desc. for Dummy-segment
dw 4 dup (?)
i
;-—- segment Descriptors of the Source-Area
dw Offffh ;segment length = 64 KB
sa_lo dw (2?) ;Lo-Word of the 24 bit-Address
sa_hi db 010h ;Hi-Byte of the 24 bit-Address
db 10010010b sData segment in storage with
shighest Priority, Writeable
dw 00000h ;Compatibility word for 80386
;—- segment Descriptors of the Desﬂination—Area -----------------
dw Offffh ;segment length = 64 KB
da_lo dw (2) ;Lo-Word of the 24-bit-Address
da_hi db (?) ;Hi-Byte of the 24-bit-Address
db 10010010b ;Data segment in storage with
shighest Priority, Writeable
dw 00000h ;Compatibility word for 80386
dw 4 dup (?) ;segment Desc. BIOS-Code-segment
dw 4 dup (?) ;segment Descriptors Stack-segment
_DATA ends

_TEXT segment byte public 'CODE‘' ;the Program segment

;- ADMOVE: Copy Storage Blocks beyond the IMB limit ------------=—==——-
;- Call of C: AdMove(Startsegment, StartOffset, Destsegment,
DestOffset, Size, Direction);
Info : - for DIRECTION the following Codes are accepted:
0 = from below 1 MB --> to below 1 ME
1 = from below 1 MB --> to above 1 MB
2 = from above 1 MB --> to below 1 MB
3 = from above 1 MB --> to above 1 MB
- the number relates to words, not Bytes
and can not be larger than 8000 (h)
- for moving of RAM below the 1-MB border
the Functions MOVEDATA or MEMCPY should

Se Ne N Se oS se s
| T T N I I B |
| A O N A N N B |

So Se Ne e se

- be called

_AdMove proc near
push bp ;store BP on the Stack
mov bp,sp ;move SP to BP
push si ;C expects unchanged SI

352

Abacus

7.10 The Cassette Interrupt

mov
mov
mov
test
call
mov
mov
mov
mov
test
call
mov
mov
mov
push
pop
mov
mov
int

pop
mov

pop
ret

_AdMove endp

-- CALC_ADR: calculates 24 bit (physical) Address

ch, [bp+14]
ax, [bp+8]
bx, [bp+10]
ch,1
calc_adr
da_hi,dl
da_lo,ax
ax, [bp+4]
bx, [bp+6]
ch, 2
calc_adr
sa_hi,dl
sa_lo,ax
ah,087h
ds

es

cx, [bp+12]
si,offset DGROUP:GDT
15h

si
sp, bp
bp

smove Direction to CH

;Destination segment address to AX
;Destination Offset address to BX
;is Destination beyond 1 MB?

;form 24 bit Address

;store result

;Source segment address to AX
;Source Offset address to BX
;1s Source beyond 1 MB?

;form 24 bit Address

;store result

;Parameter for the Function call
;1load

;st ES to DS

;get number of Words

;load Offset address of GDT
;call RAM moving functions

;restore old SI from Stack
;restore Stackpointer

;get BP from Stack

;Return to calling C-Program

-— Input : AX:BX = Buffer address to be converted
Zero Flag = 1 : Buffer address beyond 1 MB

-- Register :

calc_adr proc
mov
mov
shr
jne
or

under 1lmb:shl
add
Jnc
inc

no_more: ret

calc_adr endp

;

H

;

;—— OQutput : DL = HI-Byte of the Buffer address (bit 16-23)
; :

H

AX, BX, DL, CL and F
near

dl,ah

cl,4

dl,cl

under_1lmb

d1,010h

ax,cl

ax,bx

no_more

dl

BX = Lo-Word of the Buffer address (bit 0-15)

LAGS are changed

;Hi-Byte of segment address to DL
;move Hi-Nibble of segment address
;into the Lo-Nibble

;test if beyond 1 MB

;beyond 1 MB

;segment address times 16
;add Offset address

;test if overflow

iyes

;back to caller

’

_text ends
end

;End of the Program-segment
;End of the Assembler-Source

353

7. The BIOS

PC System Programming

Here is the assembler program. No additional program code is required for
integrating the MOVE function because it is built-in.

Assembler listing: MOVEA.ASM

;ttit*it**k*i**t**ttk***itk*t*k**ik'i*iti*ti**t*****tt********t***t**t;

i* MOVER *;
- %, *;
P Task : copies data between RAM below 1 MB and *:
Fad above 1 MB *;
* *:
* Author : MICHAEL TISCHER ,*;
i developed on : 6.8.87 *;
. * last Update s 9.21.87 *;
i* *s
* assembly : MASM MOVEA; *;
* LINK MOVEA; *;
* EXE2BIN MOVEA MOVEA.COM *;
i* *;
i Call : MOVEA *3:

;****i**ii**t**i******ti*iti****i******t**i*********i**it************i;

;== BIOS-segment

;used for Addressing of the

;Device-Codes

bios segment at OF000h

org OFFFEh
gercode equ this byte
bios ends

;Address of the Device-Codes in BIOS

+End of the BIOS-segments

;== Code-segment
code segment para ‘'CODE*

org 100h

;Definition of the CODE-segment

;it begins at Address 100 (h)

;directly after the PSP

assume cs:code, ds:code, es:blos, ss:code

;== Program

movea proc near

; Output Initiation Message

mov dx,offset initm

mov ah,9
int 21h
mov ax,0F000h
mov es,ax
cmp es:gercode, OFCh
Je isat

;—— Device 1s PC or XT, Program doesn't run

mov dx,offset sorrym
Jmp short pcxt

;O0ffset address of the Init message
;output Function number for String
;Call DOS-Interrupt

;segment address of BIOS
;to ES
;1s the device an AT

;YES --> continue to execute Program

;Offset address of Text
;Output message and terminate program

;-— User must activate a key to start the program

isat: mov dx,offset dom
mov ah,9
int 21n
xor ah,ah

354

;0ffset address of the Text
;output function number for String
scall DOS-Interrupt

;read a character from the keyboard

http:MCVEA.COM

Abacus 7.10 The Cassette Interrupt

int 16h ;call BIOS-Keyboard-Interrupt

;-- Move Video-RAM to 1 MB

call getvseg ;Get segment address of Video-RAM
mov di,ax ;and move to DI

xor si,si ;copy starting at Offset address 0
xor bx,bx ;copy after 1MB + 0000:0000

mov es,bx

mov c¢h,1 ;from below 1 MB to above 1 MB
mov ax,2000 ;move 2000

call move ;Words

jec fehler ;on error terminate

;=-- Fill video-RAM with characters

call getvseg ;Get segment address of the Video-RAM
mov es,ax ;and move to ES

xor di,di ;start at Offset address 0

mov cx, 2000 ;f111 the complete Video-RAM with

mov ax,87FEh ;blinking Block-Character

rep stosw

;-- User must activate a key

mov dx,offset userm ;Offset address of the Text

mov ah,9 ;output function number for String
int 21h ;call DOS-Interrupt

xor ah,ah ;read a character from the keyboard
int 16h ;call BIOS-Keyboard-Interrupt

;-— Restore Video-RAM again

xor di,di ;restore 1 MB + 0000:0000
xor si,si
xor bx,bx

mov ch,10b ;from beyond 1 MB to below 1 MB

mov ax, 2000 smove 2000

call move ;Words

jc fehler ;terminate on error

mov ax,4C00h sterminate Program with call of a DOS
int 21h ;function on return of Error-Code 0

error: mov dx,offset errm ;O0ffset address of error message

pecxt: mov ah,9 ;output function number for String
int 21h ;call DOS-Interrupt
mov ax,4C0lh ;jterminate Program with call of a. DOS
int 21h ;function on return of Error-Code 1

movea endp

;-- GETVSEG : returns the segment address of the Video-RAM -

;== Input : none

;-- Output : AX = segment address of the Video-RAM

;-- Register : AX, BH and FLAGS are changed

getvseg proc near

mov ah, OFH ;get function number for Video
int 10h ;call BIOS-Video-Interrupt
cmp al,? ;1s a Mono-Card installed?
jne colvideo ;NO --> Color-Card
mov ax,0B000h ;segment addr. of the mono Video-RAM
ret sback to caller
colvideo: mov ax,0B800h ;segment addr. of color Video-RAM

355

7. The BIOS PC System Programming

ret sback to caller

getvseg endp

MOVE: Moves Data between Storage above and below 1 MB -
Input : DI:SI = Sourceaddress (if above 1 MB as Offset to 1 MB)
ES:BX = Dest address (if above 1 MB as Offset to 1 MB)
CH = move ... from --> to
00b = from below 1 MB --> to below 1 MB
0lb = from below 1 MB --> to above 1 MB
10b = from above 1 MB --> to below 1 MB
11b = from above 1 MB --> to above 1 MB
AX = Number of words to be moved (max. 08000h)
Output : Carry-Flag = 1 : Error
Register : AX, BX, DL, CL, SI, ES and FLAG are changed

Ne Ne Ne Ne SE e Se Se Se Ne Se e Se

-- Info this function should not be used for moving

- from RAM below the 1 MB limit

move proc near
push ax srecord number of Words on the Stack
mov ax,es ;Destination segment address to AX
test ch,1 ;1s Destination above 1 MB?
call calc_adr ;form 24 bit Address
mov da hi,dl ;store result
mov da_lo,ax
mov ax,di ;Source segment address to AX
mov bx,si ;Source Offset address to BX
test ch,2 ;1s Source above 1 MB?
call calc_adr ;form 24 bit Address
mov sa_hi,dl ;store result
mov sa_lo,ax
mov ah,087h ;Parameter for the Function call
push ds s load
pop es ;set ES to DS
pop cx ;read number of Words from Stack
mov si,offset GDT ;load Offset address of GDT
int 15h ;call RAM move function
ret ;back to caller

;-- Variables and Data of the MOVE-Function
GDT equ this word

7-— THIS IS THE GDT (GLOBAL DESCRIPTOR TABLE) =====—==——=————
dw 4 dup (?) ;segment Descs. for Dummy-segment
;-- this segment Descriptor describes the GDT itself —-=————--
dw 4 dup (2)

;-- segment Descriptor of the Source-Area

dw Offffh ;segment length = 64 KB
sa_lo dw (2) ;Lo-Word of the 24 bit-Address
sa_hi db 010h ;Hi-Byte of the 24 bit-Address
db 10010010b ;Data segment in storage with
shighest Priority, Writeable
dw 00000h ;Compatibility Word for 80386
;—— segment Descriptor of the Destination-Area ---=-===——==—-——-
dw Offffh ;segment length = 64 KB
da_lo dw (?) ;Lo-Word of the 24 bit-Address
da_hi db (2?) ;Hi-Byte of the 24 bit-Address
db 10010010b ;Data segment in storage with
;highest Priority, Writeable
dw 00000h ;Compatibility Word for 80386
;—- this segment Descriptor describes the BIOS-Code-segment
dw 4 dup (?)
;-- this segment Descriptor describes the Stack segment —--—-—
dw 4 dup (?)

;=- END OF THE GDT

move endp

356

Abacus 7.10 The Cassette Interrupt

~

-- CALC_ADR : calculates 24 bit (physical) Address
Input : AX:BX = Buffer address to be converted

Zero Flag = 1 : Buffer address above 1 MB

;

H

;-- Output : DL = HI-Byte of the Buffer address (bit 16-23)
;- : BX = Lo-Word of the Buffer address (bit 0-15)
;-- Register : AX, BX, DL, CL and FLAGS are changed

calc_adr proc near

mov dl,ah ;Hi-Byte of the segment address to DL
mov cl,4 ;Hi-Nibble of the segment address
shr dl,cl ;shifted to Lo-Nibble
jne under_lmb ;test if above 1 MB
‘ or dl,010h ;lies above 1 MB

under_lmb:shl ax,cl ;segment address times 16
add ax,bx ;add Offset address
jnc no_more ;test for overflow
inc dl ;yes

no_more: ret ;back to caller

calc_adr endp

;== Data

13,10, “MOVE (c) 1987 by Michael Tischer%,13,10,13,10
“This Program uses the Function 87(h) of Interrupt *
"15(h) to copy memory blocks“,13,10,"between ‘normal' *
“RAM and RAM above the 1-Megabyte boundary*.%,13,10,"$"

initm

dom “The Program copies first the current display *
“content directly",13,10,"after the 1-MB-boundary and "
“the fills the screen with characters.",13,10

“After a key has been activated, the old *

“display content *,13,10,"is restored and the Pro"
“gram terminated.",13,10,"Please press a key, to "
“start the Program ...$"

sorrym “Since this computer is not an AT, *

"but a PC or",13,10,"XT, and these *

"PCs can not have storage beyond the 1-MB limit,"
13,10, "this program can not be started! *
"Sorry...",13,10,%s"

666866 6566666 EBEEE

userm 13,10," Please press a *

“key $"

&6

errm db “WARNING ! Error on access to RAM above 1 MB"
db 13,10,%s$"

;== End

code ends ;End of the CODE-segment
end movea ;End of the Assembler-Program.

357

7. The BIOS PC System Programming

7.11 Accessing the Keyboard from the BIOS

Interrupt 16H provides three functions to read the keyboard and keyboard status.
The BIOS keyboard functions are very limited: No BIOS functions exist for
removing characters from the keyboard buffer or renaming keys. DOS functions
can perform these operations.

BIOS-proof keys

Some key combinations cannot be read by BIOS as key codes because they execute
commands. Activating the <PrtSc> or <Print> key calls BIOS interrupt SH. This
starts a routine which sends the current screen display to a printer, producing a
hardcopy.

The <Ctrl><Num Lock> keys stop the complete system until the user presses
another key. The keyboard buffer ignores the <Ctri><Num Lock> keys and the
subsequently pressed key, so programs cannot read these keys.

Pressing the <Ctrl><Break> key combination calls interrupt 1BH. Normally the
current program stops and returns to DOS. To prevent this, this interrupt can be
directed to a routine within the application program which continues program
execution if the routine consists of an IRET assembly language instruction only.

ATs and a few advanced PC/XTs have the <Sys Req> key. Its activation calls
interrupt 15H by passing the value 8500H to the AX register. When the user
releases the key, the AX register then receives the value 8501H. The value 85H in
the AH register represents the function number of interrupt 15H. After starting the
system, function 85H of the BIOS interrupt 15H consists only of an IRET
instruction; pressing the <Sys Req> key has no visible result.

Control codes

358

Most people know that any ASCII code can be entered from the keyboard using the
<Alt> key and the keys of the numeric keypad. Few users know about character
entry with the help of the <Ctrl> key. When used in connection with other keys,
this key can enter ASCII codes smaller than code number 32. The following figure
shows which keys can be accessed.

Abacus

7.11

Accessing the Keyboard from the BIOS

Dec | Synbol [Keystrokes |[Dec | Symbol [Keystrokes
16 . ctrl P
| ctrl 2
(Nul) 17 - |Ctr1 0
1 Ctrl A 18 ctrl R
© }
2 Q Ctrl B 19 n ctrl S
3 ' Ctr1 C 20 (ﬂ‘ ctrl T
4 Ctrl1 D
¢ 21 § ctrl U
5 * Ctrl E
22 mm |CtF1V
6 ‘ Ctrl F
23 1 Ctrl W
7 ® [Ctrl 6 =
BEL 24 $ Ctrl X
8 Ctrl H,
Backspace, 25 l ctrl Y
Shift-
B Backspace 26 . Ctrl Z
9 /N |Ctrl I EOF
./ 27 ctrl I,
TAB - Esc,Shift-
18 ctrl J, Esc,Ctrl-
Ctrl Esc
ESC
LE 28 ctrl \
11 d ctrl K L—
29 s |Ctrl]
12 Q Ctrl L
F k{:] A ctrl 6
13 ctrl M, ., [|31 ctrl -
& | shiet’ S v
32 [Space Space,
CR Shift-
14 .ﬁ ctrl N Space,
Ctrl-Space,
15 Te! Ctrl1 0 Alt-Space

Character input with the <Ctrl> key

359

7. The BIOS PC System Programming

Function 0: Read keyboard

ASCII

Interrupt 16H normally receives a call when a program expects user input of one or
more characters. If a character was already entered before the function call, the
keyboard buffer empties this character and passes it to the calling program. If there
is no character in the keyboard buffer, function O waits until a character has been
input and then returns to the calling program. The caller can determine the
character or activate a key from the contents of the AL and the AH registers.

If the AL register contains a value other than 0, it contains the ASCII code of the
character. The AH register contains the scan code of the active key. The code in the
AL register corresponds to the ASCII codes for character output on the screen.
Some differences occur in the control keys:

Code Key (s)
8 <Backspace>
9 <Tab>
10 <Ctrl><Return>
13 <Return>
27 <Esc>
Scan codes

The scan code in the AH register indicates the number of the active key, where the
keys on the keyboard are numbered starting with 0. Since PC, XT and AT
keyboards differ, this is unimportant for most programs. Scan codes of the various
keyboards can be found in the Appendices of this book.

Extended key codes

360

If the AL register contains the value 0 after the call, the AH register indicates an
extended keyboard code. The difference between the ASCII code and the extended
keyboard code lies in the fact that certain keys (e.g., the cursor keys) cannot fit
within the PC's 256-character set. The following table provides an overview of
extended keyboard codes:

Code (s) | Key(s)

15 <Shift><Tab>

16-25 <ALlt><Q>, <W>, <E>,<R>, <T>, <¥>,<U>,<I>, <O>, <P>
30-38 <ALt><A>, <S>, <D>, <F>, <G>, <H>, <J>, <K>, <L>
44-50 <Alt><Z>, <X>, <C>, <V>, , <N>, <M>

59-68 <F1>-<F10>

71 <Home>

72 <Cursor Up>

73 <Page Up>

75 <Cursor Left>

77 <Cursor Right>

Abacus 7.11 Accessing the Keyboard from the BIOS
Code (s) | Key(s)
79 <End>
80 <Cursor Down>
81 <Page Down>
82 <Insert>
83 <Delete>
84-93 <Shift><F1>-<F10>
94-103 <CEtrl><F1>-<F10>
104-113 | <Alt><F1>-<F10>
115 <Ctrl><Cursor Left>
116 <Ctrl><Cursor Right>
117 <Ctrl><End>
118 <Ctrl><Page Down>
119 <Ctrl><Home>
120-131 | <Alt><1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<0>
132 <Ctrl><Page Up>

Key combinations not contained in this table cannot be sensed using the BIOS
keyboard functions, since they don't generate keyboard codes.

Function 1: Read keyboard

Function 1 also reads the keyboard. Unlike function 0, function 1 leaves the
preceding character in the keyboard buffer. Repeated calls of function 1 or function
0 read the keyboard again. Place the value 1 in the AH register to call function 1.
In contrast to function 0, function 1 immediately informs the calling program with
the zero flag after the function call if a character is available or not. If the zero flag
equals 1, no character was available. If the zero flag resets, the AL and the AH
registers contain information about the activated key. As in function 0, the AL
register contains the value O if the user activated an extended key, and a value
unequal to O if the user pressed a "normal” key. The AH register contains the scan
code of normal keys; extended keys place their codes in the AH register.

Function 2: Read control keys

Function 2 has a completely different task. It reads the status of certain control
keys and conditions (e.g., <Insert>). Place the number 2 in the AH register to call
the function. The keyboard status can be found in the AL register after the function

call.

361

7. The BIOS PC System Programming

1

1=Right SHIFT key pressed|
l . ' L 1=Left SHIFT key pressed

1=CTRL key pressed
1=ALT key pressed
1=SCROLL LOCK on
1=NUM LOCK on
1=CAPS LOCK on
1=INSERT on

Keyboard status byte

Demonstration programs

The following programs demonstrate the various functions of BIOS keyboard
interrupts as presented here. The four programs can be divided into two groups.
The first three programs are written in the higher level languages used throughout
this book. They call the various functions of BIOS keyboard interrupts for their
own uses. The fourth program is an assembler program. It modifies the BIOS
keyboard interrupt functions and processing, and acts as a resident program which
can be accessed at a keypress.

Checking key status

362

All three higher level programs make a subroutine or a function available for
reading characters from the keyboard. This alone is nothing special, since these
languages have their own instructions that serve the same purposes. The important
feature of the function is that it accepts other jobs in addition to the original task
of reading characters. It displays the status of the keyboard functions <Insert>,
<Caps Lock> and <Num Lock> in the upper right hand corner of the screen. This
is especially useful for XT and PC owners, since most keyboards don't indicate the
key status. AT keyboards and some XT keyboards provide light emitting diodes
(LED) which indicate the status of these keys. You never really know if the
<Insert> or <Caps Lock> mode is on or not.

Each program begins with a routine which reads the status of the keyboard
functions through function 2 of BIOS keyboard interrupt 16H. Since the program
only uses the <Insert>, <Caps Lock> and <Num Lock> modes, the program only
views the three highest level bits in the keyboard status byte. Based on this status
byte, a flag initializes for every keyboard function, which indicates the status of
one of these functions or modes within the program. It is reversed when compared
with the current mode. For example, if the <Insert> mode is switched off, the flag
applying to it changes to OFF. An explanation of this follows below.

Abacus 7.11 Accessing the Keyboard from the BIOS

Calling the interrupt function

After initializing the internal flags, the actual routine for keyboard reading can be
called. It also uses function 2 of the BIOS keyboard interrupt to read the keyboard
function status. It then compares the current status of each individual function with
the previous status stored in a flag. During its first call after the initialization
routine, it determines if the status of all three functions has changed since its
previous status. The change in status causes the routine to display the new status
on the screen.

This explains the reason for the flag reversal in the initialization routine. It allows
display of the keyboard function status on the screen during the first call of the
keyboard routine, and not after it changed by pressing a key.

Now the routine can proceed to its actual task and read the keyboard. It uses
function 1 of the BIOS keyboard interrupt to detect whether a key is available in
the keyboard buffer of BIOS. If this is not the case, the program jumps to the
beginning of the routine and reads the keyboard function status again. This creates
a loop which runs until a keypress occurs. This loop ensures that any status
change is documented immediately on the screen.

Reading the keys

If a character appears in the BIOS keyboard buffer the loop terminates and BIOS
keyboard interrupt function 2 reads the key. The last step of this routine tests for
an extended key code. If this is the case, the program adds 256 to the code to signal
the calling routine that an extended keyboard code was received. Then control
returns to the calling routine.

This routine reads characters from the keyboard and displays them on the screen.
This process repeats until the user presses a certain key. If the user presses the
<Num Lock>, <Caps Lock> or <Insert> key, the screen immediately displays the
result.

A centralized keyboard routine as presented here can be used in other programs for
additional tasks. For example, with the help of this routine a macro conversion can
change one key into a string of characters. Another application could display help
text on the screen when the user presses a certain key. Lotus 1-2-3® and dBASE®
use this method for displaying help screens.

Note: A small problem occurs with keyboard flag output. Since displaying
keyboard flags on the screen changes the cursor's position,
subsequent screen output from the program occurs at different
locations than expected. These can disturb the screen display. To
prevent this, the keyboard routine must determine the current cursor
position before the keyboard flag display. Then the routine must
restore the cursor position to its old value after displaying keyboard
status. The problem of color is very similar. Here the flag output

363

7. The BIOS

PC System Programming

assumes a certain color and the old color must be restored after the
output. The problem is that none of the three languages has a
command to determine the current color. In Pascal programs for
keyboard reading, only a special procedure can set the color by
recording the colors in a variable and setting it with a command.
With these variables the keyboard routine restores the current color
after display of the individual flags.

BASIC listing: KEYB.BAS

364

100 AR AR R AR AR AR R AR AR AR AR AR R AR AR R AR AR AR R AR R AR AR AR AR AR Rk AR ARk Rk kk ko
110 ** KEYB *
120 ** * ¢
130 ** Task : makes a subroutine available which *
140 ** reads a character from the keyboard. The *!'
150 '+ status of the control keys *
160 '* (INSERT, CAPS, NUM) are displayed *
170 ** on the screen *
180 ** Author ¢ MICHAEL TISCHER *
190 '* developed on : 7.22.87 *
200 ** last Update : 9.21.87 *
210 AR R AR AR R R AR AR R AR R R R R AR R R R R AR R AR R AR AR AR AR AR R R AR AR R AR AR R AR AR AR AR
220 '

230 CLS : KEY OFF

240 PRINT"WARNING: This Program can only be started if GWBASIC was *
250 PRINT"started from the DOS level with <GWBASIC /m:60000>.%

260 PRINT : PRINT"If this is not the case, please input <s> for Stop."
270 PRINT*Else press any key...“;

280 A$ = INKEYS$: IF A$ = "s" THEN END

290 IF A$ = “" THEN 280

300 GOSUB 60000 *install function for Interrupt call

310 CLs ‘Clear Screen
320 PRINT"TAST (c) 1987 by Michael Tischer®™ : PRINT

330 PRINT"You can input some characters and change the status of the NUM,*
340 PRINT"CAPS and INSERT mode, where every change is documented in *
350 PRINT*the upper right corner of the display."

360 PRINT"The input of <RETURN> terminates the Program..." : PRINT
370 PRINT"Your Input: *;

380 GOSUB 50000 ‘initialize keyboard-Flags

390 GOSUB 51000 ‘read a character

400 IF LEN(Z$) = 2 THEN 390 ‘on extended Code do nothing

410 PRINT 2$; ‘output characters

420 IF ASC(2$) <> 13 THEN 390 ‘on RETURN terminate

430 PRINT

440 END

450

50000 AR R AR R AR R AR R R R R R R R R AR R R AR AR AR AR R AR R AR R AR AR R AR R R AR AR AR AR
50010 *'* initialize keyboard-Flags *
50020 '* *e
50030 ‘* Input: none *
50040 ‘* Output: none *!
50050 '* Info : the Variable 2% is used as a Dummy *
50060 *'* the Status of the keyboard Flags is stored in **
50070 ** variables INSERTS, CAPS$ and NUM$% *
50080 AR AR AR R R R R R AR R AR AR R AR R A AR R R AR AR AR AR AR AR AR AR KRR RR A AR R AR A h ok
50090 °*

50100 FKT$=2 ‘get function number for keyboard status
50110 INR$=&H16 ‘call BIOS-keyboard-Interrupt 16 (h)

50120 CALL IA(INRS,FKT$,FLAGSS,2%,2%,2%,2%, 2%, 2%, 2%, 2%, 2%, 2%)
50130 IF FLAGS% AND 128 THEN INSERT$ = O ELSE INSERTS = -1
50140 IF FLAGSS AND 64 THEN CAPS% = 0 ELSE CAPS% = -1

50150 IF FLAGSY AND 32 THEN NUM$ = O ELSE NUM§ = -1

50160 RETURN ‘back to caller

50170 °*

51000 ‘A AA R AR A AR R AR AR R R AR AR R AR AR R AR R AR AR AR AR R AR R AR KA AR R AR AR AR AR A AR A A XL

Abacus

7.11 Accessing the Keyboard from the BIOS

51010 ** get a character from the keyboard and maybe output *
51020 '* Flag-Status >
51030 ‘'* >
51040 '* Input: none *!
51050 '* Output: Z$ = the character read *!
51060 '* Info : the Variable 2% is used as Dummy *
51070 ** 1f 2$ is two character long, an extended *
51080 ** keyboard code was input. The first character of the*'
51090 *«* string is in such a case the NUL-character, *
51100 ** and the second character indicates the Code of the **
51110 '+ extended key >
51120 AR AR AR AR R R RN R R AR AR R RN R AR RN RN RARRN RN R A AN AR AR RARRN R A AN A AR AR Ak wok)
51130 °*

51140 FKT$=2 ‘get function number for keyboard status
51150 INR$=g§H16 'call BIOS-keyboard-Interrupt 16(h)

51160 CALL IA(INRS,FKT%,FLAGSS,2%,2%,2%, 2%, 2%, 2%, 2%, 2%, 2%, 2%)

51170 IF INSERT% = ((FLAGS% AND 128) = 128) THEN 51230

51180 INSERTS% = NOT INSERT% 'Insert-Status has changed

51190 COLMN$ = 75 ‘Column for Insert-Text

51200 FLAGS% = INSERTS ‘Status of Insert-Flags

51210 FTEXT$ = "“INSERT" ‘Flag-Text

51220 GOSUB 52000 ‘output Flag-Text

51230 IF CAPS% = ((FLAGSS AND 64) = 64) THEN 51290

51240 CAPS% = NOT CAPS% 'Caps—%atus has changed

51250 COLMN% = 69 ‘Column for Caps-Text

51260 FLAGS = CAPSS ‘Status of Caps-Flag

51270 FTEXT$ = " CAPS * 'Flag-Text

51280 GOSUB 52000 ‘output Flag-Text

51290 IF NUM$% = ((FLAGS% AND 32) = 32) THEN 51350

51300 NUM$ = NOT NUM$ ‘Num-Status has changed

51310 COIMNS = 66 ‘Column for Num-Text

51320 FLAGS = NUM$ ‘Status of Num-Flag

51330 FTEXT$ = “NUM“ ‘Flag-Text

51340 GOSUB 52000 ‘output Flag-Text

51350 FKT$=1 'test function number for characters
51360 INR%=&H16 ‘call BIOS-keyboard-Interrupt 16 (h)

51370 CALL IA(INRS, FKT$,2%,2%,2%,2%,2%,2%,2%, 2%, 2%, 2%, FLAGREGY)

51380 IF (FLAGREG% AND 64) = 64 THEN 51140°'no key --> get Flags

51390 2$ = INKEYS

51400 RETURN ‘back to caller

51410 *

52000 ITARARRR R AR KA R KA R KA R R AR KRR AR AARKR AN AR R AR R AR AR A RN R AR RN RN RRRAARA KRS
52010 '* Set Cursor Position *e
52020 '* - *
52030 *'* Input: FLAG% = Status of Flags either on or off *e
52040 ** FTEXT$ = Flag-Text *
52050 *'* COLMN% = is the new column for Cursor *
52060 '* CLINE%® = is the new line for Cursor *e
52070 '* Output: none *1
52080 '* Info : the Variable 2% is used as a Dummy *
52090 TR AR AR R AR R AR AR R R AR AR KRR AN RN KA AN R AR R AN R R R A AR R R RN R AR AR A AR R AR AR RO
52100 *

52110 CURCLINE$ = CSRLIN-1 ‘record current Cursor line
52120 CURCOIMNS = POS (0)-1 ‘record current Cursor column
52130 LOCATE 1,COLMN$ ‘Cursor position for Flag-Text
52140 IF FLAGS% THEN COLOR 0,7 ELSE COLOR 0,0

52150, PRINT FTEXT$

52160~ LOCATE CURCLINES$+1, CURCOLMN%+1 ‘set old Cursor position
52170 FKT$=2 ‘set function number for Cursor position
52180 INR%=&H10 ‘call BIOS-Video-Interrupt 10 (h)

52190 SEITES = O ‘set Cursor in display page 0

52200 CALL IA(INR%,FKT%,2%,SEITES, 2%,2%,2%, CURCLINES, CURCOLMNS, 2%,2%,2%, 2%)
52210 COLOR 7,0

52220 RETURN ‘back to caller

52230

60000 TR RR R R AR AR AR AN R A AR R AR R AR KRR AR R AR AARRRARAR R A AR AR AR A AR R R A ARk o
60010 '* initialize the Routine for Interrupt-call *e
60020 *'* *
60030 '* Input: none *
60040 '* Output: IA is the Start address of the Interrupt-Routine *

365

7. The BIOS PC System Programming

60050 ' A A AR KR AKR AR KK R AR AR R AR KA KA R AR AR AR AR AR AR R AR AR AR AR AR R AR Rk R A AR AR kA

60060 *
60070 IA=60000! ‘Start address of the Routine in the BASIC-Segment
60080 DEF SEG ‘set BASIC-Segment

60090 RESTORE 60130

60100 FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X$: NEXT ‘poke Routine
60110 RETURN ‘back to caller

60120 *

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28,139,118, 20,138, 44,139,118, 18
60170 DATA 138, 12,139,118, 16,138, 52,139,118, 14,138, 20,139,118, 10
60180 DATA 139, 52, 85,205, 33, 93, 86,156,139,118, 12,137, 60,139,118
60190 DATA 28,136, 36,139,118, 26,136, 4,139,118, 24,136, 60,139,118
60200 DATA 22,136, 28,139,118, 20,136, 44,139,118, 18,136, 12,139,118
60210 DATA 16,136, 52,139,118, 14,136, 20,139,118, 8,140,192,137, 4
60220 DATA 88,139,118, 6,137, 4, 88,139,118, 10,137, 4, 7, 31, 93
60230 DATA 202, 26, O, 91, 46,136, 71, 66,233,108, 255

Pascal listing: KEYP.PAS

(********i*******i*******t***it**ttt**it***i**t*it**i****iii*t***i*iti)

* KEYP @ *}
{* *}
{(* Task : makes a function available for reading a *}
{* character from the keyboard and outputting *}
{* the Status of the control keys (INSERT, *}
(* CAPS, NUM) on the display. *})
(* *}
{* Author ¢ MICHAEL TISCHER *}
{* developed on : 07/08/87 *}
{* last Update : 06/10/89 *}

(R AR AR R AR AR AR AR R RR R AR RN R R AR R AR NI RRN RN R AK AR AR R ARR RN KRNk A kR AR Ak)

program KEYP;

Uses Crt,Dos; { Add Crt, Dos units }
{(sv-} { Suppresses string length check }
type FlagText = stringl[6]; { used for passing the Flag-Name }
const FZ =1; { Line in which the Flags are output }
Fs = 65; { Column from which Flags are output }
FlagFore = 0; { Foreground color of Flags }
FlagBck = 7; { Background color of Flags }

{** BIOS keyboard status bits **#****xdakakkdhdkrhhhokihkhrhssan)

SCRL = 16; { Scrolllock bit }

NUML = 32; { NumLock bit }

CAPL = 64; { Capslock bit }

INS = 128; { Insert bit}

{** Codes of some keys as presented by GETKEY ******axdkakkksai}

BEL =7; { Code for bell character }

Bs = 8; { Code for Backspace character }

TAB =9; { Code for Tab character }

LF = 10; { Code for Linefeed }

CR = 13; { Code for Return }

ESC = 27; { Code for Escape character }

Fl = 315; { Code for F1 key }

F2 = 316; { Code for F2 key }

F3 = 317; { Code for F3 key }

F4 = 318; { Code for F4 key }

FS = 319; { Code for F5 key }

Fé = 320; { Code for F6 key }

F7 = 321; { Code for F7 key }

366

Abacus

7.11 Accessing the Keyboard from the BIOS

F8 = 322; { Code for F8 key }
F9 = 323; { Code for F9 key }
F10 = 324; { Code for F10 key }
cup = 328; { Code for Cursor up }
CLEFT = 331; { Code for Cursor left }
CRIGHT = 333; { Code for Cursor right }
CDOWN = 328; { Code for Cursor down }
var Insert, { Status of INSERT flag }
Num, { Status of NUM flag }
Caps : boolean; { Status of CAPS flag }
ForeColor, { current foreground color }
BckColor, { current background color }
key : integer; { Code of key read }
(t*ﬁ!tt*tﬁtﬁﬁtﬁtiiﬁtﬁtﬁtiﬁtiﬁttt'!ﬁtﬁit.tt'tﬁtﬁ*ﬁttttttti"tttttt!**ti)
{* NEGFLAG: negate Flag and output Text *}
{* Input : s.u. *}
{* Output : the new Status of the Flags (true = on, false = off) *}
('tﬁi*'ttt*tﬁﬂi'tﬁttﬁ*ttki'ﬁﬂtttt'tﬂtﬁt*t'tttitlit"k't'itititttkﬁtttﬁ)
function NegFlag(Flag : boolean; { the last Status of the Flags }
FlagReg, { current Status of the Flag (0 = off) }
Column, { Column for the name of the Flags }
Cline : integer; { Line for the Names of the Flags }
Text : FlagText) : boolean; { Name of the Flags }
var CurCline, { current Line }
CurColumn : integer; { current Column }
begin
if (Flag and (FlagReg = 0)) or { test if Status }
(not (Flag) and (FlagReg <> 0)) then { of the Flags has changed }
begin { YES }
CurCline := WhereY; { record current Line }
CurColumn := WhereX; { record current Column }
gotoxy (Column, Cline); { Cursor to Position for Flag-Name }
if FlagReg = 0 then { is Flag reset? }
begin { YES }
NegFlag := false; { Result of the function : Flag off }
textcolor (0); { Foreground color is black }
textbackground (0) ; { Background color is black }
end
else
begin { Flag is now on }
NegFlag:=true; { Result of the function : flag on }
textcolor (FlagFore) ; { Foreground color is FLAGFORE}
textbackground (FlagBck) { Background color is FLAGBCK }
end;
write (Text); { Output name of the flag }
gotoxy (CurColumn, CurCline); { restore old cursor position }
textcolor (ForeColor); { restore old foreground color }
textbackground (BckColor) { restore old background color }
end
else
NegFlag := Flag { Status of flags has not changed }
end;

(AR AR R AR AR R KRR R AR R AR KR KR RN R AR R AR AR AR AR RRR KRR R AR KRR KRR IR A AR A AK)

{* GETKEY: Read a character and output the flag status *}
{* Input : none *}
{* Output : Code of the key < 256 : normal key *}
{* >= 256 : extended key *}

(lﬂttttﬂ'tttﬂttﬂ*.ﬁt'tﬁt.'*tQtﬁ*tt.ttlﬁt'ﬂﬁ#t*tt#tﬂttt'tii'ﬁtttﬂttttt')
function Getkey : integer;

var Regs : Registers; { Register variable for interrupt call }
keyRec : boolean; { indicates if key already received }

367

7. The BIOS ' PC System Programming

begin
keyRec := false; { no key received }
repeat
Regs.ah := $2; { read function number for keyboard status }
intr($16, Regs); { call BIOS keyboard interrupt }

(t# Adjust flags to new status ttt*tﬁ#t#t#titﬁt'#'itti*tt**ttttiittt}
Insert := NegFlag(Insert, Regs.al and INS, FS+9, FZ, °'INSERT');

Caps := NegFlag(Caps, Regs.al and CAPL, FS+3, F2, * CAPS ');

Num := NegFlag{(Num, Regs.al and NUML, FS, FZ, 'NUM‘);

Regs.ah := $1; { function number for character ready? }
intr($16, Regs); { call BIOS keyboard interrupt }
if (Regs.flags and FZero = 0) then

begin

KeyRec := true;
Regs.ah := 0;
intr(s16, Regs);

if (Regs.al = 0) { is zero flag set 2 }
then Getkey := Regs.ah or $100 { YES }
else Getkey := Regs.al; { NO }
end;
until keyRec; { repeat until a key is received }

end;

[EAAAAALAALAAALALASEALEEEEEE RS RLEREE it iRttt ettt sitssd)

{* INIKEY: initialize keyboard flags *}
{* Input : none *}
{* Output : none *}
{* Info : the keyboard flags are inverted from the current *}
{* status. This outputs their current *}
{* status during the next call of the GETKEY function. *}

[FH AR AR R AR R AR K K KKK AR I I KA K AR AR KRR RIKRIRRAR IR KA AANA R KK KRR RRXK XK |

procedure Inikey;

var Regs : Registers; { Register variable for interrupt call }

begin
Regs.ah := $2; { Read function number for keyboard status }
intr($16, Regs); { call BIOS keyboard interrupt }
if (Regs.al and INS <> 0) then Insert := false { INSERT flag }
else Insert := true; { set }
if (Regs.al and CAPL <> 0) then Caps := false { CAPS flag }
M else Caps 1= true; { set }
if (Regs.al and NUML <> 0) then Num := false { NUM flag }
else Num := true { set }

end;

(R KRR R AR A KRR AR KA KR KRR AKX R KA RNRARR R AR RN KRR KK KRR R RI KN KRR R AN KA K RANNR KRN |

{* SCOLOR: sets foreground and background colors for display *}
{* Input : see below *}
{* Output : none *}
{* Var. : the color is stored in the global variables FORECOLOR *}
{* and BCKCOLOR *}
{* Info : this procedure must be called for setting the color *}
{* so that after the output of the keyboard flag status, *}
{* the current text color can be restored *}
{* since in TURBO no functions exist for sensing *}
(* this color *}

R AR R A AR AR R KRR AR KR KK AR AR AR KR RA R R AR KRR R AR AR R KRR AR AR IR KRR AN R KRR RN N AN}

procedure Scolor (Foreground, Background : integer);

begin
ForeColor := Foreground; { Record foreground color }
BckColor := Background; { Record background color }
textcolor (Foreground) ; { Set foreground color }
textbackground (Background) { Set background color }
end;

368

Abacus 7.11 Accessing the Keyboard from the BIOS

(i.ti'*ﬁi*iii'.*k*ﬁ*ﬁﬁt*ﬁtﬁ.ititiitk*itiii*iﬁiﬁ.ti'*ﬁ.tiiti..*ﬁ*ittt*ﬁ}

{* MAIN PROGRAM *}

{***ttt*tit*Qttit*tti*tittﬁi*tﬁtﬁtttﬁttt**tttt*t***ﬁiitﬁt*ﬁiiﬁti*ti*ﬁi)

begin

Inikey; { Initialize keyboard flags }
Scolor(7,0); { Color is white on black }
clrscr; { Clear screen }

writeln(#13#10'KEYP (c) 1987 by Michael Tischer');
writeln(#13#10'A few characters can be input now and switch '+
' INSERT-, CAPS- or NUM-');
writeln(‘mode on or off. The status of the three '+
‘modes is always displayed in‘');
writeln('the upper right corner of the screen.');
writeln('Pressing the <RETURN> or the <F1>-key terminates the '+
‘program...‘');
write (#13#10'Your Input: ‘);

repeat { Input loop }
key := Getkey; { Get key }
if (key < 256) then write(chr (key)) { Output (if normal) }
until (key = 13) or (key = Fl); { Repeat until F1 or CR }
writeln;

end.

C listing: KEYC.C

/ﬁtﬁ*******ﬁtﬂkﬁt*ﬁtttk.ttk*t*Qﬁ*Q.k*t**ﬁt*ﬁ'tttttt*k*t*ﬁ'ﬁttfﬁttk*t**/

/* KEYC */
/* */
/* Task : provides a function for reading a */
/* character from the keyboard and to output */
/* the Status of the control keys (INSERT, */
/* CAPS, NUM) on the display. */
/* */
/* Author : MICHAEL TISCHER */
/* developed on : 8/13/87 */
/* last update : 6/09/89 */
/* */
/* (MICROSOFT C) */
/* Creation : MSC TASTC; */
/* LINK TASTC; */
/* Call : TASTC */
/* */
/* (BORLAND TURBO C) */
/* Creation : Make sure that Case-sensitive link is OFF in */
/* the Options menu/Linker option */
/* Select RUN menu */

[AR KRR IR AR AR AR R AR R AR AR AR R AR AR KA R AR A RARR R AR KRR R AR KA TNRARAR A KRR KX/

#include <dos.h> . /* include Header-Files */
#include <io.h>
#include <bios.h>

/*== Type definitions */
typedef unsigned char byte; /* Create a byte */
/*== Constants */
/*-- Bit layout in BIOS keyboard status */
#define SCRL 16 /* Scrolllock bit */
#define NUML 32 /* Numlock bit */
#define CAPL 64 /* CapsLock bit */
#define INS 128 /* Insert bit */
#define FALSE 0 /* Constants make reading of the */
#define TRUE 1 /* Program text easier */

369

7. The BIOS PC System Programming

#define F2 0 /* Line in which the Flags should be output */
#define FS 65 /* Column, in which Flags will be output */
#define FlagColour 0x70 /* black characters on white ground */
/*-- Codes of some keys as returned by GETKEY () */
#define BEL 7 /* Bell character code */
#define BS 8 /* Backspace key code */
#define TAB 9 /* Tab key code */
#define LF 10 /* Linefeed code */
#define CR 13 /* Return key code */
#define ESC 27 /* Escape key code */
#define F1 315 /* F1 key code */
#define F2 316 /* F2 key code */
#define F3 317 /* F3 key code */
#define F4 318 /* F4 key code */
#define FS 319 /* F5 key code */
#define F6 320 /* F6 key code */
#define F7 321 /* F7 key code */
#define F8 322 /* F8 key code */
#define F9 323 /* F9 key code */
#define F10 324 /* F10 key code */
#define CUP 328 /* Cursor up code */
#define CLEFT 331 /* Cursor left code */
#define CRIGHT 333 /* Cursor right code */
#define CDOWN 328 /* Cursor down */
/*-- global Variables */
byte Insert, /* status of INSERT flag */

Num, /* Status of NUM flag */

Caps; /* Status of CAPS flag */
/ﬁ.ﬁﬂkktttiti’tt!.t.tttﬂltltﬂtl.kt.t.tttltkﬁtﬁtﬂﬁtﬂﬁﬁitﬁ!ﬁliiﬁti'ﬁilﬁti/
/* GETPAGE: get the current display page */
/* Input : none */
/* Output : see below */

[AR ARk AR KK A R MK AR R R AN X AR R A KRR K A KRR KRR R KRR R KRR AR R KRN KR RRR RN R AR AN/

byte GETPAGE ()

{

union REGS Register; /* Register variable for interrupt call */
Register.h.ah = 15; /* function number */
intB86(0x10, &Register, &Register); /* call interrupt 10(h) */
return(Register.h.bh); /* Number of current display page */

}

SR KRR R AR KA KRR AR R A R AR AN R R AR KR KRR R AR K KRR A RN KA AR AR KRR R R KRR KRN R AR/

/* SETPOS: sets the position of cursor in current display page */
/* Input : see below */
/* Output : none */
/* Info : the position of the blinking cursor changes */
/* with the call of this function only if */
/* display page indicated is the current display page */

JHEE KKK KKK A AR AR ARR KA KRR AR KRR R AR AN AR KRR R RN R AR AR AR AR AR AR R R AR AR AR A AN/

void SetPos(byte Column, byte Line)

{

union REGS Register; /* Register-Variable for Interrupt call */
Register.h.ah = 2; /* function number */
Register.h.bh = GETPAGE(); /* Display Page */
Register.h.dh = Line; /* Display Line */
Register.h.dl = Column; /* Display Column */
int86(0x10, &Register, &Register); /* call Interrupt 10(h) */

}

SRR R KKK KK KR KRN RN KRN R AR NN AR AR A R AR AR KA RN KR RN KK KRR A RAR KRR KR KRR KRN KN Kk [

370

http:Register.h.dl
http:Register.h.dh
http:Register.h.bh
http:Register.h.ah
http:return(Register.h.bh
http:Register.h.ah

Abacus

7.11 Accessing the Keyboard from the BIOS

/* GETPOS: Gets the Position of Cursor in the current Display Page */
/* Input : none */
/* Output : see below */

/tttttittﬁﬁttttlt*ﬂﬁittttkttitttttﬁttﬁtﬂtitttttil*ltttt'tﬁttktttttit't/
void GetPos(byte * CurColumn, byte * Curline)

{

union REGS Register; /* Register variable for interrupt call */
Register.h.ah = 3; /* function number */
Register.h.bh = GETPAGE(); /* Display page */

int86 (0x10, &Register, &Register); /* call Interrupt 10(h) */
CurColumn = Register.h.dl; / Result of the function */
Curline = Register.h.dh; / Read from the register */

}

JRR AR KR AR AR KR RR R KR AR KA AR AR KRR AR R R R KRR R R A AR R KRN K R KRR R AR AR A KRR AR KRR XX/

/* WRITECHAR: writes a character with an Attribute to */
/* the current cursor position in current display page */
/* Input : see below */
/* Output : none */

/tttttntttttﬁtntﬂﬂtkntﬂtttkktnttantnlntttt-ttttttktﬁtttttittkttt'tt"t[
void WriteChar (char Zcharacter, byte Colour)

{

union REGS Register; /* Register variable for interrupt call */
Register.h.ah = 9; /* function number */
Register.h.bh = GETPAGE(); /* Display Page */
Register.h.al = Zcharacter; /* the character for output */
Register.h.bl = Colour; /* Color of character to be output */
Register.x.cx = 1; /* output character only once */
int86(0x10, &Register, &Register); /* call Interrupt 10(h) */

}

SRR KRR R AR KA AR AR AR AR KA AR R AR KRR AR R AR KR AR KRR KRR AN R AR R R AR KRR A AR KRR RAR AN/

/* WRITETEXT: write a character chain with constant color */
/* starting at a certain location in the current */
/* Display Page */
/* Input : see below */
/* Output : none */
/* Info : Text is a Pointer to a character-Vector which */
/* contains the Text to be output and is terminated with */
/* a '\0' character. */

[KA AR R AR KRR AR AR A R AR KR AR R RN KR R AR KRR R KA R KRR KRR R KRR R KA AR KRR R AR R ARk A&/

void WriteText (byte Column, byte Line, char *Text, byte Colour)

{
union REGS InRegister,

OutRegister; /* Register variable for interrupt call */
SetPos (Column, Line); /* set Cursor */
InRegister.h.ah = 14; /* function number */
InRegister.h.bh = GetPage(); /* Display Page */
while (*Text) /* output Text until *'\O*' character */
{
WriteChar(* ', Colour); /* Indicate color for character */
InRegister.h.al = *Text++; /* the character for output */
int86 (0x10, &InRegister, &OutRegister); /* call Interrupt */

}
}

[Rk AR AR KRR R R AR kR kAR R R AR AR AR R R R AR AR AR AR AR AR R R AR AR AR AR AR AR AR AN/

/* CLS: erase current Display Page */
/* Input : none */
/* Output : none */

SRR AR AR AR RN R KRR kAR A R A AR KRR KRR AR AR R AR R R KRR R AR R AR AR AR RN AR AR R AR AR/

371

http:InRegister.h.al
http:InRegister.h.bh
http:InRegister.h.ah
http:Register.x.ex
http:Register.h.bl
http:Register.h.al
http:Register.h.bh
http:Register.h.ah
http:Register.h.dh
http:Register.h.dl
http:Register.h.bh
http:Register.h.ah

7. The BIOS PC System Programming

void Cls()

{
union REGS Register; /* Register variable for interrupt call */
Register.h.ah = 6;
Register.h.al = 0;
Register.h.bh = 7;
Register.x.cx = 0;
Register.h.dh = 24;
Register.h.dl = 79;
int86 (0x10, &Register, &Register);

}

/* function number for scroll up */

/* 0 stand for clear */

/* white letters on black background */
/* upper left display corner */
/* Coordinates of the lower */
/* right display corner */

/* call BIOS-Video-Interrupt */

JRE AR AR AR AR AR AR AR AR AR R R R KRR KRR KR AR AR AR AR RRRR AR AR AR AR A AR AN KRR KA/

/* NEGFLAG: negate Flag and output Text */
/* Input : see below */
/* Output : the new Status of Flags (TRUE = on, FALSE = off) */

[R AR AR R AR R AR KRR R KRR R KR AR R R AR KRR RRRR R AR KRR AR AN KRR ARRR AR KRR AR AR/

byte NegFlag(byte Flag, unsigned int FlagReg,
byte Column, byte Line, char * Text)

{

byte Curline,
CurColumn,
Colour;

/* current Line */
/* current Column */
/* for Output of Flag-Text */

if (!(Flag == (FlagReg != 0)}} /* did Flag change? */
{ /* YES */
GetPos (&CurColumn, &CurLine); /* get current Cursor position */
WriteText (Column, Line, Text, (Flag) 2 0 : FlagColour);

372

SetPos (CurColumn, CurLine); /* set old Cursor position */
return(Flag ~1); /* reverse Bit 1 of Flags */
}
else return(Flag); /* everything remains the same */

}

[AR AR AR R KRR AR AR A KRR AR AR KRR AR KRR AR A AR KRR AR AR AR KRR RN AR RN AR KA KRR AR AKX AN/

/* KEYREADY: Tests for a character from the keyboard */
/* Input: none */
/* Output: TRUE if a key is pressed, otherwise FALSE */

JEREIKRRK KRR R KRR AR KRR RKRR AR AR R KRR R AR AR KRR AR ARRRAR AR AR RRRR AR AR R KRR AR AKX/

int KeyReady ()

{
#ifdef _ TURBOC__

struct REGPACK Register;

Register.r ax =1 << 8;
intr (0x16, &Register);

return(! (Register.r flags & 64));
felse

return(bios keybrd(KEYBRD READY));
#endif

}

[AR R R KA KRR AR KRR KRR KRR RA KR A AR KRR KR KR RRR KR RN KRR KRR AR AARKRRR AR KA AR K AR/

/* GETKEY: Read a character and Output Flag-Status */
/* Input : none */
/* Output : Code of key read < 256 : normal key */
/* >= 256 : extended ke y */

[R R AR R AR R AR AR AR KRR AR KRR KRR RN KR KRR AR KRR KR AR R AR R AR KRR KRR KR AR AR/

http:Register.h.dl
http:Register.h.dh
http:Register.x.ex
http:Register.h.bh
http:Register.h.al
http:Register.h.ah

Abacus

7.11 Accessing the Keyboard from the BIOS

unsigned int GetKey ()

{

union REGS Register; /* Register Variable for Interrupt call */
do

{

Register.h.ah = 2; /* read function number for keyboard status */

int86 (0x16, &Register, &Register); /* call BIOS keyboard interrupt*/
Insert = NegFlag(Insert, Register.h.al & INS, FS+9, FZ, “INSERT");
Caps = NegFlag(Caps, Register.h.al & CAPL, FS+3, FZ, " CAPS “);

Num = NegFlag(Num, Register.h.al & NUML, FS, FZ, "NUM");

}

while (!KeyReady());

Register.h.ah = 0; /* read function number for key */
int86(0x16, &Register, &Register); /*call BIOS-keyboard-Interrupt*/
return((Register.h.al) ? Register.h.al : Register.h.ah | 256);

}

JRR AR Ak R R AR KRR R AR R AR AR AR R AR A R AR R KRR R KRR R AR AR AR AR AR AR R RN AR AR R AR KK/

/* INIKEY: initialize keyboard-Flags */
/* Input : none */
/* Output : none */
/* Info : the keyboard-Flags are reversed compared with the */
/* current status. This makes it possible that their */
/* current Status is output on the next call of the */
/* GETKEY-function. */

[AR AR AR AR AR R KRR R R KRR AR R R R R AR AR R AR AR R AR AR RN AR AR AR R AR R AR AR/

void Inikey ()

{

union REGS Register; /* Register variable for interrupt call */
Register.h.ah = 2; /* read function number for keyboard status */
int86 (0x16, &Register, &Register); /* call BIOS-keyboard-Interrupt*/
Insert = (Register.h.al & INS) ? FALSE : TRUE ; /* reverse the */

Caps = (Register.h.al & CAPL) ? FALSE : TRUE ; /* current content */
Num = (Register.h.al & NUML) ? FALSE : TRUE ;
}

SRR R KA AR KRR R KRR KRR KR AR AR AR AR R R AR R KR KRR KRR KR AR AR R R AR KRR R KRR R AR RN R AN KK/

/** MAIN PROGRAM *x/

[AR AR R E R KK AR R KRR KA AR R A AR R AR AR R AR KA RN KR AR KA RN KR AR R AR R RAR KRR A ANR AN/

void main()

{
unsigned int key;

Cls(); /* Clear Screen */
SetPos (0,0); /* Cursor to left upper screen corner */
printf(*KEY (c) 1987 by Michael Tischer\n\n");

printf("You can input some characters and at the same time change *);
printf (“INSERT-, CAPS-\nor NUM-status. Every change “);

printf (*is displayed in the upper right corner of the screen.\n%);
printf (“\n<RETURN> or <F1> terminates the Input...\n\n%);

printf(“Your Input: *);

Inikey(); /* initialize keyboard-Flags */
do
{
if ((key = Getkey()) < 256) /* read key */
printf (“$c", (char) key); /* output (if normal) */
}
while (!(key == CR || key == Fl)); /* repeat until F1 or CR */

printf(“\n%);
}

373

http:Register.h.al
http:Register.h.al
http:Register.h.al
http:Register.h.ah
http:Register.h.ah
http:Register.h.al
http:return�Register.h.al
http:Register.h.ah
http:Register.h.al
http:Register.h.al
http:Register.h.ah

7. The BIOS PC System Programming

A resident interrupt driver

374

The next assembler program is a resident interrupt driver. Once a resident program
is installed in memory, other programs or data cannot overwrite it. Another reason
for the name resident lies in the program's ability to point to an interrupt in its
own routine. Instead of DOS, BIOS or another interrupt routine called up to now,
the program calls its own interrupt driver routine. Before examining how this is
done, the assembler program should be explained.

The SHOWCLK program displays the current time on the screen every time the
user presses a certain key after installing it. This occurs until another key is
depressed. The key which causes the time to be displayed must be passed to the
program in the command line during its call. For example, entering the following
at the DOS prompt invokes the program and tells the program to display the time
when the user presses the <F10> key on the XT, or the <F8> key on the AT
keyboard. When the key is pressed, the time appears on the screen at line 1 starting
at column 40:

showclk 68 /11 /c40

The following removes the SHOWCLK program from memory (note the lack of
parameters):

showclk

The only stipulation is that the actuating key must be one that generates an
extended key code (e.g., a cursor key or function key). The program sets the default
clock position to the upper right corner of the screen. This can be changed by
passing parameters in the command line during the program call. Another facet of
the program is its ability to re-install itself during a new call, if the user desires.

'-ﬁ’k**t*tﬂ'ﬁtﬁ**iﬂt'kﬁ***ﬂt'ﬁ*'ﬁﬁ*t*ﬂ**t'ﬁt***ﬂt*tt*tﬁ*tt***ﬁt*iﬁt**ﬁﬁ*ﬂﬂﬁﬂt;

LINK SHOWCLK
EXE2BIN SHOWCLK SHOWCLK.COM

Call : SHOWCLK [Key-code] [/lLine] [/cColumn]

’
PR AR AR AR A AR AR AR AR AR AR AR AR AR R AR AR RN AR AR AR AR R AR KK AR RN AR R AR R AR NN,

i* SHOWCLK *:
i *;
o * Task : Outputs the time on the display after pressing*;
* a key which generates an extended key code L
i* stops when another key is pressed *;
. *e
H ;
* Author : MICHAEL TISCHER *7
* developed on : 8/1/87 *3
i last Update : 9/21/87 *;
-k *e
’ ’
* assembly : MASM SHOWCLK *;
;i *l
ok *e
r r
'.a *'
it *
’

;== Constants
TAB equ 9
LF equ 10
CR equ 13

;== here starts the actual Program

http:SHOWCLK.COM

Abacus

7.11 Accessing the Keyboard from the BIOS

code segment para ‘'CODE' ;Definition of the CODE-Segment

org 100h

assume cs:code, ds:code, es:icode, ss:code
start: Jmp showinit ;Call of the Initialization-Routine
;== Data (remain in memory)
alterint equ this dword ;old interrupt vector 16(h)
intaltofs dw (?) ;O0ffset address interrupt vector 16(h)
intaltseg dw (?) ;Segment address interrupt vector 16 (h)
extkey db (1) ;extended keyboard-code, on which
keycode db (?) i;the program is called
linepos equ this word
column db 75 ;Line and column in which the time
line db 0 ;1s output
buffer dw 5 dup (2) ;stores the characters from the clock
;== this is the new kyboard-interrupt (remains in memory) ==========
newint proc far

jmp short newi 1

db “MT* ;Identification of the program
newi_l: or ah,ah ;read character (Function 0)?

je newi 2 ;YES --> get character and test

jmp aint ;NO --> call old interrupt
newi 2: pushf ;for smulation of an interrupt call

call cs:[alterint] ;call old interrupt

cmp ax,cs:word ptr extkey ;was it the specified key?

je showtime ;YES --> display clock

jmp aiend ;NO --> back

;-- the specified key was activated
showtime: pushf ;all registers which are changed

push ax ; must be stored

push bx

push cx

push dx

push di

push si

push es

push ds

cld ;on sring commands count up

mov ah,15 ;read current display page

int 10h ;call BIOS video-interrupt

mov ah,3 ;read current cursor position

int 10h ;call BIOS video-interrupt

push dx ;store on the stack

push cs ;Code-sgment to the stack

pop ds sreturn as DS

mov dx,linepos ;set cursor position

mov ah,2 ;for the time

int 10h ;call BIOS video-interrupt

push cs ;Code-segment to the stack

pop es ;return as ES

mov cx,5 ;read 5 characters

mov di,offset buffer ;Address of the character-buffer
getz: mov ah,8 sread 1 character

int 10h ;call BIOS video~interrupt

375

7. The BIOS

PC System Programming

376

stosw sstore character in the buffer
inc di1 ;next display column

mov ah,2 ;set cursor position

int 10h ;call BIOS video-interrupt
loop getz ;get next character

mov dx,linepos iset cursor position

mov ah,2 ;for the time

int 10h ;call BIOS video-interrupt
mov ah,2CH ;get time from DOS

int 21h ;call DOS-interrupt

mov bl,70h ;color of clock: inverted
push cx ;record minutes

mov al,ch ;change hours to ASCII
call bia ;and output

mov al,":" ;output colon

call prz

pPop ax ;get minutes

;function number for character output

xchg bl,ah ;exchange AH and BL
int 10h ;call BIOS video-interrupt
inc dl ;next column
mov ah,2 ;set cursor position
int 10h ;call BIOS video-interrupt
dec di ;soutput another character ?
jne storz sYES --> STORZ
pop dx ;get old cursor position
mov ah,2 sand set again
int 10h ;call BIOS video-interrupt
pop ds ;restore all stored registers
pop es
pop st
pop di
pop dx
pop cx
pop bx
pop ax
popf
xor ah,ah
Jmp newi_2
aint: pushf ;simulate interrupt-routine
call cs:[alterint] ;call next keyboard-routine
aiend: ret 2 ;flag-register
newint endp

BIA: change binary to ASCII and output

Input : AL = the number to be converted
Output : none
Register : CX, AX, DL and FLAGS are changed

proc near
mov «¢l,10 ;we work in the decima
xor ah,ah ;prepare 16 bit divisi
div «cl ;divide AX by CL

or ax,3030h ;change result to ASCI
push ax ;store number

call prz ;soutput character and
pop ax ;read number

mov al,ah ;move character to AL
call prz ;output character and
ret sback to caller

endp -

PRZ: output character and increment cursor position
Input : BH = Display page for Output
AL = the character for output

1 system
on

I

advance cursor

advance cursor

Abacus

7.11 Accessing the Keyboard from the BIOS

it BL = Attribute (color) of the character
;== Output : none
;-— Register : CX, AH, DL and FLAGS are changed

prz proc near
mov ah,9 ;function number for character output
mov cx,1 ;output character only once
int 10h ;call BIOS video-interrupt
mov ah,3 ;read current cursor position
int 10h ;call BIOS video-interrupt
inc di ;increment cursor column
mov ah,2 ;set
int 10h ;call BIOS video-interrupt
ret ;back to caller
prz endp
instend equ this byte ;1f SHOWCLK installed, memory can be

;released starting at this location

;== Data (can be overwritten by DOS}

badp db *Invalid Parameter“,CR,LF,"“$"

installm db “SHOWCLK (c) 1987 by Michael Tischer*,13,10,13,10
db “SHOWCLK was installed and can be deactivated “,13,10
db “with a new call *,13,10
db *(but without Parameters)*,CR,LF,%$"

deactivm db “SHOWCLK was deactivated®,CR,LF,%$"

allinm db "SHOWCIK is already installed*,CR,LF,"$"

noinstm db “no SHOWCLK installed",CR,LF,"$"

partab dw 63 dup (?) ;Address of command line parameter

;== program (can be overwritten by DOS)

deactivate label near ;turn SHOWCLK off
mov ax,3516h ;get content of interrupt vector 16
int 21h ;call DOS-~Function
cmp word ptr es:[bx+2],"TM" ;test if SHOWCLK-program
jne noinst ;SHOWCLK not installed --> End

mov dx,es:intaltofs ;O0ffset address of interrupt 16 (h)
mov ax,es:intaltseg ;Segment address of interrupt 16(h)

mov ds,ax sto DS
mov ax,2516h ;reset content of
int 21h ;interrupt vector 16(h) old routine
mov ah,4%h ;release storage
int 21h ;of old SHOWCL again
push cs ;store CS on the Stack
pop ds srestore DS
ent fe: mov dx,offset deactivm ;Message: program removed
xor al,al ;program performed correctly
jmp showend ;to end of program

noinst: mov dx,offset noinstm ;Error-Message: no SHOWCLK installed
Jmp short noinerr ;output Error-Message and terminate

;——- Start and Initialization-Routine

showinit proc near

clid son String commands count up
mov di,offset partab ;Address of Parameter-Table

3717

7. The BIOS

PC System Programming

378

paraout:

nextpara: add

getline:

get column:mov

pareval:

allinst:

badpara:
noinerr:

install:

call parmtest
or dl,dl
Je deactivate

;evaluate Parameter

;count Parameter/determine Address
;1f no Parameter indicated
;YES —-> remove last SHOWCL

mov bx,offset partab
mov si, [bx]

lodsw

and ah,11011111b

cnp ax,“L/*

je getline

cmp ax,“C/*

je getcolumn

;—— Parameter must be Key code

cmp extkey, 0
je badpara

push bx

push dx

si,2
call asciibin
pop dx

pop bx

jc badpara

or ah,ah

jne badpara
mov keycode,al
mov extkey,0

bx, 2

dec dl

jne paraout

jmp short install

mov di,offset line
mov dh, 24
jmp pareval

di,offset column
mov dh,75
push bx

push dx

call asciibin
pop dx

pop bx

jc badpara

or ah,ah

jne badpara

cmp al,dh

ja badpara

mov [di],al

jmp short nextpara

mov dx,offset allinm
jmp short noinerr

mov dx,offset badp
mov al,l
jmp showend

cmp extkey, 0

jne badpara
mov ax,3516h
int 21h

;Address of the Parameter-Table
;get Address of a Parameter

;get first two chars of parameter
;lower case letters --> upper case
;1s it line indication ?

;YES --> GETLINE

;is it column indication?

;YES —-> GETCOLUMN

;Key code discovered?
+YES --> Error

;save Pointer in PARTAB

;save remaining number of Parameters
;set SI to beginning of number
;convert Code to binary

;get remaining number of Parameters
;get Pointer in PARTAB

;no number found --> Error
snumber larger than 255?
;YES -=> wrong number
number o.k. record it
;announce Key code discovery

~

;Address of the next PARTAB-Element
;decrease Parameter counter

;last Parameter? NO --> continue
;Parameter o.k. —-> install program

;Address of Line-Variable
;Maximum value for Line
;evaluate Parameter

;Address of the Column-Variable
;Maximum value for column

;store Pointer in PARTAB

;store remaining number of Parameters
;convert Code to binary

;get remaining number of Parameters
;get Pointer in PARTAB

;no number found --> Error
sNumber larger than 2552

;YES --> wrong number

;Number larger than permitted?
;YES --> wrong number

;Number o.k. therefore store
;evaluate next prameter

;Error-Message: already installed
;output Error-Message and terminate

;Error-Message: invalid parameter
;Error-Code
;terminate program

;Key~-code discovered?

;NO —--> Error

;get content of interrupt vector 16
;call DOS-function

7.11 Accessing the Keyboard from the BIOS

ASCIIBIN:
Output

Register

proc

xor
mov
xor
mov
or
je
cmp
jb
cmp
ja
mul
jc
and
add
inc
Jmp

clc
ret

stc
ret

endp

PARMTEST:

Register

word ptr es:[bx+2],*TM* ;test if already installed
allinst ;YES --> Error

intaltseg,es ;segment and offset address of the
intaltofs,bx ;stored-interrupt vector 16(h)
dx,offset newint ;Offset address new interrupt routine
ax,2516h ;change content interrupt vector 16
21h ;to user routine

dx,offset installm ;Message: program installed

ah,9 ;soutput function number for string
21h ;call DOs-function

only the PSP, the new interrupt-Routine and the -----—----
Data must remain resident.

mov dx,offset instend ;calculate number of paragraphs

mov cl,4 ; (each 16 Bytes) at the disposal

shr dx,cl ; of the program

inc dx

mov ax,3100h ;terminate program with End-Code 0

int 21h ;remain resident

mov ah,9 ;output string

int 21h ;call DOS-function

mov ah,4Ch ;function number for program

int 21h ;terminate program with End-Code
showinit endp ;End of PROG-procedure

convert ASCII number to binary (max. 16 Bit) --————--———-

DS:SI = Address of Number as ASCII-string
AX = the converted Number

Carry-Flag = 1 : Number too large

AX, BX, CX, SI and FLAGS are changed

the ASCII-string must be ended with Code 0

near

bh,bh ;Hi-Byte of every position
cx,10 ;we use decimal system
ax,ax ;preliminary result

bl, [si] ;get next number

bl,bl ;NUL-Code (End)?

ab_ende ;YES =-> number converted
bl,“0% stest if number

ab_ret ;NO --> Error

bl, "9* ;test if number

ab_err ;NO --> Error

cx ;preliminary Number * 10
ab_ret ;Number > 65535 --> Error
bl,1111b ;convert number to binary
ax, bx ;add to preliminary Number
si ;process next number

short nx_num

;no Error
;back to caller

sError
;back to caller

capture Parameter in the Command Line —=-====——————e———
DS:0000 = Address of PSP

DL = number of parameters found

AX, CX, DX, SI and FLAGS are changed

379

7. The BIOS

PC System Programming

Address of every parameter is stored in Array-PARTAB as
Offset address to DS. In addition behind every
parameter an ASCII-Code 0 is stored.

proc near

cld
Xor
mov

mov
or

Je parmtend

dx, dx
si,80h

cl,byte ptr [si]

cl,cl

son string commands count up

;number of parameters found

;address where number of characters
;of the command line is stored in PSP
;get number of character

shave parameters been passed?

;NO --> End

inc si ;SI points to start of command line
xor ch,ch ;in CX is the number of characters
getez: lodsb ;move next character to AL
cnp al,®* “ ;+is it a space ?
je space ;YES --> SPACE
cmp al,TAB ;1s it a Tab-character?
je space ;YES --> SPACE
7-- no Space or Tabulator
or dh,dh ;was last character space ?
jne nextz ;NO --> process next character
inc dl ;increment number parameters found
not dh sindicates no " " or TAB
mov ax,si ;calculate address of
dec ax sparameter
stosw ;store in parameter-Table
nextz: loop getez ;get next character
mov byte ptr (si],0 ;NUL-character as parameter-End
parmtend: ret sback to caller
space: or dh,dh ;was last character space character?
Je nextz ;YES --> process next character
;—— found next parameter
xor dh,dh ;this character was a space
mov byte ptr [si-1],0 ;NUL-character as parameter-End
jmp short nextz ;process next character
parmtest endp
;== End
code ends ;End of CODE-Segment
end start

Program flow

380

The file header describes the DOS call of the program. As mentioned above, there
are two basic options for the call: If you call the program without parameters in
the command line, it tries to remove any previously installed SHOWCLK. If you
call the program with parameters, SHOWCLK installs itself. The first parameter
must be the scan code which the user wants to trigger the clock display. The line
and column parameters indicate the clock display area on the screen. If these two
parameters are missing, the clock appears in the upper right hand corner of the

screen.

Abacus

7.11 Accessing the Keyboard from the BIOS

The constant definition follows the file header to ease your reading of the listing.

The code segment definition follows, which accepts the program code and the data.
The ORG 100H instruction, which places the beginning of the program at address
100H, indicates that SHOWCLK is a COM program. A COM program is a good
choice for a resident interrupt driver because of the compactness of having data,
code and stack in one segment.

The label START shows the first executable instruction of the program. It jumps
first to the installation routine of SHOWCLK which has the name SHOWINIT.

This routine loads the address of a table and calls the procedure PARMTEST. It
counts the number of arguments passed in the command line and stores the starting
addresses of the individual parameters into the passed table. After this procedure
ends, SHOWINIT tests whether parameters were passed in the command line. If
this is not the case, it jumps to DEACTIVATE which removes the old
SHOWCLK from memory.

Assuming that arguments were passed to SHOWCLK in the command line,
SHOWINIT now reads the passed parameters and tests them for accuracy. If it finds
a correct key code, this code passes to the KEYCODE variable. If the indication of
a line or column is found, it's tested for an acceptable value. If YES, it moves to
the COLUMN or LINE variable. If an error and unknown parameter or an illegal
coordinate occurs during the argument checking, the program ends with an error
code. If the parameters evaluated are correct, a jump goes to the label INSTALL. A
test searches for a keyboard code. If no keyboard code exists, the program ends with
an error message. If it's available, the program first tests if SHOWCLK is already
installed.

DOS function 35H determines the address of the BIOS keyboard interrupt (the
interrupt pointing to a user routine). It returns the segment address of the interrupt
routine in ES, and the offset address in the BX register. If SHOWCLK was already
installed, an interrupt routine must be located at this address which is constructed
exactly like the interrupt routine which is installed, since SHOWCLK always
installs the same interrupt routine.

The routine starts with a 2-byte jump instruction to the routine itself. An
identification code follows, consisting of two ASCII characters, which can be the
initials of the author. In this case the initials are MT. INSTALL tests the address
of the interrupt routine plus 2 for the ASCII codes of the initials MT. The test is
not for MT, but for TM, since the low byte is always stored before the high byte.
If the code exists, SHOWCLK is already installed and the program terminates with
an error message. If INSTALL finds another bit pattern, it means that no previous
version of SHOWCLK existed. INSTALL can then proceed with installation.

381

7. The BIOS PC System Programming

Installing SHOWCLK

First INSTALL stores the address of the old interrupt routine in the INTALTOFS
and INTALTSEG variables. Next the interrupt 16H points through DOS function
25H to the NEWINT routine. The new interrupt routine of interrupt 16H is called
if a program wants to call one of the three functions of this interrupt. A message
tells the user that the program is now installed, and the DOS prompt returns. It's
important that DOS not release the memory occupied by SHOWCLK for other
programs. This could result in another program overwriting the new interrupt
routine, and a system crash during the call of interrupt 16H. To prevent this, the
program terminates with a DOS function which makes a portion of this program
resident and prevents overwriting by other programs. Function 31H must be
informed how many 16-byte paragraphs must be protected, starting from the
beginning of the PSP.

Protecting memory

Once installed, the new interrupt routine must stay protected from changes that
other registers could make to it. At the same time, SHOWCLK's installation
routine must remain unprotected. SHOWCLK places the interrupt routine before
the installation routine. Only the number of bytes between the beginning of the
PSP and the last byte of the interrupt routine, converted into paragraphs, must be
passed to function 32H. The new interrupt routine cannot be overwritten.

This interrupt routine must also contain variables. They are stored between the
program start instruction and the interrupt routine code proper. This ensures that
the variables remain resident in memory. At the beginning of the interrupt routine
(NEWINT) is a jump instruction followed by the identification code. When a
program calls interrupt 16H, a jump occurs directly to label NEWI_1. NEWI_1
tests for whether the function number passed to interrupt 16H in the AH register is
0. This is the only function applicable to this program, since the function reads
characters from the keyboard buffer. If you called one of the two other functions,
the program calls the old interrupt 16H and passes control to the calling program.
If function 0 is called, it reads a character from the keyboard with the old keyboard
interrupt. The program then compares this character with the key indicated when
the program call occurred. If this is not the case, control returns to the calling
program. If it was the indicated key, preparations begin to display the time on the
screen.

Stack activity

382

First the contents of all registers which change during the course of the program
are stored on the stack so they can be restored to the calling program. Then the five
characters of the display in the position where the time appears are read from the
screen and stored. DOS function 2CH reads the time and converts it to an ASCII
string for display. After the time appears on the screen, the old keyboard interrupt
waits for a keypress. When this occurs, the characters formerly located where the
time appears return to their old positions. The registers return from the stack and

Abacus 7.11 Accessing the Keyboard from the BIOS

the program jumps to the beginning of the routine to read in a key, display the
time again, or pass the key to the calling program.

Deactivating SHOWCLK

The last component to be examined is the program routine called when
SHOWCLK is removed from memory. The installation routine calls it if no
parameter was passed in the command line and begins with the DEACTIVATE
label. The routine tests for whether SHOWCLK is already installed. If this isn't
the case, it cannot be removed, and the program terminates with an error message.
If SHOWCLK was already installed, the keyboard interrupt must point to the old
interrupt routine. The memory containing the old SHOWCLK routine must be
released.

The problem is that the new SHOWCLK, which should remove the SHOWCLK
already in memory, doesn't know the address of the old interrupt routine of
interrupt 16H. It's stored in the old SHOWCLK in the variables INTALTOFS and
INTALTSEG. The two variables are in completely different programs, but there is
a simple method of reading these variables. The old SHOWCLK lies in a different
memory segment from the new SHOWCLK, but the offset addresses of the
variables and routines in both programs are identical. Since you know the segment
address of the old SHOWCLK (the segment address of the interrupt routine), the
contents of the variables INTALTOFS and INTALTSEG can be read from the old
SHOWCLK and the interrupt 16H can again point to the original interrupt routine.
Memory can be released again through the segment address of the old SHOWCLK
routine with the help of DOS function 49H. This concludes the task of
DECACTIVATE and the program can terminate after displaying a message.

Examine the listing step by step and read the comments carefully. This is
important, because the program can serve as a basic framework for any resident
interrupt driver. We'll discuss another form of resident program (the TSR
program) in Chapter 8.

383

7. The BIOS PC System Programming

7.12 Accessing the Printer from the BIOS

BIOS offers three functions, called by interrupt 17H, for communicating with one
or more printers interfaced to the PC. These functions have an advantage over the
DOS printer output functions: They can specify the printer to which the output
should go. The printer's number (0, 1 or 2) must be loaded into the DX register
during the function call. After each of the three function calls, the printer status
passes to the AH register. Each bit in this status byte provides information about
the printer's task, whether it still has paper, etc.

0 bit
| |—{1=Time out error
1=Transfer error
1=Printer ONLINE
O=Printer OFFLINE
1=Printer out of -paper
1=Receive mode selected

O=Printer busy

7 6 5 4

Printer status byte

Time out

384

A time out error occurs when BIOS tries to send data for a certain amount of time
to the printer, but the printer refuses the data and returns a busy message (bit 7
becomes 0). The number of tries BIOS makes before signaling a time out error
depends on the contents of address 0040:0078 in RAM. ROM uses this address for
storing variables. The value 20 which BIOS enters into these memory locations
during the system boot is different from the repeat factor of 20. The value in these
memory locations must be multiplied first by 4, then by 65,536. A value of 20
actually refers to 5 million attempts. This number is relative since the loop which
checks the printer has only a few assembly language instructions processed very
quickly by the CPU. This results in a waiting period of only a few seconds before
the BIOS reports a time out error. If working with the BIOS routine seems to
create more time out errors than usual, try increasing the value in the memory
locations mentioned above so that BIOS makes more attempts. This may help
communication between BIOS and the printer.

Various printer conditions can change a series of bits in the status byte. An ON
LINE (ready to print) printer sets bits 7 and 4. If the printer switches to OFF LINE
(e.g., for page advance) then bit 7 and bit 4 reset and bit 3 sets, indicating a
transmission error.

Abacus 7.12 Accessing the Printer from the BIOS

The program must decide whether new data should be sent to the printer, whether
printer output should end or further steps should be taken.

Function 0: Send character

Function 0 transmits a character to the printer. Load the function number into the
AH register and the ASCII code of the character you want sent into the AL
register. After the function call the AH register contains the status byte. If the
character transmission/printing failed, the AH register contains the value 1.

Function 1: Initialize printer

The second function initializes the printer ports. You should always execute this
function before sending data to the printer for the first time. Load the function
number 1 into the AH register; no other arguments are required.

Function 2: Read printer status

Function 2 loads the status byte into the AH register. As mentioned above, the
status byte tells you the current status of the printer. Load the function number 2
into the AH register; no other arguments are required.

Demonstration programs

The programs listed in this section use the BIOS printer interrupt in the same way
as the programs listed earlier to demonstrate the BIOS keyboard interrupt. The
three higher level language programs listed here send strings to a printer using the
BIOS printer interrupt. The fourth program is an assembly language routine which
adapts the BIOS printer interrupt to its own routine.

The three higher level language programs are similar in organization and are
divided into five sections. One section is the main program. The other four
sections call the various functions of the BIOS printer interrupt. These sections
include a routine for initializing a specific printer interface, a routine for character
or string output and a routine which displays an error message on the screen if
needed. The main program initializes printer interface 0, then prints a test string on
the printer connected to this interface. If an error occurs during one of these two
operations, an error message is displayed on the monitor. This message can be
delayed if no printer is attached to the PC, since BIOS continues addressing the
printer, and gives up after a few attempts. If nothing happens for some time, don't
panic. The program will eventually report its error status.

385

7. The BIOS PC System Programming

BASIC listing: PRINTB.BAS

JOO A A kAR R AR AR R R RN R R AR AR AR AR R AR KRR R AR R AR R R R R R R R R R R AR R ARRN AR RA R A AR AKX

110 ** PRINTB *e
120 LK 3 * 0
130 ** Task : makes a subroutine available for sending *e
140 ** strings to a printer and *
150 ** registering errors during the output to the **
160 ** printer *
170 ** Author : MICHAEL TISCHER *
180 '* developed on : 7/22/87 *
190 '* last Update 1 9/21/87 *
200 VAR R R R R R KRR R R AR R R R AR AR AR AR R AR R AR AR R AR AR AR AR AR AR R AR AR R R AR AR R AR A

210

220 CLS : KEY OFF

230 PRINT*WARNING: This program should be started only if GWBASIC was *
240 PRINT"started from the DOS level with <GWBASIC /m:60000>.%

250 PRINT : PRINT*If this is not the case, please input <s> for Stop."
260 PRINT*Otherwise press any key...";

270 A$ = INKEYS$: IF AS = “s™ THEN END

280 IF A$ = "* THEN 270

290 GOSUB 60000 *install Function for Interrupt-Call

300 CLs ‘Clear Screen

310 PRINT*PRINT (c) 1987 by Michael Tischer" : PRINT

320 PRINT*If a parallel printer is interfaced to your PC, the "

330 PRINT*following text should appear on it immediately:* : PRINT
340 PRINT"a test of the printer routines...* : PRINT

350 PRINT“If not, an error message will be output.* : PRINT

360 PRINTERY = 0 ‘address the first Printer on the PC

370 GOSUB 50000 ‘initialize Printer

380 GOSUB 53000 ‘output message

390 T$ = "a test of the printer routines..."+CHRS (13)+CHRS (10)

400 GOSUB 51000 ‘output String on the Printer

410 GOSUB 53000 ‘output Message

420 PRINT

430 END

440 *

Soooo TR R R R AR R R AR R R R AR AR R R AR R R AR R AR R R R R R R KRR AR AR KRR AR RR AR A AR AR A kA
50010 ** initialize one of the Printer interfaces *e
50020 ** *e
50030 ** Input: PRINTER% = the Number of the Printer to be addressed *'
50040 ** OQutput: DS$% is the Status of the Printer *
50050 ** Info : the Variable 2% is used as Dummy *
50060 AR AR R AR AR AR R AR AR R AR R R AR KRR AR AR AR AR R ARAR AR AR R R AR AR AR R AR AR AR kA kO
50070 *

50080 PRTHI% = 0 'Hi-Byte of the Printer number

50090 FKT$=2 ‘initialize Function number for Interface
50100 INR$=&H17 ‘call BIOS-Printer-Interrupt 17 (h)

50110 CALL IA(INR%,FKTS$,2%,2%,2%,2%,2%, PRTHI%, PRINTERS, 2%, 2%, 2%, 2%)
50120 DS$ = FKT$ AND &H21 ‘store Printer status in DS%

50130 RETURN ‘back to Caller

50140 *

51000 RN KA R AR R R RR AR AR R RN RRR AR R AR RN AN AR ARNRRARR KRR A RARRR KRR RN AN RN A
51010 *'* send a String to one of the Printers *
51020 *'* *
51030 ** Input: TS = the String to be output *
51040 ** PRINTERS = the Number of the Printer *
51050 '* Output: the Variable DS% contains the Printer status *
51060 AR AR R R KRR RN R R R KRR R R R AR R RN AR AR KRR AR AR AR AR AR AR AR R AR AR R AR R AR AR AR AN A
51070 °*

51080 FOR I = 1 TO LEN(TS) ‘process all characters of the string
51090 2$ = MID$(TS$,I,1) ‘isolate one character from the string
51100 GOSUB 52000 ‘output character on the printer

51110 IF DS$<>0 THEN I = LEN(TS) ‘on error terminate output
51120 NEXT I ‘process next character

51130 RETURN ‘back to Caller

51140 °*

52000 TR AR R AR AR AR R AR AR AR R AR R AR AR R R R R AR AR R RN AR AR AR R AR AR RRAR R AR RN AR AR
52010 '* send a Character to one of the Printers *

386

7.12 Accessing the Printer from the BIOS

52020 ** *
52030 '* Input: 2$ = the Character to be output *
52040 ** PRINTERS = the Number of the Printer *
52050 ** Output: the Variable DS% contains Printer status (0=o.k.) *
52060 ** Info : the Variable 2% is used as a Dummy *

52070 Chkkkhkk ko k ko kA Ak kA ke ko k ke kk Ak kkhhkkhkhkkkxo

52080 *
52090 CHARACTERS = ASC(2$) ‘the ASCII-Code of the Character

52100 FKT$=0 ‘print Function number for Character

52110 INR$=&H17 ‘call BIOS-Printer-Interrupt 17(h)

52120 CALL IA (INR%,FKT$%,CHARACTERS,2%,2%,2%,2%, PRTHI%,PRINTERS,2%,2%,2%,2%)
52130 DS% = FKT$ AND &H21 ‘record Printer status in DS%

52140 RETURN ‘back to Caller

52150 °*

53000 PR R AR KRR AR R KRR AR AR R R AR AR R A AR R AR A AR AR R R R AR AR R AR R AR Ak ke hkkkkkk
53010 ** Output an error-message on the basis of the Printer-Status *°

53020 ** *e
53030 '* Input: DS% = the Printer status *0
53040 *'* Output: none *e
53050 '* Info : if the Printer status is o.k., no output *0

53060 AR KRR R AR AR AR AR AR AR R R RRA AR A AR R AR AR R AR R AR RA AR AR R AR A Ak kk ket
53070 *

53080 IF DS$ = 0 THEN RETURN ‘everything o.k. --> back to Caller

53090 PRINT“Error on access to Printer: *;

53100 IF (DS% AND 1) <> O THEN PRINT"Time-Out-Error" : RETURN

53110 IF (DS% AND 8) <> O THEN PRINT"I/O Error" : RETURN

53120 IF (DS% AND 32) <> 0 THEN PRINT"no more paper * : RETURN

53130 PRINT"Error type unknown" : RETURN

53140 '

60000 TR AR R IR AR AR AR AR KRR KRR ARARAR AR R RRRARR AR AR AR AR AR A AR ARk ko kk ok k&1
60010 '* initialize the Routine for Interrupt-Call *
60020 '* *0
60030 '* Input: none *
60040 '* Output: IA is the Start address of the Interrupt-Routine *

60050 AR IR KRR KRR R AR AR AR AR AR R KRR R RRAR RN AR R R R A AR R R R R AR AR R AR AR R R AR xRk kkkok o
60060 *

60070 IA=60000! ‘Start address of the Routine in the BASIC-Segment
60080 DEF SEG 'set BASIC-Segment

60090 RESTORE 60130

60100 FOR I% = 0 TO 160 : READ X% : POKE IA+I%,X% : NEXT ‘'poke Routine
60110 RETURN ‘back to Caller

60120

60130 DATA 85,139,236, 30, 6,139,118, 30,139, 4,232,140, 0,139,118
60140 DATA 12,139, 60,139,118, 8,139, 4, 61,255,255,117, 2,140,216
60150 DATA 142,192,139,118, 28,138, 36,139,118, 26,138, 4,139,118, 24
60160 DATA 138, 60,139,118, 22,138, 28