
O(1) packet scheduling at high

data rates

Luigi Rizzo, Università di Pisa
(joint work with Fabio Checconi and Paolo Valente)

March 30, 2010



O(1) packet scheduling at high data rates

...

Why do we care about packet scheduling ?

◮ arbitrate access to common resources;

◮ provide service guarantees and resource isolation;

◮ overprovisioning is not always possible/desirable, today’s
CPUs are too fast;

◮ links are very fast too, so schedulers must keep up with
high data rates and number of flows.

2 / 19



Problem setting and definitions

Many definitions for Service Guarantees. We consider the
deviations of our actual scheduler (Packet System) from the
service offered by an Ideal Fluid System.

W=1

W=1

W=2

W=2

W=2

W=1

...

◮ each flow has a weight Φi , and should receive a fraction
Φi/

∑

j Φj of the total link capacity at any time;

◮ the Fluid System serves all flows simultaneously;

◮ the Packet System serves one packet at a time, is non
preemptable, online, and possibly work-conserving;

3 / 19



Service Guarantees

Because of its nature, a Packet System cannot guarantee
perfect sharing at all times. The magnitude of deviations is an
indicator of the quality of the scheduler.

◮ various quality metrics including

B-WFI = max
k,∆t

[ΦkW (∆t) − Wk(∆t)]

◮ in the best possible Packet System (e.g. WF2Q),
B-WFI = 1 MSS (Optimal B-WFI);

◮ tradeoff between guarantees and complexity:
Xu-Lipton 2002: optimal B-WFI requires Ω(log N) time;
Valente 2004: an O(log N) version of WF2Q;

◮ breaking the O(log N) barrier implies relaxed guarantees.

4 / 19



State of the art of fast schedulers

◮ Priority-based schedulers are fast but give no guarantees
except to the flow with highest priority;

◮ Round Robin schedulers have O(1) time but poor
guarantees (O(N) B-WFI);

◮ some timestamp-based schedulers such as WF2Q give
optimal service guarantees in O(log N) time;

◮ approximated variants of timestamp-based schedulers
(KPS - Karsten 2006; GFQ - Stephens,Bennet,Zhang
1999) have near-optimal guarantees and O(1) time
complexity (but several times slower than RR).

5 / 19



Our result

QFQ is a practical O(1) approximated timestamp-based
scheduler with

◮ near-optimal guarantees (B-WFI ∼5 MSS);

◮ truly constant complexity, independent of number of flows
and configuration parameters;

◮ uses very simple CPU instructions;

◮ 110 ns/pkt on common workstations, compared to 55 ns
for DRR and 400 ns for KPS.

Fair Queueing in software (or inexpensive hardware) is feasible
at GBit/s rates.

6 / 19



QFQ overview

QFQ operates as other timestamp-based schedulers:

◮ track the behaviour of a Fluid System;

◮ for each packet, compute Virtual Start and Finish times;

◮ schedule in Finish time order among packets that are i)
available and ii) already started in the Fluid Server
(Eligible)

The sorting steps imply a O(logN) complexity.

◮ use approximated sorting to reduce complexity;

◮ use careful approximations to preserve guarantees;

◮ use extra data structures to reduce constants.

7 / 19



QFQ data structures

dequeue()

enqueue()

◮ Approximated sorting based on rounded timestamps and
splitting flows into a constant number of groups;

◮ flow i belongs to group ⌈log2 Li/Φi⌉;

◮ rounding intervals grow exponentially.

8 / 19



QFQ data structures – sorting

dequeue()

enqueue()

◮ Use approximate timestamps for sorting, but keep exact
values internally;

◮ within each group, there is only a finite number of slots,
so we can use bucket sort;

◮ for selection purposes, use same (F − S) for all flows in a
group, so the order on F and S is the same.

9 / 19



QFQ data structures – selection (1)

The goal is to select the eligible flow with smallest F.

dequeue()

enqueue()

◮ GFQ needs to iterate on groups to find the candidate,
hence O(G ) complexity;

◮ QFQ organizes groups into four Sets, such that group
index reflects the Finish time order;

◮ one of the groups contains all interesting candidates, so a
single FFS instruction replaces the scan.

10 / 19



QFQ data structures – selection (2)

dequeue()

enqueue()

◮ partitioning is done on Eligibility and Readyness (groups
that violate the ordering are put in a different set);

◮ on packet arrivals, finding the right set for a group
requires only one FFS instruction;

◮ on packet departure, moving multiple groups between sets
is also done without loops, using MASK/AND/OR ops.

11 / 19



QFQ – enqueue

dequeue()

enqueue()

Nothing to do if flow is already backlogged. Otherwise:

◮ bucket-insert the flow in its group;

◮ update group state;

◮ put the group in the correct set.

12 / 19



QFQ – dequeue

dequeue()

enqueue()

◮ locate first bit set in ER;
◮ serve the head flow in the corresponding group;
◮ possibly put the flow in a new slot;
◮ update group state;
◮ move groups between sets, due to changes in Virtual time

and Readiness.
13 / 19



Service guarantees

Service guarantees for QFQ:

B-WFIk = 3φkσi + 2φkL

(remember that Lk/Φk < σi ≤ 2Lk/Φk)

T-WFIk =

(

3

⌈

Lk

φk

⌉

+ 2L

)

1

R

(R is the link’s rate).

14 / 19



Experimental results

Measurements taken by running the kernel code in userspace:

Controller

Packet
generator

Scheduler

◮ generate traffic for a programmable number of flows,
packet size and weight distribution;

◮ carefully control the operating point of the scheduler;

./ test -alg rr -qmin 4n -qmax 30n -flowsets 1::512 ,8::64

dn_rr n 5004288 10000000 time 0.683968 136.676

./ test -alg qfq -qmin 4n -qmax 30n -flowsets 1::512 ,8::64

dn_qfq n 5004288 10000000 time 0.974142 194.661

./ test -alg kps -qmin 4n -qmax 30n -flowsets 1::512 ,8::64

dn_kps n 5004288 10000000 time 2.855963 570.703

15 / 19



Performance comparison – scalability

 0

 100

 200

 300

 400

 500

 600

 700

1 4 16 64 256 1k 4k 32k

ti
m

e 
(n

s)

Flows

enqueue() + dequeue() time, ns

NONE
FIFO
DRR

QFQ

S-KPS
WF2Q+

16 / 19



Mixed workloads

Measurement results in ns for an enqueue()/dequeue() pair
and packet generation. Standard deviations are within 3% of
the average.

Flows NONE FIFO DRR QFQ KPS WF2Q+
1 62 83 105 221 450 210
8 60 80 102 163 543 344
64 59 80 100 158 540 526
512 64 85 110 175 560 740
4k 74 102 157 197 590 1110
32k 62 117 147 222 601 1690

1:32k,2:4k,4:2k,8:1k,128:16,1k:1 flows
mix 92 119 160 255 612 1715

17 / 19



Conclusions

◮ QFQ is a Timestamp-based scheduler with near optimal
service guarantees and true O(1) run time;

◮ 110 ns/pkt, only 2 times slower than DRR, and 4 times
faster than comparable algorithms;

◮ already available as part of dummynet, together with
several other schedulers:
http://info.iet.unipi.it/∼luigi/dummynet/

◮ technical report and code at
http://info.iet.unipi.it/∼luigi/qfq/

◮ soon available as a Click module.

18 / 19



Future work

Future work:

◮ detailed performance analysis on low-end hardware
(OpenWRT platforms);

◮ identify performance bottlenecks, memory access
patterns;

◮ investigate feasibility of hardware implementations
(including NETFPGA).

19 / 19


	Fast packet scheduling
	Introduction
	State of the art
	QFQ
	Background on timestamp-based schedulers
	Performance analysis


