
Transparent acceleration of software packet

forwarding using netmap

Luigi Rizzo, Marta Carbone, Gaetano Catalli

Dip. di Ingegneria dell’Informazione

Università di Pisa, Italy

Email: rizzo@iet.unipi.it

Abstract—Software packet forwarding has been used for a long
time in general purpose operating systems. While interesting
for prototyping or on slow links, it is not considered a viable
solution at very high packet rates, where various sources of
overhead (particularly, the packet I/O mechanisms) get in the
way of achieving good performance.

Having recently developed a novel framework for packet I/O
on general purpose operating systems, we have investigated
how much the removal of this bottlenecks can improve the
performance of software packet processing. The problem is
of interest because software switches/routers are widely used,
and they are becoming inadequate with the increasing use of
1..10 Gbit/s links.

The two case studies (OpenvSwitch and Click userspace) that
we report in this paper give very interesting answers and insights.
First of all, improving the I/O layer has the potential for huge
benefits: we managed to bring the performance of OpenvSwitch
from 780 Kpps to almost 3 Mpps, and that of Click userspace
from 490 Kpps to 3.95 Mpps, by simply replacing the I/O library
(libpcap) with our accelerated version.

On the other hand, reaching these speedups was not purely
mechanical. The original versions of the two systems had other
limitations, partly hidden by the slow packet I/O library, which
prevented or limited the exploitation of these speed gains.

In the paper we make the following contributions: i) present
an accelerated version of libpcap which has the potential of
significant speedups for many existing packet processing ap-
plications; ii) show how we modified two representative packet
processing applications (in particular, Click userspace), achieving
huge performance improvements; iii) prove that existing software
packet processing systems can be made adequate for high speed
links, provided we are careful in removing other bottlenecks not
related to packet I/O.

I. INTRODUCTION

From their inception, computer networks have used soft-

ware packet forwarding nodes to extend their reach and to

experiment with new protocols and mechanisms. Many of

these prototypes have been developed on general purpose

Operating Systems, which provide a comfortable environment

for experimentation. At times, the level of performance and

maturity reached by such software has promoted their use in

production systems.

In absolute terms, however, the performance of software

packet processing, especially on general purpose OS, is often

one or two orders of magnitude below that of hardware

equivalents. Not rarely, there same goes for equipment cost.

Packet I/O (i.e., the task of moving data packets between

the network and the process/thread in charge of their handling)

tends to be one of the most expensive steps in software packet

processing. This is true whether the processing thread is in user

space or within the kernel.

There are however many hints that software packet forward-

ing is not inherently slow: many appliances on the market

overcome performance issues bypassing the operating system

and taking direct control of the hardware. Something similar

is done in several research projects [14], [8], [12].

We have recently developed a framework, called

netmap [22], which significantly reduces the cost of

packet I/O in general purpose OS. Obviously, we wondered

whether existing packet processing applications (software

routers, firewalls, NAT, etc.) could be made faster by just

replacing the underlying I/O routines with our more efficient

version. Secondly, we were interested in how much effort, in

terms of software modifications, this would require.

In this paper we report our experience in on the subject,

which is extremely encouraging. Apart from trivial cases

(traffic sources and sinks, simple traffic analyzers, for which no

changes are required and speedups of 10 times are immediate),

, we present two other applications as our main case studies:

a software forwarding system called OpenvSwitch [20], and

the userspace version of the Click Modular Router [14]. Both

applications used libpcap [1] as their underlying packet

I/O mechanism. In both cases, we managed to achieve huge

performance improvements by just replacing the standard

libpcap with our enhanced version (see Section III) running

on top of netmap. We went from 780 Kpps to 3.0 Mpps for

OpenvSwitch, and from 490 Kpps to 3.95 Mpps for Click1.

However, reaching these impressive speedups required some

investigation and some (limited) amount of programming

effort. In fact, while packet I/O is often a significant bottleneck

in a system, it not always the only one, and sometimes its pres-

ence hides other equally important performance impairments.

As an example, in the OpenvSwitch case, the performance

of the original application was only 65 Kpps, and some

modifications, as described in Section IV-C, were needed to

exploit the benefits of the faster I/O library. The case of

userspace Click is similar: just replacing the I/O library in

the original application gave “only” 1.3 Mpps, which would

be a great improvement in other contexts, but was not so

1Clearly, the speedup depends a lot on the type of task. CPU intensive tasks
might see much lower gains. This does not disqualify our or similar work,
just means that the specific application has totally different constraints.

2

exciting in our case, in light of the performance achieved with

OpenvSwitch. In this case, as documented in Section V-B, we

were able to find other bottlenecks that, once removed, enabled

a further speedup by a factor of 3.

The fact that in both cases it was necessary to make mod-

ifications to the original applications does not contradict the

title of this paper. The changes required were relatively small

in terms of code size, and they addressed issues that existed

independently from the use of a faster I/O library. In fact,

the OpenvSwitch code, as modified, is over ten times faster

than the original even without any faster I/O library. Once

these changes were in place, we achieved exactly the result

we wanted: running the same packet forwarding applications

on top of an accelerated I/O library achieves speedups of 4..8

times.

The Click result is extremely important because of the

widespread use of this tool. However, we expect the same

gains for a number of other software packet processing

applications, including firewalls and traffic monitors. The

implications are quite large, from extending the life of existing

equipment and applications to the next round of network speed

increases, to enabling the use of software switching solutions

in environments where it was not possible earlier due to cost

or power constraints.

The code that we used for this work is publicly avail-

able [22] and ready for use in production systems.

The paper is structured as follows. In Section II we discuss

the motivation and goals of our work, and give some back-

ground information on mechanism for packet I/O on general

purpose operating systems.

Section III presents the first contribution of the paper,

namely the accelerated libpcap library that is used in

subsequent tests Section IV and Section V present the two

case studies, illustrate how we accelerated the performance of

two significant packet processing applications, and emphasize

the issues that may arise in other similar systems. Finally,

Section VI presents some related work.

II. MOTIVATIONS AND BACKGROUND

As mentioned earlier, software packet forwarding is com-

monly used in many experimental and production systems,

and not infrequently these applications run on top of general

purpose operating systems. Examples include native, in-kernel

solutions for bridging and routing, routing daemons such as

Zebra and Xorp [13], NAT boxes, firewalls and transparent

proxies. More recently, experimental proposals [19], [2] for

data center networks have emerged which use some non-

standard functions in the forwarding layer, and could make use

of a software implementation if sufficient performance were

available.

Software packet forwarding requires at least three tasks:

• moving traffic between the network to the application;

• per-packet processing (ranging from simple Ethernet for-

warding to more complex activities such as NAT and

encryption);

• high-level processing such as running routing algorithms,

reservation systems and traffic management.

The first two tasks have a large impact on the maximum

forwarding performance, which is usually measured as the

number of packets per second (pps) that the application can

deliver because the dominant cost factors are only a weak

dependency on packet sizes.

The performance of higher level processing is also important

but it mostly affects the ability of the system to handle

reconfigurations (such as route and interface state changes).

We will not address this aspect in this paper.

Low speed operation (in the 10..100 Kpps range) is nor-

mally within reach even of the less expensive systems. As

the speed of network links grows in the 1..10 Gbit/s range,

pps rates increase by two orders of magnitude and go outside

the capabilities of software packet processing systems. The

fastest “standard” systems (i.e. those using ordinary kernel

APIs) barely reach 1 Mpps (see e.g. [3]), and only prototypes

using custom solutions [10], [8], [12] manage to go faster.

The motivation of this work is thus to investigate how the

performance of existing packet forwarding software can be

improved making use of faster I/O libraries such as netmap.

A. Packet I/O options

The first step in any software packet forwarding system is

to move traffic between the network and the process/thread

in charge of its manipulation. The network interface (NIC)

is normally able to manage circular lists (called NIC rings)

of memory buffers, and move packets between the physical

links and these buffers without CPU intervention. So the actual

issue, in terms of performance, is how to make the content of

these memory buffers available to applications, and how to

exchange signals (such as requests to transmit, or notification

of incoming traffic) between the NICs and applications. There

are three main approaches in use:

1) in-kernel operation: NICs are normally controlled by

in-kernel device drivers, which encapsulate packets in OS-

specific structures (mbufs, skbufs, NdisPacket) that carry all

the metadata related to the packet themselves. Accessing

packets through this mechanism from within the kernel saves

some expensive operations such as system calls and data

copies. This is the reason why several high performance packet

processing applications are implemented within the kernel

itself, either as an integral part of the system, or as a special

module (such as in-kernel Click).

On the other hand, in-kernel operation poses a lot of

restrictions on what a thread can do, and makes the system a

lot harder to develop, debug and modify. For this reason, in-

kernel operation is normally used only when the functions to

be implemented are very well defined (e.g. IP routing, Layer

2 switching) or performance is a major concern.

2) user-space operation: Access to data packets is possible

from user space as well, through specific APIs such as special

sockets (the AF SOCKET family), or mechanisms such as

PF RING [5], BPF [17] and libpcap [1].

3

indexflags len

ring_size

cur

buf_ofs

flags

avail

num_rings

ring_ofs[]
pkt_buf

pkt_buf

pkt_buf

pkt_buf

netmap_if netmap rings

phy_addr
len

NIC ring

Fig. 1. The memory areas exported by netmap and used to represent rings
and packet buffers

These mechanisms are more expensive than the in-kernel

API, because they need system calls both to exchange syn-

chronization information and to move actual data. On the

other hand, they allows applications to run in a much more

comfortable (for the developer) and safer (for the system)

environment. For relatively low performance applications, the

additional overhead is not a major concern and this is why

there are cases where it makes sense to use this approach.

3) memory mapped I/O and direct NIC access: One ap-

proach to get the same (or possibly better) speed of in-kernel

access and the convenience of use of user-space operation is

to bypass the standard APIs used within the operating system.

The two mainstream options here are memory-mapping of

packet buffers (so that applications can access them without

copies or system calls) and giving the application direct access

to the NIC registers, so that even synchronization does not

need to go through system calls. This is done in various

proposals [6], [7], [15], [16], [11], and with different tradeoffs,

which may make the application tied to a specific hardware, or

make the operating system vulnerable to programming errors

causing memory corruptions (the NIC has DMA engines that

can write to arbitrary memory addresses, unless one uses

protection mechanisms available on modern hardware).

B. The netmap framework

We have recently developed a novel framework to support

packet I/O at speeds equal or exceeding those available by in-

kernel APIs, and yet with much of the safety and convenience

of userspace solutions. Our framework, called netmap [22],

builds on a number of existing proposals for fast network

access, reducing the cost for moving packets between the

network and applications to about 90 clock cycles, almost one

order of magnitude lower than the standard OS mechanisms.

A full description of netmap is given in [22]. In this paper

we only report a summary description and the features that

are relevant to this work.

The basic goals of netmap are to make packet I/O effi-

cient by removing all unnecessary run-time costs and system

calls, and make the framework easy to use through a tight

integration with existing OS mechanisms. To this end, the

netmap API exposes to userspace processes shadow copies

of the NIC rings, and uses them to support packet I/O and

synchronization. These shadow copies, called netmap rings,

are shown in Figure 1. The memory region containing the

netmap rings and the packet buffers is mapped in the process’

address space through the mmap() system call. This permits

to transfer data with no copy overhead.

Each ring has a device-independent format, and includes

the index (cur) of the first buffer to send or receive packets,

and the number (avail) of buffers available for transmit

or receive. The state of a netmap ring is updated by the

kernel (to reflect the state of the corresponding NIC ring) only

when executing poll()2 or certain ioctl() system calls.

Hence no locking is needed to access the netmap ring, and a

system call carries information on a potentially large number

of packets.

Synchronization is done exclusively with the poll() sys-

tem call. In order to use netmap, a process opens a special

device (/dev/netmap) and issues an ioctl() to set a

specific NIC in netmap mode. In this mode the NIC is still

visible and controlled by the operating system, but the transfer

of packets from/to the host stack is blocked. Passing the file

descriptor to poll() lets the application know when there are

newly received packets, or buffers available for transmission.

So applications do not need busy-waiting or other custom

mechanisms to synchronize with the hardware.

If a network card has multiple NIC rings (this is the case on

modern high speed NICs) netmap exports a corresponding

number of netmap rings. Multiple file descriptors can be

opened for each card, and the mapping of file descriptors

to rings is fully programmable, so one can easily dedicate

multiple threads (possibly associated to different cores using

the standard setaffinity() system call) to a single NIC.

At the same time, the same thread can access multiple cards,

and implement zero-copy packet forwarding between NICs

thanks to the fact that all the rings and buffers (Figure 1)

for all NICs are in the same memory region.

III. LIBPCAP, AND LIBPCAP OVER NETMAP

netmap has a very simple API, but being very new, it is not

widely used by applications. Many packet processing systems,

including our two case studies, use the libpcap API to send

and receive packets, so it makes sense to build an adaptation

layer that maps one API into another. Usually these adapters

cause some performance penalty but, as we will see, in our

case this is reasonably low.

Despite its large number of functions, libpcap is rela-

tively straightforward to use. The library supplies functions to

attach to a NIC, and return a file descriptor which can be used,

among other things, as an argument to a poll() system call.

The function pcap_inject() is one of the mechanisms

that libpcap clients can use to send packets to a device. For

2The select() system call is equivalent to poll(). Throughout the
paper we will only mention the former for brevity.

4

reception, the method that suits best our needs is the function

pcap_dispatch(), which applies a function to a batch of

packets received by the NIC. This mechanism is interesting

because it can amortize the function call over the entire batch,

and because it can operate on an externally supplied packet

buffer instead of requiring data to be in a specific location.

int pcap_dispatch(pcap_t *p, int cnt,

pcap_handler callback, u_char *user)

{

int i, idx, si, ret = 0;

struct netmap_ring *ring;

for (si =p->begin; si < p->end; si++) {

ring = NETMAP_RXRING(p->nifp, si);

while ((cnt == -1 || ret != cnt) && ring->avail > 0) {

i = ring->cur;

idx = ring->slot[i].buf_idx;

p->hdr.len = p->hdr.caplen = ring->slot[i].len;

callback(user, &p->hdr, NETMAP_BUF(ring, idx));

ring->cur = NETMAP_RING_NEXT(ring, i);

ring->avail--;

ret++;

}

}

return ret;

}

int pcap_inject(pcap_t *p, void *buf, size_t size)

{

int si, idx;

struct netmap_ring *ring;

for (si = p->begin; si < p->end; si++) {

ring = NETMAP_TXRING(p->nifp, si);

if (ring->avail == 0)

continue;

idx = ring->slot[ring->cur].buf_idx;

bcopy(buf, NETMAP_BUF(ring, idx), size);

ring->cur = NETMAP_RING_NEXT(ring, ring->cur);

ring->avail--;

return size;

}

return -1;

}

Fig. 2. The complete code for pcap_dispatch() and pcap_inject()
used in our adaptation library.

Our version of libpcap that runs on top of netmap

is called netmapcap. It implements the basic libpcap

functions to access a NIC, and in particular the two functions

that are used to send and receive packets, whose complete code

is shown in Figure 2. The code is also an example of the use of

the native netmap APIs and how multiple NIC rings are used.

Due to space limitations we only point out a few details: i)

the receive function, pcap_dispatch(), operates directly

on the memory mapped buffer, avoiding memory copies; ii) the

timestamp in the hdr field, needed by some libpcap clients,

is pre-set by netmap so it does not need an additional system

call to be computed; iii) both the send and receive functions

rely on a subsequent poll() to synchronize the state of the

netmap and NIC rings.

The loss of performance using netmapcap instead of the

native netmap API is not too high. As an example, a simple

application that passes packets between two 10 Gbit/interfaces

using a single CPU core reaches about 7.50 Mpps (unidi-

rectional) with netmapcap, and 9.42 Mpps with the native

netmap API under the same conditions3. The throughput with

the original libpcap is less than 1 Mpps.

IV. CASE STUDY: OPENVSWITCH

We now move to the evaluation of the performance of the

two processing systems that we use as case studies, and the

discussion of the modifications that were needed to achieve

good performance.

Our first example is OpenvSwitch [20], a software imple-

mentation of a layer-2 switch designed to scale to large config-

urations. Same as many modern switching/routing solutions,

OpenvSwitch (Figure 3) separates the datapath (in charge of

the actual switching) and the controller, which is in charge of

management and controlling the forwarding tables for the data

plane. This particular software is interesting because packet

processing on a switch is particularly simple, hence this kind

of device suffers the most from operating system overheads,

and can benefit a lot from improvements in that area. Also,

OpenvSwitch also supports a userspace datapath so we can

evaluate its performance with all forms of packet I/O described

in Section II-A.

Communication

channel

Interfaces

ofproto datapath

OpenFlow

protocol

Controller

fast pathslow path

packet

arrival

Fig. 3. OpenvSwitch stucture, representing the flow of traffic in the system.

A. Architecture

The datapath implements the basic Ethernet switching func-

tions, with the help of a local flow table that decides the fate of

incoming packets. If an incoming packet has a matching entry

in the flow table, it is processed directly in the datapath (on the

“fast path” indicated in the figure) and sent to the destination

interface. Packets without matching entries in the flow table,

or requiring more complex operations, are send towards the

controller with the help of another module (called “ofproto”

in the figure). Processing these packets is more expensive, and

this is called the “slow path” of the packet processing chain.

As an example, the slow path is used for packets with not-

yet-seen source or destination addresses: they are sent to the

controller which is in charge of running whatever algorithm is

involved to determine the location of the station, and update

the flow table accordingly.

Figure 4 details the interaction between the datapath and

ofproto blocks. The former is in charge of pure traffic switch-

ing, whereas the latter manages the slow path, communication

with the controller, and interface-related events.

The original distribution of OpenvSwitch provides two

different implementations of the datapath: one as a Linux

3Removing the timestamp would make the pure netmap version run at
10.66 Mpps.

5

Flow

table

Controller

Communication

channel

Interfaces

ofproto datapath

Fig. 4. Communication between the datapath and ofproto blocks in
OpenvSwitch.

kernel module, and one as a userspace module, still for Linux,

and using the PF PACKET sockets API to exchange packets.

For our experiments, we have implemented a third datapath

module, working under FreeBSD and using libpcap as a

packet I/O library.

B. Native Performance

Determining the baseline performance of the system is

fundamental to evaluate the improvements that can be achieved

using a faster packet I/O mechanism.

For this and all tests in this paper we use two systems

equipped with an Intel i7-870 CPU (four cores, but only

one used in the experiments) running at frequencies up to

2.93 GHz. Each system has multiple Ethernet interfaces in-

cluding a dual-port 10 Gbit Ethernet mounted on a PCI-e

bus with 8 lanes, which gives sufficient I/O bandwidth to

sustain the traffic generated by the interfaces4. This is the

same platform used in [22] and for which, in Section III, we

have measured a forwarding rate in excess of 7 Mpps using

netmapcap.

In terms of OpenvSwitch configuration, in the experiments

reported here we have used a simple case with only two inter-

faces and unidirectional traffic of 64-byte packets to a single

destination. The performance of the system degrades with the

number of interfaces but investigation of the phenomenon is

beyond the scope of this paper. Similarly, the behaviour of

the system in presence of multiple flows and high turnaround

(when a significant fraction of the traffic goes through the

controller) is studied in [20] but is not of interest here.

Initial measurements were quite disappointing, as shown by

the Table in Figure 5. While we could expect a low perfor-

mance of the userspace versions, the 50-65 Kpps we measured

are almost one order of magnitude below our expectations.

Even the in-kernel version is somewhat unsatisfactory, achiev-

ing only about 300 Kpps, compared to a native performance

with FreeBSD bridging of about 690 Kpps. Nevertheless, we

are not interested in the in-kernel performance so we have not

investigated this behaviour further.

The existing literature on OpenvSwitch performance does

not help much. Pfaff and others [20, Section 4.2] compare

OpenvSwitch and Linux Ethernet Bridging under various

conditions. At large flow sizes, when the controller’s overhead

4Sufficient bus bandwidth does not mean that the NIC is actually able to
run at wire rate in all conditions. As shown in [22], there are several cases
where the NIC is unable to deal with packets at line rate, despite the CPU
and the bus would be able to support that.

Initial OpenvSwitch performance
Configuration Kpps

Linux userspace 50
FreeBSD userspace 65
Linux Kernel 300

Other systems
Configuration Kpps

original Click userspace 400
native FreeBSD bridging 690
netmapcap forwarding 7,500
netmap forwarding 9,660

Fig. 5. Forwarding performance of the original OpenvSwitchimplementation,
and comparison with other solutions.

is negligible, they reports about 450 Mbit/s, about half the

speed of the link used in the test. The packet sizes used in

those tests are unknown, though we suspect TCP flows with

1500-byte packets, which would result in about 37.5 Kpps.

C. Hunting the performance bottleneck

Investigations on the poor userspace performance quickly

revealed the source of the problem. In this implementation,

declared experimental by the OpenvSwitch authors, there is

a single event loop handling all events for both the ofproto

and datapath blocks in Figure 4. This means that the event

loop has to deal with a much larger number of file descriptors

than just those for the interfaces, and this makes each iteration

extremely expensive. On top of this, the event loop processes

at most one packet per interface per iteration, and fires all

handlers even if the corresponding file descriptor is not marked

as ready.

We have then addressed the problem by using a separate

thread to implement the datapath, and allowing the processing

multiple packets per interface at each iteration of the loop.

Though conceptually a major one, the modification is rela-

tively simple in terms of code. The main eventloop remains the

same, except that it ignores the file descriptors for packet I/O

which are now handled by the datapath thread. Notifications

between the two threads are exchanged using a unix pipe

(whose endpoints can be used as arguments to the poll()

system calls in each event loop), whereas data packets that

need to go through the slow path and other messages are

exchanged through a couple of queues.

With this modification, performance reaches reasonable

levels: using the standard libpcap, the throughput of is now

between 383 and 783 Kpps (see Figure 6, center column)

depending on the maximum number of packets per NIC (batch

size) that we process at each iteration of the eventloop. We

will take this as a reference to measure improvements with

the faster I/O library.

D. OpenvSwitch over netmapcap

We are now ready to evaluate the performance improve-

ments that can be achieved running the application on top

of a faster I/O library. For this tests, all we needed was to

replace the system’s libpcap with our own version described

in Section III. The results are shown in the right column of

6

Batch size Throughput (Kpps)
libpcap netmapcap

1 373 250
2 510 466
3 579 619
5 638 882

10 709 1430
20 744 1970
50 764 2500

100 775 2730
500 781 2960

Fig. 6. Forwarding performance of the optimized OpenvSwitch code with
different batch sizes and I/O libraries.

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 10 100 1000

T
h

ro
u

g
h

p
u

t
(K

p
p

s
)

Batch size

netmapcap
libpcap

Fig. 7. Forwarding performance of the optimized OpenvSwitch code (data
from Figure 6).

the Table in Figure 6, and plotted in Figure 7. As can be seen

from the data, the system is between three and four times

faster even with relatively small batch sizes (50 packets).

We notice that the batch size has a large impact on the

performance, so there would be an incentive in using large

values for this parameter. The only concern in using large

sizes is that packets could be moved in large bursts from one

interface to another, possibly leading to overflows in case of

short queues or rate mismatches. In practice, however, at high

speeds the NIC rings are quite large (256 or more, 2048 in our

case) and a batch size of 50 provides a reasonable compromise

between performance and safety of operation.

Even though it is not a realistic operating point, it is interest-

ing to understand why netmapcap’s performance with small

batch sizes (1 or 2) is significantly slower than libpcap. The

reason is that in our tests we are handling unidirectional traffic,

so one of the descriptors passed to poll() corresponds to

an empty ring, and the low level handler called by poll()

when a ring is empty is more expensive in netmap (hence

in netmapcap) than it is in libpcap. This explains the

difference in performance. Running the same test with a batch

size of 1 and bidirectional traffic brings the performance to

900 Kpps per direction, which is perfectly in line with our

expectations.

Finally, we should point out that the huge speedup achieved

with netmapcap is the result of a redesign of the features of

netmap so that it could emulate efficiently the libpcap

API. With the original version of netmap, the eventloop

required one additional system call per iteration to fetch the

timestamp, and one additional system call per interface/loop to

push out any packets that were queued on a ring. Investigation

on the common usage patterns of the netmap API has

suggested the addition of a number of programmable features

so that, for instance, poll() on a netmap file descriptor

also returns an up-to-date timestamp which is used by many

libpcap clients, and pushes out any packet that are queued on

the transmit ring associated to the file descriptor.

E. Efficiency, not just speed

The performance of applications is often measured in terms

of peak speed, but we should mention that our work achieves

speed not by brute force or throwing hardware at the problem,

but by making the entire system more efficient. The following

graphs illustrate the issue from two points of view.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 0.5 1 1.5 2 2.5 3

T
h

ro
u

g
h

p
u

t
(K

p
p

s
)

Clock speed (GHz)

netmapcap
libpcap

Fig. 8. Throughput versus CPU frequency for the optimized OpenvSwitch
code (batch size=50).

In Figure 8 we plot the forwarding rates for different

CPU speeds, using a batch size of 50 and an offered load

of 14.88 Mpps. As the graph shows, the large performance

difference using the two libraries exists at all clock speeds,

meaning that a given packet rate can be processed at a

much lower clock frequency (and significantly reduced power

consumption)5 using netmapcap.

Figure 9 plots the CPU usage (computed with top) with

different offered loads. In general this kind of data must be

collected and read with extreme care, because they may be

affected by large errors. As an example, our plot is noisy and

deviates from the expected linear shape, for these reasons:

our packet source is bursty; the device driver uses interrupt

mitigation [18], which helps reducing the CPU load but might

cause some synchronization phenomena with the source itself;

CPU ticks are charged using sampling, and so depending on

the timing they might be assigned to the wrong process.

5The superlinear behaviour between the last two points (2.8 and 2.93 GHz)
is because at the highest speed the CPU uses the “Turbo Boost” mode, where
it autonomously increases the clock speed up to 3.2 GHz if thermal constraints
are satisfied. Hence the nominal rate of 2.93 GHz does not match the actual
clock speed.

7

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000

C
P

U
 u

s
a

g
e

 (
%

)

Offered load (Kpps)

libpcap
netmapcap

Fig. 9. OpenvSwitch: CPU usage versus offered load at maximum frequency.

With all the above in mind, the information (at least

qualitative) that we get from Figure 9 is that running over

netmapcap uses about 1/3 of the CPU resources used with

the standard libpcap. Also, it should be remembered that

even when the load reaches 100%, the system has generally

not reached saturation. At that stage there is in fact a self-

adaptation phenomenon so that userspace processing takes

longer, causing fewer system calls returning each a longer

batch of packets, hence resulting in lower per-packet overhead.

The phenomenon is more evident without interrupt mitigation

(not our case), where usually 100% usage is reached much

before the peak forwarding rate.

V. CASE STUDY: CLICK

Our second case study is represented the userspace version

of the Click modular router. Click [14] is an extremely popular

platform to build packet processing systems, widely used in

both research and actual deployments. Click lets the user

create packet processing graphs (Figure 10 by connecting

standard or user-defined processing elements using a script-

like configuration language. Input and output ports are used

to transfer data packets, using push or pull mechanism. A

push port results in a direct call of the processing function in

the element downstream; a pull port means that the element

downstream is in charge of polling the upstream port to

extract any available packet. Among the large set of standard

Click elements there are some directly connected to hardware

interfaces, so that actual traffic can be injected and extracted

from a Click graph.

Click can be run in two different environments: the

userspace version is simply one process (or a set of threads in

recent versions) running in userspace, and accessing devices

Fig. 10. Click configurations are created by connecting elements in charge
of different processing functions.

using libpcap or equivalent libraries. The in-kernel version

is by far the most popular, and it has no significant difference

from the other one except from the ability to access the

interfaces using custom elements (PollDevice and ToDevice)

with much better performance. The literature reports send

and receive rates, for in-kernel Click configurations, of up to

3-4 Mpps per core. Actual values are difficult to compare

because the various papers use slightly different hardware

and software configurations, but in general in-kernel Click

performance exceeds the native Linux performance by at least

2-3 times. Given the convenience of userspace operation,

bringing the performance of userspace Click to that of its

kernel counterpart would be extremely valuable.

A. Usermode Click - native performance

Same as for our other case study, we need to determine the

forwarding performance of an unmodified version of Click

running in userspace. In our tests we use the same hardware

used for the OpenvSwitch tests, and Click 1.8.0 running in

userspace, with some minimal FreeBSD modifications to make

use of the libpcap API. Only one thread is used in the

experiments. Our click configuration is very simple6:

FromDevice(ix0) -> Queue -> ToDevice(ix1)

FromDevice(ix1) -> Queue -> ToDevice(ix0)

and replicates the setup of Section III where we do direct

forwarding of traffic between interfaces.

In this configuration, unidirectional forwarding reaches

about 400 Kpps, which is reasonably close to the throughput

of other userspace applications using libpcap. Looking at this

number we have no reason to suspect the existence of other

significant bottlenecks, although the following issue might

need further investigation as we move to faster speeds.

Click has an internal scheduler which decides which el-

ement to run next. Elements use a form of cooperative

multitasking in which they run once, performing only non

blocking activities, and then return to the scheduler with the

indication of whether they are ready for an extra iteration or

not. The amount of work done by each element of course

depends on the element itself, but in many cases it corresponds

to the processing of just one packet from input to output (and

in the case of push element, this may cause the direct call

of a function on the downstream element, and so on). Some

elements have a BURST parameter which decides how many

packets should be processed before yielding the CPU. This

way of operation means that the execution of the elements

is interleaved with that of the scheduler, and so the latter

constitutes an extra cost that can be reduced (amortized) using

larger BURST values. The benefit clearly depends on the cost

of the scheduling operation compared to that of running the

element itself.

The default ToDevice element does not have a BURST pa-

rameter so we cannot experiment with it. However, 400 Kpps

6We omit details of the configuration, such as setting promiscuous mode
on the interfaces, changing queue and burst sizes, and the scripts to print the
throughput every second.

8

Original Click
version Burst Kpps

libpcap - 400
netmapcap - 1300
kernel (est.) - 3-4000

Modified Click
version Burst Kpps

libpcap 1 490
libpcap 50 495
netmapcap 1 3300
netmapcap 50 3950

Fig. 11. Performance of userspace Click in various configurations. The in-
kernel speed is derived from the literature

corresponds to 2500 ns per packet, presumably much higher

than the cost of a scheduling decision. Hence we expect that,

at least in this particular configuration, changing the burst size

should not improve performance too much.

When no elements are ready, or at least every so often,

the scheduler call poll() to wait for timeouts or devices

to become ready. Unlike the OpenvSwitch case, changing

the BURST size does not affect the frequency with which

poll() is invoked, as the latter only happens when no

elements are ready.

B. Click over netmapcap

A first test replacing libpcap with netmapcap gives

a sudden increase of the performance to 1.3 Mpps, about

three times faster. Without further information one would be

led to think of this as a significant and satisfactory speedup.

However, considering that our Click configuration runs a much

simpler task than the one implemented by OpenvSwitch, we

would at least expect a similar result, in the 2.5-3 Mpps range.

At first, the attention went to the scheduler, and we modified

the ToDevice element adding a BURST parameter to process

multiple packets at each invocation. This gave only a modest

speed improvement, suggesting some other time-consuming

operation on each packet. The usual suspects for this type of

problems are either system calls, or locks or similar operations

which have significant latency.

Diagnosing this problem took a bit more time than for the

OpenvSwitch case, because we could find no obvious problem

in the C++ code that implements the elements or the Click

scheduler. A significant help to the investigation came from

the performance analysis of a much simpler configuration

which replaced one or both of FromDevice and ToDevice

with an InfiniteSource and a Sink. These elements perform

no device I/O whatsoever, and even after removing the system

call (gettimeofday()) that usually pollutes network code

applications, speed was well below the expected values. This

shifted the attention to the only remaining operation, namely

the memory allocator, and this turned out to be the actual issue.

In Click, each Packet (a user defined C++ object) requires

the allocation of two blocks of memory, one for the descriptor

and one for the payload. These allocations are done through

the standard C++ allocator, which is probably acquiring some

lock around every allocation, and is also designed for variable

size objects. Click’s Packets can be easily implemented with

fixed-size objects, and memory recycled within each Click

thread without recurring to the centralized C++ allocator.

Applying this change to the generic Click code increased

the throughput to 490 Kpps when running over libpcap, and

3.3 Mpps running over netmapcap, still with the default

BURST size of 1. At this level of performance, even a

modest scheduler cost is significant, and in fact increasing

the burst size to 50 gives a further significant speedup in

the netmapcap case, reaching almost 4 Mpps. This level of

performance, in userspace and using a single core, is similar

or possibly exceeding that of in-kernel Click configurations.

Figure 11 summarizes the results of original and modi-

fied Click in various operating modes. As we can see, we

achieved an improvement of almost 10 times over the original

performance, and even in this case a significant help came

from the removal of an underestimated performance bottleneck

unrelated to packet I/O. The modifications that led to this

improvement have been contributed back to the Click project

and are now included in the recent Click 2.0 distribution.

VI. RELATED WORK

The two areas of work related to this paper are on mecha-

nisms for doing packet I/O in user space, and on the perfor-

mance of software packet processing.

A. Packet I/O mechanisms

Most conventional mechanisms for doing packet I/O from

userspace suffer from the problems listed in Section II: the

device driver operation is expensive, and often the mechanism

requires per-packet system calls with further compromise the

performance. The Berkeley Packet Filter, or BPF [17], is one

of the most popular systems to support direct access to raw

packet data. It works by tapping into the data path of a network

device driver, and dispatching a copy of each received or

transmitted packet to a special device, from which userspace

processes can read or write. Linux has a similar mechanism

through the AF PACKET socket family. libpcap [1] is a

popular high-level mechanism to access raw packets. Although

the original versions of this library were based on BPF, current

versions support a number of low-level mechanisms depending

on the available hardware and operating system.

More efficient solutions, similar in spirit to netmap, are

those used by netslice [16] and PacketShader [12]. Both work

by removing the in-kernel packet management described in

Section II-A, and binding the NIC rings to device descriptors,

from which userspace applications can read/write batches of

buffers with a single system call. The I/O channel implemented

by PacketShader has a reported performance similar to that of

netmap. We expect netslice to be in the same range.

Even though netmap and PacketShader have demonstrated

that the system call overhead is not a significant obstacle to

performance, system calls are used for synchronization and

they introduce some latency in the notification of events,

especially if interrupt mitigation is used (but mitigation can

be removed or its delay be increased in time-critical systems).

9

It is the opinion of these authors that an additional latency

of a few microseconds falls in the noise for network systems

subject to unpredictable load. Nevertheless, some systems try

to run without system calls (and with instant notification of

events, by continuously polling the NIC’s memory regions) by

giving the user space process direct access to the hardware.

Examples include UIO-IXGBE [15], and a recent variant of

PF RING [5] called DNA [6].

B. Software router performance

The performance of software packet processing has been

the subject of investigation for a long time. As discussed

in this paper, the cost of packet I/O is only one of the

terms of the equation, and we have pointed out that software

features may significantly compromise the speed of operation

of a system. There are however other issues related to the

platform or to the type of processing that must be performed,

that are equally important. In particular, historically we have

seen a number of hardware aspects that turned out to be the

dominant bottleneck in such systems. As an example, the I/O

bus used to (and still does, especially on low-end systems)

have insufficient bandwidth to sustain the full link speed. The

peak performance in the original Click prototype [14] as well

as in other systems [21] was indeed limited by the PCI bus

rather than the CPU speed. Memory latency and cache sizes

are also an important bottleneck, especially in systems that

perform a lot of data manipulation [9], [10].

Apart from these low level issues, there are a number of

papers which report on the performance of software rout-

ing systems, showing how the native throughput of general

purpose OS is relatively low [4], while in-kernel Click-based

solutions perform much better [3], [10], both on a single CPU

and in terms of scalability. The two most recent proposals in

the literature further address the scalability aspects by looking

at how to achieve large port counts [8] and how to make use

of Graphic Processing Units as network coprocessors [12].

VII. CONCLUSIONS

In this paper we have shown how the performance of

userspace packet processing systems can be largely improved

by replacing the underlying packet I/O libraries with more

efficient systems, such as one developed by the authors. We

hoped to achieve our goal without any modification to the

existing software, and the two case studies presented here even

suggest that this was a realistic option. In practice, however,

the same examples have shown that it is very likely that certain

performance bottlenecks remain hidden because of dominant

ones (in our case, a slow packet I/O mechanism), and are

only exposed when the system runs in a more performant

environment.

The results presented here are nevertheless extremely inter-

esting, not only because we achieved a huge (4..10 times)

speedup of the original applications with relatively limited

effort, but also because we expect that the same results, and the

same methodology to investigate and improve performance,

applies to many existing similar systems.

REFERENCES

[1] Tcpdump and libpcap web site. http://www.tcpdump.org/.
[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A

scalable, commodity data center network architecture. SIGCOMM
Comput. Commun. Rev., 38:63–74, August 2008.

[3] A. Bianco, R. Birke, D. Bolognesi, J.M. Finochietto, G. Galante,
M. Mellia, M.L.N.P.P. Prashant, and F. Neri. Click vs. linux: two efficient
open-source ip network stacks for software routers. In High Performance
Switching and Routing, 2005. HPSR. 2005 Workshop on, pages 18 – 23,
may 2005.

[4] Raffaele Bolla and Roberto Bruschi. Pc-based software routers: high
performance and application service support. In Proceedings of the ACM

workshop on Programmable routers for extensible services of tomorrow,
PRESTO ’08, pages 27–32, New York, NY, USA, 2008. ACM.

[5] L. Deri. Improving passive packet capture:beyond device polling. In
SANE 2004, Amsterdam.

[6] L. Deri. ncap: Wire-speed packet capture and transmission. In Workshop

on End-to-End Monitoring Techniques and Services, pages 47–55. IEEE,
2005.

[7] L. Deri, J. Gasparakis, P. Waskiewicz, and F. Fusco. Wire-speed
hardware-assisted traffic filtering with mainstream network adapters.
Advances in Network-Embedded Management and Applications, pages
71–86, 2011.

[8] M. Dobrescu, N. Egi, K. Argyraki, B.G. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy. Routebricks: Exploiting
parallelism to scale software routers. In ACM SOSP, pages 15–28, 2009.

[9] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy, and
T. Schooley. Evaluating xen for router virtualization. In Computer

Communications and Networks, 2007. ICCCN 2007. Proceedings of 16th
International Conference on, pages 1256 –1261, aug. 2007.

[10] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe
Huici, and Laurent Mathy. Towards high performance virtual routers
on commodity hardware. In Proceedings of the 2008 ACM CoNEXT
Conference, CoNEXT ’08, pages 20:1–20:12, New York, NY, USA,
2008. ACM.

[11] Alexander Fiveg. Ringmap capturing stack for high performance packt
capturing in freebsd. http://ringmap.googlecode.com/

files/ringmap slides.pdf, 2010.
[12] S. Han, K. Jang, K.S. Park, and S. Moon. Packetshader: a gpu-

accelerated software router. ACM SIGCOMM Computer Communication
Review, 40(4):195–206, 2010.

[13] M. Handley, O. Hodson, and E. Kohler. Xorp: An open platform for
network research. ACM SIGCOMM Computer Communication Review,
33(1):53–57, 2003.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F. Kaashoek. The
click modular router. ACM Transactions on Computer Systems (TOCS),
18(3):263–297, 2000.

[15] Max Krasnyansky. Uio-ixgbe. https://opensource.qualcomm.com/wiki/UIO-

IXGBE.
[16] Tudor Marian. Operating systems abstractions for software packet

processing in datacenters. PhD Dissertation, Cornell University, 2010.
[17] S. McCanne and V. Jacobson. The bsd packet filter: A new architecture

for user-level packet capture. In USENIX Winter Conference. USENIX
Association, 1993.

[18] J.C. Mogul and K.K. Ramakrishnan. Eliminating receive livelock in
an interrupt-driven kernel. ACM Transactions on Computer Systems

(TOCS), 15(3):217–252, 1997.
[19] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nel-

son Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Subra-
manya, and Amin Vahdat. Portland: a scalable fault-tolerant layer 2
data center network fabric. In Proceedings of the ACM SIGCOMM 2009
conference on Data communication, SIGCOMM ’09, pages 39–50, New
York, NY, USA, 2009. ACM.

[20] Ben Pfaff, Justin Pettit, Teemu Koponen, Keith Amidon, Martin Casado,
and Scott Shenkerz. Extending networking into the virtualization layer.
In Proceedings of the ACM SIGCOMM HotNets, October 2009. ACM,
2009.

[21] L. Rizzo. Polling versus interrupts in network device drivers. BSD-

ConEurope 2001, 2001.
[22] Luigi Rizzo. netmap: fast and safe access to network adapters

for user programs. Tech. Report, Univ. di Pisa, June 2011,

http://info.iet.unipi.it/∼luigi/netmap/, 2011.

