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ABSTRACT
Dummynet is a widely used link emulator, developed long
ago to run experiments in user-configurable network envi-
ronments. Since its original design, Dummynet has been
extended in various ways, and has become very popular in
the research community due to its features and to the ability
to emulate even moderately complex network setups on un-
modified operating systems (FreeBSD, Mac OS X and now
Linux as well).

The goal of this paper is to present in detail the current
features of Dummynet, compare it with other emulation so-
lutions, and discuss what operating conditions should be
considered and what kind of accuracy to expect when using
an emulation system.

1. INTRODUCTION
Live testing has always been an important part of the re-
search and validation of network protocols and applications.
Analysis and simulators can provide important insight on
the behaviour of a system, but the interaction of the sys-
tem under test with the possibly unknown features of the
external environment is difficult to evaluate without live ex-
periments. These, in turn, pose the problem of controlling
the test environment to achieve reliable and reproducible
results. Researchers often use a combination of simula-
tors [5,6], emulators [9,18] and real testbeds [10,21] to per-
form their experiments in a more controlled way, and exploit
the advantages of the various techniques.

The focus of this paper is on network emulators, and in
particular on a system called Dummynet [18], developed over
a decade ago by one of the authors, and become very popular
since then [2]. Three factors have contributed mainly to its
diffusion: availability, learning curve, and feature set.

In terms of availability, Dummynet has been a standard
component of FreeBSD for over ten years, and of Mac OS X
since 2006. Hence, researchers could find it readily available
on their systems. Additionally, since the beginning we dis-
tributed bootable disk images to create dummynet-enabled
bridges using existing PC hardware without disrupting their
existing software installations. This way, emulation could be
made available within a network as shown in Fig.1, regard-
less of the operating systems in use.

In terms of learning curve, the user interface was carefully
designed so that one can set up the emulator with as few as
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Figure 1: A Dummynet-enabled bridge can be in-

serted in an existing the network without any change

in the configuration.

two commands, such as the following:
# define bandwidth and delay of the emulated link
ipfw pipe 1 config bw 3Mbit/s delay 32ms
# pass all traffic through the emulator
ipfw add pipe 1 ip from any to any

Additional features can be learned and used incrementally
starting from this simple case.

As for the feature set, Dummynet has been significantly
extended since its original design, and it currently includes
various queue management schemes (FIFO, RED, WF2Q+),
has the ability to create per-flow emulated links, can em-
ulate complex topologies, and can reproduce multipath ef-
fects. We have recently added some support for better MAC
emulation. Some third party extensions have also been de-
veloped [12,19], to introduce programmable or trace-driven
packet dropping or alterations.

Dummynet usage has exceeded by far our initial expecta-
tions. Besides the use by individual researchers, Dummynet
is also a core component in the popular Emulab [21] testbed,
and has become extremely popular as a traffic shaper. We
expect that our recent work (more support for MAC em-
ulation, described in Section 3.6; a Linux port; and the
inclusion in PlanetLab [8] nodes as part of the Onelab2
project [4]) will boost its use even more.

This paper makes two major contributions: in Section 3,
we give a comprehensive and up to date presentation of
features and limitations of Dummynet, so that researchers
can make the best use of the tool; in Section 4.1, we
make a detailed analysis of the accuracy and performance
of Dummynet.

2. RELATED WORK
Up the mid ’90s, and to some degree even nowadays, re-

searchers often evaluated their systems with the help of cus-
tom network emulators, sometimes embedded in their appli-
cations. For research on congestion control or error recovery



schemes it is important, and sometimes sufficient, to induce
controlled packet drops on the traffic. For this reason some
emulation systems just cause packet drops, following some
computed pattern or using a trace from an external source
(a simulator or a real system). However, losses are nor-
mally dependent on actual traffic patterns, and for systems
or protocols (such as TCP) that react to losses by altering
the traffic they produce, a pure trace-driven loss generation
may be insufficient. This has prompted the development of
emulators that also model the behaviour of links with finite
queues, limited bandwidth and propagation delay.

2.1 Link emulators
The two most popular and flexible representatives of this

class are Dummynet [18], which has been available for over
10 years as part of FreeBSD, and NISTNet [9], which is
available as an add-on module for Linux. In addition to
the link features described before (programmable rate, delay
and queue size), both Dummynet and NISTNet can create
multiple emulated links, include packet classifiers to select
traffic subject to emulation, and support some additional
emulation features such as loss generation, queue manage-
ment policies, and more. Both tools are readily available,
with little or no installation effort, on popular OS platforms.

An interesting proposal is Netpath [7], which relies on
the Click modular router software to build emulated links.
Click [15] is a system that lets the programmer build data-
paths by glueing together “elements”. These can represent
input or output interfaces, classifiers, queues, delays lines.
By constructing a graph of Click elements, Netpath builds
a full emulator with functionalities similar to Dummynet.
The Netpath approach is interesting because the emulator
can be extended with relative ease by writing new Click el-
ements with the desired functionalities. Also, the ability
to completely bypass the operating system and its device
drivers makes this a very interesting solution for a high per-
formance, standalone emulator box.

Commercial products such as LANforge-ICE [3] also im-
plement similar features, providing multiple emulated links
with configurable rate, latency, and packet loss. In addition
to these basic functions, LANforge-ICE lets the user config-
ure network attributes such as jitter, and provides a wide
set of packet corruption functions.

Hardware-based emulators can provide much higher tim-
ing accuracy, support higher data rates and more detailed
emulation of MAC features. As an example, the AnueSys-
tem Ethernet emulator [1] provides detailed emulation of
multiple Ethernet-like networks, also including a playback
option to record and replay traffic on a network segment.

Some feature-rich simulators such as Ns-2 [5] and Ns-3 [6]
include an emulation mode to drive the simulation with live
traffic or, vice-versa, generate live traffic from a run of the
simulator.

Finally, some emulators do not use an analytical model
of the system they reproduce, but resort instead to traffic
traces, or even to monitoring live systems, to drive the emu-
lation. Two systems that belong to this class are ENDE [22]
and SatelliteLab [11]: both monitor the behaviour of an ac-
tual communication link subject to interesting traffic pat-
terns, and use the measurement results to configure the em-
ulator in real time to generate a similar behaviour.

Link emulation is a close relative to traffic shaping, a fea-
ture available in several systems and routers to enforce ser-

vice limitations (or guarantees, depending on the point of
view). Because of the similarities, some emulation systems
are built around traffic shapers1, adding the missing fea-
tures. As an example, netem [13] implements link delays,
and relies on the Linux package “tc” for traffic shaping and
packet classification.

Some researchers have done work to extend Dummynet
using one of two techniques:

• using external programs to dynamically reconfigure
the emulator, e.g., dynamically changing a link’s band-
width. This approach does not require kernel modifi-
cations, even though the external programs will have
little or no information on the traffic flowing through
the emulator;

• implementing kernel changes to extend the emula-
tion capabilities, e.g., adding selective or trace-driven
packet drops. This approach is more intrusive in terms
of modifications to the system, but it can make full use
of the information on traffic and emulator state.

There are several instances of these approaches docu-
mented in the literature, mostly focused on specific research
projects. In the first category we find the SEDLANE [19]
testbed, which runs Ns-2 simulations to extract the
time-dependent features (delays and loss rates) of an ad-hoc
network, and then uses the results of the simulations to
change over time the configuration of a dummynet-based
testbed where the real experiments are run. As an exam-
ple of the second category we can cite the KauNet [12] tool,
which extends Dummynet to push error/drop patterns into
the kernel, and applies them to the packet flowing through
the emulator. The extension is complemented by a pattern
generation tool to provide a compact representation of the
information used by the kernel.

2.2 Emulating multihop networks
An often needed feature is the emulation of topologies

involving multiple links connected by routers or other in-
termediate nodes. Dummynet implements this feature by
reinjecting traffic into the emulator multiple times. With
this approach, a single physical machine can easily emulate
lightly loaded networks involving multiple network hops and
routers.

When the functions of the routers cannot be modeled by
classifier rules, some form of virtualization can be useful to
model an entire network within a single system. Imunes [23]
implements multiple, virtual network stacks within one in-
stance of the FreeBSD operating system. Each virtual stack
can implement a node in the emulated topology, and con-
nect to other nodes through its own instance of Dummynet.
The obvious extension of this concept is to run multiple
emulator instances within virtual machines (Xen, VMWare,
VirtualBox, Qemu) and connect them as required.

For more complex configurations, e.g. the modeling of
large or heavily loaded networks, one may want to distribute
the emulation on multiple physical systems. Modelnet [20]
supports the definition of complex topologies using a cluster
of routers running a modified version of Dummynet. The
Modelnet preprocessor, using a topology description, maps

1The converse is also true: Dummynet is widely used as a
traffic shaper, even more than as an emulator which was the
original purpose of the tool.



links to Dummynet pipes (Sec.3.1), places pipes on indi-
vidual routers to distribute the load, and computes the se-
quence of nodes/pipes that a packet must traverse. If pipes
are on different routers, Modelnet only needs to transfer the
control information (not the payload) from one router to an-
other, which reduces the run-time overehead of the system.

The EmuLab [21] testbed acts in a similar way. The sys-
tem uses a topology description to program a set of con-
figurable switches, connected to FreeBSD nodes that use
Dummynet to emulate the various links involved. Planet-
lab [10] nodes have been recently extended by the authors
to use Dummynet for the same purpose [8].

3. DUMMYNET
In this section, we will describe the main components of

our system: the actual emulation engine, dummynet, and
its associated packet classifier, ipfw. Configuration of both
components is done running the /sbin/ipfw program (ipfw
for brevity). We will use the term “Dummynet” (uppercase
initial) to refer to the system as a whole. Both the classifier
and the emulation engine have a large (and growing) set of
features, so we refer the reader to the online page [17] for a
complete and up-to-date description.

Our design principle, when building and extending
Dummynet, was to reproduce only the basic components of
a communication network, and provide flexible and simple
tools to connect these components to each other. For the
reproduction of high level phenomena such as congestion-
related loss or routing across multiple paths, we rely on a
proper composition of Dummynet components and traffic
sources to achieve the desired results.

This contrasts with another popular approach, which is to
emulate the aggregate effects (such as loss patterns, delays,
reordering, etc.) induced by a certain network configura-
tion. The reason for our choice is that often such effects
are heavily dependent on actual traffic patterns, and try-
ing to model them independently would introduce too large
approximations.

3.1 Pipes
The basic object made available by the emulation engine

is called pipe (Fig. 2). It combines a queue with finite size,
and a communication link with fixed bandwidth and pro-
grammable propagation delay. Each pipe is identified by a
different integer, and their number is only limited by avail-
able memory.

Figure 2: The structure of a dummynet “pipe”.

Configurable parameters include bandwidth, delay

and queue size.

Pipes’ parameters can be set and reconfigured dynami-
cally with one-line commands such as the following:
ipfw pipe 3 config bw 640Kbit/s delay 30ms queue 20

Packets are intercepted in the network stack as discussed in
Sec.3.2, and possibly sent to pipes. A packet going through

a pipe is queued if there is capacity, and the queue is
drained at a rate corresponding to the link’s bandwidth, B.
Once outside the queue, a packet is staged in a delay line
for a time tD (the propagation delay of the link), and
then reinjected into the network stack. As a result of
this process, the pipe will delay each packet i by a time
Ti = (li + Qi)/B + tD, where li is the length of the packet,
Qi is queue occupation when the packet was queued, and
B and tD are the bandwidth and propagation delay of the
link.

In some situations it is useful to aggregate traffic into
flows, and pass each flow through a separate pipe. This is
achieved with a feature called “dynamic pipes”: “mask”
parameters can be specified in the configuration of a pipe,
which indicate the bits in the 5-tuple of a packet (protocol,
addresses and ports) that should be used to group packets
into flows. For each pattern resulting after masking, a new
pipe will be created, and matching traffic will be directed
to it. As an example, the rule
ipfw pipe 4 config mask src-ip 0x000000ff bw 1Mbit/s

will group packets with the same value of the least signifi-
cant 8 bits in the source address, and direct each flow to a
new instance of pipe 4. The bandwidth of each instance is
1Mbit/s.

Figure 3: Classifier rules send packets to specific

pipes. On exit, the traffic is reinjected into the net-

work stack.

3.1.1 Complexity
Traversing a pipe has a constant per-packet cost, with

slightly optimized code paths in case of pipes with zero de-
lay or no bandwidth limitations. The presence of multiple
pipes (either statically defined, or dynamic ones) gives an
O(log N) factor in the number of active pipes, which arises
because internally Dummynet uses a priority queue to deter-
mine the next pipe to serve. Actual performance numbers
are measured and discussed in Sec.4.2.

3.2 Traffic selection: the packet classifier
As mentioned earlier, traffic is passed to pipes using the

packet classifier, ipfw, which uses a list of numbered rules
(called ruleset) to match packets and decide their fate. The
command to insert a rule in the ruleset is

ipfw add rule-number action options
Whenever the classifier is invoked on a packet, rules are eval-
uated in rule-number order. For each rule, zero or more op-
tions define the match criteria (e.g., match addresses, ports,



protocols, even metadata such as direction, incoming inter-
face, related sockets). Options are evaluated on the current
packet, and if they all match the action specifies what to do
with the packet itself (accept, drop, pass to a pipe, etc.).

Traffic is intercepted and passed to the packet classifier
at various points in the network stack (Figure 3) – typically
during layer 2 and/or layer 3 processing, both in the
inbound and outbound path. By means of appropriate
actions in the rules, the classifier can pass matching traffic
to different pipes. Coming out of the pipe, packets will be
reinjected into the stack (or possibly into the classifier, see
Section 3.3) after the point of intercept. The following is
an example ruleset and pipe configuration which emulates
two distinct links:
ipfw add 100 pipe 10 out dst-ip xy.it
ipfw add 200 pipe 11 in src-ip xy.it
ipfw add 300 pipe 24 out dst-ip 192.168.4.0/24
ipfw add 400 pipe 24 in dst-ip 192.168.4.0/24

ipfw pipe 10 config bw 2000Kbit/s delay 3ms
ipfw pipe 11 config bw 256Kbit/s delay 12ms
ipfw pipe 24 config bw 10Mbit/s

Here, rules 100 and 200 pass traffic for host xy.it (the name
is resolved when the rule is inserted) through two different
pipes, one for each direction. This is a typical configuration
for bidirectional links, possibly with different settings for
each pipe in case the link is asymmetrical, e.g. an ADSL.

Rules 300 and 400 direct to pipe 24 all inbound and out-
bound traffic for subnet 192.168.4.0/24, irrespective of the
direction. Using a single pipe for bidirectional traffic is
sometimes useful when emulating shared media such as an
Ethernet segment.

3.2.1 Complexity
Classifier rules are based on microinstructions, so their

cost is proportional to the number and complexity of the
options they include: basic address or port matching is
very simple, whereas looking up sockets or routes associ-
ated to packets is more expensive also due to the locking
requirements. Typically, the classification costs are linear in
the number of rules, but the classifier includes mechanisms,
such as lookup tables and stateful entries, that permit O(1)
dispatching of the traffic to the appropriate pipe. A mea-
surement of actual processing time for the simplest rules is
reported in Sec. 4.2.

3.3 Multipath and multihop networks
The existence of multiple (wired) paths between source

and destination can lead to packet reordering and/or losses.
We can model multiple paths using a classifier option that
matches packets with a given probability; this allows traffic
to be randomly directed to one of multiple links. As an
example, the rules
ipfw add 1000 prob 0.2 pipe 10 src-port 80 in
ipfw add 1010 prob 0.7 pipe 20 src-port 80 in
ipfw add 1020 pipe 30 src-port 80 in

send 20% of incoming HTTP traffic to pipe 10, another 56%
(0.7 of the remaining 80%) to pipe 20, and the remaining
part to pipe 30. If pipes have different bandwidth or delays,
or they are subject to other interfering traffic, one can
cause a wide range of effects from selective packet loss to
jitter and reordering.

Topologies where packets must traverse multiple links
(and queues) can be emulated by sending packet that emerge
from a pipe back into the classifier, and in turn into other

pipes. The sysctl variable net.inet.ip.fw.one pass con-
trols the reinjection of the packets in the classifier after they
emerge from a pipe. Reinjected packets are subject to the
usual classifier processing: they are compared against sub-
sequent rules, and possibly sent through pipe(s) again.

3.4 Packet dropping
Packet drops in a wired network are usually due to queue

overflows, queue management schemes (e.g. RED), or rout-
ing problems. Radio links add noise and interference as
other potential causes of drops.

As said before, Dummynet focuses on the emulation of
basic mechanisms that cause drops (queueing, routing), and
on supplying tools to combine them effectively (classifiers,
reinjection). Congestion-related drops can be induced
by driving pipes with suitable traffic patterns, from the
application under test and possibly from other competing
sources. For non congestion-related drops, we can use the
probabilistic match option described in Sec. 3.3 to emulate
links with uniform random loss patterns, e.g.:
ipfw add 400 prob 0.05 deny src-ip 10.0.0.0/8

More classifier options can be used to create different drop
probabilities depending on addresses, packet lengths or
other attributes. It is also easy to create new classifier
options and implement different packet dropping patterns,
an approach that has been used in the past by other
researchers [12,16].

3.5 Queue management and packet schedul-
ing

Dummynet includes various queue management policies
and one packet scheduling algorithm, all with configurable
parameters.

FIFO queues are the default, with size configurable ei-
ther in bytes or number of slots. We also implement RED
and GRED queues, whose parameters are also configurable.
Other queue management schemes such as ABE [14] have
been implemented in Dummynet in the past.

Research on packet scheduling is supported by two mech-
anisms: an object called queue, used to create one or more
physical queues that store packets belonging to individual
flows, and a mechanism to load and configure at runtime
specific link scheduling algorithms. The connection between
queues, pipes and schedulers is shown in Figure 4.

Figure 4: The binding between queues, scheduling

algorithm and the corresponding pipe.

A “queue” is created or configured with the command
ipfw queue N config pipe X weight Y mask ...

which additionally defines the pipe (and scheduler) that
the queue is attached to, sets the relevant parameters (such
as weights or priorities) for the scheduling algorithm, and
defines how packets should be grouped into flows, The



mechanism to group packets into flows (and create one
queue per flow) is similar to the one used for dynamic pipes:
a mask is applied to the 5-tuple of the packet, and a new
instance of a queue is created for each pattern resulting
after masking.

As an example, the following configuration defines a
4Mbit/s pipe, serving one queue with weight 20, and
multiple (dynamic) queues with weight 10 each.
ipfw pipe 5 config bw 4Mbit/s // default: WF2Q+
ipfw queue 10 config weight 20 pipe 5
ipfw queue 8 config weight 10 pipe 5

mask src-ip 0xffffffff
ipfw add 1000 queue 10 out proto udp
ipfw add 1010 queue 8 out proto tcp src-ip 10.8.5.0/24

The parameter mask src-ip 0xffffffff tells the queue

object to create one instance for each source IP.
The configuration of the scheduler type and of the out-

put link is done using the ipfw pipe X config ... com-
mand. Support for loadable scheduling algorithms has been
added recently, and this will allow complementing the exist-
ing WF2Q algorithm with other schedulers.

3.5.1 Complexity
The cost of scheduling multiple queues into the same pipe

is completely determined by the scheduling algorithm in use.
In this respect, the literature reports a wide range of op-
tions from O(1) to O(log N) to O(N). The WF2Q+ algo-
rithm implemented as default has logarithmic complexity
with constants similar to those related to the management
of multiple pipes.

3.6 Emulating MAC layer effects
Precise emulation of MAC layer effects, such as framing

(gaps, preambles, checksums), channel scheduling or link
level retransmissions is not present in Dummynet. This
is partly because of a different focus of the emulator, and
partly because the task can become extremely complex. Es-
pecially for shared media, the behaviour of a communication
channel is heavily dependent on the interaction between the
MAC layer and all stations sharing the channel. Without
modeling these additional actors, the results could be heav-
ily inaccurate, or at least they will be valid only in certain
conditions.

Given that links which deviate significantly from our basic
link model are more and more common, we recently intro-
duced some limited support to model these media. To keep
the complexity within acceptable limits, we compromised on
an approximate solution that reproduces MAC effects in a
probabilistic way and assumes only limited interference from
other stations.

In our model, a packet transmission will keep the chan-
nel busy for the transmission time l/B plus some “extra
airtime”, given by the sum of busy intervals, contentions,
backoffs, preambles, framing, possibly link level acknowledg-
ments and retransmissions. The emulator takes as input the
Cumulative Distribution Function of this extra “airtime”,
and uses it in the computation of how long the channel will
be busy for a packet transmission. An accurate determina-
tion of this curve is key to achieve realistic emulation, and
this clearly depends on the type of MAC protocol and the
load on the channel.

As a first approximation, one could start by modeling a
non-contended channel with deterministic delays, in which
case the CdF will resemble the curve in Figure 5, left: with

Figure 5: Specification of the additional airtime used

for packet transmissions.

a probability corresponding to the successful transmission
at the first attempt, transmissions will have a fixed over-
head. Link level retransmissions, if present, will cause extra
delays (due to timeouts on link level acks), giving the curve
a staircase shape. Finally, packets may be lost due to ex-
cessive retransmissions, and we can specify the probability
of this event. The curve for the non-contended case can be
computed, at least as a first approximation, looking at the
specifications of the MAC protocol involved.

In case of contention, the additional delay becomes vari-
able, because we must now account for channel-busy times
and collisions that depend on the presence of other stations.
The regions corresponding to the various retransmissions
will likely overlap, and the curve (to be determined exper-
imentally or based on empirical considerations) should be-
come similar to the one in Figure 5, right.

In the current code, the parameters associated to this
empirical delay distribution must be stored in a file that is
passed as a profile argument to a pipe’s configuration:
ipfw pipe 3 config profile /data/test/foo

The file includes a profile name, the data rate, a loss
threshold, and the number and position of corners in the
polyline describing the curve:
name test profile
bandwidth 2Mbit/s
loss-level 0.99
samples 5
prob delay # delay in us
0.2 100
0.4 130
0.5 130
0.8 1500
0.98 2000

4. ACCURACY AND PERFORMANCE
One of the main reasons for using an emulator is to pro-

vide a reasonably reproducible environment for experiments.
It is then important to understand the limits of operation,
and the extent of the approximations and errors introduced
by the emulator itself. In the following we performs this
analysis for Dummynet, but note that most of the issues
discussed here apply, with similar or the same effects, also
to the other emulation systems presented in the literature
or available on the market.

The measurements presented here were performed on an
entry-level desktop machine (AMD BE-2400 CPU, 2.3GHz,
800MHz FSB) running FreeBSD 8. Some of the results (e.g.
those of Sec.4.1.1 and Sec.4.1.3) are relatively independent
of the OS type and CPU speed. Others are instead heavily



influenced by these factors.

4.1 Emulator accuracy
Two aspects influence the accuracy of an emulator: how

detailed is the model of the system, and how closely the
hardware and software can reproduce the timing computed
by the model.

For the first aspect, the basic link model implemented
by Dummynet pipes (and by other common emulators such
as Nistnet and Netpath) is limited to a fixed-rate channel.
None of these systems make any attempt to emulate MAC
level features such as framing, slotting, collision handling,
link level retransmissions. The reason for the omission is
that a detailed modeling of these features would be pro-
hibitively expensive, unless one limits the model to simple
or approximate features (for Dummynet, see Sec. 3.6).

The second aspect – reproducing the timing computed by
the model – is mainly affected by the three factors: compet-
ing traffic on the physical links, interference of Operating
System activities, and timers resolution. These factors will
be discussed in detail in the rest of this Section, and affect
any emulation system, not just Dummynet. It is useful to
summarize their impact in the following table:
Cause Error introduced

Competing traffic 120..1200 µs per emulated link
OS interference 30 µs or more, OS-dependent
Timer resolution 25..1000 µs, constant, OS-dependent

We should emphasize that competing traffic, which intro-
duces a large and often neglected error component, affects
all emulators that support multiple emulated links. The ef-
fect of the other two components can be reduced by running
the operating system in carefully controlled load situation,
or bypassing the OS altogether.

4.1.1 Competing traffic on the output interface
Emulators normally compute a “due time” for each packet

that goes through them, and arrange transmissions on the
physical output links so that packets are released at their due
time. When an emulator supports multiple emulated links,
and packets on different emulated links have the same or
very close due time, the serialization of the transmission on
the physical output interface, introduces an unavoidable er-
ror which in the worst case can be T = (N −1)L/B seconds.
Here N is the number of emulated links that may conflict,
L is the maximum packet size, and B is the bandwidth on
the output interface. To put the numbers in context, L/B
can be as large as 1.2ms with packets of 1500 bytes on a
100Mbit/s Ethernet, and 120µs on a Gigabit interface. This
error can be reduced or removed by working on the factors
of the formula above.

4.1.2 Operating System interference
Non Real Time Operating Systems do not give guarantees

on when kernel tasks (such as those related to emulation)
will be processed, as they might be preempted by other OS
activities with higher priority. To determine at least a lower
bound for the delays that can be experienced in the network
stack due to OS interference, we measured the variations in
the ping response time of a system under some representa-
tive load conditions

• IDLE. Completely idle system, no extra process is run-
ning except the basic system services;

• USER. Several processes run the loop
extern volatile a; for(;;) a++;

consuming the full CPU available, and accessing the
memory bus, in user space;

• KERNEL. A number of process are accessing devices
and memory filesystems, continuously issuing system
calls that cause heavy kernel load;

and with three different configurations of the network stack:
no firewall, 1 ipfw rule, 100 ipfw rules. This test is significant
because it represents very closely the work done in the kernel
by the various configurations of the emulation code.

The results (both average and standard deviations) are
presented below (all times are in µs):

IDLE USER KERNEL
avg sd avg sd avg sd

no ipfw 27.2 1.94 27.6 1.72 49.7 2.50
IPFW-1 28.1 2.82 28.2 1.36 55.1 2.62
IPFW-100 36.2 1.82 36.3 1.78 71.0 2.60

More than the absolute times, we are interested in the dif-
ference between the baseline case (IDLE) and the columns
corresponding to other load conditions. We see that a USER
load, no matter how large, has negligible impact on the sys-
tem, whereas a KERNEL load introduces a lot of additional
delay: individual packets were delayed by 20-35 µs in our
experiments, and we can easily generate much higher delays
with appropriate kernel loads.

This type of error can be reduced by carefully controlling
the operating conditions of the Operating System, or by-
passing it altogether. This is however not always possible
when the emulator must run on the same machine used for
experiments.

4.1.3 Timer resolution
Dummynet (and many other emulators), internally round

times to multiples of the quantum of the system timer, which
runs HZ times per second (in our case HZ = 1000). This
introduces a timing error of 1/HZ = 1 ms, which can be
greatly reduced by running the system timer at a higher
rate (we have often used HZ=10000 to 40000 corresponding
to 25..100 µs error) or relying on the high resolution timers
that many operating system make available.
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Figure 6: Distribution of delays for a 10ms pipe and

different HZ values, asynchronous senders.

Figure 6 shows the measured distribution of delays for a
pipe with a nominal 10 ms delay, using different values of



the timer tick. As expected, using higher HZ values reduces
the error, up to the point where the error component due
to the OS interference, discussed in the previous Section,
becomes dominant.

It is important to realize that the effect of timer resolu-
tion depends on the behaviour of the traffic sources. Quite
often, sources tend to synchronize with the emulator (as an
example, a TCP receiver responds immediately to packets
released by the emulator), and this can produce peculiar re-
sults in the measurements. One such example is presented
in Figure 7, where we show the delay introduced by the same
10 ms pipe with HZ=1000 and synchronous senders (in this
case, a ping with an interval of 10.2 or 10.5ms, or a ping -f

which responds as soon as the reply comes in). As you can
see, the 1 ms error does not show at all in the ping -f case,
and the periodic pings give a peculiar staircase pattern.
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Figure 7: Distribution of delays for a 10ms pipe,

HZ=1000, synchronous senders.

4.2 Performance
Emulators are often characterized with their maximum

throughput, in packets per seconds (PPS) 2. However, this
value is the result the various contributions shown in Fig.8,
top. Only classification and emulation belong to the emu-
lator itself, whereas the others are inherited by the under-
lying operating system. In the case of dummynet, which is
a) designed to run on top of an existing OS, and b) runs on
different platforms, we have no chance to optimize any of
these phases.

To better identify the overhead introduced by the emula-
tor, we measured the per-packet processing time (the inverse
of the PPS rate) of a system with a local traffic generator
which is discarding traffic at various point of the process-
ing chain (Fig.8 bottom): before the classifier (A), after
one or more classifier rules (B), or after going through the
emulation engine (C) with different configurations. From
the difference between the various time we can derive the
average cost of each processing stage. The use of a local
generator removes two very expensive and variable parts of
the processing chain, thus permitting more accurate mea-
surements. The generator transmits minimum-sized UDP
packets to one or more different ports.

Experiments lasted 1..5 sec each, were repeated at least
100 times, and always on a freshly booted system. Cases
B and C are run with different configurations as explained
later. Also, for reference, we have also made some measure-

2the per-packet overhead is normally the dominant factor in
limiting performance.

Figure 8: Measurements to determine the emula-

tor’s overhead. Top: typical components in PPS

measurements. Below: our detailed measurements,

to extract the cost of classification and emulation.

ments for case D (packets going all the way through a Gbit
interface), to compare the emulation overhead with the cost
of device output, which is completely dependent on the OS
in use. The results are summarized in the following table:
Case avg/sd (ns) 1 flow
A 643 / 16.9 Drop before classifier.
B 1044 / 30.0 Drop in first rule.
B100 4668 / 59.3 Drop after 100 rules.
C0 1740 / 44.8 pipe with 0 delay, unlimited bw.
Cd 2360 / 33.2 pipe with 20ms delay
Cr 1877 / 44.7 pipe with bw limit
D 2212 / 125 No pipe, output on Gbit interface

Case avg/sd (ns) 1000 flows
A′ 1704 / 64.6 Drop before classifier
B′ 2095 / 73.4 Drop in first rule
C′

r 3549 / 93.2 1000 pipes with bw limit

First, cases A and B let us determine the classification
cost, which has a fixed component related to entering the
classifier (B − A = 400 ns), and a variable component that
depends on the number of rules in the classifier. From the
difference between case B with 1 rule, and case B100 with
100 rules, we derive that the simplest rules requires (B100 −

B)/99 = 36.6 ns.
If a packet goes to a pipe, we have an additional compo-

nent between roughly 700 and 1300 ns (C0 −B and Cd −B,
respectively). While the complexity of pipe processing is
O(1), there are different code paths depending on the param-
eters and queue occupation. A pipe with unlimited band-
width and no-delay (C0) and a pipe with pure delay (Cd)
represent the two extreme cases for the complexity of the
emulation code.

When multiple pipes are involved, the processing time of
the emulation engine is t1 + k log N where N is the number
of pipes with backlogged traffic, and t1 corresponds to the
1-pipe case just discussed. To estimte the weight of the
logarithmic component, we ran another series of experiments
generating traffic to 1000 different ports3, passed to 1000
bandwidth-limited pipes. This resulted in C′

r − B′ = t1 +
k log 1000 ≈ 1500 ns, which is less than twice the value of
Cr − B = t1 ≈ 840 ns.

3The local source, in this experiment, is more time-
consuming (A′ = 1704 ns vs A = 643 ns) because it has
to send packets to non-connected sockets.



5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an overview of emulation

solutions used in networking research, and discussed in de-
tail Dummynet emulator. In addition to its current features,
we have analysed its scalability, accuracy and performance
and presented measurement results showing its behaviour in
various operating conditions.

Even though it is a mature and already widely used piece
of software, we have recently done some enhancements on
Dummynet, which include a Linux and OpenWRT port,
the inclusion in PlanetLab as in-node emulator, support for
more accurate modeling of MAC layers. Upcoming work in-
cludes a Windows port, and support for dynamically load-
able packet scheduling algorithms.

This collection of features should help researchers in do-
ing live testing of their protocols and applications, without
being constrained by the use of a specific OS platform, or
by the limited features of the tool they use.
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