
An emulation tool for PlanetLab

Marta Carbonea, Luigi Rizzoa

aDipartimento di Ingegneria dell’Informazione, Università di Pisa

Via Diotisalvi 2 - 56122 - Pisa, Italy

Abstract

Network testbeds have become very popular to support research on network protocols and distributed
applications. To reproduce network behaviour, testbeds range between two extremes: use a fully emulated
network, or distribute nodes on the real Internet. The former approach yields very reproducible results but
might be a poor representation of reality; the latter gives more realistic but less reproducible scenarios.

In this paper we present an emulation solution for the PlanetLab testbed, and provide a detailed de-
scription of its feature and performance. Our system gives researchers the advantages of emulation while
not giving up the opportunity of running experiments in a large and heterogeneous testbed with realistic
network conditions. The work is based on a Linux version of the Dummynet network emulator, extended
with specific features to improve efficiency on PlanetLab, and with custom configuration mechanisms to
simplify its use.

The system described in this paper, developed as part of the Onelab2 project, has been deployed on a
large subset of PlanetLab nodes. The emulation code itself is also available for ordinary Linux systems.

Keywords: Internet, network testbeds, emulation, PlanetLab, performance evaluation

1. Introduction

In recent years there has seen a significant growth
in the deployment of testbeds to support research
on network protocols and distributed applications.
The primary motivation for most of these projects
is to make available to researchers a system that, for
its size and features, would not be affordable for in-
dividuals or even single institutions. Depending on
the case, testbeds are built as a result of a commu-
nity effort, where each participant contributes com-
puting and networking resources; or thanks to the
support of funding agencies, which sponsor strate-
gic initiatives such as GENI [1] and FIRE [2].

Testbeds are generally made of a large number of
computing nodes, managed by a central authority,
and equipped with various storage and communica-
tion devices. Depending on the circumstance, the
interconnection network (and the testbed itself) can
be concentrated in a single location, or distributed
across a large geographical area.

The target of each testbed varies. Some, such as
Emulab [3], are focused on providing a very repro-
ducible environment, and often make heavy use of
virtualization and emulation techniques to present

configurable and predictable node capacity or net-
work resources to researchers.

Other testbeds address specific research topics,
such as the study of wireless networks (ORBIT [4]),
or routing protocols (VINI [5]). In these cases, the
testbed includes components to address the partic-
ular problem domain.

Finally, testbeds such as PlanetLab [6] try to pro-
vide a realistic snapshot of the real Internet. The
heterogeneity of nodes and network links that are
part of a PlanetLab instance is a feature of the plat-
form: it helps exposing applications to the same
conditions that they would experience when de-
ployed, but carries with it some lack of control on
the reproducibility of experiments, because network
conditions between nodes are typically unknown
and variable over time.

This paper addresses the latter problem by ex-
tending PlanetLab with an emulation system that
complements the features of the platform, and per-
mits researchers to switch easily between two ex-
tremes: fully reproducible or completely realistic
but uncontrolled network conditions.

The main contribution of this paper is a system

Preprint submitted to Elsevier February 26, 2010

Figure 1: Applications of our PlanetLab extension. Different types of links (dashed) can be emulated on top of existing,
physical links (solid).

that lets PlanetLab users configure, independently
of each other, multiple emulated links for their ex-
periments (Figure 1). Our system is made of several
components, specifically tailored to the platform’s
needs: an emulation engine, implemented with a
Linux port of the Dummynet [7] emulator; the ad-
dition of specific packet filtering and demultiplexing
features (Section 4.2), to support concurrent users
in a robust and efficient way; and a carefully de-
signed user interface (Section 4) that permits an
easy use of the emulation features.

The rest of the paper is structured as follows.
Motivations for this work are presented in Section 2.
Section 3 describes the overall architecture of our
system, and provides a description of the compo-
nents involved in our work: the PlanetLab testbed
in Section 3.1, and the Dummynet emulator in Sec-
tion 3.3. Section 3.4 documents how we ported
Dummynet to Linux, while Section 4 shows how
emulation is made available to PlanetLab users.
Experimental results, including performance data,
are presented in Section 5. Finally, Section 6 gives
an overview of related work.

2. Motivations

PlanetLab [6] is a network testbed made by
roughly a thousand of nodes distributed throughout
the world and contributed by participating organi-
zations. This testbed offers users and researchers
a realistic snapshot of the Internet, where they can
deploy new protocols, run experiments and measure

network performance. PlanetLab is widely used
and interesting due to its size and heterogeneity
of network links and node hardware. On the weak
side, the lack of any control on the conditions of
the network makes it hard to obtain reproducible
experiments, and even harder to run tests under
controlled conditions. Reproducibility is a feature
that we consider highly desirable, even more so if
we can achieve it without giving up the existing
features of PlanetLab: this constitutes the main
motivation for the work presented here.

A common approach to achieve reproducible net-
work behaviour is the use of emulation. As an
example, in Emulab [3] nodes are colocated and
connected by configurable switches, with FreeBSD
machines interposed on the links and running the
Dummynet [7] emulation software to provide the
desired network features.

A centralized emulator cannot be used in
PlanetLab because there are no controlled devices
on the path between nodes and the rest of the net-
work. However, we can achieve a similar result
implementing emulation directly within the nodes.
Traffic will traverse both emulated and real links,
and will be subject to the limitations imposed by
the two. Depending on their features, we can try to
make one of the two components dominating over
the other, and achieve a reasonable amount of con-
trol over the features of the communication net-
work. This approach is made easier by the fact
that clusters of PlanetLab machines reside within
the same lab or data center, and PlanetLab nodes

2

are generally well connected to the rest of the Inter-
net. As a consequence, in many cases it it possible
to neglect the unpredictable component introduced
by the physical links.

3. Architecture

Important design decisions for our emulation sys-
tem are how to implement the emulation engine;
how to integrate it within PlanetLab nodes; how to
provide safe operation and insulation among users;
which emulation features to expose to users; how to
design a user-friendly interface, to avoid distracting
researchers from their main goals; and finally, what
is the impact of emulation on the nodes’ perfor-
mance. The rest of the paper will address these
questions.

Figure 2 gives a snapshot of the architecture
of our emulation system. Users issue commands
through a simplified user interface (Section 4) to
configure the desired features of the emulated links.
Using the Vsys service (Section 3.1.2), commands
are passed to the “root context” of the PlanetLab
node, which can issue actual requests to config-
ure the emulation engine (Section 3.3). The lat-
ter includes specific features (Section 4.3) to im-
prove the performance and robustness of operation
in a shared and heavily loaded system such as a
PlanetLab node.

In the next Sections we describe the various com-
ponents involved in our architecture, and show how
we use them to achieve our goals.

3.1. PlanetLab

PlanetLab is made of two types of components: a
central controller, called PLC (PlanetLab Central),
and several computing nodes, where users can run
their experiments.

The PLC is the core of the system. It runs the
testbed management software and acts as a server
for nodes and users. Nodes willing to be part of the
testbed must download from the PLC, and install
on their disks, a custom version of Linux together
with a set of management programs.

PlanetLab users also register with the PLC to
gain access to the system. Once registered, they
are allowed to create one or more slices, the ad-
ministrative entities used to account for resource
usage. A slice’s instantiation on a node is called
sliver, and it is essentially a user account running
in a protected environment on the node.

3.1.1. Node and sliver management

Users log into the nodes and run their experi-
ments in a virtualized environment which provides
resources isolation between the slivers. This is im-
plemented by the Linux-Vservers [8] system, pro-
viding a private filesystem namespace to each sliver,
while still allowing all slices to access the full set
of devices available on the node. Each sliver runs
within a dedicated vserver context with limited root
permissions, meaning that the sliver can only exe-
cute a subset of the system calls. Operations that
require real root access (i.e. must run in the so-
called root context), are controlled by the vsys ser-
vice described next.

3.1.2. The vsys service

Users are king (root) in their Vserver, but their
privileges on operating on the root context are lim-
ited and strictly controlled using the vsys service.
The vsys service is the mechanism used by slivers
to perform certain privileged operations that may
affect the whole node (as an example, configuring
interfaces or packet filters). The service works by
creating one or more file descriptors accessible to
the sliver (see Figure 2, left). These descriptors
communicate with backend programs that run in
the root context and are, as a consequence, able to
invoke any system call without restrictions. Vsys
backends are installed by the system administrator,
who can also specify which backends are available
to each sliver. The identity of the invoking sliver is
available to the backend at runtime, so that specific
access policies can be implemented.

In our system, we use the vsys service to authen-
ticate and pass to the root context all user requests
for configuring emulation.

3.2. Choice of emulation engine

PlanetLab nodes run a custom version of Linux,
and there are several existing emulation packages
already available for that operating system, includ-
ing NISTnet [9], tc [10], and netpath [11] (the latter
is based on Click [12]).

We dismissed NISTnet because it is not avail-
able as a standard component in PlanetLab, and is
not actively developed. tc, which is a traffic shaper
and link scheduler, was not a suitable choice for at
least two reasons. First, it is not an exact match for
our requirements, as it requires an external package,
netem [13], to model features such as propagation
delays and reordering. Second, and most impor-
tant, tc is already used within PlanetLab nodes to

3

Figure 2: On the left, the interaction between users, vsys frontend and backend (Section 3.1.2). On the right, the flow of
packets through network stack, packet classifier and pipes (Section 3.3.3).

enforce traffic limitations, so its use for emulation
would interfere with the existing configuration, and
require a lot of care to ensure a safe coexistence.

netpath is interesting in terms of performance
when used as a standalone emulator, because it
uses its own device driver hooks and packet pro-
cessing stack. However, much of netpath’s perfor-
mance comes from an aggressive use of polling and
busy wait loops, which are a bad fit with PlanetLab
nodes, already heavily loaded with user programs.

Eventually we decided to select Dummynet as our
emulation engine. We have a significant experience
with it, and have already used it as an external
emulation solution in PlanetLab. Also, Dummynet
is used on Emulab, which means that researcher
may be already familiar with it. Dummynet was
not natively available on Linux when we started
this work but the port to the new operating system
required a manageable amount of effort, and was a
useful contribution in its own.

3.3. Dummynet

Dummynet [7] is a network emulator developed
under FreeBSD several years ago [14], later im-
ported into other BSD-derived operating systems,
including Mac OS X, and currently also available
on Linux, OpenWrt and Windows.

Dummynet is a component of the operating sys-
tem that can intercept network traffic and manip-
ulate it, emulating the behaviour of one or more
network links with programmable features. It is
made of three parts: the emulator itself, dum-

mynet; a packet classifier, ipfw; and a user interface,
/sbin/ipfw. The first two parts run in the kernel
of the operating system, and communicate with the
user interface through a control socket. A full de-
scription of Dummynet is in [7]; the next Section re-
ports only the details (including newly introduced
features) that are relevant for this work.

3.3.1. The emulator

dummynet (the emulator) can create multiple in-
stances of an object called pipe, which in its basic
version shown in Figure 3 models a network links
with programmable bandwidth, delay and queue
size.

Other pipe configuration options exist to specify
different queue management policies (e.g. RED),
to model some MAC layer effects such as variable
transmission times and link level overheads, and
also to simulate very simple packet drop patterns.

More advanced features allow connecting multi-
ple queues to a packet scheduler running one of sev-
eral scheduling algorithms, and then sending pack-
ets through a link with configurable features.

4

Figure 3: The basic components of a Dummynet pipe.

In this project we use pairs of pipes to emulate
the features of the two directions of a communica-
tion link.

3.3.2. Extended emulation features

Part of the focus of the Onelab project, in which
this work has been developed, was on wireless net-
works. As a consequence, we have extended the
basic pipe model of Figure 3 to support better em-
ulation of wireless and other channels with pecu-
liar MAC protocols, variable transmission rates or
channel errors. Rather than dealing with the com-
plexity of modeling all the details of specific MAC
protocols, we introduced two features: delay pro-

files and varying links.

Delay profiles support the definition of addi-
tional MAC overheads (such as contention, framing,
retransmissions) through empirical profiles: the
transmission time is extended by a random time,
computed according to the distribution provided by
the user (e.g., Figure 4). This way we can achieve a
better match of the transmission times with those
on real wireless links.

Varying links serve to model the variability of
wireless channels (including loss rates and band-
width) over time due to e.g. external interference
or mobility. The pipe can be in one of many states,

Figure 4: A sample delay profile describing the distribution
of MAC overheads (Section 3.3.2).

Figure 5: An example of the information used to implement
varying links (Section 3.3.2). The link remains in each state
for intervals of time with the given distribution, and then
moves to a new state with the probability specified on the
arcs.

each with its own set of parameters. Arcs connect
states into a graph which specifies possible transi-
tions. For each state we can specify, once again
using empirical distribution curves, the amount of
time spent in the state before moving to a new one,
and the probability associated with each of the out-
going arcs (Figure 5). The system will then ran-
domly switch between states in a way that yields
the same distribution as programmed by the user.

3.3.3. The packet classifier

Dummynet works in close cooperation with a pro-
grammable packet classifier, ipfw, that intercepts
packets in various points of the protocol stack, and
decides of their fate. The packet’s flow through the
network stack, packet classifier and pipes is repre-
sented on Figure 2, right.

ipfw is programmed by writing a set of numbered
rules, each containing zero or more options used to
match packets, and one action specifying what to do
with matching packets. Matching options include
addresses, ports, protocols, protocol flags and var-
ious packet’s metadata including the virtual server
that the packet is associated to. to provide insula-
tion between the different users.

5

Traffic selection is performed by testing a packet
against each of the rules, in numeric order, and per-
forming the action associated to the first matching
rule. For our purposes, the actions of interest are
sending the packet to a pipe, which will in turn de-
laying or dropping the packet as appropriate, emu-
lating the behaviour of the attached link. After the
emulation, non-dropped packets are sent back into
the network stack for their regular processing.

In this project we use classifier rules to dispatch
traffic to the appropriate pipes, according to the
configuration requests issued by users.

3.4. Porting Dummynet to Linux

The port of Dummynet to Linux has applica-
tions even outside this specific project, because it
makes the emulator available on a much wider set
of systems, including embedded devices running
OpenWrt [15], which is more and more used in var-
ious research prototypes as well as actual deploy-
ments.

The porting of the user interface, /sbin/ipfw,
was trivial and just required to provide replace-
ments or wrappers for library functions that differ
between FreeBSD and Linux. The adaptation of
the kernel subsystem was instead a lot more chal-
lenging, due to the lack of cross-platform standards
in terms of programming interfaces (APIs), head-
ers, kernel services, and even naming conventions.

Having performed similar work in the past, we
found that a very effective strategy in these cases is
to keep the original source code unmodified as much
as possible (but within reason). This approach has
the double benefit of pointing out platform-specific
assumptions (with the opportunity to fix them in
the mainstream code), and making it easier to keep
the port up to date over time.

The most time-consuming parts of this specific
work were related to the design of the adaptation
infrastructure, and specifically i) identify the best
location to add missing definitions and headers, ii)
decide where to apply the “within reason” princi-
ple and which changes to the original source were
acceptable, and iii) identify a good replacement for
the kernel subsystems used by Dummynet.

3.4.1. Hooking into the Linux network stack

A first issue was to identify how to hook the
classifier and the emulator into the network stack.
Our two requirements are to intercept traffic in two
points (one upstream, one downstream) and to rein-
ject packets back into the stack after some delay.

Many operating systems support the insertion of
generic packet filter functions on the packets’ path.
This mechanism is called pfil on FreeBSD, netfilter

on Linux, and miniport drivers on Windows. All
these subsystems allow us to manipulate packets
without modification to the rest of the Operating
System’s kernel.

For our purposes we used the Linux netfilter sys-
tem, which can divert packets from the normal pro-
cessing path and put them into a queue. From
there, packets are passed to a user-specified queue

handler function, which can delay or manipulate
packets at will, and finally call nf reinject() to
reinject them into the stack and possibly drop them
if needed.

In our system, the queue handler calls the clas-
sifier, and depending on the outcome either passes
the packet back to the network stack, or calls the
emulator, which in turn calls nf reinject() after a
suitable delay. Figure 6 shows how the mechanism
works in case of an incoming packet.

Figure 6: The interaction between netfilter hooks and the
classifier (ipfw chk() and emulator (dummynet io()) code.

6

3.4.2. In-kernel packet representation

Across the various operating systems, the rep-
resentation of network packets within the kernel
varies in the details but not much in the approach.
Typically, the data portion is stored in one or more
linked buffers, and an external descriptor is used to
store metadata. such as packet length, a pointer to
the actual data, direction, related interfaces, flags.

In FreeBSD and other BSD-derived systems,
metadata are stored in a structure called mbuf. In
Linux, there is a similar arrangement except that
the container for metadata is called sk buff.

Figure 7: The mapping between sk buffs and mbufs.

In our port, whenever we receive an sk buff rep-
resenting a packet to process, we create a stripped-
down mbuf structure, initialized with relevant fields
fetched from the sk buff. Figure 7 represents the
linkage between the original sk buff and the new
mbuf representation. This way, the code to access
the packet data or metadata can remain unmodi-
fied and simply refer to the usual mbuf fields. On
return, the pseudo mbuf descriptor is destroyed, and
the packet is reinjected into the network stack com-
pletely unmodified.

4. Usage model and user interface

One of the main features of Dummynet is the ease
of use, and we tried to preserve this simplicity also
in the integration into PlanetLab.

The Dummynet’s user interface, /sbin/ipfw, is
too low level for most PlanetLab users due to the
huge number of options available. Furthermore,
we could not expose it to individual users because

of the risk of unwanted misconfiguration affecting
other slivers. We then decided to offer users a very
simple usage model based on three types of config-
urations: server, client and service.

Users configure one or more links, and define
the traffic affected, with individual commands such
as those in Figure 8, which emulate a multi-
homed client where selected HTTP/HTTPS traffic
to a /16 subnet goes through an emulated 3G link,
whereas other traffic for a /24 subnet goes through
a link with ADSL-like features. Port lists and ad-
dresses/masks can be used to pass specific traffic
through each of the emulated links. Parameters of
the link (bandwidth, delays, loss rates, delay pro-
files or variable channel features as in Section 3.3.2)
can be specified independently for the two direc-
tions of the communication, to cover the case of
asymmetric links.

Replacing the client keyword with the desired
configuration type will let us deploy one of the de-
sired settings:

client emulates a node hosting clients that con-
nect to external servers, whose ports and/or
addresses are known. The classifier will inter-
cept all traffic to/from those servers, and pass
it through two emulated links with the speci-
fied parameters;

server is meant to emulate the case where the lo-
cal node hosts a server on one or more well-
known local ports. The user specifies the lo-
cal ports, and possibly the addresses of remote
clients/subnets if we want to differentiate the
behaviour depending on whom is talking to the
server;

service can be used when we have a distributed
application, e.g. a P2P system, where nodes
run both clients and servers on well known
ports. In this case, the emulator will be config-
ured to intercept traffic between parties of the
same application – in practice, this represents
a combination of a client and server configura-
tion that share the same emulated links.

Note that a user can define several emulated at
the same time, of course operating on different traf-
fic.

4.1. Under the hood

The netconfig program does nothing but pass
the request to the root context, together with the

7

netconfig client 80,443@10.20.0.0/16 IN bw 3.6Mbit/s delay 50ms OUT bw 1.2Mbit/s delay 80ms

netconfig client 80,443@10.21.0.0/24 IN bw 512kbit/s delay 8ms OUT bw 10Mbit/s delay 3ms

Figure 8: An example configuration to emulate a multihomed client. Two emulated links intercept traffic for two different
subnets.

identity of the sliver issuing the request. The
ports/addresses specified as arguments are used as
a key to detect whether we are creating a new em-
ulated link or modifying/deleting an existing con-
figuration, and make the backend act accordingly.
A request normally installs a couple of rules for
the classifier to select the desired inbound and out-
bound traffic, and configures two pipes with the
specified features, one for each direction of the em-
ulated link. Figure 9 shows an example of a com-
mand and the configuration it generates.

In the translation, rule and pipe numbers are
assigned by the backend. Most other parameters
(bandwidth, delay, ports and addresses, other fil-
tering options) come from the user’s request. The
sliver X options are inserted, as described in the
next Section, to prevent interference between users’
configurations.

4.2. Isolation between users

We want to make sure that rules generated by
one sliver cannot match traffic belonging to another
sliver. To this purpose, we add a sliver X match
option to all rules, where X is the sliver ID, derived
automatically, and without chance of being over-
ridden, from the identity of the sliver issuing the
netconfig request. At run time, the packet classi-
fier looks up the socket and sliver associated with
each packet (either incoming and or outgoing), and
the information is used to make sure that, irrespec-
tive of any other match option, rules will match
only traffic for the sliver that requested this spe-
cific configuration.

4.3. Optimizing performance

A naive implementation of the translation of re-
quests into /sbin/ipfw rules would quickly lead
to scalability problems. In fact, as we have seen,
each emulated link implies the insertion of a cou-
ple of rules in the classifier’s configuration. Rules
are scanned sequentially (see Section 3.3.3), so even
limiting the maximum number M of emulated links
that a sliver can define, the cost of scanning the
ruleset for a system with N slivers would grow as
O(N*M). In PlanetLab, N is already as large as a
few hundreds, and this cost would be paid on each
packet, which is clearly unacceptably high.

To reduce this complexity, we have structured the
ruleset as shown in Figure 10: after a small number

Figure 10: The structure of the ruleset used in the classifier,
and the sliver table used to perform a fast dispatch of packets
to the block of rules for each sliver.

8

netconfig config client 22,80@xyz IN bw 6Mbit/s OUT bw 256Kbit/s

ipfw pipe 10000 config bw 6Mbit/s

ipfw pipe 10001 config bw 256Kbit/s

ipfw add 1050 pipe 10000 in src-ip xyz src-port 22,80 sliver 50

ipfw add 1050 pipe 10001 out dst-ip xyz dst-port 22,80 sliver 50

Figure 9: A netconfig command and its translation in terms of classifier rules and pipes’ configuration.

of rules used for housekeeping, we invoke a spe-
cial classifier rule which jumps to a specific block
of rules using the sliver number as the dispatching
key. The cost of looking up the dispatch table, and
jumping to a specific entry, is O(log N), followed by
at most O(M) steps for finding the right rule within
the block. This makes the problem completely man-
ageable because we can limit M to a small value,
and the logarithmic component never requires more
than 16 steps, so it only causes a modest overhead.

The next Section presents detailed performance
measurements to quantify the per packet cost in
the worst case, and show the effectiveness of our
approach.

5. Experimental results

Our main performance metric is the per-packet
processing cost, because at least the classification,
and possibly emulation as well, affects all packets
flowing through a node. A second goal is to de-
termine the accuracy with which emulation repro-
duces the configured parameters, and compare this
accuracy with the variability of the parameters that
exist in the node even before the introduction of
the emulator. Finally, though less important, we
need to determine the cost of configuring the emu-
lator, an operation that involves running the vsys
frontend and backend, and going through the vsys
system itself.

The classification and emulation cost and accu-
racy depends almost entirely on the features of the
emulation engine, for which a very detailed anal-
ysis is present in [7]. The following Sections will
build on those results and deepen the analysis in
the context of a PlanetLab node.

5.1. Emulator overhead

In [7] we have shown that the per-packet process-
ing costs are made of two components – classifica-
tion and actual emulation. The classification cost
grows linearly with the number of rules, whereas

the emulation cost is essentially constant except for
a small O(log L) component, where L is the number
of active pipes.

Measurements made in [7] on a low-end work-
station reported approximately 400 ns to enter the
classifier, 36 ns for each simple rule, 800-1300 ns for
traversing a pipe, and an additional log(L) · 100 ns
to account for the dependency on the number of
active pipes. Absolute values change depending on
the hardware, but the ratio between the compo-
nents is approximately constant across platforms.

The PlanetLab version of the emulation engine
uses a table lookup to quickly jump to the inter-
esting block of rules (Section 4.3). The cost of this
specific ruleset was not measured in [7], so we re-
peated the measurements here using the same ap-
proach, i.e., generating traffic from a local source
and dropping it at various stages of the protocol
stack (Figure 11). By taking the differences be-
tween the various measurements we can make an
estimate of the classification and emulation costs.
Specifically, the table lookup has a logarithmic cost
in the number of entries (sliver IDs) so we make
sure to trigger the worst case conditions by run-
ning some experiments with a table containing 216

entries (sliver IDs are represented on 16 bits). Also,
in previous measurements we determined that the
worst case for emulation costs is a link with only
delay and no bandwidth limit, so we use that con-
figuration in our tests.

Figure 11: The configurations used to evaluate the per-
packet processing overhead. We measure the PPS rate with
a local generator and traffic dropped in different points of
the protocol stack. Differences between the measurements
give the cost of each processing block.

9

The results of our experiments are presented in
Table 1. Each test case involves a 10-second run re-
peated 100 times. The per-packet processing time
is measured by dividing the length of the experi-
ment (10 seconds) by the number of packets gener-
ated. The hardware used for experiment is a desk-
top machine at the low end of the specifications for
a PlanetLab node, so we can expect that existing
nodes have the same or better performance.

Case avg/sd (ns) 1 flow

A 1167 / 72.5 Drop before classifier.
B1 1525 / 51.2 Drop in first rule.
BT 1750 / 51.5 Table with 1 entry.
BFT 1911 / 60.8 Table with 216 entries.
C 3311 / 69.4 BTF and worst-case pipe.

Table 1: Results of the measurement of per-packet overheads
with different configurations of the classifier and emulator.

Specifically, case A represents the cost of packet
generation alone. Case B1 is the time consumed for
packet generation plus classification with a ruleset
containing a single rule. Case BT goes through an
additional table lookup with a table containing a
single entry. Case BFT does a lookup through a
full table, and the final case, C represents a lookup
plus traversal of a worst-case pipe.

From the difference between A and C we see
that in the worst case emulation consumes roughly
2150 ns with a full table and one active pipe. If we
allow each user to define up to M emulated links,
we need to add approximately M · 70 ns to this
time, and another small log(L) contribution comes
from the presence of multiple, simultaneously active
pipes.

Overall, we can safely claim that the presence of
the emulator adds less than 4 µs to the per packet
processing time. Note that packets not subject to
emulation will be subject to a much lower overhead
(less than 1 µs), as they are typically filtered out
before or during the table lookup.

5.1.1. Throughput

To determine how this overhead impacts the per-
formance of a PlanetLab node, we have studied the
network load on PlanetLab nodes using the data
reported by the CoTop monitor [16]. CoTop com-
putes the average traffic of a node over a 1-minute
interval. The highest values we saw were around
30 Mbit/s. Unfortunately we do not have data on
the number of packets per seconds (PPS) measured

on the nodes, but 30 Mbit/s correspond to a PPS
load between 2500 and 58000 PPS, considering a
packet size of 1500 and 64 bytes respectively.

Even taking the worst case, a 4 µs per-packet
overhead corresponds to 25% of one CPU core,
which is an acceptable value, considering that we
are probably overestimating the PPS load on the
node by almost one order of magnitude, and that
the majority of PlanetLab nodes have much lower
traffic.

5.2. Emulator accuracy

An important aspect to be evaluated in an emu-
lator is how much it is able to reproduce the timing
computed by the model. Once again, [7] makes a
detailed analysis of this aspect, pointing out three
main sources of inaccuracy: timer resolution, com-
peting network traffic, and operating system inter-
ference. We want to estimate the impact of these
factors on PlanetLab nodes.

The timer resolution is 1 ms in the kernels used
on PlanetLab nodes, and this adds an equivalent
error on timings.

The presence of different emulated links sharing
same output interface can cause additional delays
when two or more packets become ready for trans-
mission at the same time. In this case the delay
is proportional to the number of competing flows
and maximum packet length and inversely propor-
tional to the link speed of the physical interface.
In practice, we saw that a large number (70-80%)
of PlanetLab nodes are equipped with 1 Gbit/s in-
terfaces, but in most cases they are attached to a
100 Mbit/s switch. This implies an error of the or-
der of 1.2 ms, comparable to the one introduced by
timer resolution.

The largest source of inaccuracy, however, is the
operating system load, and its impact can be easily
measured with simple experiments such as measur-
ing the distribution of ping response times from a
nearby host (or any other interaction that causes a
process to suspend and be woken up). In an ideal
situation, we expect constant response times, but
interference due to other OS activities (e.g. pro-
cesses for the same or other slivers) may cause ad-
ditional delays.

As an experiment we measured the distribution
of ping response times between pairs of colocated
PlanetLab nodes. Not surprisingly, the values have
large variations, as shown in Figure 12 which plots
the CDF of the measurement on a number of node

10

pairs. The median values range between 150 and
500 ns in most cases, but almost invariably we see
a long tail, with the top 5-10% of the values go-
ing up to several milliseconds. In one case (right-
most curve in the figure, corresponding to a heavily
loaded node), delay of tens of milliseconds and more
have been measured.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

C
D

F

Ping response time (msec)

Figure 12: Distribution of ping response times between some
pairs of colocated PlanetLab nodes.

From the above we can conclude that the em-
ulation (in)accuracy is no larger than the timing
uncertainties normally experienced by applications
running on the nodes and due to competing pro-
cesses and network activity.

5.3. Reconfiguration cost

As a final part of the performance evaluation,
we have measured the cost of adding, modifying
or removing an emulated link. Though infrequent,
these requests can be sent concurrently by all sliv-
ers, so we want to make sure that they don’t cause
an excessive overhead on the system. Reconfigura-
tions, triggered by explicit user requests, uses the
vsys system to communicate, and then makes a few
calls to /sbin/ipfw to update pipes’ and classifier
configuration. Figure 13 shows the components in-
volved.

Even with the current, non-optimized structure
of the backend (the configuration database is stored
in a text file and manipulated by a shell script) the
entire backend runs in less than 30 ms, which is
an acceptable value. It is easy to reduce this cost
by almost one order of magnitude by moving to a
compiled version of the backend.

Figure 13: The operations involved in a reconfiguration of
the emulator.

6. Related work

The two research areas most related to this work
are network testbeds and network emulation sys-
tems. As mentioned in the Introduction, net-
work testbeds have been an active research subject
in recent years, resulting in the development and
availability of several testbeds addressing different
needs.

6.1. Network testbeds

Two of the most popular testbeds are
PlanetLab [6], and Emulab [3]. Both are
publicly available to researchers, but differ in
several aspects. We have already described
PlanetLabextensively in this paper, so we refer the
reader to Section 3.1.

Emulab is a public facility whose nodes are
mostly concentrated in a single location, and inter-
connected through a programmable switch to create
user-specified topologies. Emulab’s strength is the
availability of a wide range of experimental environ-
ments such as emulation, simulation, real wireless
links, and sensor networks. The initial version of
the platform relied on Dummynet instances placed
between processing nodes to create emulated links
with the desired features. Subsequent additions
to the testbed include wireless interfaces, Univer-
sal Software Radio Peripheral [17] (USRP) devices,
and some mobile nodes placed on robots that can be
driven around a lab. Emulab users can define the
desired topology using the Ns-2 [18] syntax or by a
Java GUI. This configuration also covers the defini-
tion of hardware and software features of the nodes,
wireless capabilities, and mobility. After this stage,
the platform maps virtual requirements on physical
resources, trying to minimize the use of the physical

11

resources. The integration of Ns-2 [18] in Emulab
makes simulation capabilities available to the plat-
form.

ORBIT [4] (Open Access Radio Grid Testbed) is
a testbed based on a large indoor grid of around
400 radio nodes, which can be dynamically inter-
connected to create arbitrary topologies and wire-
less channels behaviour. Each node is connected to
the network by one wired link, used as a control
channel, and two wireless cards, normally used to
run experiments. The features of the wireless link,
such as transmission power, transmission rate and
other high level parameters can be configured. By
placing the nodes involved in the communication
in different points of the grid, and possibly using
other nodes or signal generators as sources of inter-
ference, one can study the effect of varying channel
characteristics on the communication.

VINI [5] is a testbed platform aimed to test lower
layer software, such as routing protocols. VINI pro-
vides a wide, shared physical infrastructure where
researchers can define arbitrary network topologies
and test protocols and applications. Using the
VINI platform it is possible for researchers to run
their conventional routing software, in a wide en-
vironment, exposed to real network conditions and
real traffic. Researchers are allowed to control the
network behaviour too, reproducing particular net-
work events or injecting controlled failures in the
network, in order to test and measure their soft-
ware in every possible situation.

6.2. Emulators

The second related work area refers to network
emulators. Here the spectrum of available solutions
ranges from dedicated hardware solutions, gener-
ally targeted to the evaluation of MAC protocols,
to software-based solutions that run in standalone
devices or within standard operating systems.

An in-depth description of Dummynet is already
present in Section 3.3 so we will not repeat it here.

A tool with similar features is NISTnet [9], which
runs on Linux and also supports the emulation of
multiple links with programmable bandwidth and
features. Another option for link emulation under
Linux is the combination of tc [10] and netem [13],
where the tc is in charge of classification and traf-
fic shaping, whereas the netem part is in charge of
simulating propagation delays and reordering. A
significant drawback of tc is that it cannot do shap-
ing on the incoming path, which limits its usefulness

when the data source is not on a machine equipped
with the emulator.

NetPath [11] is a high-performance emulator
based on the Click modular router [12]. A custom
program is used to create a proper Click config-
uration with user-defined classifier, delay elements,
queues and traffic shapers. NetPath is especially in-
teresting for building dedicated emulation systems,
because, borrowing from Click’s use of custom de-
vice drivers and busy wait techniques, it makes a
more effective use of the hardware than a generic
operating system.

Modelnet [19] uses a modified version of
Dummynet as the basis to build larger emulation
engines. In this case a cluster of computers is
used to host multiple emulator instances, and a
programmable switch takes care of connecting end
nodes with the proper emulator instances, compil-
ing a topology description into a proper configura-
tion of switches and emulator instances.

Emulation of networks involving multiple cas-
caded links can be done with most of the systems
described above. Dummynet makes this possible
through the reinjection of traffic in pipes multiple
times, using classifier rules to model routing deci-
sions. In NetPath and Modelnet, this is achieved
by compiling the topology description. Modelnet
offers some scaling capabilities because the emula-
tion can be mapped on multiple nodes, and inter-
mediate nodes only need to exchange metadata and
not the entire payload of packets.

Imunes [20] is a system based on FreeBSD which
supports multiple, virtual network stacks within a
single instance of the operating system. The em-
ulated topology is build by different nodes, each
one is based on a virtual stack. Nodes are con-
nected through Dummynet instances. This concept
can be extended by using virtual machines (Xen,
VMWare, VirtualBox, Qemu) to run multiple em-
ulator instances.

Emulation features are also present in network
simulators such as Ns-2 [18] and Ns-3 [21], which
can drive the simulator with live traffic, and inter-
act in this way with real traffic sources and links.

6.2.1. SatelliteLab

SatelliteLab is a system with very similar goals
to the work presented here, though it uses a com-
pletely different approach. SatelliteLab reproduces
the behaviour of a link (such as a DSL line con-
necting a residential customer) by passing traffic

12

(or an equivalent replica) through the actual phys-
ical link involved in the experiment, and using the
measured behaviour to artificially delay or drop the
traffic subject to emulation. With SatelliteLab one
does not need to model a link, but also has no con-
trol on the experimental conditions. In this respect,
SatelliteLab is more a testbed extension than a real
emulator.

7. Conclusions

In this paper we have presented in detail the ar-
chitecture of an emulation extension that we have
designed and deployed on PlanetLab, and given an
extensive report on the performance and scalability
of the tool.

The core of the system is based on the Dummynet
emulator, which has been ported to Linux and ex-
tended with specific features to improve scalabil-
ity and performance in this context. In addition
to the emulation engine, we have designed and im-
plemented solutions to provide researchers with a
simple and intuitive user interface, so that they can
focus on their main work without being distracted
by the complexity of configuring emulation.

As part of the Onelab2 project, the emulation
support has been already deployed on a number of
PlanetLab nodes, and we plan to make it available
to the entire platform.

The system described in this paper is under ac-
tive development, especially for the emulation en-
gine which is currently being extended with more
and more emulation features, performance opti-
mizations, and more powerful configuration op-
tions.

Acknowledgment

The research leading to these results has re-
ceived funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013)
under grant agreement n.224263 – Onelab2.

References

[1] GENI: Exploring Networks of the Future,
http://www.geni.net/, 2009.

[2] FIREWORKS, http://www.ict-fireworks.eu/, 2009.
[3] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Gu-

ruprasad, M. Newbold, M. Hibler, C. Barb, A. Joglekar,
An integrated experimental environment for distributed
systems and networks, SIGOPS Oper. Syst. Rev. 36
(2002) 255–270.

[4] Orbit, http://www.orbit-lab.org/, 2006.
[5] VINI, A virtual network infrastructure,

http://www.vini-veritas.net/, 2006.
[6] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,

M. Wawrzoniak, M. Bowman, Planetlab: an overlay
testbed for broad-coverage services, SIGCOMM Com-
put. Commun. Rev. 33 (2003) 3–12.

[7] M. Carbone, L. Rizzo, ”dummynet revisited”, SIG-
COMM Comput. Commun. Rev. 40 (2010).

[8] Linux Vservers, http://linux-vserver.org/, 2006.
[9] M. Carson, D. Santay, Nist net: a linux-based network

emulation tool, SIGCOMM Comput. Commun. Rev.
33 (2003) 111–126.

[10] Linux Advanced Routing & Traffic Control,
http://lartc.org/, 2002.

[11] S. Agarwal, J. Sommers, P. Barford, Scalable network
path emulation, in: MASCOTS ’05: Proceedings of
the 13th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecom-
munication Systems, IEEE Computer Society, Wash-
ington, DC, USA, 2005, pp. 219–228.

[12] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F.
Kaashoek, The click modular router, ACM Trans. Com-
put. Syst. 18 (2000) 263–297.

[13] S. Hemminger, Network emulation with NetEm, Linux
Conf Au (2005).

[14] L. Rizzo, Dummynet: a simple approach to the evalu-
ation of network protocols, SIGCOMM Comput. Com-
mun. Rev. 27 (1997) 31–41.

[15] OpenWrt, http://openwrt.org/, 2008.
[16] CoTop, http://codeen.cs.princeton.edu/cotop/, 2009.
[17] USRP: Universal Software Radio Peripheral,

http://www.ettus.com/, 2009.
[18] The ns-2 Network Simulator, http://nsnam.isi.edu/

nsnam/index.php, 2005.
[19] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,

D. Kostić, J. Chase, D. Becker, Scalability and accu-
racy in a large-scale network emulator, ACM SIGOPS
Operating Systems Review 36 (2002) 271–284.

[20] M. Zec, M. Mikuc, Operating system support for inte-
grated network emulation in imunes (2004).

[21] The NS-3 Network Simulator, http://www.nsnam.org/,
2006.

13

