
Analysis of Fair Queueing schedulers in Real Systems

Luigi Rizzo
Universita‘ di Pisa

Paolo Valente
Universita‘ di Modena e Reggio Emilia

Abstract

Research on fair queueing schedulers (WF2Q, WF2Q+
and approximated variants) has led to the design of very
efficient algorithms, whose performance ranges from op-
timal fairness and delay guarantees at O(logN) cost, to
quasi-optimal guarantees at O(1) cost.
These guarantees have been computed assuming that

the number of bits transmitted by the communication
link is known at any time instant, and that the scheduler
is directly attached to the communication link with no
interposed buffering.
Both assumptions are unfortunately unrealistic.
Real communication devices normally include FIFOs,

possibly very deep ones, between the scheduler and the
transmit unit, to avoid that the links becomes idle while
the next packet to transmit is selected. The presence
of the FIFO has a huge effect on the service guaran-
tees of the scheduler, introducing extra error terms that
may be significantly larger than those computed ignor-
ing buffering.
In this paper we make two contributions: i) provide

analytical bounds of the effect of FIFOs on the service
guarantees of fair queueing schedulers, and ii) put the
otherwise dry formulas into practical scenarios, by in-
stantiating the various parameters with realistic values,
and comparing several schedulers in presence of variable
FIFO size, packet sizes and flow weights. These results
should help designers to make informed decisions and
sound tradeoff when building systems.

1. INTRODUCTION

Research on packet scheduling has explored many
theoretical and practical aspects related to the design
and implementation of these systems. Several service
metrics such as the Relative Fairness [8] and Worst-
case Fairness [2] have been defined to determine the
quality of a schedulers. We know how closely a packet-
based scheduler can emulate an ideal, fluid system [7]
providing perfect bandwidth sharing, and the complex-
ity bounds involved in such emulation [12]. Optimal
algorithms matching these lower bounds have been de-
fined [11]. For high speed schedulers, when even the

O(logN) cost in the number of flows is considered too
high, there have been several proposal with O(1) com-
plexity and only constant deviation from the optimal
schedulers [6, 9, 4]. One of them, QFQ [4] has a speed
comparable to robin schedulers while giving the same
quasi-optimal service guarantees of the best fair queue-
ing schedulers. It is also readily available in major op-
erating systems, either natively (FreeBSD, Linux) or as
part of the dummynet traffic shaper [3].
An element is missing in the picture though. The

analysis of packet schedulers is normally done assum-
ing that the communication device can report the exact
number of bits transmitted at any time, and is directly
attached to the scheduler with no interposed buffer-
ing. None of these assumptions holds in practice. First,
network interfaces operate on a packet-by-packet basis,
and do not export a real-time indication of the number
of bits transmitted. Second, communication links, es-
pecially the high-speed ones, are equipped with FIFO
queues (sometimes even large ones) to drive the device
and absorb the latency and jitter in the hardware and
software components that produce packets: memories,
buses, interrupt service routines, etc.. The existence of
the FIFO prevents the link from becoming idle while
accessing the next packet to be transmitted, but its im-
plicit principle of operation is that the link appears as
having a service rate which is bursty and sometimes
much higher than what it is really capable of.
The amount of buffer can be large, even in the order

of tens of packets on very fast links, and the device is
capable of absorbing large batches of packets at once.
This causes two phenomena, which this paper is ad-
dressing.
First, the fact that a link may absorb large bursts

in very short intervals may cause traffic to be subject
to a delay which is, intuitively, at least as large as the
FIFO size. Second, the extra delay with respect to the
non-FIFO case can even exceed the size of the FIFO,
due to the way the scheduler is implemented. The
phenomenon is relevant especially in high speed links,
where FIFOs can be significantly large.
In this paper we consider a class of fair queueing

1

schedulers that include WF2Q+ and its approximated
variants (this class has been defined for the first time
in [6]), and make the following contributions: i) we pro-
pose a simple modification to these schedulers to ap-
proximate the number of bits transmitted, and we pro-
vide an analysis of the guarantees that these schedulers
provide if they are modified as suggested and if they
are followed by a FIFO before the actual communica-
tion link; ii) we instantiate the result for WF2Q+ and
its approximated variants. To the best of our knowl-
edge, there are no published results on either of the two
items. Furthermore, the second contribution is very im-
portant in practice because it helps designing systems
(choosing algorithms and FIFO sizes) to match the re-
quired speed of operation and service guarantees.
The rest of the paper is structured as follows. Sec-

tion 2 provides a description of the problem that we are
addressing, with an example to clarify how the issue
has practical consequences. Section 3 briefly describes
related work. Section 4 defines the terms used in the pa-
per, and some background on timestamp-based packet
schedulers. Readers familiar with the topic may skim
over this part, but please refer to it to make sure that
there is no ambiguity on the system model and defini-
tions used here (there are some differences in the liter-
ature). The core of the paper starts with Section 4.4
where we define a realistic model of a link scheduler
with output FIFO, and summarize our proof technique.
Supporting lemmas are presented in Section 5, whereas
Section 6 contains the proofs of our main results and a
discussion of their implications.

2. DESCRIPTION OF THE PROBLEM

We describe our problem with an example, shown
in Figure 1. A weighted-fair-queueing scheduler is in
charge of arbitrating access to a shared link for a num-
ber of flows. The scheduler assigns the link to flows pro-
portionally to a parameter φk, called the flow’s weight.
The ideal, infinitely precise subdivision of the link’s

capacity (often called “fluid scheduling”) is approxi-
mated on a packet-by-packet basis, trying to serve flows
as close as possible to what would happen in a fluid sys-
tem. To this end, the scheduler1 marks a packet i with
a “virtual” start time si (think of it as derived from
a “virtual clock” advancing with the actual number of
bits transmitted by the link, and a virtual finish time
fi = si + li/φk where li is the length of the packet.
Whenever the link becomes idle, the scheduler selects
for transmission the packet with minimum fi (under
some constraints), and then waits until the transmis-
sion is complete to select the next one.

1This is a simplified (but correct for the example at hand)
description of how a fair queueing scheduler works. A com-
plete definition of the algorithm will be presented in Sec-
tion 4.2.

P1

Pn

Q

t

...

...

...

P1

Pn

Q

t

...

... ...
...

A

B

Figure 1: The example in Section 2: squares
represent packet arrivals, crosses are departures,
flow Q has a much higher weight than the Pi’s.
Case A: an ideal link without fifo dequeues one
packet at a time, insuring a prompt and smooth
service to flow Q. Case B: a scheduler is followed
by a deep FIFO. A large number of low-weight
flows are served immediately, delaying service to
Q until the FIFO runs dry.

Assume a system where at some initial time a set
of packets arrives at the scheduler for flows P1..PN , all
with the same weight φ1. Shortly afterwards, the sched-
uler receives a request for new transmission, and after
another short interval a set of packets arrive for flow Q,
which has a much higher weight than the other flows
(for simplicity assume all packets have length L). All
packets arriving initially will be marked with the same
< s0, s0 + L/φ0 > pair, as the virtual clock does not
advance during the arrival of the burst.
Figure 1-A shows the case of a scheduler driving an

ideal link. P1 first packet is served first, but when the
scheduler is invoked next it will start serving packets
fromQ according to the weights of the backlogged flows.
Figure 2-A shows the virtual time markings correspond-
ing to this case.
Conversely, Figure 1-B represents the evolution of the

system with a deep FIFO between the scheduler and
the link. After the arrival of the initial packets, the
scheduler is requested to refill the FIFO at once. The
subsequent packets for Q will then have to wait a long
time before being dequeued. Also, the timestamps of
Q’s packets will be much higher (see Figure 2-B) than in
the other case due to the initial burst of packets served.
Eventually the correct rate will be granted to Q, but
only after a possibly large initial delay.
In contrast, in the idealized system without a FIFO

between the scheduler and the link, the packet for P1

will be served immediately, but the virtual clock will
only advance by a modest amount, and this will permit

2

P1

Pn

Q
Vk(t)

P1

Pn

Q
Vk(t)

B

A

Figure 2: Same example as in Figure 1, this time
shown in terms of packet timestamps. In case B,
the immediate service of many low-weight pack-
ets makes the start time for Q’s packets much
higher than in case A.

serving Q with the proper rate (in the example, half of
the total link capacity) almost right away.
As a result, with the same sequence of (real time)

arrivals to the scheduler, and a link with the same ca-
pacity, packet Q might be subject to a much higher
delay, possibly even exceeding the size of the FIFO.
The purpose of this paper is to evaluate how large is

the additional delay, and how it is affected by the FIFO
size and the weights of the flows. Considering that the
tradeoffs to build efficient (O(1) instead of O(logN)
time) schedulers is paid in terms of a small reordering
of output packets, it is important to understand how
the effect of the FIFO compares to the previous ap-
proximation.
Note that the example given above is extremely re-

alistic. On many traffic sources or routers, incoming
traffic often comes in bursts, (corresponding to the pro-
cessing of a receive interrupt, or the generation of a large
TCP segment split into packets). Similarly, communi-
cation hardware (especially high speed NICs) have large
output queues or internal FIFOs to make sure that the
link does not starve between subsequent packet trans-
missions.

3. RELATED WORK

The analysis of packet scheduling starts with the sem-
inal work by Parekh and Gallager [7] who show how a
fluid system (GPS) can be emulated on a packet by
packet basis using a “virtual time” concept. Subse-
quently, Bennet and Zhang [2] show that a simplistic
emulation of a fluid system may lead to large bursti-
ness in the output. They introduce the concept of “el-
igibility” and design WF2Q, the first of a family of al-
gorithms with bounded delay with respect to GPS, also

introducing a metric similar to the T-WFI. Followup
works include WF2Q+, which, using a simplified virtual
time function reduces the complexity to O(logN) (the
original WF2Q had O(N) complexity; much later, Va-
lente [11] proved that also WF2Q can be implemented
in O(logN) time). Xu and Lipton [12] then prove an
Ω(logN) bound on the time complexity for any exact
GPS emulation. The tradeoffs between complexity and
service guarantees have been explored in a number of
works [6, 9, 4], presenting O(1) schedulers with quasi-
optimal service guarantees. Constant-time fair queue-
ing schedulers have also been built starting from Round-
Robin schedulers, some of which [13] integrate concepts
used in virtual-time based schedulers to achieve optimal
service guarantees.
With only one exception, the analysis in all the pa-

pers cited so far has been done in the assumption that
the number of bits transmitted is known at any time
instant and that any queueing occurs in the scheduler:
once a packet leaves the scheduler, it immediately starts
being transmitted on the output link.
To our knowledge, there is only one recent work [5]

that still carries out analysis assuming that the number
of bits transmitted is known, but that does account for
output buffering. The latter is considered because the
scheduler proposed in this work has a large worst-case
per-packet execution time, and an output buffer could
absorb part of this time. The analysis in [5] is how-
ever limited to the evaluation of the time that a packet
spends in the buffer, and does not address the impact
on the service properties of the scheduler.

4. DEFINITIONS AND SYSTEM MODEL

In this Section we define the concepts and symbols
used in the scheduling literature, which sometimes uses
different notations for the same concepts. For conve-
nience, all symbols used in this paper are listed in Ta-
ble 1.
For ease of exposition, we often use the notation

f(t1, t2) ≡ f(t2)− f(t1)

where f(t) is a function of the time.
We assume that any discontinuous function of the time
is left-continuous, i.e., if t0 is a discontinuity point for
a function f(t), then f(t0) = limǫ→0 f(t0 + |ǫ|), and
f(t−0) = limǫ→0 f(t0 − |ǫ|).

4.1 System model

Consider a system as in Figure 3, in which N packet
flows (defined in whatever meaningful way) share a com-
mon transmission link serving one packet at a time. The
link has a time-varying rate, with W (t) being its “work
function”, or the total number of bits transmitted in
[0, t]. A system is called work conserving if the link is
used at full capacity whenever there are packets queued.

3

Symbol Meaning

∗
k A superscript indicates a quantity related to a

flow
∗m A subscript indicates a quantity related to a

packet
N Total number of flows
h, k Flow index

L, Lk Max length of any packet in the system/flow

φk Weight of flow k

lk Length of the head packet in flow k; lk = 0 when
the flow is idle

∗(t1, t2) Given a generic function ∗(t), the notation
∗(t1, t2) ≡ ∗(t2) − ∗(t1) indicates the difference
between the values in t2 and t1

W (t),W k(t) The “work function”, i.e. number of bits trans-
mitted (globally, or for flow k) in [0, t]

V (t), V k(t) System/flow virtual time, see Eq. (3)

Sk, F k,
Sm, Fm

Exact virtual start and finish times of flow k or
packet m, see Eq. (2)

Ŝk, F̂ k,
Ŝm, F̂m

Approximated flow/packet timestamps, see Sec-
tion 4.3

W (t),W
k
(t) The “work function” describing the input to the

FIFO

V (t), V
k
(t) System/flow virtual time corresponding to W (t)

S
k
, F

k
Counterparts of Sk and F k obtained using V (t)
instead of V (t) in (2)

S̃k, F̃ k Counterparts of Ŝk and F̂ k obtained using V (t)
instead of V (t) in Eq. (2)

B(t) The set of backlogged flows at time t

Qk(t) Backlog of flow k at time t

Table 1: Definitions of the symbols used in the
paper.

AFQ (theoretical)

W(t)

A

Figure 3: The system model used in the litera-
ture: a scheduler (AFQ) drives directly an ideal
link with work function W (t).

A scheduler (the AFQ block in the figure) sits between
the flows and the link: arriving packets are immediately
enqueued, and the next packet to serve is chosen and
dequeued by the scheduler when the link is ready.
In our model, each flow k is assigned a fixed weight

φk > 0. Without losing generality, we assume that
φ =

∑N

k=1 φ
k ≤ 1.

A flow is defined backlogged/idle if it owns/does not
own packets not yet completely transmitted. We call
B(t) the set of flows backlogged at time t. Each flow
uses a FIFO queue to hold the flow’s own backlog.
We call head packet of a flow the packet at the head

of the queue, and lk its length; lk = 0 when a flow
is idle. We say that a flow is receiving service if one
of its packets is being transmitted. Both the amount

of service W k(t1, t2) received by a flow and the total
amount of service W (t1, t2) delivered by the system in
the time interval [t1, t2] are measured in number of bits
transmitted during the interval.
The analysis of the schedulers considered in this pa-

per uses the concept of corresponding systems [2, Defini-
tion 1]: two systems are corresponding if they have the
same work function W (t), serve the same set of flows
with the same weights in both systems, and are subject
to the arrival pattern.

4.2 WF2Q+

The schedulers we consider are approximated vari-
ants of the WF2Q+ algorithm, and we call them AFQ
(Approximated Fair Queueing) schedulers.
Here we outline the WF2Q+ algorithm for the case of

a variable-rate link (see [1, 10] for a complete descrip-
tion). WF2Q+ is a packet scheduler that approximates,
on a packet-by-packet basis, the service provided by a
corresponding work-conserving ideal fluid system that
delivers the following, almost perfect bandwidth distri-
bution over any time interval during which a flow is
continuously backlogged:

W k(t1, t2) ≥ φkW (t1, t2)− (1− φk)L (1)

The fluid and the packet system differ in that the for-
mer may serve multiple packets in parallel, whereas the
latter has to serve one packet at a time, and is non pre-
emptive. To define the scheduling policy of WF2Q+,
we need to introduce the concept of eligibility, first de-
fined in [2, Section 3]: a packet is defined as eligible at
a given time instant if it has already started in the fluid
system by that time. Accordingly, we define a flow as
eligible if its head packet is eligible.
WF2Q+ operates as follows. Each time the link is

ready, the scheduler starts to serve, among the eligible
packets, the next one that would be completed in the
fluid system; ties are arbitrarily broken. WF2Q+ is a
work-conserving on-line algorithm, hence it succeeds in
finishing packets in the same order as the ideal fluid sys-
tem, except when the next packet to serve arrives after
one or more out-of-order packets have already started.
Virtual Times: The WF2Q+ policy is efficiently im-
plemented by considering, for each flow, a special flow
virtual time function V k(t) that grows as the normal-
ized amount of service received by the flow (i.e., actual
service received, divided by the flow’s weight). Besides,
when the flow turns from idle to backlogged, V k(t) is
set to the maximum between its current value and the
value of a further function, the system virtual time V (t),
defined below.
In addition to V k(t), each flow is conceptually2 asso-

ciated with a virtual time V k
fluid(t) also in the fluid sys-

2this parameter is not needed in the implementation but we
use it to prove Lemma 2.

4

tem. V k
fluid(t) is computed with the same rules as V k(t),

but, of course, since the amount of service received by
a flow in the packet system scheduled by WF2Q+ may
differ with that in the corresponding fluid system, the
values of V k(t) and V k

fluid(t) may differ.
For every packet of flow k, we define the virtual start

and finish time of the packet as the value of V k(t) when
the packet starts and finishes to be served in the fluid
system. Using this definition, we define the virtual start
and finish time of flow k, Sk(t) and F k(t), as the vir-
tual start and finish times of its head packet at time
t. These timestamps need to be updated only when the
flow becomes backlogged, or when its head packet is de-
queued. On these events Sk(t) and F k(t) are updated
as follows:

Sk(tp)←

max(V (tp), F
k(t−p)) on newly

backlogged flow;
F k(t−p) on packet dequeue;

F k(tp)← Sk(tp) + lk/φk

(2)
where tp is the time when a packet enqueue/dequeue oc-
curs, and lk is the packet size. V (t) is the system virtual
time function defined as follows (assuming

∑

φk ≤ 1):

V (t2) ≡ max

{

V (t1) +W (t1, t2), min
k∈B(t2)

Sk(t2)

}

(3)

Note that the instantaneous link rate needs not be known
to update V (t), and just W (t1, t2) (the amount of data
transferred in [t1, t2]) suffices. At system start up, V (0) =
0, Sk(0)← 0 and F k(0)← 0. The scheduling policy of
WF2Q+ is implemented using only V (t), and the vir-
tual start and finish times of the flows, as detailed in
the next paragraph.

4.2.1 Scheduling decisions

In terms of virtual times, flow k is eligible at time
t if V (t) ≥ Sk(t). In addition, the fluid system serves
flows so as to complete packets in virtual finish time
order [1, 10]. WF2Q+ can then be implemented as
follows: each time the next packet to transmit is re-
quested, the scheduler (dequeues and) returns the head
packet of the eligible flow with the smallest virtual fin-
ish time. The second argument of the max operator in
Eq. (3) guarantees that the system is work-conserving.

4.3 Approximated variants of WF2Q+

The exact WF2Q+ algorithm as described above, has
Ω(logN) complexity in the number of flows [12]. In or-
der to implement the same policy in O(1) time, several
schedulers [6, 9, 4] label flows with approximated vir-

tual start and finish times Ŝk(t) and F̂ k(t), in addition
to the exact values defined in (2). Lowest-cost exam-
ples are QFQ [4], S-KPS [6] and the scheduler proposed
in [9], which we call GFQ hereafter. The approximated
values help reducing the complexity of certain sorting

AFQ

FIFO

W(t)W(t)

B

Figure 4: A: the system model used in the liter-
ature, ignoring the presence of the FIFO and as-
suming W (t) is known exactly within the sched-
uler. B: a real system, made of an AFQ sched-
uler feeding a dequeue unit with work function
W (t), followed by a FIFO and the output link.
C: the corresponding fluid system for the first
part of B), serving multiple packets at a time,
with the same work function W (t).

stages in the algorithm, making them constant-time op-
erations.
The way approximations are computed varies, but in

all cases we have:

Sk(t)−∆Sk ≤ Ŝk(t) ≤ Sk(t) ≤

F k(t) ≤ F̂ k(t) ≤ F k(t) + ∆F k
(4)

where ∆Sk and ∆F k are non-negative quantities (∆Sk =
∆F k = 0 in WF2Q+). For brevity, hereafter we use the
generic name AFQ (Approximated Fair Queueing), to
refer to any of these variants and to WF2Q+ itself.
AFQ uses the approximated timestamps to compute

the virtual time, i.e., it uses Ŝk(t2) instead of Sk(t2)
in (3), and to choose the next packet to transmit (Sec 4.2.1),
while it uses the exact timestamps to charge flows for
the work received (Eq. (2)).

4.4 Introducing an output queue

As mentioned, the service guarantees of packet sched-
ulers are generally computed on the model in Figure 3,
which assumes that i) the exact value of W (t) is known
when updating V (t), and ii) the link requests a new
packet to transmit only once the previous one has been
fully transmitted.
These two assumptions are almost never true

in a real system.
First, network interfaces (commonly called NICs) op-

erate on a packet-by-packet basis, and do not export a
real-time indication of the number of bits transmitted.
Even the notification of transmission completions, avail-

5

time

W(t)

W(t)

dW

Work

Figure 5: W (t) is within a band of height ∆W
above W (t).

able through memory mapped registers or interrupts,
can be delayed by several microseconds, corresponding
to tens/hundreds of packets on high speed links. Sec-
ondly, to make sure that the link does not remain idle
while the scheduler (firmware or software) provides the
next packet to send, NICs typically implement i) a large
ring buffer, where the operating system can push outgo-
ing transmissions, and ii) an internal FIFO that drains
the ring buffer and drives the link.
A realistic model of a communication device is thus

the one in Figure 4-B, where the scheduler is drained
by a dequeue unit that takes care of inserting packets
in the FIFO queue. We denote as W (t) the sum of the
sizes of the packets dequeued from AFQ during [0, t].
In other words, W (t) is the amount of work delivered
to the FIFO up to time t. As shown in Figure 5, the
work function W (t) has a stepwise shape and lies in a
band of height ∆W on top of W (t), where ∆W equals
the maximum capacity of the FIFO plus the size of the
packet under service on the link.
Filling and draining the ring and the FIFO typically

occurs with some hysteresis, so that the buffers are filled
until a high water mark is reached, then drained until
a low water mark or a sufficient amount of time have
elapsed, and so on. In formula, we have

∆W = max
t

W (t)−W (t) ≥ 0. (5)

The presence of the FIFO, and the different work
functions used to drain the scheduler may change the
order in which packets are served between the ideal
(Figure 4-A) and the actual (Figure 4-B) systems. Sec-
tion 2 gives one example of what can happen, but there
are many other pathological patterns that may occur,
affecting the service guarantees of the overall system.

4.5 Our contribution

As a consequence, our goal, and the main contribu-
tion of this paper, is to evaluate the service properties
of systems modeled as in Figure 4-B, hence taking into
account the impact of FIFOs and the uncertainty on
the work function W (t). The goal is achieved in three
steps:

1. We first prove a few preliminary lemmas (Section 5)
that are needed in the proofs of the main theorems
in this paper.
Readers not interested in the details of the subse-
quent proofs may skip this section.

2. We then prove our main results (Section 6), namely
the various fairness indexes (B-WFI, RFI and T-
WFI) for a generic AFQ scheduler in presence of
a FIFO and approximated work function. These
equations are mostly mechanical derivations from
the definitions and the previous lemmas. We also
extend these (sometimes hard to read) results with
approximated (and coarser) bounds trying to re-
duce the huge number of terms in these equations.

3. Finally, we compare these results with those de-
rived in the literature for various scheduling al-
gorithms, both with and without FIFOs. Also,
we provide realistic estimates of the service guar-
antees using values (queue and packet sizes, data
rates, etc.) from actual hardware and software.

4.6 Proof machinery

We compute the B-WFI and the RFI by lower-bounding
the amount of service W k(t1, t2) given by the system in
Figure 4-B to a flow during any time interval in which
the flow is continuously backlogged in the scheduler
(left part of Figure 4-B)3. To lower-bound W k(t1, t2)
we model our system as the cascade shown in Figure 4-
B. The scheduler uses W (t) as the work function, and
Equations 2 and 3 to compute the virtual time V (t)

and the timestamps S
k
(t) and F

k
(t). We call S̃k(t)

and F̃ k(t) the approximate versions of the flows’ times-
tamps. The virtual time V (t) then becomes

V (t2) ≡ max

{

V (t1) +W (t1, t2), min
k∈B(t2)

S̃k(t2)

}

(6)

and the relation between timestamps is

S
k
(t)−∆Sk ≤ S̃k(t) ≤ S

k
(t) ≤

F
k
(t) ≤ F̃ k(t) ≤ F

k
(t) + ∆F k

(7)

For some derivations, we compare the behaviour of the
(packet) AFQ scheduler on the left of Figure 4-B, with
its corresponding fluid system shown in Figure 4-C. The
two have the same input pattern and the same work
function W (t), but the packet systems serves one packet
at a time whereas the fluid system may serve multiple
flows in parallel.
While it may seem counterintuitive, it is easier to

compute a lower bound to W
k
(t1, t2), the amount of

work received by a flow on entry to the FIFO during
3The quantity of interest is W k(t1, t2), i.e. packets actually

exiting the link, and not W
k

(t1, t2), which only refers to
packets entering the FIFO.

6

[t1, t2], than a lower bound to W k(t1, t2). In this re-
spect, in Section 5.2 we compute two slightly different

bounds to W
k
(t1, t2). From the first bound we immedi-

ately get the T-WFI. Using the second bound we com-
pute instead the B-WFI and the T-WFI by a few simple
steps. Especially, we achieve the latter result thanks to
the following reduction.

4.7 Problem reduction

The bound on W k(t1, t2) can be derived by one on

W
k
(t1, t̂), the amount of work received by a flow on

entry to the FIFO in a suitable interval [t1, t̂]. To this
purpose, let I = [t̂, t2] be the interval such that all pack-
ets that are in the FIFO or under service4 at time t2
have been dequeued during I. By definition, the sum of

the sizes of all these packets is W
k
(t̂, t2), and we have

0 ≤W
k
(t2)−W k(t2) ≤W

k
(t̂, t2) (8)

Using these two inequalities, we can then write:

W k(t1, t2) = W k(t2)−W k(t1) ≥

max{0,W k(t2)−W
k
(t1)} ≥

max{0,W
k
(t2)−W

k
(t̂, t2)−W

k
(t1)} =

max{0,W
k
(t2)−W

k
(t2) +W

k
(t̂)−W

k
(t1)} =

max{0,W
k
(t̂)−W

k
(t1)} =

W
k
(t1,max{t1, t̂})

(9)

Intuitively, this equation relates the output service in
[t1, t2] with the service given to the scheduler during a
shorter interval which excludes packets still staged in
the FIFO or in the link.
In Section 5.2, Lemma 5 we compute an upper bound

to W
k
(t1, t2) for any time interval [t1, t2] during which

flow k is continuously backlogged. In case t̂ > t1,
from this bound we get immediately an upper bound

to W
k
(t1, t̂) by just replacing t2 with t̂ (in fact, also

[t1, t̂] is a time interval during which flow k is continu-
ously backlogged).

5. SUPPORTING LEMMAS

The following lemmas are intermediate results needed
to prove our service-guarantee bounds. We present them
in bottom-up order.
Notation: For the reader’s convenience, on top of var-
ious equality or inequality signs we write the reason
(typically a reference to one equation) why the relation
holds.

4We will often refer to these packets in the next Sections.
These packets have been fully served as far as AFQ is con-
cerned, but have not yet emerged from the link, so from the
user’s perspective they are not served yet.

We start by comparing the completion time of packet
transmissions in the packet and the fluid systems. Let
pm be the m−th packet served in the packet system
(the two systems do not necessarily complete packets
in the same order) and call tpm and tfm their completion
times in the two systems.

Lemma 1. If F
k

m = F̃ k
m then tpm ≤ tfm (if the exact

and the approximated virtual finish time of packet pm
are equal, then pm will complete in the packet system
not later than in the fluid one).

Intuition for the proof: the packet system serves pack-
ets in strict finish time order, except when packets are
not eligible or not arrived. For all in-order bursts im-
mediately after an out-of-order packet, the fluid system
cannot have started serving any of the packets in the
burst before the beginning of the burst in the packet
system, so it must finish the burst no earlier than the
packet system.

Proof. Let o be the smallest index for which all
packets have an approximated finish time no greater
than pm, F̃i ≤ Fm∀i ∈ [o..m]. Since F i ≤ F̃i, and the
fluid system (using exact timestamps) completes pack-
ets in finish time order, all packets po..pm must also be
completed not earlier than tfm in the fluid system.
If o = 1 then from the origin of time the packet sys-

tem has served only packets p1..pm, while the fluid sys-
tem might have already started service for some subse-
quent packet. Remembering that both systems have the
same work function, the fluid system cannot be ahead
of the packet system, hence tpm ≤ tfm.
If o > 1, then packet po−1 has a higher finish time

than po..pm, none of which has started in the packet
system before tpo−1. This means that at tpo−1 either they

had arrived yet, or they were not eligible (S̃k(tPo−1) >

V (tPo−1)), so even the fluid system cannot have started
serving any of those before tpo−1 (the fluid system starts

to serve a flow at time t only if S
k
(t) ≤ V (t) and

S
k
(t) ≥ S̃k(t) holds). As a consequence, between tpo−1

and tpm the fluid system must have done at least the
same amount of work as the packet system, hence prov-
ing again that tfm cannot precede tpm.

5.1 Globally Bounded Timestamps

The flow timestamps cannot deviate too much from
the system’s virtual time V (t). This is the “Globally
Bounded Timestamp” property (GBT) defined in [9,
Definition 3]. Here we compute a variant of this prop-

erty that comes in handy to upper-bound W
k
(t1, t2).

Lemma 2 (Lower bound for F̃ k(t)). For all times
t at which flow k is backlogged,

F̃ k(t)− V (t) ≥ 0. (10)

7

Proof. Let t be a generic time instant at which flow
k is backlogged, with pm at its head. We know that

F
(
t) ≤ F̃ k(t). If F

k
(t) = F̃ k(t), Lemma 1 tells us

that the transmission completion times in the packet

and fluid systems are tPm ≤ tFm. Denoted as V
k

fluid(t)
the virtual time of flow k in the fluid system, the latter

guarantees that V (t) ≤ V
k

fluid(t) holds at all times.
Thus

V (t) ≤ V
k

fluid(t)
t≤tP

m

≤ V
k

fluid(t
P
m)

tP
m
≤tF

m

≤ V
k
(tPm)

(2)
= F̃ k(t).

(11)

The case F
k
(t) < F̃ k(t) can be handled by consider-

ing what happens if packet pm is artificially extended

so F
k
(t) = F̃ k(t). The larger packet would still sat-

isfy (11). Besides, whether or not the original packet
pm is replaced with a larger one, the values of V (t) and
F k(t) are the same, because 1) the value of tpm does not
depend on the size of pm, 2) t < tpm, and 3) the size
of pm does not influence either any timestamp or the
packet service order up to time tpm. Hence the thesis
holds also in this case.

Lemma 3 (Upper bound for S
k
(t)). At all times

t

S
k
(t) ≤ V (t) + ∆Sk +

Lk

φk
− Lk (12)

Note: differently from the previous bound, this bound
applies to the exact timestamp, as this is what we need
in the proof of subsequent Lemma 4.

Proof. Given any time instant t, we consider the

smallest time instant tp such that S
k
(tp) = S

k
(t), and

we denote as pm the packet served at time tp, and lm

its size. According to (2), either S
k
(tp) = V (tp) ≤ V (t)

or S
k
(tp) = F

k
(t−p)). In the first case the thesis holds

trivially. For the other case to hold, at least one packet
of flow k must have been already served before time tp.
Let t′p be the largest time instant, with t′p < tp, at which
a packet of flow k is served. Flow k has to be eligible
at time t′p, i.e., S̃

k(t−p) = S̃k(t′p) ≤ V (t′p) ≤ V (t−p) has
to hold. Besides, we can note that the virtual time
advances by at least the size of pm at time tp, thus
V (t−p) ≤ V (tp) − Lm ≤ V (t) − Lm holds. In the end,

S̃k(t−p) ≤ V (t)−Lm. Using this inequality, we can write

S
k
(tp) = F

k
(t−p)

(2)
= S

k
(t−p) +

Lm

φk

(4)

≤

S̃k(t−p) + ∆Sk +
Lm

φk
≤ V (t)− Lm +∆Sk +

Lm

φk

φk≤1

≤

V (t)− Lk +∆Sk +
Lk

φk

(13)

5.2 Lower bounds for W
k
(t1, t2)

This section contains lower bounds5 toW
k
(t1, t2), ex-

pressed in terms of the virtual time V (t) or the work
function W (t). We use the former is used in the deriva-
tion of the RFI, wheres we substitute the latter in (9)
to compute the B-WFI.

Lemma 4.

W
k
(t1, t2) ≥

φkV (t1, t2)− φk

(

2
Lk

φk
+∆Sk +∆F k − Lk

) (14)

Proof. Recalling the meaning of the virtual time

V
k
(t) of flow k, we can write the following equalities,

where the last equality follows from summing and sub-

tracting V (t2)− V (t1) to V k(t2)− V
k
(t1):

W
k
(t1, t2) =

φkV
k
(t1, t2) =

φk
[

V
k
(t2)− V

k
(t1)

]

=

φk
[

(V (t2)− V (t1)
]

+

φk
[

V
k
(t2)− V (t2)− (V

k
(t1)− V (t1))

]

(15)

We can therefore prove the thesis by computing lower

bounds to the two terms V
k
(t2)−V (t2) and −(V

k
(t1)−

V (t1)). Remembering that by definition V
k
(t) = S

k
(t),

for the first term we have

V
k
(t2)− V (t2) = S

k
(t2)− V (t2)

(2)

≥

F
k
(t2)−

Lk

φk
− V (t2)

(4)

≥

F̃ k(t2)−∆F k −
Lk

φk
− V (t2)

(10)

≥

−∆F k −
Lk

φk
.

(16)

As for the second term, we have

−
[

V
k
(t1)− V (t1)

]

=

−
[

S
k
(t1)− V (t1)

] (12)

≥

−

[

V (t1) + ∆Sk +
Lk

φk
− LkV (t1)

]

=

−

[

∆Sk +
Lk

φk
− Lk

]

(17)

5Remembering that by definition W
k

(t1, t2) ≥ 0, we could

derive tighter bounds by writing W
k

(t1, t2) ≥ max {0, ...}.
However this would make the result even less readable, and
it is hardly useful given that the equation is later used in a
context where we take the maximum over any flow and/or
time intervals.

8

Replacing the two bounds in (15), and rearranging
terms, we get the thesis.

Lemma 5.

W
k
(t1, t2) ≥

φkW (t1, t2)− φk

(

2
Lk

φk
+∆Sk +∆F k +∆W − Lk

)

(18)

Proof. We prove the thesis by upper-bounding the
term V (t1, t2) in (14) as follows:

V (t2)− V (t1) ≥

W (t2)−W (t1)
(5)

≥

W (t2)−W (t1)
(5)

≥
W (t2)−W (t1)−∆W.

(19)

6. SERVICE PROPERTIES

We are now ready to compute various service prop-
erties of the AFQ family of schedulers, compare the re-
sults with the (exact, but theoretical) analysis provided
in the literature, and make practical considerations on
the impact of the FIFO on the service guarantees.
We focus on three metrics, which express from dif-

ferent points of view the deviation from an ideal be-
haviour: the Relative Fairness Index (RFI), introduced
in [8], the Bit Worst-Case Fairness Index (B-WFI), in-
troduced in [1], and the Time Worst-Case Fairness In-
dex (T-WFI), first introduced in [2].
The theorems stating the B-WFI and the RFI, as well

as the properties they depend on, are proven without
ever using the link rate. Hence these theorems hold also
for time-varying link rates.

6.1 B-WFI

The B-WFIk for a flow k is defined as:6

B-WFIk ≡ max
[t1,t2]

{

φkW (t1, t2)−W k(t1, t2)
}

(20)

where [t1, t2] is any time interval during which the flow
is continuously backlogged, φkW (t1, t2) is the minimum
amount of service the flow should have received accord-
ing to its share of the link bandwidth, and W k(t1, t2) is
the actual amount of service provided by the scheduler
to the flow.
This metric indicates how much, in terms of service

received, a flow remains behind what it would receive
on an ideal scheduler. The metric is computed over
any time interval in which flows are backlogged, so any

6This definition is slightly more general than the original
one in [1], where t2 was constrained to the completion time
of a packet.

service oscillation will have a negative impact on the B-
WFIk. Furthermore, if a scheduler does not distribute
bandwidth to flows according to their weights, the over-

all B-WFI = maxk

{

B-WFIk
}

will be equally penal-

ized.

Theorem 1 (B-WFI). For a flow k, AFQ guar-
antees

B-WFIk ≤ 2φk∆W + φk
(

∆F k +∆Sk
)

+ 2Lk − φkLk

(21)

Discussion: The B-WFI is made of three terms. 2φk∆W
accounts for the uncertainty on W (t) and the presence
of the FIFO, and it affects high-weight flows more than
low-weight ones. This is interesting because, for in-
stance, low bandwidth flows (interactive sessions, VOIP,
etc.) multiplexed on a high bandwidth link will not be
impacted too badly by the presence of a FIFO even of
large size. The term φk

(

∆F k +∆Sk
)

accounts for the
use of approximate timestamps. In practice (see Ta-
ble 2) the approximations on timestamps are ∝ 1/φk

so this gives a constant component, comparable to the
final term.
As an example, WF2Q+ uses exact flow timestamps

(∆Sk = ∆F k = 0). The use of W (t) as work function,
without a FIFO makes ∆W = L (the packet under ser-
vice). Assuming Lk = L, we have B-WFIk ≤ 2L+φkL.
In the case of QFQ, the approximation on timestamps

is ∆Sk = ∆F k = 2Lk

φk so we end up with B-WFI≈

6L+ φkL
Conversely, when the FIFO exists and becomes large,

say M slots, the term 2φkML becomes the dominant
one.

Proof. By substituting (9) in (20), we get

B-WFIk
(9)

≤

φkW (t1, t2)−W
k
(t1,max{t1, t̂})

(18)

≤

φkW (t1, t2)− φkW (t1,max{t1, t̂})+

+φk

(

2
Lk

φk
+∆Sk +∆F k +∆W − Lk

)

=

φkW
(

max{t1, t̂}, t2
)

+

+φk

(

2
Lk

φk
+∆Sk +∆F k +∆W − Lk

)

(5)

≤

φk∆W + φk

(

2
Lk

φk
+∆Sk +∆F k +∆W − Lk

)

=

2φk∆W + φk
(

∆F k +∆Sk
)

+ 2Lk − φkLk

(22)

6.2 T-WFI

9

The T-WFI is the counterpart of the B-WFI in terms
of delays. Unlike the B-WFI, it can only be computed
if the work function W (t) is known. An exact computa-
tion is extremely difficult in practice because most links
have non-constant, and possibly even load-dependent
rate. As an example, wired ethernets have a fixed-size
preamble in front of each packet, irrespective of its size;
time-multiplexed media serve clients in periodic bursts;
radio links may have variable access time (depending
on collisions) and data rate (depending on channel con-
ditions).
For simplicity, we make the computation assuming

that the link has a constant rate R, i.e. W (t1, t2) =
R(t2− t1) when there is backlogged traffic. In this case,
the T-WFIk for flow k is defined as

T-WFIk ≡ max

(

tc − ta −
Qk(ta)

φkR

)

(23)

where ta and tc are, respectively, the arrival and com-
pletion time of a packet, and Qk(ta) is the backlog of
flow k just after the arrival of the packet.

Theorem 2 (T-WFI). For a flow k, AFQ guar-
antees

T-WFIk ≤ 2
Lk

φkR
+

∆Sk +∆F k + 2∆W − Lk

R
(24)

Proof. Given a packet p arriving at time ta, we
prove the thesis in two steps: first we compute an up-
per bound to the time that elapses from ta to when
p is dequeued from AFQ, say time tc, then we add to
this upper bound the maximum time that may elapse
from time tc to the time instant tc at which p is finally
transmitted.
As for the first step, by definition of W

k
(t) and tc,

we have that W
k
(ta, tc) = Qk(ta). Using this equality

and (18), and recalling that the link works at constant
speed R, we can write

tc − ta ≤
W (ta, tc)

R

(18)

≤

W
k
(ta, tc)

φkR
+

2Lk

φk − Lk +∆Sk +∆F k +∆W

R
=

Qk(ta)

φkR
+

2Lk

φk − Lk +∆Sk +∆F k +∆W

R
.

(25)

The thesis follows from considering that, since the
FIFO is emptied and the packet on the link is served at
a constant rate R, then tc − tc ≤

∆W
R

.

6.3 RFI

The Relative Fairness Index (RFI), is defined as the
maximum difference, over any time interval [t1, t2] and
pair of flows k and h, between the normalized service

given to two continuously backlogged flows:

RFI ≡ max
∀h,k,[t1,t2]

∣

∣

∣

∣

Wh(t1, t2)

φh
−

W k(t1, t2)

φk

∣

∣

∣

∣

(26)

This metric was introduced in [8] and it is useful to de-
termine how evenly a scheduler distributes excess band-
width in case not all flows are backlogged. In fact, the
B-WFI only identifies if a flow goes below its assigned
fair share (something that the RFI does not capture).

Theorem 3 (T-WFI). AFQ guarantees that

RFI ≤

max
h,k

{

∆Sh +∆Fh +∆Sk +∆F k+

+
Lh +∆W

φh
− Lh +

2Lk +∆W

φk
− Lk

}

(27)

Discussion: the presence of the FIFO, and the approx-
imation on timestamps, is more evident in the RFI, as
it uses normalized service as a metric. The deviations
from the ideal service (which are bounded in absolute
values by a small multiple of the FIFO size) are ampli-
fied by 1/φk.
Same as for the B-WFI we have one term accounting

for the approximate timestamps (as before, there is an
implicit 1/φk in all these error terms), and another one
with components ∆W/φk accounting for the effect of
the FIFOs.

Proof. Consider two flows, h and k continuously
backlogged during a time interval [t1, t2]. We can upper-
bound the normalized service received by flow h as fol-
lows:

Wh(t1, t2)

φh

(5)

≤

W
h
(t1, t2) + ∆W

φh
=

V
h
(t2)− V

h
(t1) +

∆W

φh
≤

S
h
(t2)− F

h
(t1) +

∆W

φh

(12)

≤

V (t2) + ∆Sh +
Lh

φh
− Lh − F

h
(t1) +

∆W

φh

(5)

≤

V (t2) + ∆Sh +
Lh

φh
− Lh − F̃h(t1) + ∆Fh +

∆W

φh

(10)

≤

V (t2) + ∆Sh +
Lh

φh
− Lh − V (t1) + ∆Fh +

∆W

φh
=

V (t1, t2) + ∆Sh +
Lh

φh
− Lh +∆Fh +

∆W

φh

(28)

As for the lower bound, we have7

7Same as in Section 5.2, we could derive tighter bounds by

10

W k(t1, t2)

φk
=

W k(t2)−W k(t1)

φk

(8)

≥

W k(t2)−W
k
(t1)

φk

(5)

≥

W
k
(t2)−∆W −W

k
(t1)

φk

(14)

≥

V (t1, t2)− 2
Lk

φk
+ Lk −∆Sk −∆F k −

∆W

φk

(29)

Substituting (28) and (29) in (26), and taking the
maximum over all possible flow pairs, we get the the-
sis.

7. COMPARISON OF AFQ SCHEDULERS

We can now discuss the behaviour of the AFQ sched-
uler variants in presence of a FIFO and uncertainties
on the work functions.
The various options for schedulers are generally eval-

uated in terms of computational costs (both asymptotic
and actual), and service guarantees. For the latter, the
analysis performed with the ideal system model of Fig-
ure 3 might be misleading as it misses a component
which is sometimes significant. Most of the values are
taken from our previous work [4, Sec.6] because not all
papers included these results.
Table 2 summarizes the theoretical and actual service

guarantees for a few schedulers proposed in the litera-
ture (for simplicity we include only the B-WFI and the
RFI). For most of the approximated schedulers the re-
sults are expressed in terms of the σk parameters, which
determine how flows are grouped together. In general
σk = cLk/φk where the constant c is a small integer
(1..4). The table shows clearly that the difference be-
tween WF2Q+ and the approximated schedulers is just
in the component φkσi, which is a small multiple of the
packet size. In presence of large buffers, this component
becomes negligible.

7.1 Buffer sizes in practice

Remember that the FIFO size involves every queue in
front of the actual serializer (the unit that takes packets
and formats them into bits to be sent to the communi-
cation link). On most systems there are in fact at least
two queues involved:

• a hardware FIFO, which is internal to the NIC and
serves to absorb the latency in accessing system
buses and memories;

considering that W k(t1, t2) ≥ 0, but the gain of at most

∆W/Φk would not change the 1/Φk behaviour of the RFI
at the price of an unreadable expression.

• a software FIFO, typically called “transmit ring”.
This is a circular list of packet buffers used as
a mailbox between the operating system and the
NIC to queue packets to transmit. The role of this
queue is to absorb the delay between the transmit
completion interrupts and the software actually re-
acting and providing more packets to send.

The two queues serve two very different purposes and
operate on largely different timescales. The hardware
FIFO needs to amortize delays in the order of a few
microseconds at most, which may occur when there is
heavy contention on the system bus, e.g. because of
long transactions.
Because the NIC cannot stop an ongoing transmis-

sion, the internal FIFO is normally storing at least one
maximum-sized frame (1518 bytes on a standard eth-
ernet, up to 10-16 Kbytes if jumbo frames are used).
At 10..40 Gbit/s speeds, even a single frame might be
too short to absorb bus delays, which is a reason why
the internal FIFO is often much larger, between 32 and
512 Kbytes. The other reason for having large internal
FIFOs is that many modern NICs implement TCP seg-
mentation in hardware, so they must be able to store
large TCP segments (typically up to 64 Kbytes each)
to split them into separate IP packets.
The role of the transmit ring is instead to cope with

possibly slow reaction from the operating system. With
packet rates in the range of millions of packets per
second, we cannot possibly expect the operating sys-
tem to handle one interrupt per packet. Most mod-
ern NICs and operating systems implement a feature
called interrupt coalescing/mitigation, where the max-
imum interrupt frequency is bounded, and latencies in
the 20..100 µs range are quite common. On top of this,
interrupt handlers might be delayed due to the CPU
being busy on other processes, and this motivates the
use of extremely large transmit rings. Common values
are 64..256 packets for low-speed hardware, and up to
1024..4096 buffers for 10 Gbit/s links.
In summary, practical values of ∆W on existing sys-

tems may easily be as large as 100L and more.

8. CONCLUSIONS

In this paper we have proved analytically the service
properties of a large family of weighted fair queueing
schedulers implementing the WF2Q+ algorithm or fast,
approximated versions, in presence of output FIFOs be-
tween the scheduler and the actual link, and without
exact knowledge of the transmit rate.
The result is of practical relevance because such ele-

ments exist in all hardware, and it is important to know
their impact when designing system with tight service
guarantees.
In retrospect, our main results, summarized in Sec-

tion 6, are perhaps obvious (but now we have a formal

11

Scheduler ∆Sk ∆F k B-WFI RFI
(ideal)
WF2Q+ 0 0 Lk + 2φkL –

S-KPS 4Lk

φk 2Lk

φk 2φk(σi + L) 2L+ Lk/φk + Lp/φP + 3(σi + σj)

GFQ Lk

φk

Lk

φk 3φk(σi + 2L) 2L+ Lk/φk + Lp/φP + 2(σi + σj)

QFQ 2Lk

φk 4Lk

φk 3φk(σi + 2L) 3L+ 4σi + 3σj

FRR n.a. n.a. not available 4σi + 10σj + L/φk

Scheduler ∆Sk ∆F k B-WFI RFI (simplified)
(real)

AFQ 2φk∆W + φk(∆Sk +∆F k) + 2Lk − φkLk 2maxk

{

∆Sk +∆F k +∆W + 3Lk

2φk − Lk
}

WF2Q+ 0 0 2φk∆W + 2Lk − φkLk 2maxk

{

∆W + 3Lk

2φk − Lk
}

S-KPS 4Lk

φk 2Lk

φk 2φk∆W + 8Lk − φkLk 2maxk

{

∆W + 15Lk

2φk − Lk
}

GFQ Lk

φk

Lk

φk 2φk∆W + 4Lk − φkLk 2maxk

{

∆W + 7Lk

2φk − Lk
}

QFQ 2Lk

φk 4Lk

φk 2φk∆W + 8Lk − φkLk 2maxk

{

∆W + 15Lk

2φk − Lk
}

Table 2: Service guarantees for various schedulers with ideal (no FIFO, exact W (t)) and real links
(FIFO, W (t)). For many of these algorithms, bounds are computed in terms of a parameter, σk ≈ Lk/φk

which determines how flows are grouped. We retain the original formulation for ease of reference.
For the RFI we indicate a simplified expression assuming that the flows h and k that maximize the
expression have the same parameters.

proof): the presence of a queue between the scheduler
and the link affects the various service metrics by an
amount roughly proportional to twice the queue size.
The impact is less relevant for low-weight flows, which
only use a small fraction of the total link capacity. More
importantly, the scheduling perturbations induced by
the queue may render completely irrelevant the differ-
ence in service properties among different schedulers.

9. REFERENCES
[1] Bennet, J. C. R., and Zhang, H. Hierarchical

packet fair queueing algorithms. IEEE/ACM
Transactions on Networking 5, 5 (1997), 675–689.

[2] Bennett, J. C. R., and Zhang, H. WF2Q:
Worst-case fair weighted fair queueing. Proceedings of
IEEE INFOCOM ’96 (March 1996), 120–128.

[3] Carbone, M., and Rizzo, L. Dummynet revisited.
ACM SIGCOMM Computer Communication Review
40, 2 (2010), 12–20.

[4] Checconi, F., Valente, P., and Rizzo, L. QFQ:
Efficient Packet Scheduling with Tight Bandwidth
Distribution Guarantees.
http://info.iet.unipi.it/∼luigi/qfq/ .

[5] Karsten, M. SI-WF2Q: WF2Q approximation with
small constant execution overhead. Proceedings of
IEEE INFOCOM 2006 (April 2006), 1–12.

[6] Karsten, M. Approximation of generalized processor
sharing with stratified interleaved timer wheels.
IEEE/ACM Transactions on Networking 18, 3 (2010),
708–721.

[7] Parekh, A. K., and Gallager, R. G. A generalized
processor sharing approach to flow control in
integrated services networks: the single-node case.
IEEE/ACM Transactions on Networking 1, 3 (June
1993), 344–357.

[8] S.J.Golestani. A self-clocked fair queueing scheme
for broadband applications. Proceedings of IEEE
INFOCOM ’94 (June 1994), 636–646.

[9] Stephens, D. C., Bennett, J. C., and Zhang, H.
Implementing scheduling algorithms in high-speed
networks. IEEE Journal on Selected Areas in
Communications 17, 6 (June 1999), 1145–1158.

[10] Stiliadis, D., and Varma, A. A general
methodology for designing efficient traffic scheduling
and shaping algorithms. Proceedings of IEEE
INFOCOM ’97 (April 1997), 326–335.

[11] Valente, P. Exact gps simulation and optimal fair
scheduling with logarithmic complexity. IEEE/ACM
Transactions on Networking 15, 6 (2007), 1454–1466.

[12] Xu, J., and Lipton, R. J. On fundamental tradeoffs
between delay bounds and computational complexity
in packet scheduling algorithms. IEEE/ACM
Transactions on Networking 13, 1 (2005), 15–28.

[13] Yuan, X., and Duan, Z. Fair round-robin: A low
complexity packet scheduler with proportional and
worst-case fairness. IEEE Transactions on Computers
58, 3 (2009), 365–379.

12

