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QFQ: Efficient Packet Scheduling
With Tight Guarantees
Fabio Checconi, Luigi Rizzo, and Paolo Valente

Abstract—Packet scheduling, together with classification, is one
of the most expensive processing steps in systems providing tight
bandwidth and delay guarantees at high packet rates. Schedulers
with near-optimal service guarantees and time complexity
have been proposed in the past, using techniques such as timestamp
rounding and flow grouping to keep their execution time small.
However, even the two best proposals in this family have a per-
packet cost component that is linear either in the number of groups
or in the length of the packet being transmitted. Furthermore, no
studies are available on the actual execution time of these algo-
rithms. In this paper we make two contributions. First, we present
Quick Fair Queueing (QFQ), a new scheduler that provides
near-optimal guarantees and is the first to achieve that goal with a
truly constant cost also with respect to the number of groups and
the packet length. The QFQ algorithm has no loops and uses very
simple instructions and data structures that contribute to its speed
of operation. Second, we have developed production-quality imple-
mentations of QFQ and of its closest competitors, which we use to
present a detailed comparative performance analysis of the various
algorithms. Experiments show that QFQ fulfills our expectations,
outperforming the other algorithms in the same class. In absolute
terms, even on a low-end workstation, QFQ takes about 110 ns for
an enqueue()/dequeue() pair (only twice the time of DRR, but with
much better service guarantees).

Index Terms—Algorithms, communication systems, computer
network performance, data structures, packet scheduling.

I. INTRODUCTION

I F AN outgoing link on a network node is fully utilized,
the only option to provide bandwidth or delay guarantees

on that link is enforcing a suitable packet scheduling policy.
Fine-grained per-flow guarantees can be provided with an
IntServ [12] approach, but this requires a reservation protocol
(with well-known scalability problems) and imposes a nonneg-
ligible load on packet classifiers and schedulers, who have to
deal with a potentially large number of flows in progress (up to
10 according to [10]). Besides memory costs to keep per-flow
state, the time complexity and service guarantees of the sched-
uling algorithm can be a concern. DiffServ [12] “solves” the
space and time complexity problem by aggregating flows into
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a few classes with predefined service levels and schedules the
aggregate classes. Per-flow scheduling within each class may
still be needed to provide guarantees to individual flows.
The above considerations motivate the interest for packet

schedulers that, even in presence of a large number of flows,
can offer low complexity and tight guarantees.
Round Robin schedulers have time complexity, but

(with the exception of FRR [24]) have worst-case de-
viation with respect to the ideal service that the flow should
receive over any given time interval.
More accurate schedulers have been proposed, implementing

approximate versions of the worst-case optimal sched-
uler [2]. Thanks to flow grouping and timestamp rounding, first
introduced in [17], they feature time complexity in the
number of flows, and near-optimal deviation from the ideal ser-
vice (WFI; see Section II). However, even the two most ef-
ficient proposals in this class, namely Group Fair Queueing
(GFQ) [17] and Simple KPS (S-KPS) [9], as well as FRR [24],
have some nonconstant components in their time complexity,
as discussed in Section II, and are significantly slower than
Round Robin schedulers. Section VII-C shows some perfor-
mance comparison.
Our Contributions: In this paper, we first present Quick Fair

Queueing (QFQ), a new scheduler with true time com-
plexity, implementing an approximate version of with
near-optimal service guarantees. We then provide an extensive
comparison of the actual performance of production-quality im-
plementations of QFQ and of several competing algorithms.
The key contribution of QFQ is the introduction of a novel

mechanism (Group Sets, Section IV-3), which removes the
linear component (in the number of groups or packet size)
from previous quasi- schedulers. In QFQ, the flow groups
are partitioned into four sets, each represented by a machine
word and constructed so that all the bookkeeping required to
implement scheduling decisions can be done using simple and
constant-time CPU instructions such as AND, OR, XOR, and
Find First bit Set1 (which we use to implement constant-time
searching).
The major improvement of QFQ over the previous proposals

is on performance: The algorithm has no loops, and the sim-
plicity of the data structures and instructions involved makes it
well suited to hardware implementations. The execution time is
within two times that of DRR, and consistently about three times
faster than S-KPS, across a wide variety of configurations and
CPUs. Speed does not sacrifice service guarantees: The WFI of

1The Find First bit Set instruction (called ffs() or BSR) can locate in con-
stant time the leftmost bit set in a machine word. It uses clock cycles on
modern CPUs such as Intel Core 2, Core i7, or Athlon K10.
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QFQ is slightly better than S-KPS and close to the theoretical
minimum.
Paper Structure: Section II complements this introduction by

discussing related work. In Section III, we define the system
model and other terms used in the rest of the paper. Section IV
presents the QFQ algorithm in detail and illustrates its imple-
mentation. The correctness of the properties used in QFQ is
then proved in Section V. Section VI gives an analytical evalua-
tion of the (worst-case) service guarantees. In Section VII-A, we
present the results of some ns2 simulations to compare the delay
experienced by various traffic patterns under different sched-
uling policies. Finally, Section VII-B measures the actual per-
formance of the algorithm on a real machine, comparing pro-
duction-quality implementations of QFQ, S-KPS, and of other
schedulers (FIFO, DRR, and WF2Q ).

II. BACKGROUND AND RELATED WORK

Packet schedulers can be classified based on their service
properties and time/space complexity. Relevant problem dimen-
sions are the number of flows, , and the maximum size of
packets in the system. The service metrics defined in the lit-
erature try to measure, in various dimensions, the differences
between the scheduler under analysis and an ideal fluid system
that implements perfect bandwidth distribution over any time
interval.
Two important service metrics are the Bit- and Time-Worst-

case Fair Index (B-WFI and T-WFI [2], [3]). B-WFI (defined
in Section VI-A) represents the worst-case deviation, in terms of
service, that a flow may experience over any time intervalwith
respect to a perfect weighted bandwidth sharing server during
the same interval. T-WFI , defined in Section VI-B, expresses
similar deviations in terms of time. From the WFIs, it is easy
to compute the minimum bandwidth and the worst-case packet
completion times guaranteed for a flow. However, the WFIs in-
dicate more than just worst-case packet delays or per-flow lag
(the difference between the service received in an ideal, per-
fectly fair system and the one received in the actual system).
The WFIs capture the fact that an actual scheduler may serve
some packets much earlier than the ideal system, and this may
result in long intervals during which a flow receives no service
to compensate for that received in advance. This may not affect
the lag, but causes extreme burstiness in service, which has bad
effects on protocols and applications (e.g., TCP’s rate adapta-
tion) as well as on per-flow lag and delay guarantees in a hier-
archical setting [2].
In contrast, the WFIs do not measure another important

service property: how fairly a scheduler distributes the excess
bandwidth when not all the flows are backlogged. This property
can be measured with an early metric, called relative fairness
in [8] and proportional fairness in [24], which is equal to the
worst-case difference between the normalized service (service
divided by the flow’s weight) given to any two backlogged
flows over any time interval [16].
Round Robin Schedulers: Round Robin (RR) schedulers

and variants (Deficit Round Robin [15]) are the usual choice
when fast schedulers are needed. They lend naturally to
implementations with small constants. Several variants have
been proposed (Smoothed Round Robin [6] and G-3 [7],

Aliquem [11], and Stratified Round Robin [13]) to mitigate
some of their shortcomings (burstiness, etc.). Nevertheless, for
all but one of the schedulers in this family, and irrespective of
the weight of any flow , both the flow’s packet delay and
the B-WFI have an component.2

FRR [24] differs from other RR proposals in that, similarly
to QFQ, it divides flows into groups and schedules packets in
two phases: First, an extended version of [3] schedules
groups; following that, an extended version of DRR [15] sched-
ules flows within groups. In FRR, a flow belongs to group
such that , where is the flow’s weight.3 is
an integer constant that can be freely chosen to set the desired
tradeoff between runtime complexity and service guarantees. As
shown by its authors in [24, Theorem 4], FRR has -

, where is the number of groups, is
the minimum bandwidth guaranteed to flow , and is the link
rate. The time complexity is . T-WFI grows with ,
and in the best case , with weights ranging between
10 and 1, we would have and hence
- , much higher than the - of
QFQ .
Exact Timestamp-Based Schedulers: To achieve a lower WFI

than what is possible with RR schedulers, other, modern sched-
uler families try to serve flows as close as possible (i.e., not
too late and not too early) to the service provided by an inter-
nally tracked ideal system, using a concept called eligibility. We
call them timestamp-based schedulers as they typically time-
stamp packets with some kind ofVirtual Time function and try to
serve them in ascending timestamp order, which has an inherent

complexity [23]. This bound is matched by some ac-
tual algorithms [21].
With this approach, schedulers such as [3] and

[2] offer optimal lag, packet delay, and WFI, i.e.,
they achieve the lowest possible values for a nonpreemptive
system. In particular, their lag and B-WFI are both with
very small constants (see Section VI-A), much better than the

of most RR schedulers.
Fast Timestamp-Based Schedulers: Breaking the theoretical

bound requires the use of approximate timestamps
to reduce the complexity of the sorting steps. Some schedulers
(such as GFQ, S-KPS, and LFVC) use this approach to achieve

complexity with respect to the number of flows, while
preserving B-WFI.
GFQ [17] uses variable timestamp rounding, splits flows into
groups, and relies on a calendar queue to sort flows within

the same group. Its complexity is . S-KPS [9] uses a data
structure called Interleaved Stratified Timer Wheels (ISTW) to
execute packet enqueue and dequeue operations at a worst-case
cost independent of even the number of groups, though it re-
quires bookkeeping steps during packet transmissions.
Finally, LFVC [20] rounds timestamps to multiples of a fixed
constant, relying on van Emde Boas priority queues for sorting
(hence complexity). Unfortunately, LFVC has a

2Such worst case behavior is easy to achieve in practice (e.g., with a few high-
weight flows and a large number of low-weight flows). In these circumstances,
the high-weight flows will experience a very bursty service, with unpleasant
effects for downstream devices and applications.
3QFQ also defines groups of flows, but using a different formula, (4).
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TABLE I
DEFINITIONS OF THE SYMBOLS USED IN THE PAPER

worst-case complexity of because the algorithm main-
tains separate queues for eligible and ineligible flows, and indi-
vidual events may require to move up to flows from one
queue to the other.
The use of approximate timestamps has an implication,

proved in [23]: Any scheduler based on approximate times-
tamps has a packet delay with respect to an ideal GPS server
larger than . Fortunately, the B-WFI bounds are not
affected: GFQ, S-KPS, and our QFQ guarantee the same
- as the optimal schedulers, differing only in the multi-
plying constant, which is 1 with exact timestamps and slightly
larger otherwise (e.g., 3 in the case of QFQ; see Section VI-B).
Thus, approximate timestamps still give much better guarantees
than RR schedulers.
We should note that the data structures used in the various

schedulers differ largely, so that low asymptotic complexity
does not necessarily reflect in faster execution times, especially
with a small number of flows. Also, there may be dependen-
cies on other parameters, (e.g., GFQ or S-KPS) or worst-case
behaviors significantly larger than average (e.g., LFVC).

III. SYSTEM MODEL AND DEFINITIONS

In this section, we give some definitions commonly used in
the scheduling literature, and then present the exact
algorithm, which is used as a reference to describe QFQ. For
convenience, all symbols used in the paper are listed in Table I.
Most quantities are a function of time, but we omit the time
argument when not ambiguous and clear from the context.
We consider a system in which packet flows (defined in

whatever meaningful way) share a common transmission link
serving one packet at a time. The link has a time-varying rate.
A system is called work-conserving if the link is used at full
capacity whenever there are packets queued. A scheduler sits

between the flows and the link: Arriving packets are immedi-
ately enqueued, and the next packet to serve is chosen and de-
queued by the scheduler when the link is ready. The interface
of the scheduler to the rest of the system is made of one packet
enqueue() and one packet dequeue() function.
In our model, each flow is assigned a fixed weight .

Without losing generality, we assume that .4

A flow is defined as backlogged/idle if it owns/does not own
packets not yet completely transmitted. We call the set of
flows backlogged at time . Inside the system, each flow uses a
first-in–first-out (FIFO) queue to hold the flow’s own backlog.
We call head packet of a flow the packet at the head of the

queue, and its length; when a flow is idle. We say
that a flow is receiving service if one of its packets is being
transmitted. Both the amount of service received by
a flow and the total amount of service delivered by
the system in the time interval are measured in number
of bits transmitted during the interval.

A.

Here, we outline the original algorithm for a
variable-rate system (see [2] and [18] for a complete descrip-
tion). is a packet scheduler that approximates, on a
packet-by-packet basis, the service provided by a work-con-
serving ideal fluid system that delivers the following, almost
perfect bandwidth distribution over any time interval:

(1)

The packet and the fluid system serve the same flows and de-
liver the same total amount of work (systems with these
features are called corresponding in the literature). They differ
in that the fluid system may serve multiple packets in parallel,
whereas the packet system has to serve one packet at a time
and is nonpreemptive. Because of these constraints, the allo-
cation of work to the individual flows may differ in the two
systems. has optimal B-/T-WFI and com-
plexity, which makes it of practical interest.

operates as follows. Each time the link is ready,
the scheduler starts to serve, among the packets that have al-
ready started5 in the ideal fluid system, the next one that would
be completed in the fluid system; ties are arbitrarily broken.

is a work-conserving online algorithm, hence it suc-
ceeds in finishing packets in the same order as the ideal fluid
system, except when the next packet to serve arrives after one
or more out-of-order packets have already started.
Virtual Times: The policy is efficiently imple-

mented by considering, for each flow, a special flow virtual time
function that grows as the normalized amount of service
received by the flow (i.e., actual service received, divided by
the flow’s weight). In addition, when the flow turns from idle to
backlogged, is set to the maximum between its current
value and the value of a further function, the system virtual
time , defined below. For each flow , the value of

4The implementation of QFQ does not rely on this assumption, and it tracks
the actual sum of weights as flows come and go, thus providing tighter guaran-
tees to the backlogged flows.
5This property, called “eligibility, ” is fundamental in providing small WFI.
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needs to be known (hence computed) only on the following
events: 1) when the flow becomes backlogged, or 2) when its
head packet completes transmission in the ideal fluid system.
The resulting values of , called flow’s virtual start and
finish time, and , are used to timestamp the flow itself
and are computed as

on newly backlogged flow
on packet dequeue

(2)

where is the time when a packet enqueue/dequeue occurs.
is the system virtual time function defined as follows (as-

suming ):

(3)

Note that is only computed at discrete times, so the instan-
taneous link rate does not need to be known, and just
(the amount of data transferred in ) suffices. At system
startup, , and .
Eligibility: Flow is said to be eligible at time if .
This inequality guarantees that the head packet of the flow has
already started to be served in the ideal fluid system. Using this
definition, can be implemented as follows:

Each time the link is ready, the scheduler selects for
transmission the head packet of the eligible flow with
the smallest virtual finish time.

Note that the second argument of the operator in (3) guar-
antees that the system is work-conserving.
The time complexity in comes from three tasks:

1) computing from (3), which requires to track the min-
imum and has cost; 2) selecting the next flow to
serve among the eligible ones, which requires tracking the min-
imum among eligible flows, and also has cost at
each step; 3) updating eligible flows as grows. Any change
in can render flows eligible, and it takes some clever
data structure [19] to avoid an cost.

IV. QUICK FAIR QUEUEING

In this section, we describe QFQ. For ease of exposition, the
properties requiring long proofs are demonstrated separately in
Section V. The scheduler uses the data structure represented in
Fig. 1 and relies on three techniques (Flow Grouping, Time-
stamp Rounding, Group Sets) to perform all computations in

time.
1) Flow Grouping: Each flow (one of the squares at the

bottom of Fig. 1) is statically mapped into one of a finite number
of groups (the regions at the bottom of the figure). The group
is chosen as

(4)

where is the maximum size of the packets for flow .
is related to the service guarantees given to a flow, so flows with
similar guarantees are grouped together.

Fig. 1. QFQ at a glance. The figure represents all main data structures used by
the algorithm. The four groups sets on the top (see Section IV-3) are stored in
a bitmap by index number. The groups (rectangles on the bottom; see Section
IV-1) contain the bucket lists and individual flow queues.

In practice, the number of distinct groups is less than 64
(32 groups suffice in many cases),6 so a set of groups can be
represented by a bitmap in a single machine word.
We define (bits) as the slot size of the group. Since

, from (2) we have for any
flow in group .
2) Timestamp Rounding: Same as other timestamp-based

schedulers, QFQ labels flow with both exact and approximate
virtual times. The exact values [ and , (2)] are used to
provide guarantees.7 The approximate values are defined as

(5)

(where is the group index) and are used to compute eligibility
and scheduling order. Note that , which
has useful implications on the runtime and service guarantees
of the algorithm.
For each group, QFQ defines

(6)

called the group’s virtual start and finish times.
QFQ replaces with in the definition of the virtual time

function

(7)

It is easy to show that the in the equation can be calcu-
lated as the minimum among the backlogged groups in the
system. Same as in (3), at system startup ,
and .

6This is trivially proven by substituting values in (4); as an example, be-
tween 64 and 16 kB, between 1 and 10 yield values between
and , or 29 groups.
7There is one case where the for certain newly backlogged groups can be

shifted backwards to preserve the ordering of ; this exception is described
and its correctness is proved in Lemma 4.
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Fig. 2. Representation of bucket lists. The number of buckets (gray, each cor-
responding to a possible value of ) is fixed and independent of the number
of flows in the group.

Finally, note that network interfaces operate on a
packet-by-packet basis and do not export a real-time indi-
cation of the amount of service provided. To deal with this
issue, QFQ computes based on a simple approximation of
the exact amount of service: It assumes that immediately
increments each time a packet is dequeued and updates
accordingly (Section IV–A2).
Timestamp Properties: and can only assume a limited

range of values around ( and have a similar prop-
erty called Globally Bounded Timestamp or GBT [17]). We can
prove (see Theorems 1 and 2 in Section V) that at all times,

.
Furthermore, is quantized and can only assume

distinct values (remember that , so the second term
is bounded by the ratio between the min and max packet size
in the system). The small number of possible values permits
sorting within a group using a constant-time bucket sort algo-
rithm, implemented using a bucket list (Fig. 2), a short array
with as many buckets as the number of distinct values for .
Each bucket contains a FIFO list of all the flows with the same
and . For practical purposes, 64 buckets are largely suf-

ficient, so once again each bucket can be mapped to a bit in a
machine word, and a constant-time Find First bit Set instruction
can be used to locate the first nonempty bucket, which contains
the next flow to serve.
The use of in (7) also saves another sorting step because,

as we will see, the group sets defined in the next section let us
compute (7) in constant time.
3) Group Sets and Their Properties: QFQ partitions back-

logged groups into four distinct sets (the top rows in Fig. 1).
As will be shown in Section IV-A, this reduces scheduling and
bookkeeping operations to simple set manipulations, in turn per-
formed with basic CPU instructions such as AND, OR, and FFS
on single machine words.
The sets are called and (from the initials of

Eligible, Ineligible, Ready, and Blocked), and the partitioning is
done using two properties.
• Eligible: Group is Eligible at time iff . The
group is Ineligible otherwise.

• Blocked: iIndependent of its own eligibility, a group is
Blocked if there is some eligible group with higher index
and lower finish time. Otherwise, the group is Ready.

The “blocked” property is used to partition groups so that within
each set the group index reflects the ordering by finish time:

. In particular, the following
properties hold.

1) is sorted by as a result of the GBT property. In
fact, if a group is ineligible, any flow in the group has

. Due to the rounding, we can only
have , and if , we have ,
hence .

2) is also sorted by because of the sorting by
and the fact that ’s are increasing with .

3) is sorted by , as proven in Theorem 4 (Section V).
4) is sorted by , as proven in Theorem 5 (Section V).
Hence, the group with the smallest timestamp in a set can be
located with an FFS instruction.
Managing Sets:A group can enter any of the four sets when it

becomes backlogged or after it is served. After serving a group,
QFQ may need to move one or more other groups from one set
to another, but only on the paths

because the transitions of a group from ineligible to eligible
(driven by the increase of ) and from blocked to ready
(driven by the increase of the of the group that was blocking
group ) are not reversible until group itself is served.
Moving multiple groups from one set to another requires

comparing groups’ timestamps with a threshold and affects all
groups above or below the threshold. Again, this is done with
basic CPU instructions (AND, OR, NOT) without iterating
over the sets because the ordering by finish time holds for
all the four sets, and is sorted by both and .
Thus, once the index of the first matching group is known (see
Section IV-A.3), all other matching groups are on the same side
of the set.

A. Quick Fair Queueing: The Algorithm

We are now ready to describe the details of the QFQ
algorithm.
1) Packet Enqueue: Function enqueue(), shown in Fig. 3, is

called on the arrival of a packet.
As a first step, the packet is appended to the flow’s queue,

and nothing else needs to be done if the flow is already back-
logged. Otherwise, the flow’s timestamps are updated (lines 7
and 8), and line 10 checks whether the group’s state needs to
be updated. This happens if the group was idle, or if the new
flow causes the group’s timestamp to decrease (in this case, the
group was ineligible: line 7 implies , the second test
in line 10 succeeds if , hence ). The up-
date is done by lines 11–17, which possibly remove the group
from the ineligible sets (lines 13 and 14) and update the group’s
timestamps (being the slot size , the start time calculation only
needs to clear the last bits of , line 15).
Once the group’s timestamps are set, a constant-time

bucket insert (line 18) sorts the flow with respect to the other
flows in the group. At this point, if needed, is updated
according to (2). Finally, function compute_group_state()
(Section IV-A.3/Fig. 5) computes the new state of the group
(which may have changed because of the new values of ,
and ), and line 27 puts the group in its new set.
Note that an enqueue does not move other groups across sets:

Their eligibility remains the same ( changes only if all other
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Fig. 3. enqueue() function, called on packet arrivals, and
compute_group_state() that implements the tests for eligibility and
readiness.

groups are idle); blocked/ready states also remain unchanged,
though for less intuitive reasons.8

2) Packet Dequeue: Function dequeue() in Fig. 4 is called to
return the next packet to send.
The packet selection (lines 2–8) is straightforward. If there

are queued flows, at least one flow is eligible, so is not
empty: A first FFS instruction (line 6) picks the group with the
lowest index in , then another FFS is used to locate the first
flow in the bucket list (line 7), and the head packet from that
flow is the next packet to serve.
Before returning, the function updates the scheduler’s data

structures in preparation for further work. The flow’s times-
tamps are updated, and the flow is possibly reinserted in the
bucket list (lines 10–16). Virtual time is increased in line 19
to reflect the service of the packet selected for transmission.
Next (lines 21–28), the group’s timestamps and state are up-
dated. If the group has increased its finish time or it has become

8If the new packet belongs to an already backlogged flow, its group does not
change its finish time, so the readiness of others cannot be affected. Otherwise,
the group containing flow just became backlogged, or its finish time de-
creased. However, , hence . Any Ready
group will have (one comes from the upper
bound on , the other two come from the definition of ). Hence,

. By definition, , so and the
newly backlogged group cannot block a previously Ready group, even in the
worst case (largest possible , smallest possible ).

Fig. 4. dequeue() function, described in Section IV-A.2.

idle (lines 32–36), it is moved to the new set, and function un-
block_groups() described in Section IV-A.3 possibly unblocks
other groups.
Finally, lines 38–45 make sure that at least one backlogged

group is eligible by bumping up if necessary and moving
groups between sets using function make_eligible(), which will
be discussed next.
3) Support Functions: Fig. 5 documents the remaining sup-

port functions, mostly used in the dequeue() code.
Function move_groups() uses simple bit operations to move

groups with indexes in mask from set src to set dest.
Function make_eligible() determines which groups become

eligible as grows after serving a flow. The properties of
rounded timestamps are used to implement the check in con-
stant time. The algorithm is explained with the help of Fig. 6,
which gives a graphical representation of the possible values of
’s and , and the binary representations of (the ver-

tical strings of binary digits). Since slot sizes are powers of two
, the binary representation of the timestamps of the

th group’s ends with zeros; in any given slot belonging to
group , the value of the th bit is constant during the whole slot.
Whenever the th bit of changes, the virtual time enters a
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Fig. 5. Functions to manage group sets after a flow has been served (see
Section IV-A.2).

Fig. 6. Tracking group eligibility. On the transition of V from old_V to new_V;
the highest bit that flips across the transition is the second one, so groups zero
and one are the candidates to become eligible (see Section IV-A.3).

new slot of size 2 . As a consequence, on each update, the
highest bit that changes in indicates that all backlogged
groups are now eligible.
This is exactly the algorithm implemented by function

make_eligible(): It computes the index using a XOR followed
by a Find Last Set (FLS) operation, then computes the binary
mask of all indexes and calls function move_groups to
move groups whose index is in the mask from to and
from to .
Function unblock_groups() updates the set of blocked groups.

When the group under service increases its finish time or be-
comes idle, some groups blocked by might become
ready, i.e., do not violate anymore the ordering of .
Theorem 6 in Section V proves which groups can be unblocked;
line 21 verifies the preconditions, and lines 25–26 move groups
to and as needed.

B. Time and Space Complexity

From the listings, it is clear that QFQ has time com-
plexity on packet arrivals and departures: The algorithm has no
loops, and all operations, including insertion in the bucket list

and finding the minimum timestamps, require constant time. All
arithmetic operations can be done using fixed-point computa-
tions, including the division by the flow weight (for efficiency,
divisions are implemented as multiplications by the inverse of
the weight).
Note that while the algorithm has been described assuming

, the actual implementation supports arbitrary
values for , replacing line 19 of the dequeue function with

. Changes in are tracked in real time
as flows come and go: New flows increase immediately (this
does not violate guarantees), while dead flows are expired lazily,
using the technique shown in [22].
In terms of space, the per-flow overhead is approximately 24

B (two timestamps, weight, group index, and one pointer). Each
group contains a variable number of buckets (32 in the worst
case, requiring one pointer each), plus two timestamps and a
bitmap. Finally, the main data structure contains five bitmaps,
the sum of weights, and a timestamp. Overall, even a large con-
figuration will require 4 kB of memory to hold the entire state
of the scheduler.
QFQ has very good memory locality. On each enqueue()

or dequeue() request, the algorithm only touches the internal
memory (the 4 kB mentioned above) and the descriptor of the
single flow involved in the operation. This is very beneficial
both for software and hardware implementations.

V. PROOFS OF THE PROPERTIES USED IN QFQ

In this section, we prove the properties used in Section IV.
The proofs are complete, but slightly condensed due to space
constraints. All symbols are defined in Table I, and quantities

are computed as described in the QFQ algo-
rithm.
Hereafter, we explicitly indicate the time at which any time-

stamp is computed to avoid ambiguity. Given a generic func-
tion of time , we define . For nota-
tional convenience, we avoid writing if is contin-
uous at time . To further simplify the notation, if the function
is discontinuous at a time instant , we assume, without losing
generality, that , i.e., that the function is
left-continuous.
We define the following two notations for convenience:

For any positive quantity , we have

(8)

In fact, can be written as , with . If
, then , and

the thesis holds; if , then
, and the thesis holds as well.

A. Group GBT Under QFQ

We start by proving per-group upper bounds for
(Theorem 1) and for (Theorem 2, supported by
the two long Lemmas 1 and 2). The two bounds represent a
group-based variant of the GBT property, normally defined for
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the flow timestamps in an exact virtual-time-based scheduler.
We will use these bounds to prove both the properties of the data
structure and the B/T-WFI of QFQ. Lemmas 1 and 2 are adapted
versions of the ones in [9], repeated here for convenience and
with permission from the author.
Theorem 1: Upper bound for . For any back-

logged group and

(9)

Proof: By definition (5), at any time and for any group
is an integer multiple of and, for any backlogged flow

of the group, . It follows that, if
, then (9) trivially holds. Hence, to prove (9),

we actually prove the latter inequality, i.e., that
, and to prove it we consider only a generic time instant

at which a generic packet for flow is enqueued/dequeued, as
this is the only event upon which may increase.
According to (2), either , in which case the

packet is enqueued and the thesis trivially holds, or
. In this case, flow must have had a packet previously

dequeued at time .
When the packet was dequeued at flow was certainly

eligible, and is immediately incremented after the dequeue
at , so we have

, which
proves the thesis.
Lemma 1: Let be a

subset of flows. Given a constant we have

(10)

where is the size of the first packet in the queue for flow
at time .

Proof: By definition, . Thus, for
flows in set , we have . Therefore,

. This implies
, where

the last passage uses .
Lemma 2: Let be a set of

flows. Given a constant , we have that

(11)

Proof: The proof is by induction over those events that
change the terms in (11): packet enqueues for idle flows, packet
dequeues, and virtual time jumps. The base case where is
empty is true by assumption. For the inductive proof, we as-
sume (11) to hold at some time .
Packet Enqueue for an Idle Flow: Say a packet of size

of the idle flow arrives at time . does not change on
packet arrivals except for virtual time jumps, which are dealt
with later. If after the enqueue of the new packet ,
i.e., , we must consider two subcases. First, if

, nothing changes. Second, if ,

the positive component is removed from the
sum. In both subcases, the lemma holds. The remaining case
is if . Since , this implies

. In this case, is incremented by , but
is incremented by , so the left-hand side of (11)

remains unchanged and the lemma holds.
Virtual Time Jump: After a virtual time jump, all backlogged

flows have . With regard to the
idle flows, we assume that their virtual start and finish times are
pushed to . By doing so, we do not lose generality, as the
virtual start times of these flows will be lower-bounded by
when they become backlogged (again). Besides, it is easy to see
that pushing up their virtual finish timesmay only let the left side
of (11) decrease. In the end, for all flows, and
if , then Lemma 1 applies and the lemma holds.
For other in , the additional term in
(11) absorbs any decrement on the right-hand side. Therefore,
the lemma holds.
Packet Dequeue: Flow receives service at time for its

head packet of size . We have to distinguish two cases,
depending on and .
Case 1) . is incremented, and hence the

right side of (11) decreases, exactly by . With
regard to the left side, the variation of can
be seen as the result of first decreasing by ,
which balances the above decrement of , and
then increasing by , which is in turn balanced

by incrementing by . Hence, the lemma
holds for this case.

Case 2) . In this case all flows
have , so they must have been in-
eligible according to their rounded start time, other-
wise the current flow would have not been chosen.
Therefore, for all flows
in . Lemma 1 applies then for all

, i.e.,

(12)

Because and we assume
after service, we only need to consider

with before service.
Therefore

(13)

and the lemma holds after service also in this case,
thus completing the proof.

Theorem 2: Upper bound for For any back-
logged group

(14)

Proof: To prove the thesis, we will actually prove, by con-
tradiction, the more general inequality for
a generic flow of group . The only event that could lead to a
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violation of the assumption is serving a packet. Assume that at
the lemma holds. A packet with rounded

finish time and length is served, and afterwards at time
, there is a packet with finish time , such

that . Denote with and the corresponding
start times. We need to distinguish three cases.
Case 1) Packet is eligible at time according to its rounded

start time. Then, (both packets were eli-
gible at and was chosen). Applying Lemma 2
with and results in

(15)

Because , the second term on the left
side of the inequality is nonnegative, and therefore

.
Case 2) Packet is not eligible at according to its rounded

start time, but becomes eligible between and .
Then, . Virtual time advances by at most ,
and therefore .

Case 3) Packet is not eligible according to its rounded start
time after service to , therefore is reached by
a virtual time jump before can be served. In this
case, . This concludes the
proof.

B. Proofs of the Data Structure Properties

We can now prove the ordering properties of group sets, con-
sidering the two events that can change the set membership:
packet enqueue and packet dequeue. We start by proving the
following theorem, which bounds the number of possible times-
tamps within a group.
Theorem 3: At all times, only the first consecutive

slots beginning from the head slot of a group may be non empty.
Proof: Consider a generic flow belonging to a group .

A new virtual start time may be assigned to the flow (only) as
a consequence of the enqueueing/dequeueing of a new packet

at a time instant . As in the proof of Theorem 1, from (2)
may be equal to either: 1) , or 2) , where

we assume if is the first packet of the flow to
be enqueued/dequeued.
In the first case, according to (14),

. In the
second case, neglecting the trivial subcase ,
we can consider that flow had to be a head flow when
was served. Hence, according to (5), .
From (2), this implies .
Considering both cases, it follows that,

, which proves the thesis.
Using the following lemma, we want now to prove that

is ordered by virtual finish times.
Lemma 3: Let be the time instant at which a previously idle

group becomes backlogged, or at which the group, previously
ineligible, becomes eligible, or finally at which the virtual finish

time of the group decreases. We have that for
any backlogged group with .

Proof: For to decrease, must decrease as well.
According to the enqueue() and dequeue(), this can happen only
in consequence of the enqueueing of a packet of an empty flow
of the group. As this is exactly the same event that may cause a
group to become backlogged, then, from (2), we have

both if the group becomes backlogged and if
decreases. Substituting this inequality, which finally holds also
if the group becomes eligible at time , and (9) in the following
difference we get:

(16)

where and the last inequality follows
from that, as .
The following theorem guarantees that is always ordered

by virtual finish times.
Theorem 4: Set is ordered by group virtual finish time.
Proof: We will prove the thesis by induction. In the base

case , the thesis trivially holds. The ordering of
may change only when one or more groups enter the set. This
can happen as a consequence of: 1) a group entering as it
becomes backlogged; 2) one or more groups moving from
to ; 3) one or more groups moving from to . Let
be a group entering at time for one of the above three
reasons, and let the thesis hold before time .
In the first case, thanks to Lemma 3; is not lower than

the virtual finish times of the groups in with lower index.
By definition of is also not higher than the virtual
finish times of the groups in with higher index.
In the second case, given a group with

because either group was already in
before time , or group belonged to , which is ordered
by virtual start times according to Section IV-3, item 2. This
implies because . By definition of

is also not higher than the virtual finish times of the
groups in with higher index.
In the third case, since group is not blocked anymore,

is not higher than the virtual finish times of the groups in
with higher index. With regard to the groups with lower index
than , for group to be blocked before time , there had to be
a group with and . Since we
assume that is ordered by virtual finish time before time ,
then , and hence is not lower than the virtual finish
times of all the lower index groups in .
To prove that enjoys the same order property as , we

need first a further lemma. The validity of the lemma depends on
the timestamp back-shifting performed by QFQ when inserting
a newly backlogged group into . Hence, this is the right place
to explain in detail this operation.
When an idle group becomes blocked after enqueueing a

packet of a flow at time , the timestamps of flow are not
updated using the following variant of (2):

(17)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

where is the lowest-order group in such that . Basi-
cally, with respect to the exact formula, is used instead
of if . This is done because otherwise the
ordering by virtual finish time in may be broken. It would be
easy to show that this would happen if an idle group becomes
blocked when is too much higher than the virtual finish
time of some other blocked group .
With regard to worst-case service guarantees, in case

in (17), group just benefits from the
back-shifting, whereas the guarantees of the other flows are
unaffected. To prove it, consider that the guarantees provided
to any flow do not depend on the actual arrival time of the
packets of the other flows. Hence, one can still “move” a pair
of timestamps backwards, provided that this does not lead
to an inconsistent schedule, i.e., provided that the resulting
worst-case schedule for all the flows is the same as if the packet
had actually arrived at a time instant such that the would have
got exactly those timestamps without using any back-shifting.
This is what happens using (17), for the following reason.
Should the packet that lets group become backlogged have
arrived at a time instant at which ,
group would have however got a virtual finish time higher
than . Hence, group should not have been served before
group , exactly as it happens in the schedule resulting from
timestamping group with (17) at time .
We can now introduce the intermediate lemma we need to

finally prove the ordering in .
Lemma 4: If a pair of groups and with are blocked

at a generic time instant , then .
Proof: We consider two alternative cases. The first is that
has been last updated at a time instant using

(17). The second is that, according to (2) and (5), there are at
least one head flow of group and a time instant such
that .
In the first case, we have , where is the

lowest-order group in such that . We can consider
two subcases. First, group is already backlogged and eligible
at time . It follows that, if , then . Other-
wise, from the definition of , group is necessarily blocked,
and must hold again for group not to be
blocked. In the end, regardless of whether group is ready or
blocked, , and the thesis
holds. In the other subcase, i.e., group is not ready and eligible
at time , thanks to Lemma 3, group cannot happen to have
a virtual finish time lower than during . Hence,

.
In the other case, i.e., , we prove the

thesis by contradiction. Suppose that . Flow
must have necessarily been served with at
some time . In addition, for to hold,

, and hence should hold as
well. As flow had to be a head flow at time , it would follow
that

(18)

We consider two cases.
First, group is backlogged at time . If ,

then
because . Hence, both group and would be eligible,
and group could not be served at time . It follows that

should hold. This inequality and (18) would
imply . Should not decrease during

, the absurd would follow. However,
from enqueue() and dequeue(), it follows that the only event
that can let decrease is the enqueueing of a packet of an
idle flow of group that causes to decrease (lines 12–18
of enqueue). Let be the minimum value that may
assume in consequence of this event.
Since , according to (2), (5), and

(18),
, which again would

imply the absurd .
The second case is that group is not backlogged at time .

As the event that would let the group become backlogged after
time is the same that might have let decrease in the
other case, then, using the same arguments as above, we would
get the same absurd.
In the end, must hold.
The following theorem guarantees that is always ordered

by virtual finish time (hence, as previously proven for , this
order is never broken during QFQ operations).
Theorem 5: Set is ordered by group virtual finish time.
Proof: We will prove the thesis by induction. In the base

case , the thesis trivially holds. The only event upon
which the ordering of may change is when one or more
groups enter the set. The three events that may cause a group to
become blocked are:1) the enqueueing/dequeueing of a packet
of a flow of an idle group , which lets group get a lower
virtual finish time than group (groups with lower order than
can never block group ); 2) the enqueueing/dequeueing of a
packet of a flow of group itself, which lets the virtual finish
time of group become higher than the virtual finish of some
higher-order group; 3) the growth of , which causes one or
more groups to move from to .
With regard to the first event, it is worth noting that group

can cause group to become blocked only if group becomes
backlogged or if decreases. Let be the time instant at
which one of these two events occurs and such that is or-
dered up to time . Thanks to Lemma 3, , and
hence the event cannot let group become blocked.
Suppose now that, at time , group enters as a con-

sequence of either a packet of a flow of the group being en-
queued/dequeued or the growth of . We will prove that,
given any two blocked groups and

and hold (where in
case group enters from ).
With regard to a blocked group , if group enters
as a consequence of a packet enqueue/dequeue, then from

Lemma 4 and the fact that, as is an integer multiple of
, we have

(19)

where the last inequality follows from . On the other
hand, if group enters from , then
because either group was already eligible before time , or
group belonged to , which is ordered by virtual start time
according to Section IV-3, item 2. This implies
because .
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With regard to a blocked group , let be the
highest-order group that is blocking group at time . Indepen-
dently of the reason why group enters , from Lemma 4 we
have

(20)

where the last inequality follows from and the
fact that both and are integer multiples of . Using
(20), we have , i.e.,

(21)

because, since .
Finally, we can prove the theorem that allows QFQ to quickly

choose the groups to move from to .
Theorem 6: Group unblocking. Let be the group that would

be served on the next packet dequeue at time , and assume that
there is no group ; in this case, if group
is actually served and , or if group becomes
idle at time , then all and only the groups in / and with
order lower than must be moved into / .

Proof: To prove the thesis, we first prove that group is
the only group that can block a group . The proof is by
contradiction. Suppose for a moment that a group blocks
group . Since must hold for group not to
be blocked, and both and are integer multiples of
, then . Combining this inequality with

Lemma 4, we get , and hence, considering
that

. This contradicts the fact that group blocks group .
As a consequence, if increases, then, thanks to (19) and

(21), all and only the blocked groups become ready. The
same happens if group becomes idle as a consequence of a
packet dequeue.

VI. SERVICE GUARANTEES

Service guarantees are an important parameter of any sched-
uling algorithm. In this section, we compute various service
metrics for QFQ: in particular, we will derive two bit guar-
antees—the B-WFI and relative fairness—and one time guar-
antee—the T-WFI.

A. Bit Guarantees

The – guaranteed to a flow is defined as9

- (22)

where is any time interval during which the flow is con-
tinuously backlogged; is the minimum amount of
service the flow should have received according to its share of
the link bandwidth; and is the actual amount of ser-
vice provided by the scheduler to the flow.
Theorem 7: B-WFI for QFQ. For a flow belonging to

group , QFQ guarantees

- (23)

9This definition is slightly more general than the original one in [2], where
was constrained to the completion time of a packet.

IMPORTANT NOTE: Flow belongs to group , so
varies between and and the - is always bounded
by a small multiple of the packet size, same as for other near-op-
timal schedulers. In addition, Theorem 1, as well as the theorems
and lemmas on which it depends, are proven without ever using
the link rate. Hence, this theorem holds also for time-varying
link rates.

Proof: In this proof, we express timestamps ( ,
etc.) as functions of time to avoid ambiguities. We consider two
cases. The first one is when flow is eligible at time . In this
case, as for the virtual time of flow in the real system,
consider that , and trivially
hold. In addition, as proven in Theorem 2,
then . Hence, we have

(24)

The last inequality follows from the fact that, because of the
immediate increment of as a packet is dequeued (see
updateV()), . To complete the
proof for this case, consider that, for to comply with
the immediate increment of , also must increment
immediately each time a packet of flow is dequeued. Should

and have been computed exactly, then, by definition
of would have held. In con-
trast, the fact that immediately increments also implies
that holds. Substituting (24)
in the latter inequality, we get

(25)

The other case is when flow is not eligible at time . This
implies that is exactly equal to . Hence, consid-
ering that and exploiting the same prop-
erties used in the derivations for the other case, we have

(26)

Comparison to Other Schedulers: In a perfectly fair ideal
fluid system such as the GPS server, - (see [2]),
whereas repeating the same passages of the proof in case of
exact timestamps (i.e., exact with stepwise ), the
resulting - would be .
The B-WFIs for S-KPS and GFQ have not been computed

by their authors. However, both these algorithms and QFQ im-
plement the same policy , differing only in how they
approximate the timestamps. Generalizing the previous proof,
we can show that GFQ has a slightly lower -
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, whereas S-KPS has -
- .
Relative Fairness: The relative fairness bound, RFB, is de-

fined as the maximum difference, over any time interval
and pair of flows and , between the normalized service given
to two continuosly backlogged flows

(27)

Consider two flows, and , belonging, respectively, to
groups and , and continuously backlogged during a time
interval . Equation (6), Theorem 2, and the fact that a
group is served only if eligible, give an upper bound to the
normalized service received by a flow in the interval, resulting
in . The proof of Theorem 7
establishes a lower bound for the normalized service. Substi-
tuting these two extremes in (27) and taking the maximum over
all possible flow/group pairs, we have

(28)

As for GFQ and S-KPS, we have

and
. To put the bound for FRR in a form that allows it to be

compared more easily against the bound for QFQ, we assume
that all packets have the same length (otherwise may
be higher), and get

(in the best case for FRR, i.e., for ).

B. Time Guarantees

Expressing the service guarantees in terms of time is only
possible if the link rate is known. The - guaranteed to a
flow on a link with constant rate is defined as

- (29)

where and are, respectively, the arrival and completion time
of a packet, and is the backlog of flow just after the
arrival of the packet.
Theorem 8: T-WFI for QFQ. For a flow belonging to

group , QFQ guarantees

- (30)

The proof, omitted for brevity, is conceptually similar to the
one for the B-WFI. Here again, note that the factor (or
equivalent) is present in the T-WFI of any near-optimal sched-
uler. For comparison, a perfectly fair ideal fluid system would
have - , whereas for , which uses exact
timestamps, repeating the same passages of the proof yields
- .
Same as for the B-WFI, the T-WFI of S-KPS happens to be

equal to that of QFQ, whereas the T-WFI of GFQ is lower than
that of QFQ by . Finally, about FRR, as already shown in
Section II, the T-WFI of FRR in a realistic scenario is not lower
than .

Fig. 7. Simulated scenario. Flows and are originated by nodes and
, whereas generates 50 CBR flows to perturbate the traffic. All routers run

the same scheduling algorithm.

VII. EXPERIMENTAL RESULTS

We evaluate the performance of QFQ by comparing its ser-
vice properties and actual run times to those of other scheduling
algorithms. Due to space limitations, we only report a subset
of our experimental results. The algorithms selected for the ex-
periments presented here are DRR, to represent the class of
high-performance round-robin schedulers; , as a ref-
erence point for its optimal service properties; and S-KPS, as
an example of high-efficiency timestamp-based scheduler.
The experiments cover two aspects: service properties are

evaluated by running experiments with NS on a simulated
topology and measuring end-to-end delays and their variations;
absolute performance is evaluated by measuring actual run
times of production-quality code, i.e., code that includes all
features needed in an actual deployment, such as support for
dynamic flow creation and destruction, and exception handling.
These features are normally neglected in prototype implemen-
tations, but are necessary in a realistic test as their support may
impose significant overhead to the run times.

A. Evaluation of Service Properties

To prove the effectiveness of the service properties guaran-
teed by QFQ, we implemented it in the ns2 simulator [1], and
we compared it to DRR, S-KPS, and .
The network topology used in the simulations is inspired by

the one used in [7] and is depicted in Fig. 7. Links - and
- have 10 Mb/s bandwidth and 10 ms propagation delay;

all the other links have 100 Mb/s and 1 ms. The observed flows
are (a 32-kb/s CBR from to ), and (a 512-kb/s CBR
from to ). Interfering flows are a 512-kb/s CBR from
to (same as ), 50 160-kb/s CBR flows from to , and
two best-effort flows, one from to and one from to
, each generated from its own Pareto source with mean on

and off times of 100 ms, , and mean rate of 2 Mb/s
(larger than the unallocated bandwidth of the links between the
routers, in order to saturate their queues).
Table II shows the end-to-end delays (average, stddev and

maximum) experienced by and during the last 15 s of sim-
ulation (the total simulation time was 20 s; the first five were not
considered to let the values settle). QFQ performs as expected,
with delays similar to the ones measured for S-KPS, given the
common nature that the two schedulers share. DRR showsmuch
larger delays and deviations, which is also expected because of
the inherent WFI of this family of schedulers.
The “max” value for the low bandwidth flows is in good ac-

cordance with the WFI values computed in Section VI: The
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Fig. 8. Our testing environment: A controller drives the scheduler module with
programmable sequences of requests.

TABLE II
SIMULATION RESULTS FOR THE TOPOLOGY OF FIG. 7. END-TO-END DELAYS
(AVERAGE/STDDEV, MAX) IN MILLISECONDS FOR THE OBSERVED FLOWS

delay component inversely proportional to the flow’s rate is
best for and grows as we move to QFQ, S-KPS, and
DRR. The larger standard deviation of the delays in QFQ and
S-KPS, compared to comes from the use of approx-
imate timestamps, which gives QFQ and S-KPS a WFI larger
than that of . Also note how the effect of approxima-
tions is higher for (a low rate flow) than for , which is a
high rate flow.

B. Run-Time Performance

Together with the good service guarantees, the most in-
teresting feature of QFQ is the constant (independent of the
number of flows) and small per-packet execution time, which
makes the algorithm extremely practical.
To study the actual performance of our algorithm, and com-

pare it to other alternatives, we have measured the C versions of
QFQ and various other schedulers, including S-KPS, which we
implemented as part of the Dummynet [4] traffic shaper, run-
ning on FreeBSD, Linux, and Windows.
We have performed a thorough performance analysis by run-

ning the schedulers in the environment shown in Fig. 8, where
we could precisely control the sequence of enqueue/dequeue re-
quests presented to the schedulers. The controller lets us decide
the number and distribution of flow weights and packet sizes,
as well as keep track of the number of backlogged flows and
the total amount of traffic queued in the scheduler. These pa-
rameters may impact the behavior of the schedulers, by influ-
encing the code paths taken by the algorithms, and the memory
usage and access patterns. The latter are extremely important on
modern CPUs, where cached and noncached access times differ
by one order of magnitude or more.
In the next section, we report experimental results for the

average enqueue() dequeue() times (including generation and
disposal by the controller) in different operating conditions
(number and distribution of flows, queue size occupation). One
of the configurations (the “NONE” case) only measures the
controller’s costs, so we can determine, by difference, the time
consumed by the scheduler.
This test setup does not allow us to separate the cost of en-

queue() and dequeue() operations, but the problem is not rele-
vant. First, in the steady state, there is approximately the same

number of calls for the two functions. Only when a link is se-
verely overloaded, the number of enqueue()will be much larger
than its counterpart, but in this case dropping a packet (in the
enqueue()) is very inexpensive. Second, in most algorithms it is
possible to move some operations between enqueue() and de-
queue(), so it is really the sum of the two costs that counts to
judge the overall performance of an algorithm.
Test Cases: Our tests include the following algorithms.

NONE The baseline case, measures the cost of
packet generation and disposal, including
memory-touching operations. Packets generated
by the controller are stored in a FIFO queue and
extracted when the controller calls dequeue().

FIFO The simplest possible scheduler, an unbounded
FIFO queue. Compared to the baseline case, here
we exercise the scheduler’s API, which causes one
extra function calls and counter updates on each
request.

DRR The Deficit Round Robin scheduler, where each
flow has a configurable quantum size.

QFQ QFQ, as described in this paper. We use 19 groups,
packet sizes up to 2 kB, and weights between 1
and 2 .

S-KPS Our implementation from the description in [9],
with some minor optimizations, and revised by
the original authors. Internal parameters (e.g.,

) have been set to values similar to those
used for QFQ.

WF2Q The algorithm taken from the FreeBSD’s
dummynet code. It has scaling
properties, but it is of interest to determine the
breakeven point between schedulers with different
asymptotical behavior.

Flow Distributions:We ran extensive tests with different com-
binations and numbers of flows (from 1 to 128 K), with var-
ious weight and packet size distributions. These configurations
show how the schedulers depend on the number of flows, traffic
classes, and also their sensitivity to memory access times.
Load Conditions: To emulate different load conditions for the

link, we generate requests for the scheduler with three patterns:
SMALL and LARGE generate bursts of and packets,
respectively (where is the number of active flows), and then
completely drain the scheduler; FULL keeps the scheduler
constantly busy, with a total backlog between and
packets. The bursty patterns try to reproduce operation on a
normally unloaded link, whereas the FULL pattern mimics the
behavior of a fully loaded link driven by TCP or otherwise
adaptive flows, which modify their offered load depending on
available bandwidth.

C. Results

Table III and Fig. 9 report some of the most significant test re-
sults, measured on a low-end desktop machine (2.1 GHz CPU,
32-bit OS, 667 MHz memory bandwidth), with code compiled
with gcc -O3. Different platforms perform proportionally to the
platform’s performance (e.g., a 3-GHz Nehalem CPU is almost
twice as fast; a 200-MHzMIPS CPU on a low-cost Access Point
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Fig. 9. Scaling properties of the various algorithms. grows as
, reaching 2000 ns for 32 K flows (see Table III).

TABLE III
SUBSET OF EXPERIMENTAL RESULTS, FOR DIFFERENT FLOW DISTRIBUTIONS

AND LOAD CONDITIONS

is 30–40 times slower in running the same experiments). Sim-
ilarly, the point where cache effects become visible varies de-
pending on available cache sizes.
Fig. 9 shows clearly that the performance of all algo-

rithms does not depend on the number of flows (except for the
impact of cache misses), whereas WF2Q shows the expected

behavior. We see that DRR and FIFO are extremely
fast, with most of the time in the test consumed by the packet
generator (the curve labeled NONE in the figure), which ac-
counts for approximately 60 ns per enqueue/dequeue pair. All
schedulers, and the generator itself, show a modest increase of
the execution time as the number of flows goes (on this partic-
ular platform) above 4 K. This is likely due to the working set
of the algorithm overflowing the available cache, which causes
cache misses that impact on the total execution time. In absolute
terms, QFQ behaves really well, consuming about 100–110 ns
(excluding the traffic generation) up to the point where cache

misses start to matter. S-KPS also has reasonably good perfor-
mance, taking approximately 500 ns ( times the cost of
QFQ).
Finally, we would like to note that while has ob-

vious scalability issues, it can still be a viable alternative for
configurations with a small number of flows.
The final block of the table reports the result of experiments

with a large mix of flows using different weights. This case does
not show significant differences with the case where all flows
have the same parameters.
Table III, Fig. 9, and other experiments not reported here

show that algorithms can have peculiar behaviors in certain
conditions. As an example, QFQ takes a modest performance
hit when there is only one flow backlogged. This happens be-
cause, in the dequeue code, the removal of the flow from the
group leaves the group empty and triggers unnecessary calls
to unblock_groups() and make_eligible(). S-KPS seems to have
slightly better performance in the presence of small bursts, pre-
sumably due to similar reasons (certain code paths becoming
more frequent). DRR takes a performance hit when the packet
size is not matched with the quantum size, as certain packets
require two rounds instead of one to be processed. These vari-
ations tend to be small in absolute and relative terms, but are
measurable as we are dealing with extremely fast algorithms
where even small changes in the instruction counts affect the
performance.
QFQ is a significant step toward the feasibility of software

packet processing on 10-Gb/s links. At these speeds, the per-
packet budget varies between 67.2 and 1230 ns per packet (for
64- and 1518-B frames). QFQ’s speed (100–150 ns/pkt) fits
well in the budget, together with recent results on fast packet
I/O [14].

VIII. CONCLUSION

In this paper, we presented QFQ, an approximate implemen-
tation of that can run in true constant time, with very
low constants and using extremely simple data structures. The
algorithm is based on very simple instructions and uses very
small and localized data structures, which make it amenable to a
hardware implementation. Together with a detailed description
of the algorithm, we provide a theoretical analysis of its ser-
vice properties and present an accurate performance analysis,
comparing QFQ to a variety of other schedulers. The experi-
mental results show that QFQ lives up to its promises: It is faster
than other schedulers with optimal service guarantees, only two
times slower than DRR, and operates, even in software, at a rate
compatible with 10-Gb/s interfaces.
QFQ and the other algorithms analyzed here are available

at [5] as well as part of standard distributions of FreeBSD and
Linux and are included in the Dummynet [4] traffic shaper/net-
work emulator for FreeBSD, Linux, and Windows.
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