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Abstract
Dynamic resource scheduling is key to achieve depend-
able service guarantees, allocate spare capacity and pro-
tect systems against misuse. For network traffic in a cloud
environment, packet scheduling is often done in software,
a task made hard by the extremely high frequency of
decisions (10+ million packets per second may flow on
10–40–100 Gbit/s links) and the number of concurrent
sources (systems with 24–48 cores are now common).

No currently available solution simultaneously supports
high decision rates, scales to many concurrent clients, and
has provable, small deviation from ideal allocation at high
link utilization. The pieces to make the above possible do
exist, though, from efficient schedulers with tight analyti-
cal service guarantees to fast packet I/O frameworks.

In this paper we fill the gap and propose an architec-
ture, called MYSCHED1, to run software packet sched-
ulers efficiently even in a high speed, highly concurrent
environment. We achieve this result by separating the
scheduling decision from the actual packet transmission,
so that the latter can be performed in parallel by clients.
We provide analytical bounds on the service guarantees of
MYSCHED even at high link utilization, and present an
accurate discussion of implementation issues. Our proto-
type can make over 20 million scheduling decisions per
second even with tens of concurrent clients running on a
multi-core, multi-socket system, while adding less than
2µs to the communication delay.

1 Introduction
Allocating and accounting for spare capacity is the foun-
dation of cloud environments, where multiple tenants
share resources managed by the cloud provider. Dynamic
resource scheduling in an Operating System (OS) ensures
that CPU, disk, and network capacity are assigned to ten-
ants as specified by contracts and configuration, giving

1name will be changed soon

performance isolation and predictable services, and allow-
ing an effective use of resources. In this paper we focus on
packet scheduling in a server that hosts cloud clients: Vir-
tual Machines (VMs), OS containers, or any other mech-
anism to manage and account for resources.

Packet scheduling requires millions of decisions per
second (dps), matching the packets per second (pps)
rates of modern network interfaces. Tens of clients, run-
ning concurrently different CPU cores, may each issue re-
quests at such rates, so a scheduler must be able to handle
concurrency and extremely high rates, provide good iso-
lation among clients, and be robust to overload.

Terminology remark: the word “scheduler” is often
used to indicate a specific “scheduling algorithm”, such
as DRR [26] or WF2Q+ [6], which is just one of the com-
ponents needed to implement a full scheduling system. In
this paper we call “packet scheduler” or simply “sched-
uler” the entire system that i) receives packets from one
or more clients, ii) decides on the fate and order of ser-
vice of packets, and iii) dispatches packets to the next hop
in the communication path.

OSes implement scheduling in one of the ways shown
in Figure 1. The solution on the left, where the scheduler
is a software module in the OS’s network stack, is used in
many systems including Linux with TC [3], and FreeBSD
and other BSD OSes with dummynet [7] and ALTQ [9].
As discussed in Section 2, these software schedulers can
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Figure 1: The path between VMs or clients and the net-
work interface.



only handle 1..2 Mpps. Replacing the scheduler with traf-
fic shapers provides an easy way to increase the rate, but
harms link utilization and guarantees.

In the solution on the right, each client has a separate
transmit queue in the NIC, which implements scheduling
in hardware. Removing a potentially slow piece of soft-
ware from the path is only apparently an advantage: con-
tention between clients moves to the PCIe bus, far slower
than memory; NICs often have underpowered controllers
(see for example the various limitations listed in [21,
Sec.7.1 and Sec.8]); so hardware schedulers are not nec-
essarily faster than software ones.

In this paper we propose a different architecture, called
MYSCHED and illustrated in Figure 2: we separate the
scheduling decision, which still remains sequential, and is
made by an ARBITER block, from the actual delivery of
the packet to the NIC, which is done concurrently by the
clients2 after the arbiter has granted permission. Clients
never contend with each other, they just talk to the ar-
biter through lock free queues. The arbiter can use any
scheduling algorithm, and it is the only entity interacting
with it. Packets are released by the arbiter at a rate just
below the link’s capacity, thus preventing congestion on
the link and on the PCIe bus. As a result MYSCHED
scales extremely well, and permits reuse of existing and
well studied scheduling algorithms and code. Further, we
can establish analytical bounds on the service guarantees
of MYSCHED reusing the same analysis done for the un-
derlying scheduling algorithm.

Even with the split of decision and transmissions, build-
ing and tuning a fast, robust and scalable implementation
of MYSCHED requires low level solutions that behave
well on modern multi core, multi socket systems. We thus
measured, and discuss in the paper, the effect of heavy
memory contention on such systems, and use the results
to drive our design decisions.

Our contributions then include: i) the design and dis-
cussion of MYSCHED: ii) solutions to achieve high per-
formance and scalability; iii) a theoretical analysis of ser-
vice guarantees; and iv) the implementation and perfor-
mance analysis pf MYSCHED. Our prototype can deliver
over 20 M decisions per second even under highly par-
allel workloads on a dual socket, 24 thread system, and
degrades very gracefully under overload.

The code for MYSCHED is publicly available at [4].

2provided, of course, the availability of a multiqueue NIC; this is a
standard feature on modern, fast NICs which are the target of this work.

1.1 Scope

MYSCHED belongs to a class of schedulers (such as
DRR [26], WF2Q+ [5], QFQ [8]) that provide tight
and provable service guarantees even at high loads.
These cannot be compared with: 1) queue management
schemes such as FQ CODEL [16], or OS features such
as PFIFO FAST or multiqueue NICs, often incorrectly
called “schedulers”, that do not provide reasonable isola-
tion or service guarantees; 2) heuristic solutions based on
collections of shapers reconfigured on coarse timescales,
that also cannot guarantee fair short term rate allocation;
or 3) more ambitious systems that try to do resource allo-
cation for an entire rack or datacenter [20], which, due to
the complexity of the problem they address, cannot give
guarantees at high link utilization. More details are given
in Section 6.

1.2 Paper structure

Section 2 gives some background on packet schedul-
ing. Section 3 describes the architecture and operation
of MYSCHED, followed by a discussion of implementa-
tion details. Analytical bounds on service guarantees are
computed in Section 4. Finally, Section 5 reports the per-
formance of our prototype and compares it with existing
systems, and Section 6 presents related work.

2 Background
The theory. Packet scheduling refers to the task of pass-
ing packets belonging to different “flows” (defined in any
meaningful way, e.g., by source client, network address
or physical port ID) to a downstream link, in an order that
satisfies a given requirement. Examples are giving prior-
ity to some flows over others, limiting the maximum rate
of individual flows, or dividing the total capacity of the
link proportionally to “weights” assigned to flows with
pending transmission requests (“backlogged” flows). A
scheduler is called “work conserving” if it never keeps
the link idle while there are backlogged flows.

Perfect proportional sharing can be achieved by an
ideal, infinitely divisible link that can serve multiple flows
in parallel; this is called a “fluid system”. Real links, how-
ever, are forced to serve one packet at a time [19], so there
will be a difference in the transmission completion times
between the ideal fluid system and a real one, adding la-
tency and jitter to the communication. A useful measure
of this difference is the Time Worst-case Fair Index (T-
WFI)[5], defined as the
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Definition 1 (T-WFI) maximum absolute value of the
difference between the completion time of a packet of the
flow in i) the scheduling system, and ii) an ideal system,
if the backlog of the flows are the same in both systems at
the arrival time of the packet.

Bandwidth limiting or even proportional sharing are
simple to achieve over coarse time intervals, but the task
becomes harder and harder as we want to remain close
to the fluid system on short intervals. It can be proven
that the minimum T-WFI of a packet scheduler equals the
transmission time of one maximum sized packet (“MSS”
in network terminology). Efficient Weighted Fair Queue-
ing algorithms that match this lower bound have been
designed [5, 29], with scheduling decisions that have
O(logN) cost in the number of flows, N .
The practice. Fast variants of Weighted Fair Queue-
ing, such as QFQ [8] and QFQ+[30] achieve O(1) time
complexity per decision, at the price of a small con-
stant increase of the T-WFI. Implementations of QFQ and
QFQ+ are included in commodity OSes such as Linux
and FreeBSD. Their runtime cost is comparable to that of
simpler, but much less precise, schedulers such as Deficit
Round Robin (DRR) [26], whose T-WFI is linear in the
number of flows. All of the above implementations can
make a scheduling decision in 20..50 ns on modern CPUs.

A scheduler has three components: a set of QUEUES
to store incoming packets for the different flows; an AR-
BITER that selects the next packet to be transmitted using
some scheduling algorithm SA; a DISPATCHER that de-
livers the selected packet to the NIC (or the next stage in
the network stack). Many scheduling algorithms do not
use packet arrival times to make their decisions, but only
rely on the state of the queues when the link is idle. Thus,
in principle, nothing needs to be done on packet arrivals
(other than enqueue them), and the arbiter can keep scan-
ning the queue3 and, every time the link is idle, run the
scheduling algorithm, to assign the link to one of the back-
logged flows. As an optimization, in a software scheduler
the arbiter may go to sleep when queues are empty and be
woken up on the next packet arrival.

Schedulers are commonly implemented as a single unit
in commodity OSes, with a single thread in charge of run-
ning the arbiter and then dispatch traffic downstream. The
latter is an expensive operation, so this solution does not
scale with multiple concurrent clients. As shown in Sec-
tion 5, schedulers in Linux or FreeBSD only reach an ag-
gregate throughput (in packets per second, which is the
relevant metric) around 1..2 Mpps4.

3this is exactly how hardware schedulers in NICs work
4Specific OS or hardware versions may be twice as fast, but regard-

less of the exact value, we are targeting (and have achieved) a ten-fold
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Figure 2: MYSCHED architecture.

3 MYSCHED architecture

In our architecture, MYSCHED, we split the components
of the scheduler so that we can operate the arbiter in paral-
lel with the dispatching of traffic. The overall architecture
is shown in Figure 2, and includes N clients (either VMs
or processes running on the host), and an arbiter unit run-
ning as a separate thread.

Each client shares a private queue with the arbiter.
When packets are available for transmission, clients insert
the requests in their queue through function submit()
in Figure 3 (function kick_arbiter() is a a NO-OP
and will be discussed in Section 3.1). Function drain()
is used to transmit packets for which the arbiter has
granted permission; it can be called opportunistically by
each client, or by other threads that run periodically or on
explicit notifications from the arbiter (this is very similar
to the operation of an interrupt handler or NAPI thread).

The arbiter runs function do_scan(), continu-
ously or every few microseconds (see Section 3.3), to
collect new requests and make scheduling decisions.
do_scan() emulates a link with a bandwidth B less
than or equal to the capacity of the NIC, and uses the
variable link_idle to track the time when the emu-
lated link will be available for new transmissions. Every
time the link is idle, do_scan() uses a work conserv-
ing scheduling algorithm SA (such as DRR or QFQ or
others), to select a new packet to be transmitted, marks it
as ready in its queue, and advances link_idle by the
transmission time of the packet.

MYSCHED differs from conventional architectures in
two ways, both crucial for performance and scalability:

• the arbiter only makes scheduling decisions. The
delivery of packets to the NIC, which can be up to
10..20 times more expensive, is left to the clients,

speedup with our design.
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1 int submit(pkt) {
2 i = pkt->queue_id;
3 cur = q[i].tail;
4 next = (cur + 1) % QUEUE_SIZE;
5 if (slots[next] != EMPTY) {
6 return ENOSPACE;
7 }
8 slots[cur] = pkt;
9 kick_arbiter(); /* possibly no-op */

10 return SUCCESS;
11 }
12
13 void drain(i) { /* drain marked packets */
14 slots = q[i].slots;
15 cur = q[i].client_head; /* next packet to send */
16 sched_head = q[i].head; /* set by the arbiter */
17 while (cur != sched_head) {
18 <transmit packet in slots[cur]>
19 slots[cur] = EMPTY; /* release the slot */
20 cur = (cur + 1) % QUEUE_SIZE;
21 }
22 q[i].client_head = cur;
23 }

1 int do_scan() {
2 now = rdtsc();
3 for (i=0; i < N; i++) {
4 while ((pkt = <new pkt in q[i]>) != NULL) {
5 SA.enqueue(pkt);
6 }
7 }
8 while (link_idle < now) {
9 pkt = SA.dequeue();

10 if (pkt == NULL) {
11 link_idle = now;
12 return NO_TRAFFIC;
13 }
14 i = pkt->queue_id;
15 link_idle += pkt->len / bandwidth;
16 q[i].head = (q[i].head + 1) % QUEUE_SIZE;
17 }
18 return MORE_TRAFFIC;
19 }
20
21 void arbiter() {
22 for (;;) {
23 do_scan(); /* ignore return value */
24 }
25 }

Figure 3: Client and arbiter functions.

which run in parallel and have the opportunity to per-
form packet processing after the scheduling decision
has been made;

• clients cannot interfere with each other. Each client
only interacts with the arbiter through a private, lock-
free queue. In conventional schedulers, instead,
clients all contend to access the scheduling algo-
rithm, which leads to scalability issues.

3.1 Avoiding busy wait
Readers may be rightfully concerned by the need to con-
stantly run the arbiter even in the absence of traffic. The

1 void arbiter() {
2 arb_sleep = FALSE;
3 lock(arb_lock);
4 for (;;) {
5 if (do_scan() == MORE_TRAFFIC) {
6 /* link busy, sleep for a while */
7 sleep_till(link_idle);
8 continue;
9 }

10 arb_sleep = TRUE;
11 barrier();
12 if (do_scan() == NO_TRAFFIC) {
13 if (lock_owned(arb_lock)) {
14 unlock(arb_lock);
15 }
16 wait_event(&arb_sleep);
17 }
18 arb_sleep = FALSE;
19 }
20 }
21
22 /* 1st version: only wake up the arbiter */
23 int kick_arbiter() {
24 barrier();
25 if (arb_sleep == TRUE) {
26 send_event(&arb_sleep);
27 }
28 }
29
30 /* 2nd version: wake up arbiter and do some work */
31 int kick_arbiter() {
32 do {
33 ret = trylock(arb_lock);
34 } while (ret == ACQUIRED || arb_sleep == FALSE);
35
36 if (ret != ACQUIRED) {
37 return;
38 }
39 final = rdtsc() + some_interval;
40 do {
41 ret = do_scan();
42 } while (ret == NO_TRAFFIC || last_idle < final) {
43 /* notify and pass lock to the arbiter */
44 if (ret == NO_TRAFFIC) {
45 unlock(arb_lock);
46 } else {
47 send_event(&arb_sleep);
48 }
49 }

Figure 4: Algorithm changes to avoid busy wait

code in Figure 4 addresses this problem, sending the ar-
biter to sleep when it has no work to do. This can happen
in two circumstances: while i) the current packet com-
pletes transmission, or ii) all queues are empty.

The first case is easy to handle: the arbiter can just
block until the (known) time when the link will be idle
again. The case of empty queues is trickier because
new requests may arrive at any time, including while
the arbiter is deciding to block. The following mecha-
nism captures these events avoiding races: the arbiter in-
forms clients of its upcoming blockage through variable
arb_sleep, and then double checks for new requests
before actually blocking. The full code for the modified
arbiter is function arbiter() in Figure 4.
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Clients now must run function kick_arbiter() at
the end of submit() to check the state of the arbiter and
act accordingly. This can be done in two ways, shown in
Figure 4. The first one in line 22 only sends a notifica-
tion to the arbiter (e.g., through an eventfd) if it might
be sleeping (a memory barrier is necessary to ensure the
correct ordering of operations).

The second solution, in line 30, runs the entire sched-
uler in the client when the link is idle (thus behav-
ing as a conventional scheduling architecture), and re-
verts to the parallel implementation under higher load.
This is achieved by having the client try to acquire the
lock arb_lock until successful, or until the arbiter is
found running. If the lock is acquired, the client runs
do_scan() one or a few times, before releasing the lock
or notifying the arbiter.

In the interest of performance, the arbiter should not
go to sleep too frequently: usleep() has a minimum
duration in the order of 10µs, below which it is imprecise
or ineffective; unlock() and send_event() can eas-
ily cost 2..5µs on multisocket systems5, and acquiring a
contended lock can be similarly expensive. As a conse-
quence, when the arbiter becomes active, it should stay
awake for at least 20..50µs to reduce the frequency of ex-
pensive operations in the clients.

3.2 Scalability

We now discuss implementation details to achieve
MYSCHED’s main goal, namely high performance and
scalability. The rest of this Section is only relevant at ex-
tremely high rates, in the order of millions of requests per
second. We assume that the operating system can provide
separate transmit paths to the various clients. This is a
realistic assumption with modern multiqueue NICs.

The two main concerns on MYSCHED’s scalability
thus are i) the need to periodically scan all N queues to
collect traffic, and ii) memory contention in accessing the
lock-free queues. Ultimately, both are impacted by the
characteristics of the memory subsystem in the host.

3.2.1 Scanning queues

The absence of explicit notifications of new packets re-
quires a scan of all N queues in do_scan(). N is rel-
atively small (up to 50..100), and the region of the queue
being scanned, for idle clients, is likely to be in the L1
or L2 cache of the arbiter, resulting in access times in the
order of 2..4 ns each (we have measured these values on

5single socket systems are 2-4 times faster, but we target machines
with high core counts.

a dual-socket E5-2640 system). On the same platform a
cache miss (which is unavoidable with active clients, even
if we had explicit notifications) can easily cost in excess of
200 ns. If follows that, for practical values of N , the cost
of scanning idle queues is comparable to a single cache
miss. Additionally, scanning all queues in a tight loop
permits read requests to be posted in parallel, thus amor-
tizing the cost of cache misses, which gives a significant
advantage even with 2-3 misses handled in parallel.

3.2.2 Memory contention on queues

Lock free queues often use Lamport’s algorithm [17],
where the producer (in our case, the client Ci) updates
the queue’s current slot and insertion pointer, and the con-
sumer (the arbiter) reads both pieces of information. This
solution causes two cache misses and possibly requires
memory barriers to ensure the correct ordering of reads.

MYSCHED follows the design presented in FastFor-
ward [10]: the arbiter (consumer) never accesses the pro-
ducer’s insertion pointer, and instead detects new inser-
tions from the content of the slot in the queue: a special
value (in our case, a packet length of 0) marks an empty
slot, other values indicates that the slot is full and (implic-
itly) that the insertion pointer advances. This saves one
read stall and an even more expensive memory barrier.

FastForward uses the same technique also to pass the
consumer’s pointer to the producer: the consumer up-
dates queue slots with the “empty” value, notifying the
producer and preparing the slot for new insertions. How-
ever that approach would cause write-write conflicts on
the queue between producer and consumer, and likely on
the same cache line as queues are always almost full or
almost empty. Hence, in MYSCHED a client looks at
the arbiter’s (consumer) pointer to determine which pack-
ets have been marked, and the client itself then clears the
marked slots.

Cache conflicts also occur when the producer updates
multiple queue slots in the same cache line while it is ac-
cessed by the consumer. FastForward addresses this prob-
lem by slowing down the consumer, so that the two parties
operate on different cache lines. We cannot use this ap-
proach because we may not have subsequent requests, and
latency matters. We instead make the arbiter take snap-
shots of a few cache lines of data around the current insert
position in the queue, and read from the local snapshot
until it finds an empty slot.

3.3 Reader-writer speed and latency
Even with the techniques discussed so far, MYSCHED
will incur in cache misses when exchanging information
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between clients and the arbiter. To determine how we
should deal with these misses, we need to measure, under
heavy load, the costs of reading and writing shared mem-
ory, the amount of information that can be passed around,
and the latency incurred.

To this purpose, we have run experiments on a dual
socket Xeon E5-2640 system running at 2.5 GHz, with
two threads, called W and R, on different cores access-
ing one or more shared variables (few enough to fit in L1
cache). Both threads can issue read or write requests at
different rates, up to one per clock cycle if the memory
coherency protocol does not stall them. In one experi-
ment W writes a stream of increasing 64-bit values to one
or more shared variables Vi, and R counts how many reads
it can complete and how many different values it sees per
unit of time. In a second experiment, W and R run a re-
quest/response protocol, so that the value written to Vi
is increased only when the R confirms that has seen the
previous update. In this case, we measure the number of
round trip transactions per unit of time.

We found the following:

writes can be fast. Writes to a single memory location
can be posted up to once per clock cycle. A reader
on the same single memory location on a different
core does not slow down writes;

readers may slow down writers. When accessing mul-
tiple cache lines, a busy reader on a different socket
may significantly slow down a writer to the same
cache lines. We measured writes times of as much
as 100 ns with W and R on different sockets, versus
15 ns when W and R are on the same socket;

reads misses are expensive. Cache lines can be invali-
dated by writes, causing a miss on subsequent reads.
We measured the following read times on a miss: hy-
perthreads on the same core: 10-15 ns; cores on the
same socket: 50 ns; cores on different sockets: 130-
220 ns. When threads run on different sockets, we
found that if memory is local to the reader, misses
are much longer than if the memory is remote;

updates are infrequent. Not all values written are visi-
ble to other cores. Cache updates are triggered by
reads, but following an update (which in our ex-
periment is indicated by a different value being re-
turned), a core sees the same value for some time
even though the writer keeps updating the same lo-
cation. We found: hyperthreads on the same core:
75 M updates/s; cores on the same socket: 20 M up-
dates/s; cores different sockets: 4-5 M updates/s. Be-
tween updates, the same value is seen for a duration
comparable to the read miss latency.

latency is high. Partially related to the previous two
items, latency in passing information from one core
to another is typically high. Latency is at least the
sum of the invalidation and reload times. For a com-
plete request-response exchange, we found: hyper-
threads on the same core: 30 ns; cores on the same
socket: 130 ns; cores different sockets: 480 ns.

All the above figures vary significantly with different CPU
types, but multi socket systems (an important target for
MYSCHED) can be 4-5 times slower than single socket
systems in dealing with shared memory. While mem-
ory access latencies are well known, interference between
readers and writers is less known and yet it may have a
significant impact on a system like MYSCHED, where
parties communicate through updates to shared memory
and lack explicit notifications. We thus need to design the
algorithms in the clients and arbiter to minimize the effect
of the behaviour of the memory subsystem. The result-
ing tradeoff between latency and performance will be a
parameter of our design space.

We can easily mitigate the interference between readers
and writers by rate limiting accesses to shared memory lo-
cations on both reader and writer sides. Empirically, we
found that spacing batches of reads and writes by 1..2µs
makes it possible to handle groups of 50..100 shared vari-
ables with an amortized read/write cost of 20 ns, even
when threads are on different sockets and all variables
are updated on each round. Reading unmodified variables
will only cost the 2..4 ns measured in Section 3.2.1. We
implement this spacing by rate limiting reads on shared
data: the arbiter reads each queue at most once every ∆A

seconds, and each client checks the arbiter’s head pointer
at most every ∆C seconds. These two parameters are in
the 1..5µs range.

Unfortunately we cannot completely avoid read stalls:
CPUs provide various PREFETCH instructions to issue
read requests ahead of time, but they are only advisory
and can be overridden by cache invalidations. Our queue
access scheme would work perfectly well if the CPU had
instructions to read stale values from the cache without
paying for the miss penalty: in fact, slots and queue point-
ers are updated in a detectable way (slots alternate be-
tween EMPTY and non-empty values; pointers always ad-
vance) and cannot wrap around without a feedback from
the other party. However, no popular CPUs provides such
“non blocking, possibly stale read” instruction.

As a workaround, the rate limiting and batching of
reads also turns out to be useful for this. By letting reads
be posted in parallel, on the arbiter, we can amortize the
effect of cache misses.
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Figure 5: Transmission order in fluid and packet sched-
ulers. Different service orders may achieve long term
bandwidth allocation, but some have a lot more bursti-
ness.

4 Service guarantees
As anticipated in Section 2, an important quality metric
of a scheduler is the T-WFI (Definition 1). A larger T-
WFI means increased jitter and delay in the communica-
tion, which affects very badly the performance of request-
response exchanges.

As an example, Figure 5 shows packet transmission in
a fluid scheduler and in two cases (representing the DRR
and WF2Q scheduling algorithms), with radically differ-
ent behaviours: in DRR, the T-WFI is proportional to the
number of flows; in WF2Q, QFQ and other algorithms
the T-WFI is bounded by a constant independent of the
number of flows. In general, achieving a good approxima-
tion on shorter intervals (hence keeping the T-WFI small)
requires more expensive computations in the scheduling
algorithm, hence there is a tradeoff between T-WFI and
runtime costs.

MYSCHED per se does not define new scheduling al-
gorithms, but uses them within the arbiter, so the pur-
pose of this Section is to determine the overall T-WFI
of MYSCHED given the T-WFISA of the underlying
scheduling algorithm SA.

4.1 T-WFI in MYSCHED

T-WFI has been computed in the literature for several
work conserving scheduling algorithms that we can use
in MYSCHED, see for example [25]. The analysis in [25]
shows that the T-WFI of a scheduler is made of a first

component, say T-WFISA, accounting for intrinsic inaccu-
racies of the scheduling algorithm, plus a component due
to other artifacts outside the scheduling algorithm (com-
monly, the presence of a FIFO in the communication de-
vice, which is the one analysed in [25].) In MYSCHED,
artifacts are different, so goal here is to determine the
overall T-WFI of MYSCHED given the base T-WFISA and
the way we drive the scheduler algorithm and the link.

In this analysis we make the following (realistic) as-
sumptions, to ensure that the system is well configured: i)
the arbiter, each client, the NIC and the link must all be
able to handle B bits/s; ii) the arbiter calls do_scan()
to make a round of decisions every ∆A seconds; iii) each
client runs client_drain() every ∆C seconds.
As for how multiple queues are served by the NIC, round-
robin is a realistic expectation, as it is trivial to implement
in hardware and prevents starvation.

Under these assumptions, the arbiter may see incom-
ing packets, hence enqueue them into the scheduler and
dequeue them from the scheduler, with a delay ∆A from
their arrival. This quantity just adds to T-WFISA, with-
out causing any additional scheduling error, at least in
scheduling algorithms (such as the one we consider)
where decisions are made only when the link is idle.

We call a “block” the amount of traffic scheduled, i.e.,
marked, in every interval ∆A. This can amount to at most
B · ∆A bits, plus one maximum sized packet L6. The
quantity exceeding B ·∆A is subtracted from the budget
available for the next interval ∆A, so the extra traffic does
not accumulate on subsequent intervals.

Since the arbiter marks up to one block of data at once,
and clients send marked packets to the link in parallel,
the order of transmission may be different from the one
decided by the arbiter. Let’s first assume that clients
operate with ∆C = ∆A and are synchronised with the
arbiter. This adds a delay term ∆C to the service of pack-
ets, and also a potential reordering within the block, which
amounts (in time) to the size of the block itself, i.e. ∆C .

When ∆C 6= ∆A and/or they are not synchronised,
a further complication occurs, as the link may receive at
once up to B · (∆C + ∆A) bits, more than the capacity of
the link before the next round of transmissions from the
clients. The excess block B∆A that remains at the end of
the round will in turn be reordered together with the con-
tent of the next round (which this time is within the link’s
capacity). We omit the proof for brevity, but the number
of ∆C intervals to drain packets from the first block will
be proportional to k = ∆AB/L, or the number of maxi-
mum sized packets in the block. Fortunately, for practical

6The arbiter marks all packets that start transmission within the cur-
rent interval ∆A, so the last one may complete within the next interval.
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purposes, ∆A is 1..2µs, and even on a 40 Gbit/s interface
the value of k is less than 5. On a 10 Gbit/s and lower, for
all practical purposes we can assume k = 1.

Putting all pieces together, we have

T-WFI = T-WFISA + ∆A + (2 + k)∆C . (1)

While the above completes the theoretical evaluation,
moving from theory to practice, we can consider what
happens if clients or the arbiter occasionally miss their
deadline ∆C and ∆A for dispatching or marking packets.
For the arbiter there is little we can do other than accept
an increase of the T-WFI for all traffic due to a larger ∆A

(and k). For clients, we can enforce clients that miss their
deadline ∆C to resubmit their requests7 so that well be-
haved clients will not be affected.

4.2 T-WFI examples
To put number in context: from [25] we know that

T-WFI(k)QFQ = 6
Lk

φkB
+
L− Lk

B
, (2)

T-WFI(k)DRR =

(
1

φmin
+

1

φk
+N − 1

)
L

B
. (3)

The T-WFI depends on the weight of each client. In the
equations, N is the number of clients, and Lk is the max-
imum packet size for client k. φk is the weight of client
k, 0 < φk < 1 and

∑N
k=1 φk = 1, φmin is the minimum

weight among all clients.
In practice, QFQ has a T-WFI of about 6/φk times the

maximum packet transmission time (L/B), whereas for
DRR the multiplying factor has a large term 1/φmin plus
a linear term in the number of clients. For a 10 Gbit/s
link and L = 1500 bytes, L/B = 1.2µs. Assuming
weights ranging from 0.005 to 0.5, the client with the
highest weight will have T-WFI(k)QFQ = 12L/B = 14.4µs
irrespective of N . For DRR, the dependency on N gives
T-WFI(k)DRR = 226L/B = 271.2µs for 25 clients, and
301L/B, or 361.2µs for 100 clients. In comparison, the
additional term 2∆A + 2∆C (between 2 and 4µs) intro-
duced by MYSCHED is small or negligible.

5 Experimental results
We ran a number of experiments to evaluate the perfor-
mance of MYSCHED, in terms of both maximum achiev-
able throughput and service guarantees, and compare it

7the arbiter grants permission to transmit a certain amount of data,
irrespective of which packets they are. Thus, it is feasible to “resubmit”
requests without causing reordering. We omit details for simplicity.

with existing alternatives. The test scenarios have been
chosen carefully and rigorously to emphasize the phe-
nomena under investigation (cost of the scheduler, scal-
ability under load), reduce noise measurement (such as,
effects of NIC’s behaviour, or load on the receivers),
run each solution in reasonable operating conditions, and
make a fair comparison among the various alternatives.

5.1 Scope again
In addition to the considerations in Section 1.1, we have a
few more remarks related to experimental conditions.
Userspace vs. kernel. Running MYSCHED in user space
does not affect the validity of our results; clients and ar-
biter would use the same code and interact exactly in the
same way if all the components were in the kernel. In
a VM hosting platform, each VMs has dedicated kernel
threads that perform I/O (specifically network I/O, as in
the case of vhost-net) on behalf of the VM, and would
be perfect candidates to run the client code in Figure 3.
Absolute performance. We know that different CPU
models and OS versions may differ in performance by a
large factor (in fact, one of our test platforms is twice as
fast as the other). More than reporting the best absolute
performance, our goal is to point out certain architectural
features of the systems under analysis (typically, scalabil-
ity and behaviour under load) that exist across the board;
specific CPU or OS versions do not influence our conclu-
sions, especially because our system performs one order
of magnitude better than existing solutions.

5.2 Test environment
Our main test platform, which we call XEON2, is a dual
socket system with two Xeon E5-2640 CPUs at 2.5 GHz
(6 cores, 12 threads each), with 1.33 GHz DDR3 memory
running CENTOS with Linux kernel 2.6.32-504. Addi-
tional experiments have been run on another system called
I7, which is a single-socket i7 CPU at 3.5 GHz (4 cores,
8 threads) running Linux 4.5 (this version supports the
netmap framework). Additional software used for exper-
iments includes the TC [3] scheduling framework; the
netmap [23] framework and VALE [24] software switch
for high speed I/O; and scheduling algorithm implementa-
tions are taken from the dummynet [7] link emulator (they
match the performance of those used in TC).

The prototype implementation of MYSCHED runs en-
tirely as user space threads, and includes synthetic clients
to generate traffic with specific profiles (duration, rate,
packet size and burst size). The arbiter is implemented
as described in Figure 3, except that shared variables are
read at most every ∆A and ∆C seconds. Parameters of
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the scheduling algorithm, queue size, output bandwidth
are specified through the command line.

In all cases the experiments involve running one or
more clients on different cores, each generating traf-
fic with configurable rate, packet size and burst size.
Clients issue requests through UDP sockets, or directly
to MYSCHED, and in the latter case they complete the
transmission using either UDP sockets, or netmap ports
to reach higher I/O speeds.

With our workload, running two clients on hyper-
threads of the same physical core slows down both pro-
cesses considerably (the pair delivers only 1.2..1.3 times
the throughput of a single client). Clients are thus allo-
cated by first filling up cores, then CPU sockets (starting
from the first one), so that the offered load is monotoni-
cally increasing, although with different gaps when going
to even or odd number of clients. To minimize interfer-
ence, the arbiter, if present, is allocated on a different core,
and on XEON2 it is on the second socket, so that we can
measure the worst case cost of the interaction with clients.
Operating parameters. Unless specified otherwise, in
all experiments we have used 60 byte packets (including
MAC headers) to minimise the OS overhead in copying
data; the DRR scheduling algorithm (the fastest available;
QFQ would add another 20-30 ns per packet, which is a
measurable difference with MYSCHED) with a quantum
size of 1 packet, queue and bandwidth large enough not to
act a bottleneck; clients have the same weight, and send as
fast as possible; and MYSCHED uses parameters ∆A =
1000 ns, ∆C = 1000 ns.

In all experiments, traffic goes through the loopback
interface (for UDP) or VALE switches (for netmap), using
different destination ports to avoid contention. Receivers
bind UDP sockets or netmap ports, but normally do not
read from them to minimize the receive side processing
costs and focus the measurements on the transmit side.

Each single measurement is repeated 10 times, and
arithmetic mean and standard deviation is computed over
the 10 trials.

5.3 Metrics

pps vs decisions per second: for packet processing sys-
tems, the load has little dependency on the packet size,
so the metrics of interest for throughput are normally ex-
pressed in “packets per second” (pps). On high speed
links, the transmission time for short packets is so small
(down to 67 ns on a 10 Gbit/s port, and 16 ns on a
40 Gbit/s port) that it makes no sense to schedule indi-
vidual packets, let alone the fact that the scheduling algo-
rithm may not be fast enough. Many systems thus may

aggregate packets (if available) in batches of up to sev-
eral MSS worth of data, and make a single scheduling
decision for the entire batch. Our MYSCHED prototype
implements this option, but here we only report results
with aggregation disabled, so the number of “decisions
per second” equals the “pps’ figure.

T-WFI vs latency distribution: the T-WFI cannot be
measured directly unless we can identify the worst case
scenario. Furthermore, the theoretical analysis abstracts
from real world phenomena such as lock contention and
cache misses, which ultimately leads to variable process-
ing times in the system. We thus look at a related metric,
namely the latency distribution in one-way communica-
tion between a client and a receiver.

5.4 Maximum throughput

Our first set of experiments measures the maximum
throughput with multiple UDP senders in the following
scenarios: i) no scheduler, ii) scheduled by TC, and iii)
scheduled by MYSCHED. With link and client speeds set
as high as possible, any throughput limitation is only due
to the performance of the scheduler or UDP sockets.
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Figure 6: Maximum throughput in packets per second,
with UDP and different schedulers on XEON2 and I7. Er-
ror bars show two standard deviations from the mean.

Figure 6 shows the results of the measurements on
XEON2 (up to 20 clients) and I7 (up to 7 clients). With
no scheduler, the aggregate throughput reaches about
4.5 Mpps, (I7 has about twice the speed of XEON2 for
the same number of cores). There are no particular sign
of saturation, but a clear change of slope as we start using
cores on the second socket on XEON2.

Enabling TC significantly impacts throughput and scal-
ability on both platforms. Up to 4 clients we lose about
30%; above that, throughput quickly flattens or (in the
case of XEON2) declines, down to 0.32 Mpps with 20
clients. Conversely, MYSCHED not only keeps the
throughput close to the no-scheduler case, but also avoids
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Figure 7: Throughput of MYSCHED with netmap and
different configurations. Error bars show two standard de-
viations from the mean. The curves at the bottom are the
same as in Figure 6.

saturation: the two curves remain extremely close up to
the end of the range.

MYSCHED can actually deliver much higher packet
rates, as shown in Figure 7. Here we run experiments
on system I7 (up to 6 clients, due to fewer cores avail-
able), with clients using MYSCHED as a scheduler and
netmap to send data. The results are shown by the curve
labeled netmap+MYSCHED on the top left of the figure:
we see that MYSCHED can schedule almost 40 Mpps
(one packet per decision).

Given the different nature and speed of the two test plat-
forms, we ran two more experiments, where clients sub-
mit requests to MYSCHED but replace transmissions with
a no-op. On I7 (curve on the top left), we are very close
to the netmap+MYSCHED case. On XEON2, the maxi-
mum decision rate is significantly lower (between 16 and
27 Mpps), but still 5 times higher than when we do UDP
send. The large gap between 10 and 11 clients is because
we start placing clients on the second socket, where also
the arbiter runs. Thus, clients above 10 have a faster path
to the arbiter and are able to achieve higher speeds (this is
also the reason why on I7, which has a single socket, we
see significantly higher speeds).
Comparison with other solutions. With almost 40 M de-
cisions per second on I7, MYSCHED exceeds by a large
factor the performance of other solutions (in fact, it also
exceeds the ability of current NICs to generate traffic). As
a reference, Fastpass [20] reports, for the arbiter alone, the
use of 8 cores to schedule 2.2 Tbit/s with a request size
of 10 MTU, or 15 Kbytes. This equals to approximately
20 M decisions per second. Conversely, MYSCHED runs
the entire interaction with clients (not just the scheduling
algorithm) at twice the speed and using just one core.
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Figure 8: Latency distributions of UDP one way delay
with no interfering nodes, for I7 and XEON2.

5.5 Latency distribution

For the experiments on latency distributions, we set the
first “TARGET” client to send at 4 Kpps, (thus using a
small fraction of the link’s bandwidth,) but it has a weight
50 times higher than all other “interfering” clients, which
instead generate traffic as fast as possible. In these experi-
ments we use ∆C = ∆A = 500ns, and only UDP because
of the low data rate on the TARGET.

Packets from the TARGET client are marked with a
TSC timestamp when they are submitted to the scheduler;
the TSC is read again on the receiver8 to compute the one
way latency. We can use the TSC as sender and receiver
are on the same system with invariant and synchronous
TSCs across sockets.

The baseline (no interfering clients) for latency distri-
butions is shown in Figure 8: the three curves on the left
are measured on I7 with, from left to right, no sched-
uler, TC and MYSCHED. The three curves on the right
show the same configurations on XEON2. TC adds ap-
proximately 300..600 ns over the base case, while for
MYSCHED the extra latency is 0.5..2 µs, entirely due to
the round trip time for shared memory exchanges with the
arbiter (on the other socket for XEON2 experiments) and
the two intervals ∆A and ∆C .

When interfering clients are present, latency is propor-
tional to the amount of traffic scheduled before that of the
target client, divided by the link’s bandwidth. The actual
value and distribution, depending on the scheduling al-
gorithm, (see Section 4), vary between a constant (in the
case of WF2Q+/QFQ), and a linear term in the number
of interfering flows for weaker algorithms such as DRR
(the one used in these tests). Regardless, latency should
decrease as the link’s bandwidth increases, as long as the
scheduler is not overloaded. At that point, the scheduler
will not be able to to keep up with requests, resulting in a
latency increase (and possibly, allocation mismatches; but

8the first receiver now does read packets, and runs on a separate core
using non-blocking I/O to avoid sleeping and the inherent latency jitter.
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we only measure latency here).
To determine the overload threshold, we ran experi-

ments with different link speeds (we use ‘pps’ as the pa-
rameter as it is a more significant quantity, unrelated to
packet size), and plot the 98-percentile of the distributions
(higher percentiles would just reflect artifacts of the OS,
such as interfering interrupts.)

The results are shown in Figure 9 (very crowded due
to space limitations). With TC, the threshold varies be-
tween 200 Kpps (on XEON2 with 20 clients), 500 Kpps
(on XEON2 with 5 clients) and 1.1 Mpps (on I7 with
5 clients). All these values are much lower than the
maximum throughput measured in Figure 6. Beyond the
threshold TC misses its service guarantees, and latency
grows significantly, by over 5 times on I7, and by almost
two orders of magnitude on XEON2 (presumably an arti-
fact of an older version of TC so we do not claim this to
be a property of TC).

MYSCHED on the same hardware/OS behaves much
better, with overload triggering above 15 Mpps even in the
worst case (XEON2 with 20 clients), and over 25 Mpps
on I7 with 5 clients. Especially interesting is the fact that
the maximum latency, even under severe overload, stays
between 10 and 30 µs depending on the platform, or five
times lower than TC in all cases.

We further explore the latency distributions at selected
rates around the overload threshold. In Figure 10 we show
the latency distribution for the two schedulers around
the overload threshold, in both cases running on I7 and
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Figure 10: Distribution of latencies around overload for
the two schedulers running on I7 with 5 clients. The
thresholds are very different (1.1 Mpps for TC, over
25 Mpps for MYSCHED), and yet MYSCHED has a
much lower latency under heavy overload.

with 5 clients (the most favourable of our test scenar-
ios for TC). The figure shows clearly how even in this
case TC degrades significantly under a modest load (about
1 Mpps), while MYSCHED remains below 10 µs at
all loads up to 100 Mpps. Even in the worst scenario
(XEON2 with 20 clients, not shown due to space limi-
tations), MYSCHED’latency stays below 30 µs. When
overloaded, MYSCHED has to scan all N queues at each
scheduling decision; while there is a linear term, our
mechanism to rate limit queue accesses and cache misses
are very effective, so there constants are very small and
the latency remains bounded and small.

In fairness, MYSCHED achieves such good perfor-
mance because it uses an extra core to run the arbiter.
However, we can use the solution in Section 3.1 to switch
to client-based operation under light load, and pay the ex-
tra cost only at high packet rates when the additional core
is put to good use.

6 Related work
Scheduling algorithms have been extensively studied in
the 90’s for their theoretical properties [19, 6, 5, 28, 27]
and later for efficient implementations [29, 8, 30, 15, 31,
11, 18, 22]. Software packet schedulers such as TC [3],
ALTQ [9] and dummynet [7] are available in most com-
modity operating systems.

The performance of host-only schedulers has not re-
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ceived much attention. Some data is reported in [7, 8], but
otherwise the majority of experimental analysis uses bulk
TCP traffic (often with large segments and hardware sup-
ported TSO) or ping-pong tests, and in both cases packet
rates are not too high. Part of the reason is also that, until
recently [12, 23] network stacks were uncapable to handle
high packet rates.

Recent years have seen an increasing recourse to vari-
ous heuristic solutions as in Hedera [1], partly motivated
by more ambitious goals (such as, scheduling resources
across an entire rack or data center, as in Fastpass [20]),
and partly because of the presumed low performance of
existing software solution (which, as we demonstrated,
were erroneously blaming scheduling algorithms rather
than heavyweight network stacks). Also, the increasing
importance of distributed computation and the impact of
latency and tail latency on many such tasks has shifted the
interest from maximum utilization to latency reduction.

As part of this trend, numerous recent proposals started
using rate limiters, such as EyeQ [14], or “Less is
more” [2]. Senic [21] shows how large numbers of
rate limiters can be implemented in hardware. By
(re)configuring rate limiters (more on this later) one can
keep traffic rates under control thus achieving some of the
advantages of scheduling without the complexity of the
algorithms. Running links below nominal capacity is also
a common strategy to reduce congestion hence latency,
and is used in [14, 2, 13] among others.

Scheduling network resources for an entire cluster or
datacenter is a challenging problem that has often been
addressed by monitoring traffic on individual nodes, and
exchanging feedback between the various node to, even-
tually, reconfigure rate limiters at the sources. Unavoid-
ably, such solutions act on coarse timescales (a few mil-
liseconds at best) and lack any theoretical analysis of
performance bounds. As an example in this category,
EyeQ [14] proposes an architecture where rate meters at
the destinations periodically communicate suitable rates
for the sources, tracking active sources and their weights.
The information is used to program per-destination pac-
ers on the sources, thus reducing the load for the sched-
uler(s). The control loop (at the receiver) compares the re-
ceive rate with allocations, and adjusts them every 200µs,
with a feedback that according to the authors converges
in approximately 30 iterations. From these numbers and
graphs in the paper, we can infer that EyeQ has a response
time of several milliseconds, adds a round trip latency
of over 300µs, and does not support rates higher than
1 Mpps. Another example in this category, Silo [13], uses
network calculus to derive formulas for the admission of
new clients, then uses padding frames to implement fine

grained traffic shaping in a standard NIC.
Another approach to cluster-level scheduling is Fast-

pass [20], which has some high level similarity with
MYSCHED. In Fastpass, requests for packet transmis-
sions are first passed to a global, external scheduler that
replies with the exact time at which the packet should
be transmitted. Fastpass addresses a significantly harder
problem than ours, namely, to reduce queueing on the en-
tire network in a datacenter, as opposed to a single link.
As a result, it must use a centralized scheduler for an en-
tire group of machines, which knows the topology, ca-
pacity and state of the network, as well as the weight-
s/reserved bandwidth for the various flows. Due to the
computational complexity of the problem, the scheduler
in Fastpass must use heuristics that are more expensive
than MYSCHED, and cannot give strict service guaran-
tees9 and is several times more expensive than ours.

7 Conclusions

We have presented MYSCHED, a framework for build-
ing high performance, highly scalable packet schedulers
that decouple scheduling decisions (inherently sequen-
tial) from actual packet transmissions, which can oc-
cur in parallel on modern hardware. MYSCHED is de-
signed to eliminate interference between clients by having
a scheduling thread handle requests from all clients asyn-
chronously. Finally, the design of our framework allows
us to make a worst case analysis of its service guarantees.
The analysis shows that MYSCHED adds only a couple
of microseconds of latency to that of the base scheduler.

We have implemented MYSCHED and evaluated its
performance on single and dual socket systems and a va-
riety of load configurations. Even with Even with 20 con-
current clients and a dual socket machine, our prototype
can handle over 15 million scheduling decisions per sec-
ond without overloading, and twice that rate on a faster
single core system. The maximum scheduling rate is al-
most 40 Mpps, and even under heavy overload latency
stays below 10 µs. All these figures are over 10 times
higher than those available with the scheduling frame-
works in existing operating systems.

For the high packet rates it supports, MYSCHED is cer-
tainly a candidate for use in firewalls or software routers
managing access to high speed links. Given the high scal-
ability, it also very well suited for use on cloud host-
ing platforms, where resource allocation for potentially
non cooperating clients is a necessity, and certain clients,

9As clearly indicated by the authors, the bound given in the pa-
per [20] only applies if link utilization is less than 50%
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e.g. instances of Virtual Network Functions, may gener-
ate traffic with extremely high packet rates. Our prototype
is very easy to integrate with hypervisors, or to run within
the kernel – also because the code for the scheduling al-
gorithms comes directly from dummynet, and is already
being used in the FreeBSD, Linux and Windows kernels.
The code for MYSCHED is entirely BSD licensed and
available at [4].
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