
Flexible Virtual Machine Networking Using
Netmap Passthrough

Vincenzo Maffione, Luigi Rizzo, Giuseppe Lettieri
Dipartimento di Ingegneria dell’Informazione

Università di Pisa, Italy
Email: v.maffione@gmail.com, {rizzo,g.lettieri}@iet.unipi.it

Abstract—The rising interest in Network Function Virtualiza-
tion (NFV) requires Virtual Machines (VMs) to operate with
diversified networking workloads, from traditional, bulk TCP
transfers to novel ones featuring extremely high packet rates. In
response, researchers have explored and proposed new solutions
for high performance VM networking, including optimizations
to virtual network adapters (such as VirtIO) to support high
speed bulk traffic, and alternative frameworks for userspace
networking and physical or virtual passthrough.

To date, we are still missing a comprehensive solution that
supports such extreme workloads across multiple operating
systems and hypervisors, while at the same time addressing other
requirements such as ease of configuration, operating system
independence, scalability and isolation.

In this paper we present ptnet, an approach to network I/O
virtualization that provides high performance for both traditional
TCP/IP and high packet rate applications. ptnet leverages the
features of the netmap framework (including virtualization
and passthrough support), and defines a simple yet performant
network device model that can be easily supported in different
operating systems and hypervisors. We prove the effectiveness of
our approach by comparing ptnet’s performance with one of the
state of the art I/O virtualization solutions, namely VirtIO on
Linux and QEMU/KVM. ptnet is available under a BSD license
as part of the netmap distributions on github.

I. INTRODUCTION

The strong industry interest for Data Center solutions,
together with recent developments of Network Function Vir-
tualization (NFV) architectures, has led to explore different
approaches for network I/O virtualization.

Platforms must simultaneously support high performance,
multi threaded, bulk TCP communication, and high rate packet
processors. At the same time, they must provide isolation
between VMs belonging to different tenants, scalability, com-
patibility with different operating systems and virtualization
platforms, and ease of configuration.

Current solutions address only a subset of these require-
ments, as we discuss next.

Specialized virtual network devices (e.g. virtio-net, vmxnet)
address bulk TCP communication, but often deliver high
performance only on specific OSes and hypervisors. As an
example, one of the most successful open-source solutions
for network I/O virtualization, VirtIO [15], is available for
different hypervisors (QEMU, bhyve, Xen, VirtualBox) and
operating systems (Linux, FreeBSD, Windows), but the most

performant and feature-rich implementation is for QEMU
running on Linux with KVM enabled.

Applications that require extremely high packet rates nor-
mally rely on hardware support in the NIC (exporting multiple
NIC instances to virtual machines) and in the hypervisor (PCI
passthrough). These features give the guest OS direct access
to hardware resources, and let it use “kernel bypass” solutions
such as DPDK [9]. At the same time, this approach introduces
a scalability problem (as the number of virtual NICs that can
be exposed is limited, and they all go through the PCI bus
which is a significant bottleneck), and dependencies on specific
hardware.

In the past we have worked extensively in this space,
addressing high packet rates, device independence and
isolation. Our netmap framework [10], high performance
VALE switch [12], hypervisor enhancements for high packet
rates [13] and virtual passthrough solutions [5] led to excellent
performance in terms of packet rates, complete device inde-
pendence and extreme simplicity in terms of configuration.

However, our hypervisor optimizations [13] do not match
the performance of state of the art solutions (such as VirtIO on
QEMU-KVM) in terms of latency and bulk TCP/IP through-
put, and our virtual passthrough device [5] cannot be used by
the guest network stack - and so by legacy applications - as a
regular network interface.

In this work we present ptnet, a virtual device for VM
network I/O that uses the netmap data format as the under-
lying device model. ptnet extends our previous passthrough
work [5] to add those features that were missing in order to
be a comprehensive solution. As a result we are able to build
very simple guest device drivers that deliver state of the art
performance for both traditional TCP/IP applications and novel
high packet rate applications, and natively support multi queue
operation.

The contributions of this work, compared to [5], are (i)
a new multi-queue paravirtualized device model to export
a passed-through host netmap port (ptnet), (ii) efficient
access to the port even for legacy guest applications, (iii) a
performance comparison between our solution and VirtIO, and
finally (iv) an actual implementation of both guest OS and
hypervisor support for ptnet.

We show that ptnet can reach or beat VirtIO networking
in terms of performance and flexibility, with the additional
capability of supporting fast netmap applications, which can978-1-4673-9882-4/16/$31.00 c© 2016 IEEE

process up to 10-100 Mpps. Finally, considering that netmap
is currently available under Linux, FreeBSD and Windows, we
argue that the effort of supporting ptnet on other platforms
than Linux/QEMU - with the same performance – will be
lower compared to VirtIO.

A ptnet prototype for Linux and QEMU-KVM is already
available as opensource, included in the netmap distribution
on github.com/luigirizzo/netmap.

Other works [6], [8] sought for performant VM networking,
also addressing control plane functionality to manage NFV
chains and QoS. ptnet does not address control plane issues,
since those can be provided by orthogonal hypervisor solu-
tions [7] or third party software.

In the rest of this paper, Section II provides some back-
ground about netmap and its passthrough virtualization tech-
nology, as well as VirtIO; Section III describes ptnet archi-
tecture and implementation, and a comparison with VirtIO
networking; Section IV provides experimental evaluation of
ptnet, continuing the comparison with VirtIO.

II. BACKGROUND

We briefly describe two representative mechanisms used in
VM networking, namely VirtIO and the netmap framework.

A. VirtIO and I/O paravirtualization

VirtIO [15] is a widely deployed standard for I/O paravir-
tualization, similar to other paravirtualized devices, where the
guest device driver is aware of running inside a VM. Packets
are exchanged with the hypervisor through shared memory
Virtqueues (VQs), and the device is just a wrapper around the
VQs.

A Virtqueue contains: (i) a ring to exchange I/O buffers
for read/write operations; (ii) ring indices for synchronization;
(iii) control flags. The VirtIO networking device (virtio-net)
can have one or more pairs of VQs, each pair representing a
TX and RX ring.

In the datapath, packets and the state of the queues can
be read through shared memory. Emulated I/O registers,
whose access causes a trap into the hypervisor, are only used
as guest-to-host notifications. Host-to-guest notifications use
hypervisor-specific interrupt injection mechanisms (usually
MSI-X interrupts, as they have less overhead than traditional
PCI interrupts).

Since notifications are expensive, VirtIO has mechanisms
to amortize their cost over multiple I/O operations. Both the
guest device driver and the hypervisor suppress notifications
while they are actively polling the VQ, and enable them only
before going to sleep because no more work is pending. This
strategy is usually very effective at reducing notifications under
heavy load. An analisys of these kinds of producer-consumer
synchronization mechanisms is available in [11].

B. Netmap

netmap [10] is a framework for high performance network
I/O. It exposes a hardware-independent API that lets userspace
application to interact in an efficient but protected way with

netmap-enabled
 NIC driver

netmap-enabled NIC
driver

HW TX ring #1

HW RX ring #1

HW TX ring #1

HW TX ring #2

HW RX ring #1

HW RX ring #2

nm RX ring #1

nm TX ring #1

nm RX ring #1

nm RX ring #2

nm TX ring #2

nm TX ring #1

netmap
application [A]

netmap
application [B]

netmap
application [C]

VALE switch
instancenm RX ring #1

nm TX ring #1

nm RX ring #1

nm TX ring #1

netmap API

netmap driver API

Figure 1: The netmap framework. In the example, application
A works on two hardware NICs, while applications B and C
communicate through a VALE switch (packet buffers are not
shown).

NIC rings to send and receive Ethernet frames. Applications
are in charge of performing packet processing (e.g. playing
with TCP/IP headers) in user-space, bypassing the in-kernel
network stack.

When applications start using a NIC through the netmap
API (figure 1), the NIC is said to switch to netmap mode: the
NIC datapath is intercepted by netmap and cannot be used
directly by the network stack. When no more applications are
using the NIC through the netmap API, the NIC is said to
switch back to normal mode.

C. Netmap passthrough

netmap has been widely extended to support virtualization.
We have built a fast netmap-based software switch (VALE
[12]), supporting communication and isolation between ports
at rates of up to 20 Mpps; netmap pipes for point to
point communication at over 100 Mpps; netmap adapters
for paravirtualized devices; and support in hypervisors such
as QEMU and bhyve, to allow netmap applications to run
in a VM at up to 5 Mpps.

The large speed gap between netmap applications running
directly on host netmap ports (e.g. VALE, pipes), and appli-
cations running in the guest is due the differences in packet
format between the netmap ports and the devices (either
emulated or paravirtualized) made available to the VMs. These
differences require format conversions, and especially data
copies, that at the speeds of interest introduce significant
slowdowns.

To overcome these limitations, netmap passthrough [5]
(ptnetmap) has been introduced as a technique to completely
avoid hypervisor device emulation in the packet datapath,
unblocking the full potential of netmap also for VM envi-
ronments.

With ptnetmap, a netmap port on the host – a VALE port,
an hardware NIC, etc. – is exposed to the guest in a protected
way, so that netmap applications running in the guest can
directly access the rings and packet buffers of the host port,

avoiding all the extra overhead involved in the emulation of
network devices.

The passthrough is transparent to guest netmap applica-
tions: they don’t need modifications to run on ptnetmap ports.

System calls issued on a ptnetmap port (txsync/rxsync)
don’t operate directly on the corresponding host port. Instead,
these requests are forwarded to a pool of kernel threads
running in the host – one per ring in the current architecture.

To forward requests, ptnetmap guest driver exchanges in-
formation with the host kernel threads, so that they can
synchronize guest rings’ state (as seen by the guest netmap
application) with the rings’ state of the host port. To all intents
and purposes, guest driver and kernel threads form a producer-
consumer system – one per ring.

Similarly to VirtIO paravirtualization (section II-A):
• A shared memory data structure called Communication

Status Block (CSB) is used to exchange ring state and
notification suppression flags.

• I/O registers and MSI-X interrupts are used to let guest
and host netmap wake up each other on CSB updates.

• Notifications are suppressed when not needed, i.e. while
the producer or the consumer is actively polling the CSB
to check for more work. From an high-level perspective,
the system tries to dynamically switch between polling
operation under high load, and interrupt-based operation
under lower loads, which is the same idea introduced by
Linux NAPI [16].

III. PTNET

The original ptnetmap implementation uses a slightly modi-
fied version of e1000 or virtio-net guest drivers and hypervisor
device emulators, where only the notification part of those
devices is used, while the datapath (e.g. e1000 rings or virtio-
net VQs) is completely bypassed. This approach requires
minimal modifications to the drivers and hypervisors, but also
prevents the use of such devices as regular network interfaces
for legacy applications running on the guest. This limitation
is inconvenient and would prevent adoption by upstream
communities (FreeBSD, Linux, QEMU, bhyve, etc.).

The key contribution of this paper is the design of a new
paravirtualized device model, ptnet, which tries to be both effi-
cient and compatible with the legacy network stack. In order to
preserve the efficiency of ptnetmap even in legacy mode, ptnet
uses the netmap API as the native communication format with
the hypervisor, thus replacing Virtqueues or specific device
models.

A ptnet device uses the netmap rings of the passed-
through host netmap port, and therefore it directly exposes
the netmap API as an hardware model. This is the key idea
that allows ptnet to reach or beat the performance of state of
the art solutions, because additional queueing (e.g. VQs) and
conversions (between VirtIO descriptors and sk_buff) are
completely avoided.

A guest application can use a ptnet interface through either
the netmap API or the traditional socket API, as shown in
figure 2. If a passed-through host netmap port has multiple

host netmap

hypervisor

guest

nm TX ring #1

nm RX ring #1

netmap
application

ptnet driver

socket
application

guest network
stack

CSB

guest netmap

RX kthread #1

TX kthread #1 netmap-enabled
NIC driver

HW TX ring #1

HW RX ring #1

ptnet device
model

...

Figure 2: The ptnet driver used by a VM to passthrough an
hardware interface of the host. Both guest netmap applica-
tions and the ptnet driver (when used by the network stack)
access the mapped netmap rings.

TX/RX queues, the corresponding ptnet interface will have the
same configuration.

The introduction of a new device model does not limit the
adoption of this solution, since ptnet drivers are distributed to-
gether with netmap, and hypervisor modifications are needed
in any case to map netmap host memory in the guest.

A CSB – cleaned up and extended to support an arbitrary
number of rings – is used for producer-consumer synchroniza-
tion and notification suppression, as explained in section II-C.

When used by guest network stack, the ptnet device driver
acts as any other guest netmap application, accessing the
netmap rings and buffers. Note that the passed-through host
netmap port is always open in netmap mode, while the
guest ptnet interface is not in netmap mode when used by
the network stack.

We have developed a version of ptnet driver for Linux
and the associated device model emulation for QEMU. The
ptnetmap support for the host (i.e. the kernel threads) has
been modified to support multiple rings and the new CSB,
but otherwise still works and performs as described in [5].

A. The ptnet device model

ptnet uses the netmap API as the underlying device
model, replacing hardware-oriented models (such as e1000)
or Virtqueues. The ptnet CSB is laid out as an array of
structures, one per ring. Each structure contains the following
information:

• head/cur pointers, reflecting the status of the ring as seen
by the guest. These are written by the guest and read by
the host.

• hwcur/hwtail pointers, reflecting the status of the ring as
seen by the host. These are written by the host and read
by the guest.

• Two flags to suppress guest-to-host and host-to-guest
notifications, respectively.

A small number of device registers are used to read config-
uration (number of rings and descriptors per ring, device MAC
address, acknowledged features), or to write configuration
(CSB physical address, wanted features). A command register
is available to start or stop kernel threads. A full description
of the register layout is not reported here for space reasons.

For each ring, a dedicated kick register is used for guest-
to-host notifications. Using different registers is important for
performance since each register is associated to a different
kernel thread. Using a single register would cause unnecessary
wake-ups.

A similar approach is used for host-to-guest notifications: a
different MSI-X interrupt vector is allocated for each ring, so
that different guest applications listening on different rings do
not suffer from spurious wake-ups.

B. Paravirtualized offloadings

Hardware NICs commonly support TCP/IP offloadings, the
most useful ones being TCP Segementation Offloading (TSO)
and TCP checksumming offloading. When used together, the
network stack can pass to the NIC driver a TCP segment much
bigger than the interface MTU, usually 64KB long, with the
TCP checksum not computed. The driver will then program
the NIC to perform TCP segementation and checksum com-
putation in hardware.

Performance improvements are twofold: (i) segementation
and checksum processing is done faster in the hardware and
the CPU can be used for other purposes; (ii) the network stack
is traversed less times, since packets are bigger, and so fixed
overheads are amortized over more bytes.

When coming to I/O paravirtualization, offloadings can
be exploited rather than being emulated. When the device
emulator receives a large unchecksummed TCP segment, no
segmentation or checksum computation is performed. Instead,
the packet is directly pushed into the host network stack
(or into a VALE switch), where it pops up again as a big
unchecksummed TCP segment.

If the packet is directed to a paravirtualized network device
of another guest on the same host, similarly, it is received
by the guest driver and injected into the guest stack as is,
without further processing. Checksum is unnecessary because
the journey of the packet from one guest to another only goes
through memory copies.

From an high level perspective, this strategy allows TCP
segmentation and checksumming to be performed lazily, and
only if necessary - i.e. when the packet needs to go on a
physical link.

VirtIO network devices use this technique, which is the key
to achieve huge throughputs in terms of TCP (or UDP) bulk
transmission. Skipping checksum computation also improves
latency.

In order to implement paravirtualized offloadings, however,
guest and hypervisor needs to exchange some metadata for

each packet, including: (i) checksum offset and length to pos-
sibly perform checksum; (ii) Maximum Segment Size (MSS)
to possibly perform segmentation. The VirtIO standard [14]
defines an header to contain such information, to be prepended
to each Ethernet frame.

The ptnet device supports paravirtualized offloadings using
this standard header, which is already supported by the VALE
switch and QEMU. This opens the doors for high performance
TCP/IP networking and ensures full interoperability between
ptnet and virtio-net devices.

C. Comparison with VirtIO networking

As VirtIO is the most successful and commonly deployed
solution for network I/O virtualization, we use it as a reference
to compare with our solution, taking into account features,
flexibility, performance and code reuse. Performance compar-
ison is reported in section IV.

The two solutions are equivalent in terms of features and
flexibility when used to build an intra-host virtual LAN
between VMs, also considering that they both use virtio-
net headers. On most hypervisors (QEMU/bhyve/Xen), VirtIO
uses standard in-kernel bridge and TAP interfaces to connect
VMs together (VirtualBox uses an equivalent custom bridge
implementation). With ptnet, the VALE switch is used to
provide inter-VM connectivity.

When a guest wants eclusive access to an host physical
interface, with ptnet we can directly passthrough that interface,
which can then be used without the need of a software switch.

VirtIO does not support this kind of passthrough and ex-
clusive access: the interface can be attached to an in-kernel
bridge, and the guest can connect to the same bridge using a
TAP interface.

Differently from PCI passthrough techniques [4], ptnet
does not require hardware support and consistent hypervisor
modification to passthrough an host physical interface: the
netmap software is reused to provide most aspects of this
feature.

VirtIO networking has recently been extended (on
Linux/QEMU) to support multi-queue, which required modi-
fications to the hypervisor and the TAP driver (in addition to
the extension of the virtio-net guest driver). These modifica-
tion, however, are not currently available on other platforms
(FreeBSD, bhyve, Windows, etc.). With ptnet, instead, there
is no need to modify hypervisor or backend drivers: netmap
already supports multi-queue ports from its inception, and the
ptnet guest driver is able to use all the queues exposed by the
pass-through interface. Multi-queue support, as a consequence,
comes for free together with netmap.

Mixing together the concepts of device passthrough and
paravirtualization, ptnet is an hybrid solution that allows for
more flexibility than VirtIO with small hypervisor modifica-
tions (~1000 code locs for QEMU).

IV. EXPERIMENTAL EVALUATION

We now complete the comparison started in section III-C
with performance measurements in terms of throughput and

latency. Our tests machine has an Intel Core i7-3770K CPU
at 3.50GHz (4 core / 8 threads), 8GB RAM DDR3 at 1.33GHz,
We run Linux 4.4.5 with a recent QEMU (git master 888ea9,
Feb 2016) as hypervisor, extended with ptnetmap support.
Each guest VM has 1 vCPU and runs Linux 4.4.5.

For VirtIO tests, we always enable the vhost-net [3] opti-
mization, which accelerates VirtIO networking by performing
device emulation directly within the kernel.

A. TCP/IP tests

For TCP/IP tests, we use the popular netperf tool, run
between two VMs connected through a software switch: a
VALE switch for ptnet, and an in-kernel Linux bridge for
vhost-net. These tests document the latency and throughput
of communications going through standard sockets and the
regular network stack. Each single experiment lasts 10 seconds
and is repeated 10 times. Unless stated differently the worst
standard deviation is under 2%, so we only report the averages.

Latency tests: These experiments measure the Re-
quest/Response transaction rates at different message sizes,
for both UDP and TCP, which give a measure of the round-
trip time. The results, presented in Figure 3, show that ptnet
performs better than vhost-net at smaller message sizes, while
the two mechanisms are equivalent for very large messages.
ptnet gains over vhost-net because the passthrough mechanism
does not require device emulation. On the other hand, ptnet
requires one copy for each transmitted/received packet1 (so
four more copies than vhost-net for each transaction), and this
reduces the gap at larger message sizes.

Streaming tests: With these experiments we measure the
throughput of the communication path, which is expected to
grow with the message size as the size-independent cost of
system calls and protocol processing is amortized more. For
the TCP_STREAM tests we focused on the common case
of large messages, with the transmitter sending maximum
sized TSO packets (64 KiB each). In this configuration ptnet
achieves about 20 Gbps, while vhost-net is able to reach
26 Gbps. The performance gap is due to the additional packet
copies made by ptnet, that increase the CPU load, eat memory
bandwidth and also increase the latency in the communication.

Results for UDP_STREAM are shown in Fig. 4. We only
report the transmit throughput because at high rates the lack
of flow control causes the receiver to enter a livelock regime,
where 50-80% of the received UDP packets are dropped at the
receive socket buffer, before netperf can read them.

Throughput for both VirtIO and ptnet stops growing beyond
20-30 KiB, when the size-independent cost stops dominating
the cost of copies. In spite of the additional copies, however,
ptnet performs better at all sizes. The drop for messages
larger than 30 KiB coincides with an increase in the standard
deviation of the results (about 15%), and is related to the speed
mismatch between sender and receiver as discussed in [11].

1In the netmap architecture, buffers are provided by netmap, not by applica-
tions, and so an additional copy is needed between OS packet representation
(i.e. sk_buffs for Linux) and netmap buffers. We are currently investigating
the use of netmap indirect buffers to avoid these copies.

0 10000 20000 30000 40000 50000 60000 70000
Length of Request/Response message

10

15

20

25

30

35

40

45

T
h
o
u
sa

n
d
 R

/R
 t

ra
n
sa

ct
io

n
s

p
e
r

se
co

n
d

Guest-to-guest TCP/UDP latency tests

ptnet-TCP_RR

ptnet-UDP_RR

vhost-TCP_RR

vhost-UDP_RR

Figure 3: Guest-to-guest latency tests, with ptnet performing
better than VirtIO because no device emulation is involved,
even with the (four) additional packet copies per transaction.

0 10000 20000 30000 40000 50000 60000 70000
Message length

0

10000

20000

30000

40000

50000

60000
M

b
p
s

Guest-to-guest UDP throughput tests

ptnet-UDP_STREAM

vhost-UDP_STREAM

Figure 4: Guest-to-guest UDP throughput measured at the
transmitter. Despite doing more copies, ptnet transmits faster.

In particular, we are in a “Fast Consumer” regime, described
in section IV-B.

B. Linux in-kernel pktgen tests

Recent improvements in the Linux kernel [1], [2] try to
leverage on batching to improve throughput, without artifi-
cially introducing latency. Since [1], the kernel can give the
NIC driver a batch of packets ready for transmission, so that
the driver can notify the whole batch to the NIC, if possible.

To measure the effectiveness of this approach, which can
be used with traditional socket applications, we run the Linux
in-kernel packet generator in a guest, sending batches of
minimum-sized packets (60 bytes) at maximum speed through
a ptnet (over VALE) or virtio-net device (over TAP), with

100 101 102 103

Burst size

2

4

6

8

10

M
p
p
s

Linux in-kernel pktgen tests

ptnet-over-VALE
vhost-over-TAP

Figure 5: Transmission tests using Linux pktgen with variable
batch size. VirtIO is not able to exploit the batching, while
ptnet makes good use of netmap batching API.

variable burst size, and measuring the packets received on the
host. Results are shown in figure 5.

The VirtIO API has limited support for batching, and
therefore using batch transmission with virtio-net is not really
effective at improving throughput - only guest-to-host notifi-
cations are delayed.

On the contrary, ptnet does a good job when driven with
batches, since the batches are preserved when going through
the passed-through netmap port. The throughput nicely in-
creases with the batch sizes, reaching its optimium at about
50. After that, throughput decreases. As explained in [11],
the decrease happens because for larger batches the producer-
consumer systems enters a Fast Consumer (FC) regime. The
consumer (ptnetmap TX kernel thread) becomes more efficient
w.r.t. the producer (pktgen guest thread), and so the producer
slows down because it spends more time notifying the con-
sumer.

C. Tests with netmap applications

In the same scenario of section IV-A, we used the Netmap
pkt-gen tool over ptnet to measure guest-to-guest throughput
at minimum packet size (60 bytes). We measured ~19.5 Mpps
when using virtio-net headers and ~21 Mpps when not using
them. Note that disabling virtio-net headers is a reasonable
choice for VMs implementing middlebox functionalities (e.g.
NFV nodes), since virtio-net headers are mostly useful if the
VM is the endpoint of TCP or UDP streams.

Other tests with ptnet on different network configurations
(e.g. with hardware ports, pipes, etc.) are not reported here for
space reasons, but the performance numbers are the same as
reported in [5].

V. CONCLUSION

This work presents ptnet, an approach to network I/O
virtualization built on top of netmap, comparing it with

the current state of the art - VirtIO networking. We have
seen that ptnet and VirtIO performance are comparable with
traditional socket applications, whereas ptnet also supports
guest applications which are able to benefit from the Netmap
API.

Finally, we explained how ptnet can be easy ported to
other platforms with similar performance, since most of its
implementation is already shipped within netmap. We are
currently developing a ptnet driver for FreeBSD and a device
emulation model for the bhyve hypervisor. This is particularly
interesting for the FreeBSD project, since it does not currently
have an high performance network I/O virtualization solution
such as vhost-net.

ACKNOWLEDGMENT

This paper has received funding from the European Union’s
Horizon 2020 research and innovation programme 2014-2018
under grant agreement No. 644866. This paper reflects only
the authors’ views and the European Commission is not
responsible for any use that may be made of the information
it contains.

REFERENCES

[1] Bulk network packet transmission. https://lwn.net/Articles/615238/.
[2] Qdisc bulk dequeueing. https://lwn.net/Articles/615240/.
[3] Vhost architecture. http://blog.vmsplice.net/2011/09/qemu-internals-

vhost-architecture.html.
[4] B.-Y. et al. Utilizing iommus for virtualization in linux and xen. In

Proceedings of the Linux Symposium, 2006.
[5] S. Garzarella, G. Lettieri, and L. Rizzo. Virtual device passthrough for

high speed vm networking. In Proceedings of ACM/IEEE ANCS 2015,
pages 99–110, 2015.

[6] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Ratnasamy. Softnic:
A software nic to augment hardware. Technical report, 2015.

[7] M. Honda, F. Huici, G. Lettieri, and L. Rizzo. mswitch: A highly-
scalable, modular software switch. In Proceedings of the 1st ACM
SIGCOMM Symposium on Software Defined Networking Research.
ACM, 2015.

[8] J. Hwang, K. K. Ramakrishnan, and T. Wood. Netvm: High performance
and flexible networking using virtualization on commodity platforms. In
11th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 14), pages 445–458, 2014.

[9] Intel. Intel data plane development kit.
http://edc.intel.com/Link.aspx?id=5378, 2012.

[10] L. Rizzo. netmap: A Novel Framework for Fast Packet I/O. In USENIX
ATC’12, Boston, MA. USENIX Association, 2012.

[11] L. Rizzo, S. Garzarella, G. Lettieri, and V. Maffione. A Study of Speed
Mismatches Between Communicating Virtual Machines. IEEE/ACM
ANCS, 2016.

[12] L. Rizzo and G. Lettieri. VALE, a Switched Ethernet for Virtual
Machines. ACM CoNEXT, 2012.

[13] L. Rizzo, G. Lettieri, and V. Maffione. Speeding up packet I/O in
virtual machines. In Proceedings of the Ninth ACM/IEEE Symposium
on Architectures for Networking and Communications Systems, ANCS
’13, pages 47–58, Piscataway, NJ, USA, 2013. IEEE Press.

[14] R. Russel, M. Tsirkin, and C. Huck. http://docs.oasis-
open.org/virtio/virtio/v1.0/virtio-v1.0.html.

[15] R. Russell. virtio: towards a de-facto standard for virtual I/O devices.
ACM SIGOPS Operating Systems Review, 42(5):95–103, 2008.

[16] J. H. Salim, R. Olsson, and A. Kuznetsov. Beyond softnet. In
Proceedings of the 5th annual Linux Showcase & Conference, volume 5,
pages 18–18, 2001.

