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Abstract

Tenants in a cloud environment run services, such as
Virtual Network Function instantiations, that may legiti-
mately generate millions of packets per second. The host-
ing platform, hence, needs robust scheduling mechanisms
that support these rates and, at the same time, provide iso-
lation and dependable service guarantees.

Current hardware or software packet scheduling solu-
tions fail to meet all these requirements, most commonly
lacking on either performance or guarantees.

In this paper we propose an architecture, called PSPAT,
to build efficient and robust software packet schedulers
suitable to high speed, highly concurrent environments.
PSPAT decouples clients, scheduler and device driver
through lock-free mailboxes, thus removing lock con-
tention, increasing performance and providing opportuni-
ties to parallelise operation.

We describe the operation of our system, discussion
implementation and system issues, provide analytical
bounds on the service guarantees of PSPAT, and validate
the behaviour of its Linux implementation even at high
link utilization comparing it with current hardware and
software solutions. Our prototype can make over 15 mil-
lion scheduling decisions per second, and keep latency
low, even with tens of concurrent clients running on a
multi-core, multi-socket system.

1 Introduction

Allocating and accounting for available capacity is the
foundation of cloud environments, where multiple tenants
share resources managed by the cloud provider. Dynamic
resource scheduling in the Operating System (OS) ensures
that CPU, disk, and network capacity are assigned to ten-
ants as specified by contracts and configuration. It is fun-
damental that the platform guarantees isolation and pre-
dictable performance even when overloaded.

PROBLEM AND USE CASE: In this work we focus
on packet scheduling for very high packet rates and large
number of concurrent clients. This is an increasingly com-
mon scenario in servers that host cloud clients: Virtual
Machines (VMs), OS containers, or any other mechanism
to manage and account for resources.

Current hosts feature multiple CPU sockets with tens of
CPU cores, and Network Interfaces (NICs) with an aggre-
gate rate of 10..100 Gbit/s. Even at such data rates, han-
dling bulk TCP traffic is doable: large frames (from 1500
up to 64 Kbyte segments with hardware segmentation of-
floading) imply relatively modest packet rates. On the
contrary, Virtual Network Function (VNF) instances are
challenging, as they often operate with very small packets
and rates of 10+ Millions of packets per second (pps).

THE CHALLENGE: Scheduling the link’s capacity
in a fair and robust way almost always requires to look at
the global state of the system. This translates in some cen-
tralised data structure/decision point that is very expensive
to implement in a high rate, highly concurrent environ-
ment. A Packet Scheduler that cannot sustain the link’s
rate not only reduces communication speed, but may eas-
ily fail to achieve the desired bandwidth allocation or de-
lay bounds, sometimes by a large factor. We give several
such examples in Sections 2.3, 5.5 and 5.6.
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Figure 1: Common architectures for software and hard-
ware packet schedulers in OSes.



STATE OF THE ART: OSes implement packet
scheduling with one of the solutions shown in Figure 1.
Software Packet Schedulers (left) are included in many
OSes (TC [3] in Linux, dummynet [7] and ALTQ [9] in
FreeBSD and other BSD OSes). Access to the Packet
Scheduler, and subsequent transmissions, are completely
serialized in these solutions, which can barely sustain
1..2 Mpps (see Section 5 and [7]).

Hardware packet scheduling (right) is possible on NICs
with multiple transmit queues, offering each client a pri-
vate, apparently uncontended path down to the NIC. But
even this solution has one serialization point before the
scheduler, namely the PCIe bus, often with a capacity
(bandwidth and transactions per second) barely matching
that of the network link. As we show in Section 2.3, bus
contention can prevent clients from even issuing requests
to the NIC at a sufficient rate.

OUR CONTRIBUTION: In this paper we propose
a different architecture, shown in Figure 3 and called
PSPAT. Two sets of MAILBOXes, implemented as lock
free queues, decouple clients, the scheduling algorithm,
and the actual delivery of packets to the NIC. This al-
lows maximum parallelism among these activities, re-
moves locking, and permits a flexible distribution of work
in the system. It is critical that the mailboxes are mem-
ory friendly, otherwise we would have just replaced locks
with a different form of contention. Section 3.7 discusses
this problem and our solution, based on careful and rate-
limited memory accesses.

PSPAT scales very well, and permits reuse of exist-
ing scheduler algorithms’ implementations. Our proto-
type can deliver over 15 M decisions per second even un-
der highly parallel workloads on a dual socket, 24 thread
system. This is several times faster than existing solu-
tions, and is achieved without affecting latency. Besides
great performance, we can establish analytical bounds on
the service guarantees of PSPAT reusing the same analysis
done for the underlying scheduling algorithm.

Our contributions include: i) the design and perfor-
mance evaluation of PSPAT: ii) a theoretical analysis of
service guarantees; and iii) the implementation of PSPAT,
publicly available at [4].

SCOPE: PSPAT supports a class of Scheduling Algo-
rithms (such as DRR [27], WF2Q+ [6], QFQ [8]) that pro-
vide isolation and provable, tight service guarantees with
arbitrary workloads. These cannot be compared with: 1)
queue management schemes such as FQ CODEL [16], or
OS features such as PFIFO FAST or multiqueue NICs,
often incorrectly called “schedulers”, that do not provide
reasonable isolation or service guarantees; 2) heuristic so-
lutions based on collections of shapers reconfigured on

coarse timescales, that also cannot guarantee fair short
term rate allocation; or 3) more ambitious systems that
try to do resource allocation for an entire rack or data-
center [21], which, due to the complexity of the problem
they address, cannot give guarantees at high link utiliza-
tion. More details are given in Section 6.

TERMINOLOGY REMARKS. The term “sched-
uler” is often used ambiguously: sometimes it indicates
a Scheduling Algorithm such as DRR [27] or WF2Q+ [6];
sometimes it refers to the entire Packet Scheduler, i.e. the
whole system that i) receives packets from clients, ii) uses
a Scheduling Algorithm to compute the order of service of
packets, and iii) dispatches packets to the next hop in the
communication path. For clarity, in this paper we avoid
using the term “scheduler” alone.

PAPER STRUCTURE: Section 2 gives some back-
ground on packet scheduling. The architecture and opera-
tion of PSPAT are presented in Section 3, which also dis-
cusses implementation details. Analytical bounds on ser-
vice guarantees are computed in Section 4. Section 5 mea-
sures the performance of our prototypes and compares
them with existing systems. Finally, Section 6 presents
related work.

2 Motivation and background

Tenants of cloud platforms may have a legitimate need
to generate traffic at rates of tens of millions of packets
per second (pps): think of VNF instances implementing
routers, firewalls, NATs, load balancers... . Handling high
pps workloads in commodity operating systems is prob-
lematic even without any scheduling, and this has led to
the development of OS bypass and network stack bypass
techniques (see [24, 12]). Hardware packet schedulers can
be fast, but come with their own set of problems (see Sec-
tion 2.2.2), and are not necessarily on the path of the traf-
fic. Software packet scheduling at high packet rates is a
currently unsolved problem.

2.1 Scheduling Algorithms

A Scheduling Algorithm (SA) is in charge of sorting pack-
ets belonging to different “flows” (defined in any mean-
ingful way, e.g., by client, network address or physical
port), so that the resulting service order satisfies a given
requirement. Examples include giving priority to some
flows over others; limiting the maximum rate of individual
flows; dividing the total capacity of the link proportionally
to “weights” assigned to flows with pending transmission
requests (“backlogged” flows). An SA is called “work
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conserving” if it never keeps the link idle while there are
backlogged flows.

Perfect proportional sharing can be achieved by an
ideal, infinitely divisible link that serves multiple flows
in parallel; this is called a “fluid system”. Physical links,
however, are forced to serve one packet at a time [20],
so there will be a difference in the transmission comple-
tion times between the ideal fluid system and a real one,
adding latency and jitter to the communication. A use-
ful measure of this difference is the Time Worst-case Fair
Index (T-WFI)[5], defined as follows:

Definition 1 (T-WFI) the maximum absolute value of the
difference between the completion time of a packet of the
flow in i) the real system, and ii) an ideal system, if the
backlog of the flows are the same in both systems at the
arrival time of the packet.

T-WFI matters as it measures the extra delay and jitter
a packet may experience: we want it to have a small upper
bound, independent on the number N of flows. For any
work-conserving packet system, the T-WFI has a lower
bound of one maximum sized segment (MSS), proven triv-
ially as follows. Say a packet A for a flow with a very
high weight arrives just a moment after packet B for a low
weight flow. In a fluid system, upon its arrival, A will use
almost entirely the link’s capacity; in a packet system, A
will have to wait until B has completed.

THE THEORY: Some systems replace Scheduling Al-
gorithms with bandwidth limiting, or heuristics that give
proportional sharing only over coarse time intervals (e.g.,
milliseconds). These solutions are trivial but not interest-
ing, because the large and variable delay they introduce
disrupts applications. As the acceptable delays (hence, T-
WFI) become shorter, the problem becomes challenging
and we enter into a territory of cost/performance trade-
offs. We have efficient Weighted Fair Queueing algo-
rithms [5, 31] that match the T-WFI lower bound, with
O(logN) cost per decision, where N in the number of
flows. Fast variants of Weighted Fair Queueing, such as
QFQ [8] and QFQ+[32] achieve O(1) time complexity
per decision, at the price of a small constant increase of
the T-WFI, which remains within O(1) of the ideal value.
On the other end of the spectrum, algorithms such as
DRR (Deficit Round Robin [27], also known as Weighted
Round Robin, WRR), have O(1) time complexity but a
poor O(N) T-WFI.

Some numbers help appreciate the difference. With
1500 byte packets (1.2 µs at 10 Gbit/s), even for high
weight flows, 25 busy flows on DRR cause at least 30 µs
of latency (the worst case is much higher, see Section 4.2,
also depending on the scheduling quantum used by DRR).

In contrast, in a similar scenario, a good scheduler such as
QFQ will normally give 2-3 µs of extra latency irrespec-
tive of the number of flows.
THE PRACTICE: Implementations of QFQ and QFQ+
are included in commodity OSes such as Linux and
FreeBSD. Their runtime cost is comparable to that of sim-
pler schedulers such as DRR, which offer much worse
T-WFI. All of the above implementations can make a
scheduling decision in 20..50 ns on modern CPUs. Be-
cause of its simplicity, DRR/WRR is widely used in hard-
ware schedulers on popular high speed NICs.

2.2 Packet Schedulers
A Packet Scheduler (PS) is a set of three components: a
set of QUEUES to store packets generated by CLIENTS
and belonging to different flows; an ARBITER that selects
the next packet to be transmitted using some Scheduling
Algorithm (SA); a DISPATCHER that delivers the selected
packet to the NIC (or the next stage in the network stack).

2.2.1 Software Packet Schedulers

Software Packet Schedulers are commonly implemented
as a single unit in commodity OSes. CLIENTS (and in-
terrupt handlers) contend to access the queues and the
Scheduling Algorithm’s data structures, and perform the
functions of the ARBITER and DISPATCHER.

This architecture has two major performance issues.
On the input side, there is serialization and high lock con-
tention (with up to one competitor per core, so possibly
tens of them) to pass packets to the SA. On the output side,
the DISPATCHER is often a single thread even with mul-
tiqueue NICs, thus losing any potential parallelism. The
resulting throughput barely reaches 1..2 Mpps (see Sec-
tion 5 and [7]), but the blame goes on the design choices,
not on the Scheduling Algorithm.

2.2.2 Hardware Packet Schedulers

Modern NICs support multiple independent transmit
queues, and a limited choice of scheduling algorithms, so
the entire Packet Scheduler can be moved to the NIC. This
approach at first sight removes all bottlenecks of software
Packet Schedulers: clients can operate in parallel on the
different queues, and the NIC takes care of arbitration.

Nevertheless there are problems with this approach as
well. One is a limitation in Scheduling Algorithms and
number of queues supported by the hardware. The oper-
ating model is often “one queue per core”, which does not
support the (common) case where we would like to ag-
gregate into one flow all traffic from a single tenant using
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Figure 2: CDF of the duration of a PCIe write to an Intel
X520 NIC, when the device reaches its capacity (approx-
imately 20 Mreq/s). The CPU is stalled during this time.

multiple cores. A more serious problem is introduced by
the presence of the PCIe bus, as described below.

2.3 PCIe limitations

A NIC connects to the system through a PCIe bus, whose
capacity normally matches the link’s bandwidth: typical
dual port 10G and 40G cards use 8 PCIe lanes, with an ag-
gregate bandwidth of 40..64 Gbit/s. NICs also support rel-
atively low request rates for PCIe accesses from the CPU.
The combination of these limits can severely impact per-
formance. We give two examples below.

In our tests, an Intel XL710 dual-port 40 Gbit/s NIC,
with 1500-byte frames, and both ports active, can sustain
about 37.4 Gbit/s with one queue, down to 30.4 Gbit/s
with 8 queues. Additional queues largely increase inter-
rupts and bus traffic for a given data rate, and one should
prefer the use of as few queues as possible. The latency
test in Table 3 shows that even a few clients can cause bus
congestion and introduce over 100 µs of delay while the
link is well below “line rate”.

Bus transaction rates are also problematic. PCIe writes
from the CPU are absorbed by a write buffer that fills up
rapidly if clients exceed the write rate supported by the de-
vice. An Intel X520 can sustain about 20 M PCIe writes
per second, which the PCIe controller assigns to cores us-
ing round robin, irrespective of how the NIC’s scheduler
is programmed. Figure 2 shows how PCIe writes to a reg-
ister of an Intel X520 NIC take a long time once the write
buffer is full: a single client may stall for 50 ns, with 8
concurrent clients this time bumps to almost 400 ns.

As a result, greedy clients can saturate the PCIe re-
sources and prevent other clients from even submitting
traffic according to their fair share on the NIC’s scheduler.
Workarounds to this problem require additional buffer
threads to perform write coalescing, causing additional la-
tency and use of resources, and preventing a purely hard-
ware solution.

3 PSPAT architecture
Having identified the problems in existing packet sched-
ulers, we now discuss how our design, PSPAT, addresses
and solves them. We split the components of the Packet
Scheduler, as shown in Figure 3, so that we can operate
clients, ARBITER and DISPATCHER (s) in parallel. The
components of our system are:

M clients each with its own Client Mailbox, CMi.
Clients can be VMs, processes, threads;

C cores on a shared memory system;

C Client Lists CLc, indicating clients recently active on
each core;

1 ARBITER thread, running a Scheduling Algorithm;

N flows in which traffic is aggregated by the ARBITER;

T Transmit queues on the Network Interface (NIC),

0..T TX mailboxes TMi, and an equivalent number of
DISPATCHER threads feeding the NIC.

Mailboxes and client lists are implemented as lock free,
single-producer single-consumer queues, described in
more detail in Section 3.6. There are no constraints on the
number of clients (M ), cores (C), flows (N ), and transmit
queues (T ), or on how traffic from different clients is ag-
gregated into flows. In particular, M and N can be very
large (thousands).

arbiter thread

clients
kernel

protocol processing

device driver

client
mailboxes

transmit
mailboxes

NIC

PCIe bus

Sched
Alg

dispatchers

Figure 3: The architecture of PSPAT.
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PSPAT operates as follows: 1) A client x, who wants
to transmit and runs on core c, pushes packets into its
client mailbox, CMx, and then appends x to CLc if not
there already. 2) The ARBITER continuously runs func-
tion do_scan() in Figure 4, to grab new requests from
the mailboxes of active clients on all cores, pass them to
an SA, trim the Client Lists, and use a leaky bucket algo-
rithm to release packets into the TX mailboxes. Finally,
3) dispatcher threads drain the TX mailboxes and invoke
the device driver for the actual transmissions.

By reducing serialization to the bare minimum (only
the ARBITER that runs the Scheduling Algorithm), and
removing lock contention through the use of private, lock
free mailboxes, PSPAT achieves very good scalability,
and opens the door to performance enhancements through
pipelining and batching.

Of course the devil is in the details, so the rest of
this Section describes in depth the various components of
PSPAT and discusses how they interact with the hardware.

3.1 Clients
Clients just push packets into their private mailbox to
communicate with the ARBITER. The lack of notifica-
tions requires the ARBITER to scan all mailboxes that
may contain new requests since the previous scan. Client
Lists let us keep the number of mailboxes to scan within
O(C). A client list CLc contains more than one entry only
if a new client has been scheduled on core c and that client
has generated traffic since the previous scan. This is a very
rare event, as the time to schedule a thread is comparable
to the duration of a scan (see Section 3.4).

Clients may migrate to other cores without creating
data races (because the mailbox is private to the client)
or correctness problems: even if, due to migration(s), a
mailbox appears in multiple client lists, its owner will not
get any unfair advantage.
BACKPRESSURE: Conventional scheduler architec-
tures often return an immediate error if a packet is
dropped locally; this information provides backpressure
to the sender (e.g., TCP) so that it can react. Immediate
feedback is not always possible, as local drops may be de-
ferred because of the queueing policy (e.g. CODEL), or
further schedulers or rate limiters. PSPAT offers imme-
diate reporting when the client mailbox is full; depending
on how flows are aggregated, there might be other reasons
for drop that cannot be detected immediately.

3.2 Flows
How traffic is assembled into flows (which are then sub-
ject to scheduling) depends on how the scheduler is con-

figured at runtime. Some settings may split traffic from
one client into different flows, others may aggregate traffic
from multiple clients into the same flow. PSPAT is totally
agnostic to this decision, as it delegates flow assembly to
the Scheduling Algorithm. Our architecture also guaran-
tees that traffic from the same core is never reordered.

3.3 Dispatchers

NICs implement multiple queues to give each client an in-
dependent, uncontended I/O path, but on the NIC’s side,
more queues can be detrimental to performance, see Sec-
tion 2.3. PSPAT provides separate I/O paths through
Client Mailboxes, which have much better scalability in
size and speed, and lets us keep the number of dispatchers,
T , as small as it suffices to transfer the nominal workload
to the next stage (typically a NIC). If sending packets to
the next stage is fast, as it is the case in frameworks like
netmap [24] and DPDK [12], dispatching can be done di-
rectly by the ARBITER. Conversely, separate dispatchers
can help improve throughput when packet transfers to the
NIC or next stage is expensive.

3.4 The arbiter

The body of the ARBITER’s code, function do_scan()
in Figure 4, is structured in three blocks because of
correctness and performance. We take a timestamp,
t_start, before the first block that drains the mail-
boxes: this guarantees that any packets pushed in the SA
have arrived before t_start, and this are valid candi-
dates for transmission in the second block that implements
the leaky bucket. Finally, the third block where we notify
dispatchers gives the opportunity to exploit batching in
the latter. Note that since packets are released to the TX
mailboxes at or below link’s rate, those mailboxes should
never overflow unless the link goes down.

It is important that the ARBITER completes a round
very quickly (to avoid adding too much latency) and does
not spend a large fraction of its time stalled on memory
reads (a real risk, as it has to scan O(C) mailboxes up-
dated by clients). C should be less than 100 even for a
reasonably large system. The ARBITER accesses a small
part of each mailbox, and does it frequently, so a mailbox
that needs no service (either empty, or completely full), is
likely to be in the L1 or L2 cache of the ARBITER. This
results in access times in the order of 2..4 ns each (we have
measured these values on a dual-socket E5-2640 system).
It follows that a full scan of idle clients collectively takes
in the order of 200 ns, comparable to the cost of a single
cache miss in the architectures we target.
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1 int do_scan() {
2 t_start = rdtsc();
3 for (i=0; i < CORES; i++) {
4 for (cli in CL[i]) {
5 while ((pkt = extract(CM[cli])) != NULL) {
6 SA.enqueue(pkt);
7 }
8 <trim CL[i] leaving last entry>
9 }

10 }
11 while (link_idle < t_start) {
12 pkt = SA.dequeue();
13 if (pkt == NULL) {
14 link_idle = t_start;
15 return NO_TRAFFIC;
16 }
17 link_idle += pkt->len / bandwidth;
18 i = pkt->tx_mbox_id;
19 <enqueue pkt in TM[i]>
20 i = pkt->client_id;
21 <clear one entry in CM[i]>
22 }
23 for (i=0; i < TX_QUEUES; i++) {
24 if (!empty(TM[i])) {
25 <notify dispatcher[i]>
26 }
27 }
28 }

Figure 4: Simplified code for the ARBITER.

Section 3.6 describes how mailboxes can be imple-
mented to reduce cache misses and amortise read stalls;
we also rate limit accesses to each mailbox to once every
1-2 µs so that the ARBITER will never stall on memory
reads for more than 10-20% of the time.

3.5 Avoiding busy wait

We would like to make the ARBITER sleep when it has no
work to do. This happens i) while the current packet com-
pletes transmission, or ii) when all queues are empty. In
the first case, the ARBITER can just sleep() until the
(known) time when the link will be idle again. The case of
empty queues is trickier because new requests may arrive
at any time, including while the ARBITER is deciding
whether to block, and we need a notification from clients
to restart. Such notifications are expensive so should be
avoided if possible. This is a common problem in mul-
ticore OSes and normally handled as follows: 1) the AR-
BITER spins for some short interval Tw when idle, in case
new requests come soon; 2) when the ARBITER is asleep,
clients run the ARBITER’s functions themselves if there
is no contention with other clients, and activate the AR-
BITER’s thread otherwise. Combining these two strate-
gies, we guarantee at most one contention period and one
notification every Tw seconds (20..50µs), achieving per-
formance in presence of traffic, and zero overhead when
there is light or no traffic.

3.6 Mailboxes
Lock free queues often use Lamport’s algorithm [17]: the
producer (client Cx) updates the queue’s current slot and
insertion pointer, and the consumer (the ARBITER) reads
both pieces of information. This scheme causes two cache
misses and possibly requires memory barriers to ensure
the correct ordering of reads.

PSPAT avoids using the producer’s pointer (and the re-
lated barrier and read stall) through the technique pre-
sented in FastForward [10]: a special value in the slot (in
our case, a NULL pointer) marks the insertion point, other
values indicate that the slot is full and (implicitly) that the
insertion pointer has advanced. Similarly, the consumer
overwrites used slots with a NULL to pass its “release”
pointer to the producer.

Having both producer and consumer write to the mail-
box can generate write-write cache conflicts when a queue
is nearly full or nearly empty, and both slots are in the
same cache line. The former case is avoided by not using
the full size of the queue. For the latter case, we make the
consumer lag behind when clearing entries: when slot i is
consumed, slot i − ∆ is cleared, with ∆ large enough to
sit on a different cache line from slot i.

Read-write cache conflicts also occur when the pro-
ducer updates multiple slots in the same cache line while
it is accessed by the consumer. Also based on the mea-
surements in Section 3.7, we address this problem by rate-
limiting read accesses to the mailboxes.

3.7 Reader-writer speed and latency
PSPAT hits heavily on the memory system, so we need a
clear picture of what happens, in terms of performance,
with various concurrent access patterns and on system
with multiple CPU sockets. We thus ran experiments on a
dual socket Xeon E5-2640 system running at 2.5 GHz,
with two threads, called W and R, running on differ-
ent cores and accessing at configurable rate one or more
shared variables Vi in different cache lines (few enough to
fit in the L1 cache).

In a first experiment, W writes increasing 64-bit values
to one or more shared variables, and R counts the number
of reads and different values seen per unit of time. By
varying the read and write rates, we can also derive the
duration of a read stall (when the local cache is stale), and
that of a write stall (when all write buffers are busy). On
x86, due to its ordering guarantees, just two cache lines
shared between R and W and written at high rates suffice
to trigger write stalls.

In a second experiment, W and R run a request/re-
sponse protocol, and Vi is incremented only when the R
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HT-HT Core-Core SKT-SKT

Read stall 10-15 ns 50 ns 130-220 ns
Write stall – 15 ns 100 ns
Updates per second 75 M 20 M 5 M
Round trip latency 30 ns 130 ns 480 ns

Table 1: Cost of various memory operations on a dual
socket Xeon E2-2640. See Section 3.7 for details.

confirms that has seen the previous update. In this case,
we measure the number of round trip transactions per unit
of time; its inverse is the latency incurred in passing infor-
mation through a separate thread.

Table 1 reports the values measured, which depend on
whether the two threads are on hyperthreads on the same
core, cores on the same socket, or different sockets. The
exact figures vary with different CPU types, but the im-
portant takeouts are the high cost difference between sin-
gle and multi-socket platforms, awareness that even non
atomic writes can stall, and that shared memory opera-
tions on multi socket systems (an important target plat-
form for PSPAT) can be 4-5 times slower than on single
socket systems.

To mitigate the interference between readers and writ-
ers, we rate limit read accesses to mailboxes: the slots
near the insert and release points are cached on both sides,
and refreshed at most once every ∆A seconds on the AR-
BITER’s side, and ∆C seconds on the client’s side. These
two parameters are in the 1..5µs range.

4 T-WFI in PSPAT
As anticipated in Section 2, an important quality metric
of a scheduler is the T-WFI (Definition 1). A larger T-
WFI means increased jitter and delay in the communi-
cation, with obvious consequences. PSPAT does not de-
fine new Scheduling Algorithms, but uses one within the
ARBITER, so the purpose of this Section is to determine
the overall T-WFI of PSPAT given that of the underlying
scheduling algorithm, T-WFISA

4.1 T-WFI analysis
The literature contains an evaluation of the T-WFISA for
several Scheduling Algorithms that we can use in PSPAT,
see for example [26]. The analysis in [26] shows that the
T-WFI of a complete Packet Scheduler is made of a first
component, say T-WFISA, accounting for intrinsic inaccu-
racies of the Scheduling Algorithm, plus a component due
to external artifacts (such as the presence of a FIFO in the
communication device, as analysed in [26].)

In PSPAT, the second component depends on how we
feed the Scheduler Algorithm and the NIC. We evalu-
ate it here under the following assumptions: i) the AR-
BITER, each client, the NIC and the link must all be able
to handle B bits/s; ii) the ARBITER calls do_scan()
to make a round of decisions every ∆A seconds; iii) each
DISPATCHER processes the Transmit Mailbox every ∆D

seconds; iv) the NIC serves its queues using round-robin
(trivial to implement in hardware and avoids starvation.)

Under these assumptions, the ARBITER may see in-
coming packets and pass them to the SA with a delay ∆A

from their arrival. This quantity just adds to T-WFISA,
without causing any additional scheduling error, at least
in scheduling algorithms where decisions are made only
when the link is idle.

We call a “block” the amount of traffic released to
the Transmit Mailboxes in every interval ∆A. This can
amount to at most B ·∆A bits, plus one maximum sized
packet L1. The quantity exceeding B · ∆A is subtracted
from the budget available for the next interval ∆A, so the
extra traffic does not accumulate on subsequent intervals.

Since the ARBITER releases up to one block of data
at once, and DISPATCHERS send those packets to the
NIC in parallel, the order of transmission may be differ-
ent from the one decided by the ARBITER. Let’s first
assume that DISPATCHERS operate with ∆D = ∆A and
are synchronised with the ARBITER. This adds a delay
term ∆D to the service of packets, and also a potential re-
ordering within the block, which amounts (in time) to the
size of the block itself, i.e. ∆D.

When ∆D 6= ∆A and/or DISPATCHERS are not syn-
chronised, a further complication occurs, as the link may
receive at once up to B · (∆D + ∆A) bits, more than the
capacity of the link, before the next round of transmis-
sions. The excess block B∆A that remains at the end of
the round will in turn be reordered together with the block
from the next round (which this time is within the link’s
capacity). We omit the proof for brevity, but the number
of ∆D intervals to drain packets from the first block will
be proportional to k = ∆AB/L, or the number of max-
imum sized packets in the block. For practical purposes,
∆A is 1..2µs, and even on a 40 Gbit/s interface the value
of k is less than 5. On a 10 Gbit/s and lower, for all prac-
tical purposes we can assume k = 1.

In conclusion, putting all pieces together, we have

T-WFI = T-WFISA + ∆A + (2 + k)∆D . (1)

1The ARBITER releases all packets that start transmission in the cur-
rent interval, so the last one may complete after the end of the interval.
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4.2 T-WFI examples

To put numbers into context: from [26] we know that

T-WFI(k)QFQ = 6
Lk

φkB
+
L− Lk

B
, (2)

T-WFI(k)DRR =

(
1

φmin
+

1

φk
+N − 1

)
L

B
. (3)

The T-WFI depends on the weight of each client. In the
equations, N is the number of clients, and Lk is the max-
imum packet size for client k. φk is the weight of client
k, 0 < φk < 1 and

∑N
k=1 φk = 1, φmin is the minimum

weight among all clients.
In practice, QFQ has a T-WFI of about 6/φk times the

maximum packet transmission time (L/B), whereas for
DRR the multiplying factor has a large term 1/φmin plus
a linear term in the number of clients. For a 10 Gbit/s
link and L = 1500 bytes, L/B = 1.2µs. Assuming
weights ranging from 0.005 to 0.5, the client with the
highest weight will have T-WFI(k)QFQ = 12L/B = 14.4µs
irrespective of N . For DRR, the dependency on N gives
T-WFI(k)DRR = 226L/B = 271.2µs for 25 clients, and
301L/B, or 361.2µs for 100 clients. In comparison, the
additional term 2∆A + 2∆D (between 2 and 4µs) intro-
duced by PSPAT is small or negligible.

5 Experimental results

We ran a number of experiments to evaluate the perfor-
mance of PSPAT in terms of maximum throughput and
latency distribution, and compare it with existing alterna-
tives. The test scenarios have been chosen carefully and
rigorously to emphasize the phenomena under investiga-
tion (cost of running the packet scheduler, scalability un-
der load), reduce noise measurement (such as, effects of
NIC’s behaviour, or load on the receivers), run each so-
lution in reasonable operating conditions, and make a fair
comparison among the various alternatives.

5.1 Test environment

For our experiments we used two hardware platforms
(called I7 and XEON2, described below), two imple-
mentations of PSPAT, and several 10 G and 40 G NICs.
Platform I7 is a single-socket i7-3770K CPU at 3.5 GHz
(4 cores, 8 threads), 1.33 GHz DDR3 memory, run-
ning Linux 4.7. We use dual port Intel NICs, the X520
(10 Gbit/s, 8 PCIe-v2 lanes at 5 Gbit/s each) and the
XL710 (40 Gbit/s, 8 PCIe-v3 lanes at 8Gbit/s each).

The NICs include a hardware DRR scheduler. Plat-
form XEON2 is a dual socket system with Xeon E5-
2640 CPUs at 2.5 GHz (6 cores, 12 threads each), with
1.33 GHz DDR3 memory running Linux kernel 2.6.32-
504. XEON2 does not have fast NICs so tests here are
done on the loopback interface.

5.1.1 PSPAT versions

We have built two versions of PSPAT, one in ker-
nel, one in userspace. The in-kernel PSPAT is
a completely transparent replacement of the Linux
packet scheduler. It is enabled with a sysctl, in-
tercepts packets in __dev_queue_xmit() and af-
ter scheduling delivers them to the device through
dev_hard_start_xmit(). The ARBITER uses the
TC [3] subsystem from the Linux kernel as the Scheduling
Algorithm. This gives a perfectly fair comparison with
TC as we use exactly the same code and datapaths. On
the other hand, the reuse of existing code brings in some
unnecessary performance limitations, as discussed in Sec-
tion 5.4.1.

The userspace version of PSPAT uses scheduler im-
plementations taken from the dummynet [7] link emu-
lator, and optimized for running in a single thread. It
supports multiple network I/O mechanisms through UDP
sockets, BPF sockets, or high speed ports provided by
the netmap [24] framework and the VALE [25] software
switch. Since PSPAT already implements a rate limiter,
it is not necessary to add another one (the HTB node) as
in TC. Furthermore, we can use more efficient mailboxes,
similar to those used by Hardware schedulers (see Sec-
tion 5.4.1). Finally, clients also perform the role of DIS-
PATCHERS, once the ARBITER has cleared packets for
transmission.

Overall, the userspace PSPAT can be a lot more per-
formant and helps explore performance improvements in
Scheduling Algorithm implementation mailboxes, as well
as support operation on platforms where we cannot oper-
ate in the kernel (as on our XEON2), or we do not want to
(userspace I/O frameworks and protocol stacks).

5.2 Test configuration
For our tests, clients are traffic generators with config-
urable rate, packet and bursts size. They use either UDP
sockets, or pkt-gen, a fast UDP source that uses the
netmap API [24] but still goes through the standard Linux
network stack, like the similarly named Linux kernel
module [30, 19]. Usual care is taken to achieve reli-
able measurements (disable high C-states, lock CPU clock
speed, pin threads to cores, properly configure interrupt
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moderation on the NICs, use busy wait instead of notifi-
cations in latency tests). Each single measurement is re-
peated 10 times, and arithmetic mean and standard devia-
tion is computed over the 10 trials.

For our workload, running two clients on hyperthreads
of the same physical core slows down both clients con-
siderably (the pair delivers only 1.3 times the traffic of a
single client). In the tests clients are allocated by first fill-
ing up cores, then CPU sockets, so that the offered load
is monotonically increasing, although with different slope
when going to even or odd number of clients. The AR-
BITER, if present, is allocated on a different core, and on
XEON2 it is on the second socket, so we can measure the
worst case cost of the interaction with clients.

Unless specified otherwise, in all experiments we have
used 60 byte packets for speed measurements, and 1500
bytes ones for latency tests. The Scheduling Algorithm
(DRR or QFQ) uses a quantum of one packet, and queue
size and bandwidth large enough not to act as a bottle-
neck; clients have the same weight, and send as fast as
possible; and PSPAT uses parameters ∆A = 1000 ns,
while packet dispatch is implemented directly by the AR-
BITER.

On I7, traffic normally goes through a 40 Gbit/s NIC to
a second port on the same machine. On XEON2, lacking
suitable NICs, we run tests using the loopback interface
(using different UDP ports to avoid contention on the des-
tination socket).

5.3 Metrics

pps vs decisions per second: for packet processing sys-
tems, the load has little dependency on the packet size, so
the metric of interest for throughput is normally “packets
per second” (pps). When the packet transmission time is
very short (say, below 500 ns), there is no measurable ad-
vantage in scheduling individual packets, and it may be
preferable to make a single decision on multiple packets
for each flow, (say, up to 500-1000 ns worth of data, if
available). If one performs this aggregation, the “pps” fig-
ure may be deceiving, and instead one should report the
number of “decisions per second”. The userspace version
of PSPAT supports aggregation, but here we only report
results with aggregation disabled, so its “decisions per
second” and “pps” are the same.

T-WFI vs latency distribution: the T-WFI cannot
be measured directly unless we can identify the worst
case scenario. Furthermore, the theoretical analysis ab-
stracts from real world phenomena such as lock con-
tention, cache misses, congestion, which ultimately lead
to variable processing times and latency. We thus look at

a related metric, namely the latency distribution in one-
way communication between a client and a receiver.

5.4 Throughput
Our first set of experiments measures the maximum
throughput with multiple UDP senders in the following
scenarios: i) no scheduler, ii) scheduled by TC, and iii)
scheduled by PSPAT. The Scheduling Algorithm is QFQ
(DRR is only marginally faster).
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Figure 5: Throughput in pps, with different packet sched-
ulers on I7.

Figure 5 shows the results on I7, where we use up to 6
clients (6 hyperthreads, 3 different cores) on a 40 Gbit/s
NIC. On the left, clients use UDP sockets, peaking to
3.26 Mpps with 6 clients and no scheduler. TC causes
a rate reduction between 25 and 40% even with just 6
clients. On the contrary, PSPAT actually slightly increases
the throughput, because part of the clients’s work is now
done by the ARBITER (offloading work to other entities
such as interrupt handlers and daemons is common prac-
tice in OSes). Note how there is no sign of saturation as
the number of clients increases.

To exercise the system at higher loads we use
pkt-gen as clients: these sources generate much higher
packet rates, up to 13.5 Mpps with 6 clients. Figure 5,
right shows how TC starts decreasing its rate as the num-
ber of clients increase, whereas PSPAT reaches twice the
throughput and does not decline with up to 6 clients. Pre-
liminary measurements suggest that the use of external
dispatchers may raise the throughput to almost 7 Mpps.

5.4.1 Pushing the limit

The in-kernel version of PSPAT requires two memory ac-
cesses (and cache misses) per packet: one to fetch the
skbuf from the CM, one to fetch the packet size and
metadata from the skbuf. On top of this, classifica-
tion through TC consumes some extra time. In contrast,
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Throughput (Mpps), PSPAT userspace DRR
Clients

Configuration 1 2 4 6
netmap pipes 15.00 17.00 36.00 35.90
scheduler only 25.00 37.00 36.00 35.90

Table 2: Throughput for userspace PSPAT on I7

hardware schedulers can make their decisions using pre-
classified traffic (one client = one flow), and the packet
length is readily available in the transmit ring.

The userspace version of PSPAT permits an evalua-
tion in conditions similar to those of hardware schedulers.
Each client produces a different flow, so the only informa-
tion needed for scheduling is the packet length, which is 2
bytes instead of the 8 bytes of an skbuf, and is available
in the CM without an extra pointer dereference. Commu-
nication through the mailbox is thus a lot more efficient.
As shown at the end of Table 2, on I7, and using netmap
to send data (through a netmap pipe, as the NIC would not
be fast enough for those data rates) PSPAT can schedule
almost 40 Mpps (one packet per decision) with 6 clients
and DRR. The bottleneck here is the ARBITER, as dis-
patching is done by the client themselves. Removing the
transmission part, the peak rate remains the same, just a
lower number of clients suffices to saturate the ARBITER.

5.4.2 Scalability

On XEON2 we can run the tests only with UDP sockets
and on the loopback interface, but scale up to 20 clients.
Results are in Figure 6 (note the logarithmic Y axis). The
bottom curves, with UDP senders, show that the network
stack scales reasonably well in absence of a scheduler,
but with TC throughput saturates early on and severely as
cores are added, down to just 0.32 Mpps with 20 clients,
less than 10% of the maximum value. In contrast, PSPAT
only loses a small amount of capacity even with a large
number of clients.

The total throughput is limited by the performance of
the network stack, not by the ARBITER. Replacing trans-
mission with a no-op, we can measure the interaction of
the clients with the ARBITER. As shown in the top curve,
the ARBITER can make between 16 and 27 M decisions
per second, without dropping as the number of clients in-
creases. The large gap between 10 and 11 clients is be-
cause we start placing clients on the second socket, where
also the ARBITER runs. Thus, clients above 10 have a
faster path to the ARBITER and are able to achieve higher
speeds (this is also the reason why on I7, which has a sin-
gle socket, we see significantly higher speeds).
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Figure 6: Throughput on XEON2 using UDP sockets and
different configurations. PSPAT has almost no loss of per-
formance with respect to the no scheduler case, whereas
TC scales very poorly.

5.5 Rate allocation
We expect that a correctly configured Packet Scheduler,
driven below its maximum speed, can guarantee rates as
configured and according to the properties of the Schedul-
ing Algorithm. When the Packet Scheduler cannot sustain
the link’s speed, no queues build up and the Scheduling
Algorithm has no opportunity to make decisions, hence it
may fail even on the rate allocation.

An experiment with TC showed exactly this behaviour.
On I7 we configured two flows with weight 10 and 1, driv-
ing TC with short packets. With a link capacity up to
590 Mbit/s, approximately 1.2 Mpps, TC could keep up
and rate allocation is nominal. Just 10% above that, no
queueing occurs on the output because TC is too slow,
and rates are allocated just at the speed requests come in
(between 40 and 60% for each flow in our tests).

PSPAT avoids this problem because in each round of
do_scan() it first collects outstanding requests before
making scheduling decisions, thus allowing queues to
build up and creating input for the decision.

5.6 Latency distribution
Our final evaluation looks at latency distributions. The ac-
tual latency introduced by the Packet Scheduler depends
in part on the Scheduling Algorithm and its configuration,
and in part on other causes (process interaction, buses,
internal pipelines, notifications). We want to verify that
in overload situations (on the CPU or other hardware) la-
tency remains stable too.

Indeed, because latency is normally not as visible as
throughput, this part of the experimentation was an inter-
esting exercise in discovering unexpected bottlenecks in
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the system and poor parameter setting, and sometimes re-
moving them.

For these experiments we set the first “TARGET” client
to send at 4 Kpps, (thus using a small fraction of the link’s
bandwidth), but with a weight 50 times higher than all
other “interfering” clients, which generate traffic as fast
as possible. We use a packet size of 1500 bytes to trig-
ger early any potential CPU, memory or bus bottlenecks.
Packets from the TARGET client are marked with a TSC
timestamp when they are submitted to the packet sched-
uler; the TSC is read again on the receiver (on the same
system) to compute the one way latency. The receiving
NIC uses netmap to sustain the incoming traffic rate with
no losses.

Table 3 reports the one way latency on I7 and a
40 Gbit/s port in a number of configurations that we com-
ment here.
Baseline: The first three rows, with 1 client, show that in
uncongested situation, one way latency is small distribu-
tion mostly flat in all three cases. PSPAT adds an extra
1-2 µs because of the rate-limited reads and the time it
takes to scan all queues.
PCIe congestion: The next row shows what happens
when there is congestion on the PCIe bus. Here 5 clients
drive the NIC’s queues at full speed, but the bus can only
sustain (as determined from other measurements) a little
less than 35 Gbit/s, so less than line rate. The resulting
congestion on the bus prevents the TARGET client from
being served as it should, and the latency jumps well over
100 µs, much beyond even the analytical bound for the T-
WFI. It is not that the bound is wrong, but the bottleneck
is not the one modeled in the computation.
Slow scheduler: The last two rows with DRR, 5 clients
and link set at 10 Gbit/s show the effect of a slow sched-
uler. PSPAT can to sustain the nominal packet rate
(.823 Mpps, since preambles and framing are not ac-
counted for), whereas TC is saturated, does not reach line
rate, and causes a slightly higher latency as the service
order depends on how clients win access to the scheduler.

5.6.1 Latency on loopback

We conclude the latency analysis comparing TC and the
userspace PSPAT on a loopback interface. Transmission
cost here is higher, and TC shows high latency when over-
loaded, as the client that holds the scheduler’s lock tries
desperately to drain incoming requests. We use DRR in
these experiments.

Figure 7 shows some of our measurements. The curves
labeled XEON TC and I7 TC show the latency vs link rate
with TC. Theory says that latency for DRR is ∝ N/B,
a behaviour shown by all the curves in Figure 7 at low

Latency distributions in µs on I7
CLI Notes Percentile

min 10 50 90 99
1 HW 5.7 5.8 6.0 6.1 6.4
1 TC 5.5 5.7 5.9 6.1 6.6
1 PSPAT 6.3 6.8 7.2 7.7 8.2

5 HW (PCIe congestion) 9.8 117.0 125.0 137.0 152.0

5 TC @ 10G .812 Mpps 6.6 8.5 12.6 16.6 18.6
5 PSPAT @ 10G .823 Mpps 6.4 7.3 9.0 11.1 12.2

Table 3: Latency introduced by the scheduler in vari-
ous configurations, when sending 1500 byte frames on a
40 Gbit/s NIC. The huge latency with HW scheduler is
not a mistake, the PCIe bus is saturated and cannot cope
with the load.
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Figure 7: 98-percentile of the latency for TC and PSPAT
at different link rates, operating on the loopback interface.
Saturation is indicated by a sudden increase in the latency.
Note the logarithmic scales on both axes.

link rates. On saturation, latency with TC goes up rapidly
(much more on the older Linux version used in XEON2).
The likely reason is that in TC one client acts as a dis-
patcher, and when the nominal rate exceeds the capacity
of the scheduler, the dispatcher keeps trying to drain in-
coming requests until reaches a maximum loop count. We
suspect the different settings in the two Linux versions are
responsible for the radically different behaviour.

In contrast, in PSPAT dispatchers are separate so each
is responsible for its own traffic, giving better isolation
among clients thus also reducing the latency for “inno-
cent” users.
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6 Related work
Scheduling algorithms have been extensively studied in
the 90’s for their theoretical properties [20, 6, 5, 29, 28]
and later for efficient implementations [31, 8, 32, 15, 33,
11, 18, 23]. Software packet schedulers such as TC [3],
ALTQ [9] and dummynet [7] are available in most com-
modity operating systems.

The performance of host-only schedulers has not re-
ceived much attention. Some data is reported in [7, 8], but
otherwise the majority of experimental analysis uses bulk
TCP traffic (often with large segments and hardware sup-
ported TSO) or ping-pong tests, and in both cases packet
rates are not too high. Part of the reason is also that, until
recently [12, 24] network stacks were incapable to handle
high packet rates.

Recent years have seen an increasing recourse to vari-
ous heuristic solutions as in Hedera [1], partly motivated
by more ambitious goals (such as, scheduling resources
across an entire rack or data center, as in Fastpass [21]),
and partly because of the presumed low performance of
existing software solution (which, as we demonstrated,
were erroneously blaming scheduling algorithms rather
than heavyweight network stacks). Also, the increasing
importance of distributed computation and the impact of
latency and tail latency on many such tasks has shifted the
interest from maximum utilization to latency reduction.

As part of this trend, numerous recent proposals started
using rate limiters, such as EyeQ [14], or “Less is
more” [2]. Senic [22] shows how large numbers of
rate limiters can be implemented in hardware. By
(re)configuring rate limiters (more on this later) one can
keep traffic rates under control thus achieving some of the
advantages of scheduling without the complexity of the
algorithms. Running links below nominal capacity is also
a common strategy to reduce congestion hence latency,
and is used in [14, 2, 13] among others.

Scheduling network resources for an entire cluster or
datacenter is a challenging problem that has often been
addressed by monitoring traffic on individual nodes, and
exchanging feedback between the various node to, even-
tually, reconfigure rate limiters at the sources. Unavoid-
ably, such solutions act on coarse timescales (a few mil-
liseconds at best) and lack any theoretical analysis of
performance bounds. As an example in this category,
EyeQ [14] proposes an architecture where rate meters at
the destinations periodically communicate suitable rates
for the sources, tracking active sources and their weights.
The information is used to program per-destination pac-
ers on the sources, thus reducing the load for the sched-
uler(s). The control loop (at the receiver) compares the re-
ceive rate with allocations, and adjusts them every 200µs,

with a feedback that according to the authors converges
in approximately 30 iterations. From these numbers and
graphs in the paper, we can infer that EyeQ has a response
time of several milliseconds, adds a round trip latency
of over 300µs, and does not support rates higher than
1 Mpps. Another example in this category, Silo [13], uses
network calculus to derive formulas for the admission of
new clients, then uses padding frames to implement fine
grained traffic shaping in a standard NIC.

Another approach to cluster-level scheduling is Fast-
pass [21], which has some high level similarity with
PSPAT. In Fastpass, requests for packet transmissions are
first passed to a global, external scheduler that replies with
the exact time at which the packet should be transmit-
ted. Fastpass addresses a significantly harder problem
than ours, namely, to reduce queueing on the entire net-
work in a datacenter, as opposed to a single link. As a
result, it must use a centralized scheduler for an entire
group of machines, which knows the topology, capacity
and state of the network, as well as the weights/reserved
bandwidth for the various flows. Due to the computational
complexity of the problem, the scheduler in Fastpass must
use heuristics that are more expensive than PSPAT, cannot
give strict service guarantees2, and is several times more
expensive than ours.

7 Conclusions
We have presented PSPAT, a scalable, high performance
packet scheduler that decouples clients, scheduling algo-
rithm and transmissions using lock free mailboxes. This
maximises parallelism in the system, and permits good
scalability and very high throughput without penalising
latency.

We have implemented PSPAT and evaluated its perfor-
mance on single and dual socket systems and a variety of
load configurations. An in-kernel version runs more than
2 times faster than TC, without slowing down with in-
creased concurrency. We have much room for improving
this version, from instantiating separate dispatcher nodes
to improving the Scheduling Algorithm implementation
(we currently hook into the implementations supplied by
TC).

An optimised userspace version, even with 20 concur-
rent clients and a dual socket machine, prototype can han-
dle over 15 million scheduling decisions per second with-
out overloading, and twice that rate on a faster single core
system. The maximum scheduling rate is almost 40 Mpps,
and even under heavy overload latency remains stable.

2As clearly indicated by the authors, the bound given in the pa-
per [21] only applies if link utilization is less than 50%
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