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Abstract

Network testbeds are very popular tools for research on network protocols and distributed applications. To reproduce
network behaviour, testbeds range between two extremes: use a fully emulated network, or distribute nodes on the real
Internet. The former approach yields very reproducible results but might be a poor representation of reality; the latter
gives more realistic but less reproducible scenarios.
In this paper we present an emulation solution for the PlanetLab testbed, and provide a detailed description of its

features and performance. Our system gives researchers the advantages of emulation while not giving up the opportunity
of running experiments in a large and heterogeneous testbed with realistic network conditions. The work is based on
a Linux version of the Dummynet network emulator, largely extended with specific features to improve efficiency on
PlanetLab, and to emulate wireless links with custom configuration mechanisms to simplify its use.

The system described in this paper, developed as part of the Onelab2 project, has been deployed on the whole
PlanetLab-Europe testbed. The emulation code itself is also available for all popular operating systems (FreeBSD,
Linux, Windows, OS X).
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1. Introduction

In recent years there has seen a significant growth in
the deployment of testbeds to support research on network
protocols and distributed applications. The primary mo-
tivation for most of these projects is to make available to
researchers a system that, for its size and features, would
not be affordable for individuals or even single institutions.
Testbeds are generally made of a large number of

computing nodes, managed by a central authority, and
equipped with various storage and communication devices.
Depending on the circumstance, the interconnection net-
work (and the testbed itself) can be concentrated in a
single location, or distributed across a large geographical
area.
Depending on the case, testbeds are built as a result of a

community effort, where each participant contributes com-
puting and networking resources; or they are supported by
funding agencies which sponsor strategic initiatives such as
GENI [1] and FIRE [2].
The goals of these projects varies. Some, such as

Emulab [3], are focused on providing a very reproducible
environment, and often make heavy use of virtualization
and emulation techniques to present configurable and pre-
dictable node capacity or network resources to researchers.

Other testbeds address specific research topics, such as
the study of wireless networks (ORBIT [4], CMU wireless
emulator [5]), or routing protocols (VINI [6]). In these
cases, the testbed includes components to address the par-
ticular problem domain.

Finally, testbeds such as PlanetLab [7] try to provide a
realistic snapshot of the real Internet. The heterogeneity
of nodes and network links that are part of a PlanetLab
instance is a feature of the platform: it helps exposing
applications to the same conditions that they would ex-
perience when deployed, but carries with it some lack of
control on the reproducibility of experiments, because net-
work conditions between nodes are typically unknown and
variable over time.

This paper addresses the latter problem by extending
PlanetLab with an emulation system that complements
the features of the platform, and permits researchers to
switch easily between two extremes: fully reproducible or
completely realistic but uncontrolled network conditions.

The main contributions of this paper are i) a system
that lets PlanetLab users configure, independently of each
other, multiple emulated links for their experiments (Fig-
ure 1), and ii) extensions to the Dummynet [8] emulator,
which provide improved support for wireless emulation. In
addition to this, we added specific packet filtering and de-
multiplexing features to the emulation engine, to support
concurrent PlanetLab users in a robust and efficient way;
and a carefully designed user interface that eases the use
of emulation within existing experiments.

The rest of the paper is structured as follows. Sec-
tion 2 briefly gives the motivation for this work. Sec-
tion 3 presents our first contribution, namely the archi-
tecture of our PlanetLab extension and its components:
the PlanetLab testbed (Section 3.1), the Dummynet emu-

Preprint submitted to Elsevier March 2011



Figure 1: Applications of our PlanetLab extension. Different types
of links (dashed) can be emulated on top of existing, physical links
(solid).

lator (Section 3.2 and 3.3), the user interface (Section 3.4)
and performance improvements (Section 3.6). Section 4
presents the second contribution of the paper, i.e. emula-
tor extensions to model wireless networks. Experimental
results, including performance data, are presented in Sec-
tion 5. Finally, Section 6 gives an overview of related work.

2. Motivations

PlanetLab [7] is a network testbed made by roughly a
thousand of nodes distributed throughout the world and
contributed by participating organizations. This testbed
offers users and researchers a realistic snapshot of the In-
ternet, where they can deploy new protocols, run exper-
iments and measure network performance. PlanetLab is
widely used and interesting due to its size and heterogene-
ity of network links and node hardware. On the weak
side, the lack of any control on the conditions of the net-
work makes it hard to obtain reproducible experiments,
and even harder to run tests under controlled conditions.
Reproducibility is a feature that we consider highly de-
sirable, even more so if we can achieve it without giving
up the existing features of PlanetLab: this constitutes the
main motivation for the work presented in this paper.
A common approach to achieve reproducible network

behaviour is the use of emulation. As an example, in
Emulab [3] nodes are colocated and connected by config-
urable switches, with FreeBSD machines interposed on the
links and running the Dummynet [8] emulation software to
provide the desired network features.
A centralized emulator cannot be used in PlanetLab

because there are no controlled devices on the path be-
tween nodes and the rest of the network. However, we
can achieve our goals by implementing emulation directly
within the nodes. Traffic will traverse both emulated and
real links, and will be subject to the limitations imposed by
the two. Depending on their features, we can try to make
one of the two components dominate over the other, and
achieve a reasonable amount of control over the features of
the communication network. This approach is made eas-
ier by the fact that clusters of PlanetLab machines reside

Figure 2: On the left, the interaction between users, vsys fron-
tend and backend (Section 3.1.2). On the right, the flow of packets
through network stack, packet classifier and pipes (Section 3.2.3).

within the same lab or data center, and PlanetLab nodes
are generally well connected to the rest of the Internet. As
a consequence, we can be confident that in many cases the
physical links will not act as communication bottlenecks.

3. Architecture

This Section addresses some important design decisions
for our emulation system, namely: how to implement the
emulation engine; how to integrate it within PlanetLab
nodes; how to provide safe operation and insulation among
users; which emulation features we should expose to users;
how to design a user-friendly interface, to avoid distracting
researchers from their main goals; and finally, what is the
impact of emulation on the nodes’ performance.
The overall architecture of our emulation system is

shown in Figure 2. Users issue commands through a sim-
plified user interface (Section 3.4) to configure the desired
features of the emulated links. Requests are then passed to
the management code of the PlanetLab node, which pro-
cesses them and configures the emulation engine making
use of specific features (Section 3.6) to improve the perfor-
mance and robustness of operation in a shared and heavily
loaded system such as a PlanetLab node.
Before describing the various components in the system

we give a brief description of how PlanetLab works.

3.1. PlanetLab

A PlanetLab instance is made of two types of compo-
nents: a central controller, called PLC (PlanetLab Cen-
tral), and several computing nodes, where users can run
their experiments.
The PLC is the core of the system: it runs the testbed

management software and acts as a server for nodes and
users. Nodes willing to be part of the testbed must down-
load from the PLC, and install on their disks, a custom
version of Linux together with a set of management pro-
grams.
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PlanetLab users register with the PLC to gain access to
the system. Once registered, they are allowed to create one
or more slices, the administrative entities used to account
for resource usage. A slice’s instantiation on a node is
called sliver, and it is essentially a user account running
in a protected environment on the node.

3.1.1. Node and sliver management

Users log into the nodes and run their experiments in a
virtualized environment which provides resources isolation
between the slivers. This is implemented by the Vserver [9]
system, providing a private filesystem namespace to each
sliver, while still allowing all slices to access the full set
of devices available on the node. Each sliver runs within
a dedicated vserver context with limited root permissions,
meaning that the sliver can only execute a subset of the
system calls. Operations that require real root access (i.e.
must run in the so-called root context), are controlled by
the vsys service described next.

3.1.2. The vsys service

Users are king (root) in their Vserver, but their rights to
operate on the root context are limited and strictly con-
trolled using the vsys service, which controls how sliver
issue requests for privileged operations that may affect
the whole node (as an example, configuring interfaces or
packet filters). The service works by creating one or more
file descriptors accessible to the sliver and communicating
with backend programs that run in the root context (see
Figure 2, left). Vsys backends are installed by the sys-
tem administrator; they receive requests from the slivers
together with the identity of the invoking sliver, analyse
them, and possibly invoke any required system call in the
root context to perform the desired action.
In our system, the vsys backend authenticates user re-

quests to configure emulation, and extends them as de-
scribed in Section 3.5 to avoid interfering with the traffic
belonging to other users.

3.2. Choice of emulation engine

PlanetLab nodes run a custom version of Linux, and
there are several existing emulation packages already avail-
able for that operating system, including NISTnet [10],
tc [11], and netpath [12] (the latter is based on Click [13]).
We dismissed NISTnet because it is not available as a

standard component in PlanetLab. tc, which is a traf-
fic shaper and link scheduler, was not a suitable choice
for at least two reasons. First, it is not an exact match
for our requirements, as it requires an external package,
netem [14], to model features such as propagation delays
and reordering. Second, and most important, tc is already
used within PlanetLab nodes to enforce traffic limitations,
so its use for emulation would interfere with the existing
configuration, and require a lot of care to ensure a safe
coexistence.
netpath [12] is interesting in terms of performance when

used as a standalone emulator, because it uses its own

Figure 3: The basic components of a Dummynet pipe.

device driver hooks and packet processing stack. However,
much of netpath’s performance comes from an aggressive
use of polling and busy wait loops, which are a bad fit
with PlanetLab nodes, already heavily loaded with user
programs.
Eventually we decided to select Dummynet as our em-

ulation engine. We have a significant experience with it,
and have already used it as an external emulation solution
in PlanetLab. Also, Dummynet is used on Emulab, which
means that researchers may be already familiar with it.
Dummynet was not natively available on Linux when we
started this work but the port to the new operating system
required a manageable amount of effort, and was a useful
contribution in its own.

3.2.1. Dummynet

Dummynet [8] is a network emulator developed under
FreeBSD several years ago [15], later imported into other
BSD-derived operating systems, including Mac OS X, and
currently also available on Linux, OpenWrt and Windows.
Dummynet is a component of the operating system that

can intercept network traffic and manipulate it, emulat-
ing the behaviour of one or more network links with pro-
grammable features. It is made of three parts: the emula-
tor itself, dummynet; a packet classifier, ipfw; and a user
interface, /sbin/ipfw. The first two parts run in the ker-
nel of the operating system, and communicate with the
user interface through a control socket. A full descrip-
tion of Dummynet is in [8]; the next Section reports only
the details (including newly introduced features) that are
relevant for this work.

3.2.2. The emulation engine

dummynet (the emulator) can create multiple instances
of an object called pipe, which in its basic version (Fig-
ure 3) models a network link with programmable band-
width, delay and queue size. Other pipe configuration op-
tions exist to specify different queue management policies
(e.g. RED), to model some MAC layer effects such as vari-
able transmission times and link level overheads, and also
to simulate very simple packet drop patterns.
In this project we use pairs of pipes to emulate the two

directions of a point to point link, and a single pipe to
emulate a shared media such as a wireless link.

3.2.3. The packet classifier

Dummynet works in close cooperation with a pro-
grammable packet classifier, ipfw, that intercepts packets
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in various points of the protocol stack, and decides of their
fate. The packet’s flow through the network stack, packet
classifier and pipes is represented on Figure 2, right.
The classifier is programmed through a set of numbered

rules, each containing zero or more options used to match
packets, and one action specifying what to do with match-
ing packets. Matching options include addresses, ports,
protocols, protocol flags and various packet’s metadata in-
cluding the sliver associated to a packet. A packet is tested
against each of the rules, in numeric order, and the first
matching rule terminates the search and causes the execu-
tion of the associated action. For our purposes, the action
of interest is to send the packet to a pipe, which will in
turn delay or drop the packet as appropriate, emulating
the behaviour of the attached link. After the emulation,
non-dropped packets are sent back into the network stack
for their regular processing.

3.3. Porting Dummynet to Linux

As part of this work we needed to build a Linux
port of Dummynet. The porting of the user interface,
/sbin/ipfw, was trivial and just required to provide re-
placements or wrappers for library functions that differ
between FreeBSD and Linux. The adaptation of the ker-
nel subsystem was instead a lot more challenging, due to
the lack of cross-platform standards in terms of program-
ming interfaces (APIs), headers, kernel services, and even
naming conventions.
Having performed similar work in the past, we found

that a very effective strategy in these cases is to keep the
original source code unmodified as much as possible (but
within reason). This approach has the double benefit of
pointing out platform-specific assumptions (with the op-
portunity to fix them in the mainstream code), and making
it easier to keep the port up to date over time. As a result,
we ended up providing wrappers that map FreeBSD data
structures and kernel APIs into the equivalent components
of the underlying operating system. In particular, mbufs
(the packet representation in FreeBSD) were mapped to
skbufs, and calls to the packet interception mechanism
(pfil in FreeBSD) were mapped to netfilter calls.
Eventually, this led us to extend Dummynet availability

even to Windows, as the porting approach described above
made this possible with a relatively limited effort. As of
this writing, the emulator is now available on all major
operating systems, including Windows and OpenWrt [16],
which is more and more used in various research proto-
types as well as actual deployments.

3.4. Usage model and user interface

One of the main features of Dummynet is the ease of
use, and we tried to preserve this simplicity also in the
integration into PlanetLab. The Dummynet’s user inter-
face, /sbin/ipfw, is too low level for most PlanetLab users
due to the huge number of options available. Furthermore,
we could not expose it to individual users because of the

risk of unwanted misconfigurations affecting other slivers.
To solve these issues we offer users a simplified interface
based on three types of link configurations: server, client
and service.
A client configuration emulates a node hosting applica-

tions that connect to external servers whose ports and/or
addresses are known. The classifier will intercept all traffic
to/from those servers, and pass it through pipes emulating
the upstream and downstream links.
A server configuration is meant to emulate the case

where the local node hosts a server on one or more well-
known local ports. The user specifies the local ports, and
possibly the addresses of remote clients/subnets if we want
to differentiate the behaviour depending on whom is talk-
ing to the server.
Finally, a service configuration can be used when we

have a distributed application, e.g. a P2P system, where
nodes run both clients and servers on well known ports.
In this case, the emulator will be configured to intercept
traffic between parties of the same application – in prac-
tice, this represents a combination of a client and server

configuration that share the same emulated links.
Users configure one or more emulated links, and define

the traffic affected, with one-line commands such as those
in Figure 4. Each line defines an emulated bidirectional
link, indicating which traffic should be affected and the
configuration of the pipes (after the IN and OUT keywords)
emulating the downstream and upstream links. A special
case is represented by shared media (e.g. WiFi networks)
where the two directions share the same physical channel
and are emulated using a single pipe, whose features are
set using the SHARED keyword.
In the example in Figure 4, we emulate a multihomed

client where selected HTTP/HTTPS traffic to a /16 sub-
net goes through an emulated 3G link, whereas other traf-
fic for a /24 subnet goes through a link with ADSL-like
features.
Port lists and addresses/masks can be used to pass spe-

cific traffic through each of the emulated links. Parame-
ters of the link (bandwidth, delays, loss rates, or the ex-
tended features described in Section 4) can be specified
independently for the two directions of the communica-
tion, to cover the case of asymmetric links.

3.4.1. Under the hood

The netconfig program does nothing but pass the re-
quest to the root context, together with the identity of the
sliver issuing the request. The ports/addresses specified
as arguments are used to detect whether we are creating a
new emulated link or modifying/deleting an existing con-
figuration. A request normally installs a couple of rules for
the classifier to select the desired inbound and outbound
traffic, and configures one or two pipes with the specified
features. Figure 5 shows an example of a command and
the configuration it generates.
In the translation, rule and pipe numbers are assigned

by the backend. Most other parameters (bandwidth, delay,
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netconfig client 80,443@10.20.0.0/16 SHARED profile myconfigs 802.11b-11

netconfig client 80,443@10.21.0.0/24 IN bw 512kbit/s delay 8ms OUT bw 10Mbit/s delay 3ms

Figure 4: An example configuration to emulate a multihomed client. Two emulated links intercept traffic for two different subnets; the
first one emulates an 802.11b network at 11 Mbit/s whose configuration is in the file passed as argument, whereas the second emulates an
asymmetric DSL line.

netconfig config client 22,80@xyz IN bw 6Mbit/s OUT bw 256Kbit/s

ipfw pipe 10000 config bw 6Mbit/s

ipfw pipe 10001 config bw 256Kbit/s

ipfw add 1050 pipe 10000 in src-ip xyz src-port 22,80 sliver 50

ipfw add 1050 pipe 10001 out dst-ip xyz dst-port 22,80 sliver 50

Figure 5: A netconfig command and its translation in terms of classifier rules and pipes’ configuration.

ports and addresses, other filtering options) come from the
user’s request.

3.5. Isolation between users

In order to make sure that rules generated by one sliver
cannot match traffic belonging to another sliver, the back-
end adds a sliver X option to all rules. The sliver ID,
X, is extracted from the identity of the sliver issuing the
netconfig request. At run time, the packet classifier looks
up the socket and sliver associated with each packet (either
incoming and or outgoing), and the information is used to
make sure that, irrespective of any other match option,
rules will match only traffic for the sliver that requested
this specific configuration.

3.6. Optimizing performance

A naive implementation of the translation of requests
into /sbin/ipfw rules would quickly lead to scalability
problems. In fact, as we have seen, each emulated link
implies the insertion of a couple of rules in the classifier’s
configuration. Rules are scanned sequentially (see Sec-
tion 3.2.3), so even limiting the maximum number M of
emulated links that a sliver can define, the cost of scan-
ning the ruleset for a system with N slivers would grow as
O(N*M). In PlanetLab, N is already as large as a few hun-
dreds, and this cost would be paid on each packet, which
is clearly unacceptably high.
To reduce this complexity, we have structured the rule-

set as shown in Figure 6: after a small number of rules
used for housekeeping, we invoke a special classifier rule

which jumps to a specific block of rules using the sliver
number as the dispatching key. The cost of looking up the
dispatch table, and jumping to a specific entry, is O(log
N), followed by at most O(M) steps for finding the right
rule within the block. This makes the problem completely
manageable because we can limit M to a small value, and
the logarithmic component never requires more than 16
steps, so it only causes a modest overhead.

Section 5.1.1 presents detailed performance measure-
ments to quantify the per packet cost in the worst case,
and show the effectiveness of our approach.

Figure 6: The structure of the ruleset used in the classifier, and the
sliver table used to perform a fast dispatch of packets to the block
of rules for each sliver.
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in 802.11g and 802.11b), while the remaining part comes from other
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4. Extended emulation features

While dummynet pipes (Figure 3) model very closely
a wired, point-to-point communication link, emulating a
wireless channel must take into account many other phe-
nomena, such as the effect of the MAC protocol, noise-
induced errors, the sharing of the link with other stations,
external interference, and variations of the channel con-
ditions over time. Detailed emulators of such phenom-
ena do exist [5] and [17] but in the PlanetLab context
(where applications contend network and computing re-
sources with many other applications) a high resolution
emulation would be overkill. Besides, results would still
depend on a very precise model of the system, which in
practice is extremely hard to come up with. As a conse-
quence, we introduce a few simplified mechanism to repro-
duce the wireless channel, as described in the following.

4.1. MAC overheads

MAC overheads are modeled using delay profiles: for
each packet transmission, we extend the transmission time
by a random amount whose distribution (CDF) is de-
scribed by an empirical function, such as those shown in
Figure 7. This extra time models the overhead (backoffs,
preambles, MAC framing, link-level acknowledgements)
incurred in transmitting a packet on a wireless channel.
These values can be, in principle, derived from the relevant
standards, though in practice it may be useful to extract
these numbers from actual measurements because different
hardware implements the standards in different ways [18]
and [19]. As an example, typical 802.11b/g transmissions
incur an overhead given by a fixed amount of time (framing
plus MAC-level acknowledgement), plus a variable backoff,
as shown in Figure 7.

4.2. Noise

Noise on the channel may cause erroneous symbol1 de-
coding in the receiver, which in turn leads to packet drops

1Depending on the modulation, a symbol carries one or more bits.

and retransmissions. The relation between noise (or bet-
ter, the Signal-to-Noise Ratio, SNR) and the Packet Error
Rate (PER) depends on the modulation, channel width
and data rate.
The error model used in our implementation is based on

the formulas used in the Ns-3 simulator for the DSSS [20]
and the NIST [21] models. For 802.11g modulations, the
latter has been shown to be a better approximation of
reality than the YANS model [22] previously used. The
802.11b channel model is based on the communication the-
ory formulas described in [23] and validated against a clear
channel by [20, Sec. 1.2.3].
As an example, the equation for DBPSK at 1 Mbps, and

the approximation of [24] for the 2 Mbps DQPSK mod-
ulation are the following (at these rates, 1 symbol = 1 bit):

BER1M =
1
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2)
Eb

N0

where Eb is the energy per bit and N0 is the noise value at the
receiver. Knowing the SNR, the channel’s bandwidth B and
the data rate R, we can easily compute Eb/N0 = SNRB

R
. The

resulting BER curves for various rates are shown in Figure 8.

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

-5  0  5  10

B
E

R

sinr (dB)

11Mbit/s

5.5Mbit/s

2Mbit/s

1Mbit/s

Figure 8: The relation between SNR and BER for different rates.

In turn, for modulations using one symbol per bit, the rela-
tion between BER, the packet size in bits (L), and the Packet
Error rate (PER), has the form

PER = 1− (1−BER)L

For other modulation we should replace BER with Symbol error
rates and L with the size in symbols. As an example, Figure 9
shows the packet error rate for different values of BER and L.

To avoid excessive overhead at runtime, for each modulation
we compute offline the PER for the packet sizes and SNR val-
ues of interest, so that at runtime a simple table lookup will
give us the error probability for the given packet, and we gen-
erate a random number to determine the fate of the packet.
If a packet is lost, we consider the channel busy for the time
required for the transmission, and emulate the link level re-
transmission protocol for the number of times specified by the
protocol.
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4.3. Network load and competing stations

The presence of competing stations is modeled using two
parameters. One, called netload, represents the fraction of air-
time which is unavailable due to competing traffic (without
accounting for collisions, which are handled separately). As an
example, Beacon signals from an access point make consume
approximately 1% of the airtime. Using a very coarse approxi-
mation, all packet transmission times are multiplied by 1

1−n
so

that, on average, we will see a throughput which is proportional
to the available fraction of airtime.

A second parameter is called collision and indicates the prob-
ability of a collision. collision and netload are related, but the
relation varies depending on the traffic patterns (see [25, 26])
so we really need two separate parameters to model the two
phenomena. The collision is used to randomly force an error
on transmission, which adds to those caused by noise. These
errors are handled in the same way as those induced by noise,
i.e., considering the channel busy for the actual transmission
time and then doing a link level retransmission (and, eventu-
ally, reporting a transmit failure upstream).

4.4. Time-varying links

Time-varying links model the variability of links over time,
e.g. due to mobility. When using time-varying links, the sys-
tem dynamically alters the configuration of the pipes (including
bandwidth, delay profiles, loss rates) according to a transition
graph specified by users as in Figure 10.

Each node in the graph specifies a configuration (bandwidth,
losses, SNR, netload, collisions) for the link. Each configura-
tion lasts for a random amount of time, whose distribution is
specified as an empirical curve associated to the node. Changes
from one configuration (node) to the next one occurs with the
probability specified on the arcs connecting the nodes. Due to
the coarse timescales (compared to packet transmission times)
involved in the process, reconfigurations are controlled by a
user-space process without the need of additional mechanisms
within the kernel.

5. Experimental results

The emulator described here has been integrated in the nodes
of the PlanetLab-Europe platform since 2010, and it is being
updated with new features as we develop them. In this Section
we report various performance and accuracy metrics of our sys-
tem, and discuss how they fit the requirements of the platform.
In particular, we cover the following:

Figure 10: An example of the information used to implement time-

varying links (Section 4). The link remains in each state for intervals
of time with the given distribution, and then moves to a new state
with the probability specified on the arcs.

• per-packet processing costs and scalability. This involves
the classifier (affecting all packets), emulation, and recon-
figuration costs;

• accuracy of the emulator, how it affects experiments
compared to other “noise” sources existing in PlanetLab
nodes;

• validation of the wireless emulation features, comparing
emulation results with experiments in real settings.

5.1. Emulator overhead

In Dummynet, the per-packet processing costs are made of
two components: classification, which grows linearly with the
number of rules, and emulation, which is essentially constant
except for a small O(log L) component, where L is the number
of active pipes. Measurements made by the authors in a previ-
ous work [8] further decompose cost components, with relevant
results summarized in the first part of Table 1. These measure-
ments were made by generating traffic from a local source, and
dropping it at various stages of the network stack, as shown in
Figure 11. The average cost of specific components (e.g. certain
classifier instructions, or emulation costs, etc.) was determined
by measuring the throughput (in packets per second, PPS) in
various conditions and computing the difference between the

Figure 11: To evaluate the per-packet processing overhead, we mea-
sure the PPS rate with a local generator and traffic dropped in dif-
ferent points of the protocol stack. Differences between the measure-
ments give the cost of each processing block.
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Parameters (from [8]) Cost (ns)

Enter the classifier 400
Test one simple rule 36
Traverse a pipe 700-1300
Overhead for L pipes log(L) · 100

New measurements (Sec. 5.1.1) Cost (ns)

Table lookup, E entries 220 + log(E) · 11
Worst case no pipe, full table < 1000
Worst case 1 pipe, full table 2150
Worst case 20 links/user < 4000

Table 1: Summary of emulation costs, both individual components
and worst case configuration.

inverse of the PPS rates. Absolute values change depending on
the hardware, but the ratio between the components is approx-
imately constant across different hardware platforms.

5.1.1. Per packet costs

The PlanetLab version of the classifier was extended with
an optimization (based on a table lookup) to quickly jump
to the user-specific part of a ruleset (Section 3.6). Using the
same techniques (Figure 11) and the same hardware as in the
previous section, we measured the cost of packet generation
alone (case A in Table 2); packet generation plus classifica-
tion through a single rule (case B1); classification using a table
with a single entry (case BT ) or a full table with 216 entries
(case BFT ); and finally, classification using a full table plus the
traversal of a worst-case pipe2 (case C). This really represents
the worst case for a PlanetLab node with the maximum number
of slivers (216), all using emulation.

Table 2 presents the results of the experiment, listing av-
erage and standard deviation for each test case (a 10-second
run repeated 100 times). The hardware used for experiment
is a desktop machine at the low end of the specifications for a
PlanetLab node, so we can expect that existing nodes have the
same or better performance.

Case avg/sd (ns) 1 flow

A 1167 / 72.5 Drop before classifier.
B1 1525 / 51.2 Drop in first rule.
BT 1750 / 51.5 Table with 1 entry.
BFT 1911 / 60.8 Table with 216 entries.
C 3311 / 69.4 BTF and worst-case pipe.

Table 2: Results of the measurement of per-packet overheads with
different configurations of the classifier and emulator.

Starting from these measurements, individual cost compo-
nents have been measured and are summarized in the bottom
of Table 1. Table lookups take approximately 220 ns with a sin-
gle entry, but then the variable cost scales logarithmically with
the number of entries so even the worst case (BFT −B1) is only
taking about 400 ns. Overall, the difference between cases A
and C shows that in the worst case emulation consumes roughly
2150 ns with a full table and one active pipe. Considering that

2in previous work we determined that the worst case for emulation
costs is a link with only delay and no bandwidth limit.

each emulated link introduces two extra rules in the per-user
part of the ruleset, even allowing each user to define up to M
emulated links, we need to add approximately M · 2 · 36 ns to
this time, and another small log(L) contribution coming from
the presence of multiple, simultaneously active pipes.

In conclusion, the presence of the emulator increases the per-
packet processing time by less than 1 µs for each packet not
subject to emulation, and less than 4 µs for packets subject to
emulation.

5.1.2. Throughput

To determine how the emulation overhead impacts the per-
formance of a PlanetLab node, we have studied the network
load on the platform nodes using the data reported by the
CoTop monitor [27]. CoTop computes the average traffic of
a node over a 1-minute interval. The highest values we saw
were around 30 Mbit/s. We do not have data on the num-
ber of Packets Per Second (PPS) measured on the nodes, but
30 Mbit/s correspond to a value between 2500 and 58000 PPS,
considering a packet size of 1500 and 64 bytes respectively.

Even taking the worst case, a 4 µs per-packet overhead at
60 KPPS corresponds to 25% of one CPU core, which is an ac-
ceptable value, considering that we are probably overestimating
the PPS load on the node by almost one order of magnitude,
and that the majority of PlanetLab nodes have much lower
traffic.

5.1.3. Reconfiguration cost

As a final part of the performance evaluation, we have mea-
sured the cost of adding, modifying or removing an emulated
link. Though infrequent, these requests can be sent concur-
rently by all slivers, so we want to make sure that they don’t
cause an excessive overhead on the system. Reconfigurations,
triggered by explicit user requests, use the vsys system to com-
municate, and then makes a few calls to /sbin/ipfw to update
pipes’ and classifier configuration. Figure 12 shows the compo-
nents involved.

Figure 12: The operations involved in a reconfiguration of the emu-
lator.

Even with the current, non-optimized structure of the back-
end (the configuration database is stored in a text file and ma-
nipulated by a shell script) the entire backend runs in less than
30 ms, which means that we can already handle tens of recon-
figuration requests per second. The reconfiguration costs can
be reduced by one order of magnitude by moving to a compiled
version of the backend.
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5.2. Emulator accuracy

An important aspect to be evaluated in an emulator is how
well it is able to reproduce the timing computed by the model.
Once again, [8] makes a detailed analysis of this aspect, point-
ing out three main sources of inaccuracy: timer resolution, com-
peting traffic, system load. Here we analyse the impact of these
three factors in the context of PlanetLab.

The first source of inaccuracy, peculiar to the specific ap-
proach used by our emulator, is the timer resolution, which on
PlanetLab nodes is 1 ms. This means that, apart from other
sources of error, all packet transmissions and receptions will be
subject to a 1 ms timing inaccuracy. The question is whether
this error is acceptable for the type of measurements that we
want to make, and how it compares to other timing errors that
are induced by other parts of the system.

Competing network traffic, even in absence of emulation,
causes packets to be moved in time by at least the time to
transmit one maximum-sized packet at line rate. According
to the information reported by PlanetLab monitoring tools,
most PlanetLab machines are attached to 100 Mbit/s switches
despite being equipped with Gbit interfaces. As a consequence,
this introduces timing errors of at least 1.2 ms, already larger
than those induced by the timer resolution.

Finally, the largest and most unpredictable source of inaccu-
racy comes from competing system load. This affects both the
kernel (which may delay processing of network traffic when the
CPUs are busy) and the scheduling of user applications, which
may be delayed by large amounts of time (up to hundreds of
milliseconds) by other computationally intensive applications.

As an experiment to measure the first component (kernel
load) we ran a series of ping tests between pairs of colocated
PlanetLab nodes. Ping times are mostly unaffected by user
process scheduling, because processing on the responding side
occurs entirely within the kernel, and at the sending side pack-
ets are usually timestamped as soon as they reach the kernel,
so measurements do not account for scheduling delays. Even in
this favourable setting, the values measured on our PlanetLab
nodes have large variations. Figure 13 plots the CDF of ping re-
sponse times between some pairs of colocated PlanetLab nodes.
The median values range between 150 and 500 ns in most cases,
but almost invariably we see a long tail, with the top 5-10% of
the values going up to several milliseconds. In one case (right-
most curve in the figure, corresponding to a heavily loaded
node), delay of tens of milliseconds and more have been mea-
sured.
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Figure 13: Distribution of ping response times between some pairs
of colocated PlanetLab nodes.

From the above we can conclude that the emulation inac-
curacy is no larger than the timing uncertainties normally ex-

perienced by applications running on the nodes and due to
competing processes and network activity.

5.3. Validation of wireless emulation

The wireless emulation features are entirely new, so we need
to validate how well they reproduce the behaviour of a real
wireless network. Our validation tests have been conducted
by first running measurements in real wireless networks under
different operating conditions, After that, we have run the same
experiments on the emulator configured to model the original
wireless network. Because we use a coarse model of the wireless
channel, our main metric will be the throughput that we can
achieve on the link (real or emulated one).

In general, our tests involve one station (STA) and one Ac-
cess Point (AP) located in close proximity (Figure 14), and
a server connected to the AP acting as the other endpoint of
the communication. A nearby monitor node is used to col-
lect traces of interesting events in the wireless medium, such as
actual inter-packet delays, retransmissions and so on, and to
help investigate possible differences between real and emulated
settings.

Figure 14: The experiment scenario.

The uncertainty on actual network conditions, especially for
the presence of unknown interfering stations, makes it hard to
get a close match between emulation and real world experi-
ments. There are however some simple, baseline cases where
we can expect very close results. One such example is when a
node is transmitting a unidirectional stream of packets on an
otherwise idle channel. While we cannot guarantee that a chan-
nel is exempt from interference, running many short (5-10 s)
experiments on different channels and times of the day gives a
reasonable probability that at least some of those experiments
run with little or no interference.

With this in mind, a first set of experiments has been run
to measure the maximum throughput achieved at different
802.11b and 802.11g rates, and then verify whether the em-
ulator is able to reproduce them. We lock the access point at a
fixed rate, and send a unidirectional stream of maximum-sized
UDP packets from the server to the station, using iperf [28].
The choice of UDP is to avoid interference from TCP acknowl-
edgements flowing in the reverse direction.

Figure 15 plots the distribution of throughputs obtained in a
large (50 to 200) number of experiments at each different rate.
The spread of values is mostly due to occasional interference
on the channel. The column labeled Real in Table 3 reports
max, average and standard deviation for these measurements.
The maximum values should represent the maximum channel
capacity at each rate (net of all overheads), and represent our
target for the emulation results.

The emulated experiments were made by running the same
set of tests over an emulated link. For the delay profile (Sec-
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Figure 15: Throughput CDF for different rates, in Mbit/s.

tion 4.1), measurements showed that our access point does ran-
dom backoffs using only 16 slots (instead of the 32 indicated
by the standard), so we used a profile configured accordingly.
Also, we took into account the fact that beacons (occurring 10
times per second, and consuming approximately 1.14 ms each
in our network) consume about 1% of the airtime, and modeled
that as an equivalent netload. We set the collision parameter to
0 because, in our case, there is no interference between beacons
and data packets (they both originate from the same device).

Table 3 compares the throughput in real wireless network
and in the emulated experiments. For what we said so far, we
should compare the max values from both sides, and we see
that there is a close match between the two. Of course, this
result only tells us that we can reproduce very closely a specific
configuration of the system. At the same time, Figure 15 re-
minds us that real world experiments are bound to have large
variations due to unpredictable channel’s conditions.

Nominal Real Emulator
Rate Max Avg sd Max Avg sd

54000 28390 27970 281.4 28570 28500 46.6
11000 7879 7788 68.7 7831 7806 27.3
5500 4455 4377 85.4 4405 4400 3.4
2000 1767 1737 39.2 1772 1771 0.548
1000 894 881 16.7 900 899 0.448

Table 3: Real and emulated throughput for unidirectional UDP traf-
fic at different 802.11b and 802.11g speeds. Rates are in Kbit/s.

5.3.1. Modeling competing traffic

To show the effect of competing traffic and how it can be
modeled, we measure the throughput of a unidirectional TCP
flow. In this case the reverse ACK traffic not only consumes
airtime (which is already accounted for by the emulator), but
also generates some amount of collisions because data and acks
are somewhat synchronized with each other. The presence of
random backoffs can reduce the chance of collisions, but not en-
tirely eliminate them. Their probability depends heavily on the
number of active stations, traffic patterns and overall network
load [25, 29]. The number of slots, CW , used for random back-
offs introduces a factor φ/CW in the probability of collision,
but the exact proportionality factor needs to be determined
experimentally.

In Table 4 we compare the throughput of a unidirectional
TCP flow on a real, 11Mbps wireless link, and over emulated
links with different settings for the collision parameter. As
mentioned, our devices use CW = 15 so we have explored vari-
ous values for the collision parameter in the vicinity of 1/CW .
Having collision set to 0 clearly overestimates the available
bandwidth, and in these experiments it seems that a factor
near 1/CW models the channel very closely. Due to the differ-
ent conditions is not possible a direct comparison with the re-
sults reported in saturated [25] or non-saturated [29] networks,
however they represents a good starting point in the evaluation
of packet collisions.

Scenario Throughput (Kbit/s)
(real or emulated) Max Avg sd

real 5729 5681 32.0

em, coll = 0 6266 6237 10.9
em, coll = 0.04 5936 5876 21.4
em, coll = 0.06 5733 5692 19.6
em, coll = 0.07 5657 5601 26.3
em, coll = 0.08 5546 5520 21.4

Table 4: Real and emulated throughput using an 11Mbps nominal
rate and TCP. Emulated experiments were run using different values
for the collision parameter, as shown in the first column.

6. Related work

We conclude the paper with an overview of related work. The
research areas most related to this paper are network testbeds,
and wireless emulation systems, including the modeling of wire-
less links.

6.1. Network testbeds

As mentioned in the Introduction, network testbeds have
been an active research subject in recent years, resulting in
the development and availability of several testbeds addressing
different needs.

Two of the most popular testbeds are PlanetLab [7], and
Emulab [3]. Both are publicly available to researchers, but
differ in several aspects. We have already described PlanetLab
extensively in this paper, so we refer the reader to Section 3.1.

Emulab is a public facility whose nodes are mostly concen-
trated in a single location, and interconnected through a pro-
grammable switch to create user-specified topologies. Emulab’s
strength is the availability of a wide range of experimental envi-
ronments such as emulation, simulation, real wireless links, and
sensor networks. The initial version of the platform relied on
Dummynet instances placed between processing nodes to create
emulated links with the desired features. Subsequent additions
to the testbed include wireless interfaces, Universal Software
Radio Peripheral [30] (USRP) devices, and some mobile nodes
placed on robots that can be driven around a lab.

Emulab users can define the desired topology using the
Ns-2 [31] syntax or by a Java GUI. This configuration also
covers the definition of hardware and software features of the
nodes, wireless capabilities, and mobility. After this stage, the
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platform maps virtual requirements on physical resources, try-
ing to minimize the use of the physical resources. The inte-
gration of Ns-2 [31] in Emulab makes simulation capabilities
available to the platform.

ORBIT [4] (Open Access Radio Grid Testbed) is a testbed
based on a large indoor grid of around 400 radio nodes, which
can be dynamically interconnected to create arbitrary topolo-
gies. Each node is connected to the network by one wired link,
used as a control channel, and two wireless cards, normally used
to run experiments. The features of the wireless link, such as
transmission power, transmission rate and other high level pa-
rameters can be configured. By placing the nodes involved in
the communication in different points of the grid, and possibly
using other nodes or signal generators as sources of interference,
one can study the effect of varying channel characteristics on
the communication.

VINI [6] is a testbed platform aimed to test lower layer soft-
ware, such as routing protocols. VINI provides a wide, shared
physical infrastructure where researchers can define arbitrary
network topologies and test protocols and applications. Using
the VINI platform it is possible for researchers to run their
conventional routing software, in a wide area, exposed to real
network conditions and real traffic. Researchers are allowed
to control the network behaviour too, reproducing particular
network events or injecting controlled failures in the network,
in order to test and measure their software in every possible
situation.

The APE testbed [32] is a research project of the Uppsala
University and allows to evaluate mobile and ad hoc routing
protocol in a real-world environment. The testbed simplify the
process of performing complex tests in real networks, providing
a set of tools to define network scenarios, to collect data and
to analyze the results. The mobility of devices is implemented
by a feature called “virtual mobility”, and it is implemented
by SNR changes, making possible experiments reproducibility.
The APE testbed is build by a set of public available tools,
and it is able to support the protocols implemented on a Linux
systems.

6.2. Emulators

The second related work area refers to network emulators.
Here the spectrum of solutions ranges from dedicated hard-
ware, generally targeted to the evaluation of MAC protocols,
to software-based systems that run in standalone devices or
within standard operating systems.

Dummynet has been already described in detail in Sec-
tion 3.2.1. Similar features are available in NISTnet [10], which
runs on Linux and also supports the emulation of multiple links
with programmable bandwidth and features. Another option
for link emulation under Linux is the combination of tc [11] and
netem [14], where the tc is in charge of classification and traf-
fic shaping, whereas the netem part is in charge of simulating
propagation delays and reordering. A significant drawback of
tc is that it cannot do shaping on the incoming path, which
limits its usefulness when the data source is not on a machine
equipped with the emulator.

NetPath [12] is a high-performance emulator based on the
Click modular router [13]. A custom program is used to create
a proper Click configuration with user-defined classifier, delay
elements, queues and traffic shapers. NetPath is especially in-
teresting for building dedicated emulation systems, because,

borrowing from Click’s use of custom device drivers and busy
wait techniques, it makes a more effective use of the hardware
than a generic operating system.

Modelnet [33] uses a modified version of Dummynet as the
basis to build larger emulation engines. In this case a cluster of
computers is used to host multiple emulator instances, and a
programmable switch takes care of connecting end nodes with
the proper emulator instances, compiling a topology description
into a proper configuration of switches and emulator instances.

Emulation of networks involving multiple cascaded links can
be done with most of the systems described above. Dummynet
makes this possible through the reinjection of traffic in pipes
multiple times, using classifier rules to model routing decisions.
In NetPath and Modelnet, this is achieved by compiling the
topology description. Modelnet offers some scaling capabilities
because the emulation can be mapped on multiple nodes, and
intermediate nodes only need to exchange metadata and not
the entire payload of packets.

Imunes [34] is a system based on FreeBSD which supports
multiple, virtual network stacks within a single instance of the
operating system. The emulated topology is build by differ-
ent nodes, each one is based on a virtual stack. Nodes are
connected through Dummynet instances. This concept can be
extended by using virtual machines (Xen, VMWare, Virtual-
Box, Qemu) to run multiple emulator instances.

Emulation features are also present in network simulators
such as Ns-2 [31] and Ns-3 [17], which can drive the simulator
with live traffic, and interact in this way with real traffic sources
and links.

SatelliteLab [35] is a system with goals similar to the work
presented here, though it uses a completely different approach.
SatelliteLab reproduces the behaviour of a link (such as a DSL
line connecting a residential customer) by passing traffic probes
through the actual physical link involved in the experiment,
and using the measured behaviour to artificially delay or drop
the traffic subject to emulation. With SatelliteLab one does
not need to model a link, but also has no control on the ex-
perimental conditions. In this respect, SatelliteLab is more a
testbed extension than a real emulator.

6.3. Emulating wireless networks

Emulating wireless links used for data communication may
be an extremely complex problem, as it has to deal with phys-
ical as well as MAC protocol aspects.

Channel models and the effect of noise on data communi-
cation, in presence of specific modulations, is the subject of
communication theory research, see e.g. [23]. Some packet level
simulators provide different options, according to the propaga-
tion model used; as an example, the latest Ns-3 version gives
the choice between the YANS [22], DSSS [20] and NIST [21]
error models.

Emulating the MAC protocol in presence of multiple sta-
tions is doable [36] but computationally intensive, as we need
to reproduce the behaviour of individual stations. Several stud-
ies [25, 26] have tried to determine analytical models of aggre-
gate parameters (e.g. probability of collisions, channel usage).
These results can be of use in coarse-level emulations as the
one we have implemented.

When the amount of computation involved in wireless em-
ulation becomes too significant, e.g. because one wants to re-
produce multipath, interference, etc., it might be useful to use
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dedicated processing units for this purpose. As an example,
the CMU wireless emulator [5] uses FPGA-based hardware to
emulate signal propagation in space, enabling controlled and
reproducible experiments.

7. Conclusions

In this paper we have presented the architecture of an
emulation extension that we have designed and deployed on
PlanetLab, and given an extensive report on the performance
and scalability of the tool. The core of the system is based
on the Dummynet emulator, which has been ported to Linux
and extended with specific features to support wireless emula-
tion, and improve scalability and performance in the PlanetLab
environment. In addition to the emulation engine, we have de-
signed and implemented a simple and intuitive user interface,
so that researchers can focus on their main work without be-
ing distracted by the complexity of configuring emulation. As
part of the Onelab2 project, the emulation support has been al-
ready deployed on the PlanetLab-Europe testbed, and is being
updated with new features as we develop them.
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